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The minimum cost network flow problem with set-constraints is a generalization of
the well-known minimum cost network flow problem, in which bounds on the sum
of flows through sets of arcs exist, This paper investigates some variations of this
probiem, including the polymatroid intersection problem, where for each node two
polymatroids are given; one polymatroid constrains flows entering the node, and the
other constrains flows leaving it.

I. INTRODUCTION

The minimum cost network flow problem with set-constraints is a generalization of
the well-known minimum cost network flow problem, in which bounds on the sum of
flows through sets of arcs exist. This paper investigates some variations of this prob-
lem where each node has two polymatroids, one constrains flows entering the node,
and the other constrains flows leaving it. Notation and fundamental concepts are de-
fined in Sec. 1I. The algorithm is first presented and motivated for a limited case in
Sec. III. Sec, IV describes how the dual problem can be decomposed into trivial sub-
problems. Sec. V proves some properties of submodular and supermodular func-
tions and uses them to prove an existence theorem for flows with set-constraints. In
Sec. VI, this theorem is used to generalize the algorithm of Sec. III, Finally, in Sec.
VII, we set a condition for the existence of a trivial solution to a polymatroid inter-
section problem in which the costs are not restricted in sign.

Il. NOTATION AND TERMINOLOGY

Throughout this paper n will be a positive integer, E will be the set {1, ..., n}, and
R ={x:x€R" and x 2 0}. A real valued function r whose domain is all of the sub-
sets of £ is said to be submodular if

rS)+rM2rVN)+r(SNT) VS, TCE,
and supermodular if

rS)+r(T) S rSUT)+rSNT) VS, TCE.
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The function is said to be nondecreasing if
r$Y<r() VYSCTCE.

A non-negative nondecreasing function r # 0 which is submodular is called a 8, func-
tion. 1If it is supermodular we gall it a vy, function.

For the following linear program, there exists an immediate solution called the
greedy algorithm |2, 3].

Minimize D r(S)u(S) (1)
g

subject to

2 ul®)>c¢ YIEE,
S:jes

wherecy Ze; Z 2 ¢y > 02 cpyy 2+ - 2¢,, andris a § function defined on
the subsets of £. The solution is

u({l,...,t))=c;— sy, fore=1,...,k-1;

u({L, ..., kD =¢x; @
u(§)=90, for all other § C E.

A polymatrold is a set P C RT such that
() 0=x® < x! and x* € Pimply x° € P,
(ii) for « €RY, every x € P such that x < o and no x" € P such that x* > x exists,
has the same component sum Z7,, x; called the rank of ¢, r(e).
A polymatroid is called integral if (ii) holds also when o and x are restricted to be
integer valued. It is a matroid when the vectors are restricted to be 0-1 valued.

It has been shown [2] that the rank function r(a) for any polymatroid is a §, func-
tion, and that if 7 is a B, function on 2% then {x ER": Zieg X Sr(§)VSCE}isa
polymatroid.

Problem (3) is the dual linear program of problem (1):

Maximize 3 ¢;x; €))
jEE
subject to

S %, <rS) VSCE,
jES

x>0  V/€E.

Since r is a f function, this problem is to find a maximum weighted vector in the
polymatroid defined by r.
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MINIMUM COST FLOW 3

Let r and 7’ be two 8, functions defined on 2&. The polymatroid intersection prob-
lem is to find the maximum weighted vector which belongs to both polymatroids
defined by rand v/, i.e.,

maximize 3 ¢px; (4)
f€EE

subject to

2% <r(§) VSCE,

JES
2. xSr@l) VSCE,
/€S

xf>0 erE.

Certain problems of matching, job sequencing, experimental design, network syn-
thesis and information theory can be formulated in this form [6, 11]. Algorithms
which solve problem 4 and its variations are described in [4, 5, 9, 10].

In the following, (V, 4} will denote a directed network with a set of nodes N and a
set of arcs 4 C VX N, The flow assigned to arc (i, /) € 4 will be denoted by X5, and
ciy will denote its unit cost. We also use the notation x(f, §) = Z; e g x; and x(8,§) =
Ej &8 X

The minimumn cost flow problem is a well-known problem in network theory. The
problem is to

minimize ) cyxy (%)
(ned

subject to

x(,N- - x(N-1,{)=0 ViEN,
ngij"‘g"ij V(I,])EA,

where ry; (i, /) €A is a set of given capacities of the arcs of the network.

Problems (3) and (4) and problem (5) are of theoretical interest and have useful
applications. [t would therefore seem that following a combination of the above,
formulated in (6) below, could also be of much interest,

Maximize* 3 ¢, xy (6)
LNeA

*Network flow theory usually deals with “minimization’ problems, while matroid
intersection is usually defined ag a *“maximization” problem. We chose to define the
problem in terms of maximization, Clearly this is just a matter of notation,
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subject to
xGN-D-x(N-i,D=0 VYIiEN,

x(,F<r@,F vYieN FCN-i,
x(F, 1) <r (F,{) YiEN FCN-1,

where r*(i, -) and (-, ¥) are given 8, functions defined on the subsets of N~ i, Thus
for each node two polymatroids are defined, one constraining the flows entering the
node and the other constraining the flows leaving it.

