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Abstract

Consider a non-preemptive M/M/1 system with two first-come
first-served queues, virtual (VQ) and system (SQ). An arriving cus-
tomer who finds the server busy decides which queue to join. Cus-
tomers in the SQ have non-preemptive priority over those in the VQ,
but waiting in the SQ is more costly. We study two information models
of the system. In the unobservable model customers are notified only
whether the server is busy, and in the observable model they are also
informed about the number of customers currently waiting in the SQ.
We characterize the Nash equilibrium of joining strategies in the two
models and demonstrate a surprising similarity of the solutions.

Keywords: Virtual queues, equilibrium behavior in a queue-

ing system, observable queues

1 Introduction

Virtual queueing is an innovative method which is now commonly used
to improve customer service satisfaction. Virtual queues, and their
use in real life applications are extensively discussed in the literature.
Examples include hospitality organizations, restaurants, amusement
parks, airports, and call centers; see Armony and Maglaras [4, 5], Bur-
gain, Feron, and Clarke [6], Camulli [7], Cope, Cope and Davis [10],
Dickson, Ford, and Laval [11], Lovejoy, Aravkin, and Schneider-Mizell
[25], de Lange, Samoilovich, and van der Rhee [24]. These systems
offer an arriving customer the option of receiving a call when his time

�
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for service arrives, thereby reducing waiting costs by freeing him to
perhaps perform useful activities while waiting.

Understanding the impact a virtual queue has on customer behav-
ior and customer satisfaction is a central managerial issue for service
systems of this type. However, modeling and analyzing such systems
is not simple because it involves customers’ strategic decisions. More-
over, a customer’s decision and welfare strongly depend on the strate-
gies adopted by the other customers of the system, and for this reason
we look for equilibrium behavior.

Some virtual queueing systems maintain the first-come first-served
order (calling back the customer when his turn arrives), whereas other
virtual queueing systems give priority to customers who choose to wait
in the system queue and call back virtual queue customers when the
server become idle. Our model considers a system of the latter type.

We model a service system with two first-come first-served queues,
a system queue (SQ) and a virtual queue (VQ) with a different wait-
ing cost per unit of time. An arriving customer who finds the server
idle enters service immediately, but if the server is busy the customer
chooses which queue to join, based on the waiting costs and the avail-
able information. Our goal is to determine the (Nash) equilibrium of
the system in two information models: an unobservable model where
the customer is only informed whether the server is busy, and an ob-
servable model where customers are also informed on the length of the
SQ and they follow a threshold strategy, joining the SQ if its length is
below a critical value, and possibly randomizing at that value.

Let Cs and Cv denote the waiting cost per time unit in the SQ and
VQ, respectively. The system is defined by two normalized parameters,
the cost ratio ϕ = Cv/Cs, and the system utilization ρ. Our main
results are the following:

� The unobservable model. We characterize the equilibrium
solutions. Joining the SQ is a dominant strategy if ϕ > 1 − ρ,
joining the VQ is dominant if ϕ < 1− ρ, and any pure or mixed
joining strategy is an equilibrium when ϕ = 1− ρ.

� The observable model. We derive formulas for the stationary
probabilities, the mean busy period in the SQ, the expected num-
ber of customers and expected waiting time in the VQ. We derive
a linear-time algorithm for the truncated steady-state distribu-
tion and conduct a numerical investigation of the best response
and equilibrium customers strategy. We conclude that, similar
to the unobservable case, if ϕ is significantly greater than 1− ρ,
joining the SQ is a dominant strategy; if it is significantly smaller,
joining the VQ is dominant. In other cases, where ϕ and 1−ρ are
approximately of the same size, we obtain the “follow-the-crowd”
(FTC) behavior which is typical in priority systems, and leads to
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multiple equilibria [17, 18].

The stationary distribution in the observable case with a pure
threshold strategy and preemption is investigated by Haviv [19]

�
12.2.4

as a special case of a model analyzed by Kopzon, Nazarathy and Weiss
[22]. In our generalized analysis of these results customers apply a
mixed threshold strategy and we compute the resulting customer equi-
librium.

Customer decision-making and Nash equilibrium in queues were ini-
tially defined and investigated by Naor [27], Littlechild [28] and Edelson
and Hildebrand [13]. The literature on strategic behavior in queueing
systems is surveyed in [18, 16].