We note that the polymatroid intersection problem (4) is a special case of (6). In this
case the network consists of nodes £ U {s, t} and arcs (¢, 8), (s, 1), ..., (s, n), (1, 1),
..., (n, ©). The upper bounds on the flowsare r* (s, ) =7r(S) and 7 (S, £) =r'(8) for
every S CF, andr* (¢, {s}) =r ({1}, 5) ==e,

The following example illustrates our problem and will be used later to clarify the
algorithm which we develop,

Example. (V, A) is the network presented in Figure 1 where the numbers written on
the arcs are the unit flow costs, and the flow is constrained as follows:
(i) Bounds on flows leaving the nodes:
X13 63,.’:,4 " 5,%13 tX14 R 6;
X31 S8, %24 R4, Xy X249,
X32 K8,
X43 <5,
(ii) Bounds on flows entering the nodes:
Xy <8
X3, &8
X13 &3,%43 $5,%15 tx53 <9;
X1a = S,x“ <4,x14 tXaa %6,

Il. POLYMATROID INTERSECTION

In this section we present an algorithm for the polymatroid intersection problem (4).
We present it now in order to motivate the general algorithm for problem (6) which we
develop later, and therefore the details and proofs are omitted. The main idea under-
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MINIMUM COST FLOW

lying the algorithm is that if x is a vector which maximizes both

Z Uy Xy

i€E
subject to
> x<sr®) VYSCE x20
=3
and
2 v X
IEE
subject to

Y x<r() VSCE x20
i€8

(72)

(7b)

for some pair of vectors v and v’ such that v + v’ = ¢, then x is also an optimal solution
to (4). Note that each of the above problems is easily solved by the greedy algorithm.

Polymatroid Intersection Algorithm

Step 1: Start with any pair of vectors v and ' such that v + v' =¢,

Step 2: Try to find a vector x which solves both (7a) and (7b). If one exists it is
the optimal solution. Else there exists M C E such that Z, ¢ pr X, is strictly
greater in any solution of one problem [say (7a)} than in any solution of

the other problem.

Step 3: Equally decrease v; and increase v; for every { €M until for some iEM, y;
(or v}) becomes either zero or equal to some v;(v}), j¢M. Return to

Step 2.

We apply now the algorithm to an example of matroid intersection taken from [10],
Let #(S) and r'(8) be the number of arcs in a spanning tree of the subgraph induced by
the arcs of § in the graphs G and G' in Figure 2, respectively. Let the costs bee, =3,

¢y =5,04 =6,¢c4 =10,and ¢ = 8.

FIG. 2.
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TABLEI
. 1 2 3

[teration ’
) v v v v v v
1 3 0 3 0 2 1
2 S 0 5 0 4 1
3 6 0 3 1 4 2
4 10 ¢} 9 i 8 2
5 8 0 B 0 8 0

We start with v=¢ and v’ =0. The greedy algorithm applied to (7a) givesx = (1, 0,
1, 1, 0) but (7b} requires x; + x4 < 1, thus we reach Step 3 with M = {3, 4}, We de-
crease vy and v, and increase vy and vj until v, = vy. The greedy algorithm now
yields for (7a) x = (1,x;,x3, 1,0) withx; = 1 - x, and x, € {0, 1}, However in (7b)
Xy t Xz + x3 t x4 <2 is required and thus M = {1, 2, 3,4}, Another change in v and
v' yields the solution x =(1, 0, 1, 0, 1) which solves both (7a) and (7b) and is there-
fore optimal. The Table I summarizes the calculations.

IV. THE DUAL RESTRICTED PROBLEM
The dual problem of (6) is to

Minimize 3~ 5 [0, F)u @, F)+r (F ) u(F, 1)) (8)
iEN FON-1

subject to

ui"'u}"*' Z u+(i,F)+ Z uH(F:j)Pcl'j V(I‘,]')EA,
FCN-i FON-f
[EF ier

ut@, F), «(F,N=0 ViEN,FCN-I.

To allow a decomposition of the dual problem we first transform every arc (i, NEA
into two arcs (7, m) and (m, f), where m is a slack node, and assign to these arcs any
COStS Cjy and ¢,y such that their sum ¢, + ¢,p,; equals the original cost of the arc, cyj-
Figure 3 shows the transformed network for the example presented in Figure 1,

The nodes of the new network consist of the original set of nodes N with a set of
slack nodes Ny, and the arcs of the new network consist of two sets of arcs 4, C
NXNg and Ay SNy X N. The dual problem (8) is now reformulated:

Minimize 5 5 [/, F)u*(, F)+r (F,Du"(F,i)] {9)
IEN FEN-1

subject to
wowt 5w F)ze;  V{E)EA,,

FCN-i
jer
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v

\&/
FIG. 3.