Our paper is the first to consider customer strategic behavior and
the resulting equilibrium in a virtual queueing system where waiting
costs in the VQ are lower but the SQ obtains priority. We now describe
the most relevant literature and emphasize where these papers differ
from ours.

Guijarro, Pla, and Tuffin [14] (in their second model) investigate an
unobservable multi-server system with an SQ and a VQ with different
admission costs. The queues are managed by competing servers and
each profits from its own queue. The authors investigate a two-stage
sequential game where the servers choose admission prices and the
customer chooses the queue to join. Hassin [15] and Altman, Jiménez,
Núñez-Queija, and Yechiali [3] consider a system with two servers each
with a different queue and identical waiting costs. An arriving cus-
tomer can only see the length of one queue and decides which queue to
join based on the conditional expected length of the other queue. Man-
delbaum and Yechiali [26], investigate the optimal strategy of a single
arriving “smart” customer in a single server system. The customer can
join the queue, leave the system, or delay his decision and wait outside
of the queue at a reduced cost, which can be viewed as joining a pri-
vate virtual queue. Economou and Kanta [12] consider a single-server
system with no waiting space (no SQ), where customers who find the
server busy automatically join the VQ. After completing service the
server seeks a customer in the VQ, with an exponentially distributed
search time. If a new customer arrives during the search time the server
interrupts the search and serves the new customer. The authors solve
the social-optimization and profit-maximization problems of both the
observable and the unobservable cases. This model with immediate
search time can be considered as a special case of our model where
only the VQ exists.

Some other papers analyze virtual queueing systems but customer
behavior is not a result of strategic self-optimization and therefore
no equilibrium behavior is considered. Aguir, Karaesmen, Akşin, and
Chauvet [2] investigate a multi-server call center system with an SQ
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and a VQ where customers are impatient and can balk or jockey from
the SQ to the VQ. Chakravarthy, Krishnamoorthy and Joshua [8]
model a multi-server system where new arrivals who find all servers
busy join a VQ and retry after exponentially distributed time inter-
vals. Moreover, upon service completion, with a given probability p
the server serves a customer from the VQ if one exists. Our model,
in contrast, assumes a single server, no retrials, p = 1, and customers
choosing between the VQ and an SQ. Iravani and Balcioǵlu [21] con-
sider a multi-server system with an SQ and a VQ where impatient cus-
tomers choose a queue with an exogenous probability. Wüchner, Sztrik
and de Meer [29] numerically analyze a system with an SQ and a VQ
where customers are allowed to balk and move between the queues.
Kostami, and Ward [23] model a single server with inline (system) and
offline (virtual) queues where arriving customers choose which queue
to join according to waiting time estimates by the server, and offline
customers may leave the system without informing the server. Armony
and Maglaras [4, 5] investigate two close models of a multi-server call
center system with an SQ and a VQ, customers choose a queue to join
or balk, and those joining the VQ are guaranteed an upper bound on
their delay. There is no waiting-cost difference between the queues,
and after each service the server decides whether to take a caller from
the SQ or from the VQ.

Our system is priority-based, and customers in the SQ have priority
over those who join the VQ. However, the main difference between our
system and the common two-priority system is in our assumption that
there is a different waiting cost for each queue and only the SQ is
observable. The fundamental model involving customer decisions in
queues with priorities is analyzed by Adiri and Yechiali [1] and by
Hassin and Haviv [17]. Both queues are observable, and the waiting
cost in both is identical but the admission price is different. Hassin
and Haviv [18],

�
4.2 solve the unobservable case of that system.

This paper is structured as follows. Section 2 presents the basic
model and assumptions. In section 3 we solve the unobservable model.
Section 4 investigates the observable model when the customers use
mixed strategies. Section 5 suggests directions for future work. An
appendix with a table summarizing our notation and detailed deriva-
tions of the stationary probabilities in the observable case concludes
the paper.

2 The system

We consider a non-preemptive single-server M/M/1 system with two
queues, a System Queue (SQ) and a Virtual Queue (VQ) which is often
called in the literature an orbit queue or a standby queue. An arriving
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customer who finds the server idle enters service immediately. If the
server is busy, the customer decides whether to join the VQ or the SQ
(no balking allowed). Each queue has a different waiting cost per unit
time, Cs for the SQ and Cv for the VQ (Cv < Cs). The discipline in
each queue is FCFS, customers arrive according to a Poisson process
at rate λ, and service times are exponentially distributed with rate µ.
The system parameters λ, µ, Cs and Cv are known to the customers.
(We will see that it is sufficient that they know the ratios λ/µ and
Cv/Cs.) If the SQ is not empty, the first customer in it will be the
next to be served when the current service terminates. Only if the SQ
is empty the server calls the first customer from the VQ. We consider
two information cases, an unobservable queue in which an arriving
customer is only informed of the state of the server - busy or idle, and
an observable queue where the arriving customer is also informed of
the number of customers currently waiting in the SQ.

3 The unobservable model

In the unobservable model arriving customers are only informed if the
server is busy or not. An arriving customer who finds the server busy
will use, in general, a mixed strategy and join the SQ with some prob-
ability rs. The arrival rates to the SQ and VQ when the server is busy
are λrs and λ(1− rs), respectively. We define the following normalized
parameters:

ϕ =
Cv

Cs

, ρ =
λ

µ
, ρs =

λrs
µ

, ρv =
λ(1− rs)

µ
.

For stability we assume ρ < 1.
We denote the state of the system as (ls, lv) where ls and lv are the

number of customers in SQ and the VQ, respectively. We represent
the state when the server is idle with the special tag 0′. The transition
rate diagram of the system is shown in Figure 1.

Theorem 3.1.

res =











1 ϕ > 1− ρ ,

0 ϕ < 1− ρ .

If ϕ = 1− ρ, any strategy 0 ≤ res ≤ 1 defines an equilibrium.

Proof. Let B denote the event that the server is busy. Let Ws and Wv

denote the queueing time in the SQ and VQ, respectively. Given that
the server is busy, the SQ is an M/M/1 system with arrival rate λrs,
and therefore the expected time in the system of a joining customer is

E(Ws|B) =
1

(1− ρs)µ
. (1)
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Figure 1: Transition rate diagram for the unobservable model

The total number, Lq, of customers in the two queues does not
depend on the order in which the customers are served. Hence, as in
the M/M/1 queue,

E(Lq|B) =
ρ

1− ρ
,

and

E(Lv|B) = E(Lq|B)− E(Ls|B) =
ρv

(1 − ρ)(1− ρs)
,

where Ls and Lv denote the number of customers in the SQ and VQ,
respectively. By Little’s law

E(Wv |B) =
1

(1− ρ)(1 − ρs)µ
. (2)

Define the cost-difference function

f(rs) = E(Wv|B)Cv − E(Ws|B)Cs .

An arriving customer will be indifferent in his choice when f(rs) = 0,
will choose the SQ when f(rs) > 0 and the VQ when f(rs) < 0 .
Substituting (1) and (2) gives

f(rs)

Cs

=
ϕ+ ρ− 1

(1− ρ)(1 − ρs)µ
,
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from which the claim follows.

4 The observable model

In the observable case, an arriving customer is informed about the
state of the server and the number of customers, ls, in the SQ. We
assume that customers follow a threshold strategy defined as follows
(see [15]):

A threshold strategy s(ls) to join the SQ with threshold T = n+ r
(n ∈ N, r ∈ [0,1)) is defined by

s(ls) =











1 ls < n

r ls = n

0 ls > n .

By following this strategy a customer always joins the SQ when ls is
at most n − 1, joins the VQ if it is greater than n, and joins the SQ
with probability r when ls = n. When r > 0, the number of customers
in the SQ is at most n+1. When r = 0, s(ls) is a pure strategy and a
customer who observes a queue of length n joins the VQ.

4.1 Steady-state solution

The transition rate diagram for a threshold strategy T = n+r is shown
in Figure 2.

We denote the stationary distribution as Pji where j corresponds
to ls and i corresponds to lv. The probability of the special state where
the server is idle is denoted P0′ .

It is straightforward to see that P0′ = 1 − ρ and P00 = (1 − ρ)ρ.
The proofs of Propositions 4.1 and 4.2 can be found in the appendix:

Proposition 4.1.

Pj0 =

(1 + ρ)ρj + (1 + ρ− r)

(

ρj
n
∑

k=1

ρk − ρn
j
∑

k=1

ρk
)

(1 + ρ)
n
∑

k=0

ρk − r
n
∑

k=1

ρk
P00 , j = 1, . . . , n ,

(3)

Pn+1,0 =
ρn+1r

(1 + ρ)
n
∑

k=0

ρk − r
n
∑

k=1

ρk
P00 . (4)

We now present a recursive expression for the stationary probability
of a generic state ji, Pji.
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Figure 2: Transition rate diagram in the observable model when customers
follow the mixed threshold strategy T = n+ r.