-yt 3 wFEpEey  YE)NEA,,

FCN-}
icer

ut(i,F), u (F,))>0 VIEN,FCN-1,
Suppose that we fix the values of the node variables #; € ¥, thus forming a “re-
stricted” dual problem, and let vy = ¢y - 4y +u;. The problem reduces to 2| N | inde-
pendent subproblems as follows:

(P7) Minimize z; = 5" r*(, F)u*(i, F)

FCN-i
subject to
Z u+(isF)}Ul'j V(l,])EA;_,
FCN~i
JEF
W@, Fy=0 VFCN-I.
(£y) Minimize z;y = " r (F,))u"(F,i)
FCN-1
subject to
2 wFEDZy V(,)EA,,
FCN-i
JEF
uw(F,iH)=0 VFCN-I

Each of these problems is solved by the “greedy algorithm,” To solve (P7) letj(1),
J(2), ..., be an ordering of j&N - i such that by ;01y 2 vy 2y 2 2V jpy > 02
Vijer) =00 Let Gpo= {G(1), 7(2), ..., j(®)} for 1 <t < k. Then the following
solution is optimai:

u+(i, Gt) S T Ui 1) fort = 1,...,k-1, (103)
u* (_I, Gk) =ik (101’))
w(@, =0 for all other FCN - i. (10¢)

35132]7 sUCWIWOD aanReas) ajqeadde sy Aq pauisaoh aie sspIfle YO '9SN Jo sajni 10y AJ2lgI AUNUG A3jiAn U (SUCIIPUOI-puE-sLLBY/Wod AR M AIRIGIRWIU0 //sd1y)
SUCILIDUOD DUE SULIBT aul 88 Te7nz/11 /511 U0 Aselar] aunun Asiian "ALISIBAILN AIAY 131 AR 70107 1NS7 18U 7000 A N1oR/loa Aeim A reraipuiuo//:sdiay Wkl D3DeoIUMOA 1 "anny 7 son/ a0l



8 HASSIN

Similar solutions can be obtained for the problems (P}). In the following until we
solve the example, we simplify the discussion by assuming that r™(F, i) = oo for all
1€N and F CN - i, so that the problems (P]) can be ignored and the transformation
of the network is unnecessary. We also simplify the notation by omitting the + sign
fromr*@i, F), u* (i, ), and z{.

For a given set u; { € N we obtained from (P} ) and (10}

k-1
2= 2 P0G (50 = U, jeer)) +1C Gr) o, (R). 1y

tm]

Suppose that either £ = 1 or vy jery <y je-1)- Letay yp) be the increase in z; per unit
increase in v; ycry. Then
r(i, Gt)-r(i, Gt"l) if ULI(:))O and!%l,
a4 yin = r(i, Gy) if v 2 0andt =1,
0 if U, () <0.

Suppose that either ¢ = [N1~ 101 o 5y > Uy jpe1). Let by j(z) be the decrease in the
objective per unit decrease in v; ;4. Then,
r{t, Go)~ r(i, Ge-y)  if vy >0and#1,
b;J(r) = r(i, Gl) if N0) >0andt = 1,
0 if UL i) <0

Note that if Ui, i(1+1) < U,-J(f) < by je-1) then i ™ bi,_i(r) and otherwise a; 1) =

B, jcay-
Suppose that vy; =v for all JESC N -i. A simultaneous increase in all u;j € S will

result in a similar increase in vy for all JES. Let B= {jEN~ i vy > v}, then from
(11) we obtain that the increase in z; per unit increase in WiESis

a(i,S)=r{i, BUS)- r(i, B). (12)

Similarly, let D= {jE€N-i: vy > v}, then the decrease in z; per unit decrease in u;
JESIis

b(i,S)=r(,D)-r(i, D~ S). (13)

Note that a(/, §) and (7, S) are the values obtained while considering the arcs @, j)
j €S as a single arc.

Example. Let ¥= {0, 1,2, 3,4, 5} and suppose vy, > Ugy = Vg3 = Upg = U > Ups = 0,
then z, is equal to

§=r(01 {1}) (UOI - U)+r(0’ {I’ 2: 3:4}) (U_ 005)'
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MINIMUM COST FLOW 9
If vg; and vp3 are increased to o' < vg; then the new value of zg is

¢ =10, {1}) (o1 ~ V) +7(0, {1,2,3D ('~ v) +r(0, {1, 2, 3, 4}) (v - vos).
Thus
¢-0=0' - o) [r©, {1,2,3D- r, {1]

and

a(0, {2,3) =r(0, {1,2,3H~r(0, {1}).

On the other hand, if vy, and vy are decreased to v” > vy, then the new value of z,, is

¢ =10, {13) (Wor = 1) + 10, {1, 4D (= v")+7(0, {1,2,3,4F (0" = vo5),
£ 8" == o) (0, {1,2,3,4D) - r(0, {1,4])

and thus
B0, {2,3)=r(0, {1,2,3,4H - r(0, {1, 4}).

V. AN EXISTENCE THEOREM
The existence theorem which we prove in this section underlies the algorithm de.
veloped in Sec, VL,

Lemma 1. For every i €N, a(i, §) is submodular and (, S) is supermodular.

Proof: For simplicity we drop the indexi. Let SCN,and TC N. Since the effect
of changing vj’s with distinct values is additive, we just have to consider the case in
which vy =v forallj€SUT. LetB={f:v;>v} and let D= {j: vy > v}. Using the
submodularity of r(+) and eqs. (12)~(13), we obtain

a$)+a(Ty=r(BUS)+r(BUT)- 2r(8)
2H@BUS)UBUT)+r({BUSYNBUT)- 2r(B)
=rBUSUD)+rBUENT)-2r(B)=a(SU D) +a{SNT),
bS)Y+b(T)=2rD)~ [r(D-8)+r(D- 1)}
L2r(D)- [r(P-SYVD-TH+r({(D-S)ND-TY]
=2k D)~ F(D- SO TN +r(D- (SUTYH] =b(SNTY+b(SUT).
We define the sum S+ T, of the sets §={sy,...,5,}and T={r,,..., ¢} as S+
T=1{5,...,8,t,...,tp} (we donot require S N T = ¢).

Lemma2. Let r be a real function on 28, Suppose that sets H, CE, p=1,...,p
are given. LetS, = {e €E: e is included in at least g of the sets Hp, p=1,...,F}.
(a) Ifris submodular, then E5 r(Hp) > T, 7(S).

(b) Ifr is supermodular, then Z, r(H,) < Z, r(5,).

IimAieigeRulue/fisdiy)
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10 HASSIN

Proof: Note that Z, S, = Z, Hp. Construct the sets §; from the sets i, by suc-
cessively replacing pairs of sets A, H; such that H; ¢ H;and H; iH,, by H; U H, and
H;NH; This operation leaves X, H, unchanged and stops when the sets H), are
nested and hence constitute a permutation of the sets S,.

If r is submodular, this procedure decreases I, r(H,) since r{H;) + r(H;) > r(i; U
Hp) +r(H; N H)). Ifris supermodular, this sum is increased.
Example. Suppose r is submodular, then

r({1, 21 +r({2, 31 + r({1, 3 + 1(1),
2r({1, 2,3} +r({1}) < 3r({1}) + 2r({21 + 2r({3}),
2r({1, 2} + ({1, 3} + r({3D).

Lemma 3. Forevery nodei{ €N andsets S, TC N~ |,
a(f,S$)-a(l,S-TY2b@{ T)-b{,T-S).

Proof: For simplicity we drop the index 7. SetS, = {f€S:y; =v}and I, = {fJET:
vy = v}, then

a§)=2_ a(S), a-7)=2 a(S,-T.)

b(T) = Z (T, - 8y), b(T-8)= Z b(T,-8y)

where the sums are taken over all distinet values of vy Thus
[#(8)-a(S- 1)) - [B{T)- 5(T- 5)] =3 {[a{S.)- a(S, - T,)]
v

- [B@y) - 5(T, - S}
Let B, = {j:v; > v} and let D, {j: v; > v}, From (12) and (13) we obtain

a(Sy) =r(B, YS,)- r(8,),

a(Sy ~ To) =r(B, U (Sy - T,)) - r(By),
b(T\) =rDy)- r(D, ~ T,),

b(Ty - 8,) =r(Dy) - 1D, - (T, - 5,)).

Therefore

[@{S)-a(S- )] - [BT)-b(T- 5] = F {rB, VS,)+rD, - T,

- @Dy~ (Ty - 8)) +r(B, Y (S, - TN}

-pue-sulzy/wodfemAleiqisuiuo//sdiy)
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MINIMUM COST FLOW 11

Since the set in the third term is the union of the sets in the first two terms, while the
set in the last term is their intersection, and since r is submodular, the whole term is
non-negative,

Lemma 4. Let 7 and ¥’ be two real functions on 2%, Assume that r is submodular, ¥

is supermodular, and r(§) - r(S - T) 2 (T) - r'(T- S) forevery SCEand TC E.

LetH, CEp=1,...,p,andG,, CEm=1,...,mbegivensets. Forg=1,2,...,

define S, = {¢ € E: e s included in the sets H, p =1, ..., 7, atleastq timesmore than

in the sets G, m=1,..., m}, and §g = {¢ EF: e is included in the sets £, p=1,
., D, at least g times /ess than in the sets G,,, m =1, ..., m}. Then

Y rH)- Y r'(Gp,) = 3 riSy)- 3 r'(S;).
4 " q

g

Proof: Suppose H, NG, =¢ forp=1,...,pandm=1,...,m. By Lemma 2
2, MHp) 2 Z41(S,) and Z,,,7'(G,,) < Z, 7(Sg). The subtraction of the last expres-
sion from the first yields the result for this case,

Suppose H; N Gy # ¢. Since r(H) ~ r'(Gy) = r(H; - G;) - r'(G;- H)), replacing f; by
H; - Gy, and G; by Gy - H;, decreases the left-hand side of the inequality. This proce-
dure may be repeated untilH, NG, =¢forp=1,...,pandm=1,...,m, at which
point Lemma 2 applies.