Proposition 4.2.

For i = 1, 2, . . . and 0 ≤ r < 1

Pni = XZi−1Pn+1,0 + Y Pn,i−1 +
ρr

1 + ρ
XY

i−2
∑

k=0

ZkPn,i−2−k , (5)

Pn+1,i =
ρr

1 + ρ
Y iPn0+ZPn+1,i−1+

ρr

1 + ρ
XY

i−2
∑

k=0

Y kPn+1,i−2−k , (6)

Pji =

j
∑

k=0

ρkP0i − (Pn+1,i + (1− r)Pni)

j
∑

k=1

ρk , j = 1, 2, . . . , n− 1 ,

(7)
P0i = (1− r)ρPn,i−1 + ρPn+1,i−1 , (8)

where

X =
(1− ρn+2)ρ

(1 + ρ)(1− ρn+1)− (1− ρn)ρr
, (9)

Y =
(1− r)(1 + ρ)(1 − ρn+1)ρ

(1 + ρ)(1 − ρn+1)− (1− ρn)ρr
, (10)

Z = (1 +Xr)
ρ

1 + ρ
. (11)

8



Remark 4.3. For i = 1 the sums
i−2
∑

k=0

Y kPn+1,i−2−k and
i−2
∑

k=0

ZkPn,i−2−k

are over empty sets, therefore we have

Pn1 = Y Pn0 +XPn+1,0 , (12)

Pn+1,1 = ZPn+1,0 +
ρr

1 + ρ
Y Pn0 . (13)

Remark 4.4. The stationary probabilities of row i can be computed
in O(n + i) time. By defining the functions

Fi =

i−2
∑

k=0

ZkPn,i−2−k , F ′

i =

i−2
∑

k=0

Y kPn+1,i−2−k

we have

Fi = Pn,i−2 + ZFi−1 , F ′

i = Pn+1,i−1 + Y F ′

i−1 ,

with this we express Pni and Pn+1,i as

Pni = XZi−1Pn+1,0 + Y Pn,i−1 +
ρr

1 + ρ
XY Fi , (14)

Pn+1,i = ρrY iPn0 + ZPn+1,i−1 +
ρr

1 + ρ
XY F ′

i . (15)

We first pre-calculate Y , Z, ρr
1+ρ

XY , ρr
1+ρ

Pn0 and XPn+1,0. Then we
calculate Pn,i and Pn+1,i and from these we calculate the probabilities
Pji j = 0, . . . , n. The pre-calculation is done in O(n) time by using
Equations (25), (4), (9), (10) and (11). We calculate Pn,i and Pn+1,i

by using Equations (15), (14) and the pre-calculated values. By saving
the variables Fk−1, F

′

k−1
, Zk−2 and Y k−1 when we calculate Pnk and

Pn+1,k (0 < k < i) we can calculate Pn,k+1 and Pn+1,k+1 in O(1)
time and therefore find Pn,i and Pn+1,i in O(i) time. We calculate
the stationary probabilities of the row using Equation (7). By saving
the value of the sums when calculating Pk−1,i we can find Pk,i in O(1)
time and calculate all the stationary probabilities in O(n). Therefore
the calculation of a row i takes O(n + i) time.

For the SQ when the server is busy, the probability that the queue
length is ls is

P (ls) =

∑

∞

i=0
Plsi

1− P0′
.

and the expected queueing time of a customer joining it, given ls, is

E(Ws) =
ls + 1

µ
. (16)
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The expected length of the VQ when the server is busy and the
length of the SQ is ls can be calculated from propositions 4.1, 4.2 and
P (ls)

E(Lv|ls) =

∞
∑

i=1

iPlsi

/

∞
∑

i=0

Plsi . (17)

We define a busy-period type variable b(f), f = 0, . . . , n denoting the
expected time it takes the SQ to decrease its length from n+ 1− f to
n − f . Similarly, b(n + 1) denotes the expected time it takes a busy
server to be ready to serve a customer from the VQ given that ls = 0.
Then:

b(0) =
1

µ
,

b(1) =
1

λ+ µ
+

λr

λ+ µ
(b(1) + b(0)) +

λ(1 − r)

λ+ µ
b(1) ,

b(f) =
1

µ+ λ
+

λ

µ+ λ
(b(f) + b(f − 1)) f = 2, 3, . . . , n+ 1 .