Example. Let H, = {1, 2, 3}, H,={1,3}, Ha=1{2,3, 5}, G, ={1, 2, 5}, G, =
{4,5),Gs = {2,4},and G4 = {5}. Then, 2, H, = {1,1,2,2,3,3,3, 5} and £, G, =
{1,2,2,4,4,5,5,5}. Therefore S, = {1, 3}, S, =83 = {3}, §1 =83 = {4, 5}. Ifr
and 7 satisfy the conditions required by Lemma 4, then

r({1,2,30) +r({1,3D+r({2,3, 1) - r({1,2, 5} - r({4, 5D - r({2,4})
- r({sh=2r({1,30) +2r({3}) - 2r({4, 5}).

The following theorem is a generalization of Hoffman’s existence theorem for cir-
culations [8, 11].

Theorem 1. For every i €N let k(i, ) be a submodular function and d(f, -) be a su-
permodular function such that k(i, §) -~ k(i, S- TY=d({, T)- d(i, T~ S) forany S,
TCN-i. A necessary and sufficient condition for the existence of x > 0 such that
x(E, N-D=x(N-i)andd(,S)<x(i,S)<k(i,S) foreveryi €N and S CN is that

S kGN-M)= Y dG,M) VYMCN.
ieM ieN-M

Proof: (a) The condition is necessary since for a feasible circulation

Y OdEM< Y xGM)= S xGN-MYS Y kGN- M)

iEN-M ieN-M ieM ieM
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WOl DRDEOIUMO ‘I 'aNA7 A S0nT RN

asusdl] suouiwoed saneald sjgeddde syl Ag pauraaoh ale sapaUre YO Bsn Jo sa|n) Joj A1eigr] BUlUQ A3{IN U (SUOTHPLOD-PUR-5UUAY/02 KD
SUQIIPUOY BUE SwWia! atn 335 [e7o7/11/617 uo A1ei1ait aunun Aanas ‘Ausiamun Ay 131 A8 -7a1071INS7 £ 12/ 7001 'm /1op fwed Kenm-Alelaiwunuo//sdnu



12 HASSIN

(b) Suppose that no feasible circulation exists, Then there exists a circulation y with
y{,SY< k(f,S) for every S C A, a node m €N and a set Q C N - m, such that y (m,
Q) <d(m, Q) and the solution to the auxiliary problem,

maximize x{m, Q)
subject to

xX(@E,N=-D)~x(N-i,i)=0 Vi€EN,

x(,8) <0 if y(,8)=k(i,S),

x(7,8)=>0 if (i, 8)<d(,s),
isx(m,Q@)=0.

Thus there exist an integer L and a non-negative integral solution to the following
dual system:

up=uyp+ 2 u(, )~ Y u@,8)=Ny; V@, )EA
s

5
where Sf={SCN-i:jE€S, y(1,8)=k(,S)
S;={SCN-1:]€S,y4,5)<d(,S)
L i=mandjEg
Ny= .
0 otherwise.

Forg=0,1,2,...,let T, = {{EN:u; > q}, then (T, N~- T)={0NEA:u»q,
u;<ql,and (V- To, T,) = {(1, ) €A: u; < q, u; > q}. Hence,

0= Zy(N_ Tq: Tq)- Zy(T V- Tq)
q q

(Lhe4 (L.heAd
= Z (- u)yy
LHeA
= 2 .5_:.,!1(!',3).}’11“ 2 2.uGS)yy~ 2 Lyny
Lhed 5 (LhEA 55 JEQ
=3 > u(,S)p(t,8)- 3 )3 u(, $)»(,S)
IEN 8 p(i,8)=k(1,8) {EN 8:y(1,5)% d(1,8)

=Ly(m,Q)> 3 h u(t, $)k(@,S)

{EN S:y(i,5)=k(i,8)

- 2. u(@,5)d(i,8)~ Ld(m, Q)
IEN S y(I,8)<d{,3)
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MINIMUM COST FLOW 13

(by Lemma 4)

= 5 Zk(i,{jzg;u(i,S% Zu(i,S)—N,,?q})

IEN ¢q A Sf‘
-5 Zd(i,{j:Z_u(i,S)-— Z+u(i,S)+N,j>q})
ieN q Sf 8y
=2 2 kG Ury-wzal)- 2 2dG {jiu-uy>q))
ieN q iIeN g
g [1eENw<q {EN:u»q
=>:[ > kG TH- X d(i,N-Tq)].
q iEN—Tq iETq

Thus, there exists ¢ such that the condition of the theorem does not hold for the set
T,.
q

VI. AN ALGORITHM

An improving set is a set M C N such that a simultaneous increase in all u; § € M de-
creases the dual objective ;= 2;. An increase in all u; i €M, equally increases vy
for all (7, /) € (W~ M, M) and decreases vy, for all (7, /) € (M, N - M). Therefore a set
M C N is an improving set if and only if Z; e p-pr a((, M) < Zycpr b, N- M)

Theorem 2, A dual solution w; { €N is optimal if and only if no improving sets exist,
ie, Ziey-ma(,M)2>Ziep b, N-M) for allMC N,

Proof: The condition is trivially necessary, To prove sufficiency we use Theorem 1.
Let a(i, §) and b(I, S) be the marginal costs associated with a feasible dual solution, as
defined in Sec. III. By Lemmas 1 and 3 and the assumption of this theorem, they sat-
isfy the conditions stated in Theorem ! for k{7, §) and d{i, §), respectively. Hence
there exists a circulation x such that b(f, §) < x({, §) <a(i, S) foralli €N, and SC
N-i. By the complementary slackness theorem of linear programming, the solution
u;, 1€ N is optimal if x(f, §) =r(i, S) whenever u(@, S) > 0. However, u{i,S)>0is
possible in the solution to (Py) only if § =G, and vy(sy > Uy¢s +1). In such a case,
a(i, G, =b{i, G,)=r(G,). Thus b(i, G,) € x(i, G;) <a(l, G,) implies that x(f, G;) =
r(i, G,) as required. Therefore the complementary condition holds and u;, i EN is an
optimal solution for the dual problem (while the circulation x is optimal for the primal
problem).

We are now in a position to describe, in general, the class of dual algorithms which
solve our problem. Then we describe in more detail a primal dual variation of this
class. Both the general and specific algorithms are modifications of algorithms which
are described in [7] for the minimum cost flow problem.
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14 HASSIN

A General Dual Algorithm

Step 1: Try to find an improving set M CN. If none exists, the solution is op-
timal, else, proceed to Step 2.

Step 2. Increase u;, i €M, until for some (7, /) €A either vy becomes zero or it
becomes equal to vy, form & N- M, and proceed to Step 1. If this does
not happen then the dual problem is unbounded and the primal is feasible,

While Step 2 of the general algorithm is common to all the dual algorithms [7] (in-
cluding the so-called primal-dual) Step 1 is implemented in different ways.

We now describe a procedure which implements Step 1 of the general algorithm us-
ing both primal and dual variables. This procedure tries to construct a circulation
satisfying

b, S)<x(,S)<a(i,§) VIiEN,SCN-i. (14)

By Lemma 1, Lemma 3, and Theorem 1, such a circulation exists if and only if
Liemali, N- M) = Zicy.p (i, M), ie., if and only if no improving set exists,
and by Theorem 2 an optimal solutjon has been reached.

A simple cycle in (V, A) is a sequence of k(k > 2) distinct arcs o, €4, m=1,.. .,
k, and k distinct nodes i, EN, m=1, ..., k, such that either o, = (i, ipe,) OF
G = (Imays bp) form=1,.. . Kk andiy,, =i,. Arca, in this cycle is positively or-
iented if @, = (I, im+, ) negatively oriented if &, = (iy4y, in). 1f arc (7, 7) has cost
¢y, then the cost of this cycle is the sum of the costs of its positively oriented arcs less
the sum of the costs of its negatively oriented arcs. It is easy to see that taking vy =
¢y~ 4y +uy as the cost of arc (7, /) rather than ¢y, does not change the cost of any sim-
ple cycle in (N, 4).

One way to apply the dual algorithm is by perturbing the costs of the arcs so that no
simple cycle has zero cost. For example, every ¢y can be increased by a small quantity
€; as described in [1], while these quantities are removed from the final solution.
Costs need not be perturbed in advance, but only when necessary, as demonstrated
below,

When no zero cost cycles exist with respect to the cost vy, it is possible to search for
a circulation satisfying (14) by assigning flow values to the arcs according to

x(,N-i)=x(N-i,i) Vi€EN, (15)
x(G,8)=a(,S) VS CN-isuch thata(i,S) = b (i, S). (16)

We show now that the process terminates with either a circulation satisfying (14) or
with an improving set, Let G C A be the set of arcs for which flow has not yet been
defined, and let (7, 1) € G be an arc with a nonzero cost; then X, can be determined
by (16), or there exists another arc (i, m) € G such that vy, = v;,. Note that nodes m
and n cannot be connected by arcs with zero cost since this means that a simple cycle
with zero cost exists. We leave m and advance as much as possible along arcs of G with
zero costs. Let (p, g) be the last arc traversed, then every other arc of G incident with
node ¢ has nonzero cost. Therefore x(g, N~ ¢) is known from (16) and either Xpgq
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MINIMUM COST FLOW 15

FIG. 4.

can be determined from (15) or there is a (nonzero cost) arc Xjy € G (see Fig. 4). If
Xjq cannot be determined from (16) then there exists an arc (/, k) € G with vy = vy
Nodes k and n cannot be connected by zero cost arcs since this will mean the existence
of a zero cost cycle. Thus we continue the search from &, Since |4 is finite, the
search terminates with an arc of G to which flow can be assigned. Repeating the
search we finally obtain a circulation satisfying (14) if one exists, or we discover a set
of nodes M C N for which (15) and (16) are inconsistent.

The Primal-Dual Algorithm (see [12] for the minimum cost flow problem) locates a
set M C N for which

S e, M)~ T biEN-M) (17

feN-M ieN

is most negative. We call such a set a maximum improving set. If the set with the
smallest cardinality among these sets is chosen it can be proved (¢f. [7] for the mini-
mum cost flow problem) that if M; is the maximum improving set found in iteration {,
then either (17) is more negative for M; in iteration { than for M,,, in iterationi+ 1,
or it has the same value and M; CM;., (we assume that for every (I, ) € 4, r(j,
{7}) > 0). Therefore the same value of (17) cannot be repeated more than [N] times
and the total number of iterations must be smaller than || times the value of (17) in
the first iteration. For the polymatroid intersection problem (4) withr (E) <r'(E) a
bound of n « (£ iterations is obtained.

When no zero cost cycles exist, maximum improving sets (with smallest cardinality)
can be found by assigning flows according to (15) and (16) and finally taking the
union of the sets thus found, for which the total flow which must leave the set is
(strictly) greater than the flow which must enter it. (An exact derivation of this algo-
rithm for the minimum cost problem can be found in [7].)

The algorithm may become clearer in the following example presented in Figures 1
and 3. Figure 5(a) describes the initial solution #; =0, Vi€N. Thus vy =c; V (i,
/) EA. The values of vy, 4y, and by; are shown. Whenever there exists aset SC A~
such that v has a common value for every j € 8, the values of a(¢, S) and b(j, §) are
also shown.

We now search for the maximum improving set. We start by letting x;; = a;; for arcs
with ay; = by, For example x,, =3 and x4 = 3. This implies x5, =6, and x,5 must
be equal to 6. Since a,5 = b,ys = 8 we found a set of nodes such that the total flow
which must enter it is greater than the flow which must leave it, By backtracking we
see that this set is (1, 5). We conclude that its complement {2, 3,4,6,7,8,9, 10} is
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FIG. 5. (Continued)

an improving set, and we can performa Step 2 of the general dual algorithm. However
if we want to find the maximum improving set we just ignore the set {1, 5} and con-
tinue the search. For example we continue by assigning x,5 =8 and x3¢ = 1. This
implies x5, = 9, and x5, must be equal to 9. Since 436 =bas =0, we found a set,
{2, 6}, which is an improving set. Since x; =1 and x;5 =3 we assign xo4 = 1 and
Xs4 =3 50 that x4 1o must be equal to 4, buta, 1o = b4, 10 = 5 and thus {4, 8, 9} is an
improving set. We continue with x4 10 =5, %17 =3,Xy9,2 =35, and x53 =3, thus X3¢
must be equal to 8. Sinceayq = by = 0, the set {3, 7, 10} is not an improving set.

With all x;;(#, /) €A determined, the maximum improving set is the union of all the
improving sets which were found, i.e., the setJ = {2, 4, 6, 8, 9}. The dual variables u;,
i &7 are increased by the maximum possible increase, which in this case is one unit
when v, becomes equal to v, and v;5 becomes equal to vy,. To avoid the possibil-
ity of a zero cost cycle we perturb v,g so that it is assumed to be smaller than vy,.
This is shown in Figure 5(b) by marking vy, =27

The sequence of networks which results from successive increase of the dual vari-
ables of the maximum improving sets is shown in Figure 5(b)-5(d) where the maxi-
mum improving sets are marked by broken lines.
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18 HASSIN
VIl. POLYMATROID INTERSECTION: GREEDY AND
GENEROUS ALGORITHMS

In Theorem 1, the following condition which determines the relation between the
upper and lower bounds, and whose meaning has not been explained thus far, is
required:

k(S)~ k(S-T)=d(T)-d(T-8) VS, TCE. (18)

In this section we show that when (18) holds, instant solutions exist for certain
problems of polymatroid intersection. Throughout this section we assume that
weights ¢, 2 ¢, 2 - - - 2 ¢, are given to the elements of E. We consider the following
linear program:

Maximize Cy X4 (19
=y

subject to
diS)<x(S)< k(S) VSCE,

where x(S) = Z; e g x;, k is a fp function and d is a vy, function.
Let

XGR ={k(F,) t=1,
k(FI)-k(Ft‘l) t=2:---’n:

where Fy={1,...,¢}. This is the greedy solution which, as we have atready men-
tioned, solves (19) ife, 0 and d =0,

Let
GE= d(Gr)"d(Grq_i) t*l,...,ﬂ"l
g d(G,) t=n.
where G, = {t,..., n}. This is the generous solution which as we prove in the next

theorem and corollary, solves (19) if ¢, < 0 and j< =0,

Theorem 3. If d is nondecreasing and supermodular and if ¢n 20, x98 solves the
following linear program:

Minimize ) ¢;x
i€E

subject to

d8)<x(§) VSCE.
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MINIMUM COST FLOW 19

Proof: (i} We first show that the generous solution is feasible, Let 8= {s(1),
$(2),...,8(m)} CE, then

xGE(S) -d(8)= Id(Gs(i)) deeet d(Gs(m))] = ld(GJ(l)-l-l et d(Gs(m)H) +d(S)]

(where if $(j) =n then d(Gy(+,) is omitted), From part (b) of Lemma 2 we con-
clude that the expression is non-negative and thus x°F is feasible.

(i) Suppose x“% is not optimal. Let y denote the optimal solution, and let ¢ be the
smallest 7 € £ such that y; > d(G;) - d(G;4, ), i.¢., the smallest i € £ such that y (G,) >
d(G)). Since xF is feasible, p(8) > d(S) must be satisfied for all 1 ES C G,.

(i) We show now that a better solution can be obtained by decreasing y, and
equally increasing some y; i <t. Suppose this is impossible. Then there exist sets
Hy, p=1,..., p satisfying y(Hp) = d(H,) and t€NE_, H, C Gy (ie., if y, is de-
creased, some y; (> ¢ must be increased.) From Lemma 2 with §, = {e€£: e is in-
cluded in at least g of the sets H,} we obtain

2.YS) = 2 yHp) =3 dHp) < 3 d(S) <3 y(Sy)
q P 7 q q

where the last inequality follows from tES; = n,'f.,l Hp € G, and part (ii) of this
proof. Thus the assumption that xGE is not optimal has led into a contradiction.

Corollary. If d is nonincreasing and supermodular and if ¢; <0 then x%% solves the
following problem:
Maximize > ¢;%
i€E

subject to d(S) < x(S5).

Returning to problem (13), with both lower and upper bounds on x(S), we observe
that if ¢ 0 and x“R($)>d(S) for all $ C £, then X% is an optimal solution. If
¢ > 0 and x%F(8) < k(S), then x%F is optimal.

Theorem 4. A .necessary-and sufficient condition for x%E and x°F to be feasible for
any cost vector ¢ is that (S} - k(- T)2d(T)-d(I'- §)forall T , §C E andfoz
ST

Proof: ¥ Suppose S C T C E and k(S) < d(T) - d(T - §). Then there exists a
cost vector such that xC£(8) = d(T) - d(T - §) > k(5). Similarly, if TCSC E and
k(S) - k(S ~ T) < d(T), then there exists a cost vector such that xR(8) = k(S) -
k(S - T)Y<d(T). Therefore the condition is necessary.

(b) Suppose the condition holds, Then

dS)<x%E@)= 3 [d{t,...,.n)y-d({t+1,...,n}]

(A=

<y KAL)=k, 0= 1)) = xCR () < k(S),
tEs
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20 HASSIN

where the first and last inequalities hold by the definitions of X% and x®F and the
second holds by the condition of the lemma with§= {1,...,f}and T'= {¢,...,n}.
Therefore, both solutions are feasible.

Theorem 5, Assume {i: c; > 0} = F, and the condition of Theorem 4 holds. Then

F{k(ﬂ)—km-l) t<q,
*ld(G-dG,e) t>q,

is an optimal solution to (19).
Proof: To see that X is feasible note that

d(S)<x%EE©)= ¥ [d(Gp) - d(Grsy)]
tes

< Zs K(F)- k(Fyo)+ > [(G) - d(Gyiy)]

e =
r<q r>q

< ZS [k(F) - k(F, 1)) =xGR(S)<k(S),
re

where the expression in the middle equals %(S).
To see that no better feasible solution exists, let z, z,, z, be defined by the follow-
ing three problems:

n
z=max > ¢;x; st dS) S x(S)Y<k(S) SC{L,...,n},
=1 .

q
zy=max y exg st 0K x(S) <k(S) Sc{L,...,q},
=1
n ‘ '
Lz Emax Y oex st d(S) <x(8) SC{qg+1,...,n}.
I"Q'i'l. ,

The second and third problems are defined on disjoint sets of variables and solved by
(x;, 1 < q) and (x;, i > q), respectively. The first problem consists of their sum to-
gether with additional constraints. Therefore z < z, +z,. However, equality is ob-
tained for x and since it is feasible it is also optimal.

Corollary. If the condition of Theorem 3 holds, it can be used to apply the algorithm
of Sec. V to the more general problem in which both upper and lower bounds on x{S)
exist,

My thanks to Professor A. J. Hoffman for his support and guidance and for suggest-
ing the subject of this paper.
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