These equations are explained as follows: When f = 0 new arrivals do
not join the SQ and therefore b(0) = 1

µ
. When f > 0, the expected

time until the next event is λ + µ. For f = 1, if the next event is an
arrival then with probability r the arriving customer joins the SQ and
needs to wait b(0) and an additional b(1), and with probability 1 − r
the arriving customer joins the VQ and we stay at the same state.
When f = 2, 3, . . . , if the next event is an arrival then we enter state
f − 1 and need expected time b(f − 1) to return to state f and then
another b(f) until the end of the busy period. If the next event is the
end of service then the busy period terminates.

The solution to these equations is

b(1) =
ρr + 1

µ
,

b(f) =

(

f−1
∑

k=0

ρk + ρfr

)

1

µ
, f = 2, 3 . . . , n+ 1 . (18)

Finally, the expected queueing time of a customer who joins the
VQ when the length of the SQ is ls is

E[W |ls] =

ls
∑

k=0

b(n+ 1− k) + E(Lv|ls)b(n+ 1) , ls ≤ n+ 1 . (19)

The first term is the expected time until the server is ready to serve the
first customer from the VQ, consisting of ls+1 consecutive busy periods
with increasing values of f , i.e., for the first busy period f = n+1− ls,
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for the second f = n+1− (ls− 1), and so on, concluding with b(n+1)
which is the time it takes until the first customer from the VQ is called
for service given that the SQ is empty. The second term is the time
it takes until the server is ready to serve the new VQ customer given
that it just started serving a VQ customer.

Remark 4.5. The case where the customers follow a pure strategy has
a closed-form solution:

Pn0 =
ρn

n
∑

k=0

ρk
P00 , P01 =

ρn+1

n
∑

k=0

ρk
P00 ,

Pj0 =

ρj
n
∑

k=0

ρk − ρn
j
∑

k=1

ρk

n
∑

k=0

ρk
P00 , j = 1, . . . , n ,

Pji =
ρn+i

n
∑

k=0

ρk
P00 ,

i = 1, 2, . . .
j = 0, 1, . . . n ,

E(Lv|ls) =
ρn+1

(

Pls0

n
∑

k=0

ρk + ρn+2

)

(1− ρ)2
P00 ,

and

E[W |ls] =

ls
∑

k=0

b(n− k) + E(Lv|ls)b(n) , ls = 0, . . . , n .

4.2 Numerical investigation of the equilibrium strate-

gies

A complete analysis of the equilibrium strategies is not possible and
therefore we present in this section the results of a numerical study. We
conclude from this study that the conditional expected waiting time
in the VQ is approximately linear and provide an explanation for this
phenomenon. This conclusion enables us to obtain important insights
about the equilibrium behavior. Specifically we provide conditions for
dominant strategies, and show that when these conditions are violated
there are, in general, multiple equilibrium solutions.

We define the normalized expected waiting time in the VQ

Ê[W |ls] =
E[W |ls]

1

µ

=

ls
∑

k=0

b′(n+1−k)+E(Lv|ls)b
′(n+1) , ls ≤ n+1 .

(20)
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Figure 3 shows the first term of Equation (20), (
∑ls

k=0
b′(n+1−k)),

which is the expected time it will takes until the server is ready to serve
a VQ customer. Figure 4 shows the second term (E(Lv|ls)b

′(n+ 1))
which is the expected extra time it will take a customer joining the VQ
to leave the system. Figure 5 shows the total expected waiting time.
The graphs in Figure 3 are monotone increasing and concave, being a
sum of such functions. In Figure 4 the graphs are monotone increasing
and convex. In Figure 5 the graphs are monotone increasing very close
to each other and almost linear, as the sum of the convex and concave
functions cancels most of the slope.

The asymptotic slope, when T → ∞, corresponds to the case where
the VQ is always empty, and therefore a customer who joins it would
wait in the VQ ls + 1 M/M/1 busy periods with expected duration
(ls + 1)/µ(1− ρ). Therefore the slope of the normalized curves in the
figure is approximately 1/(1− ρ) and Ê[W |ls] ≈ (ls + 1)/(1− ρ).

For a given threshold strategy T = n+ r followed by all customers
we define the cost-difference function

f(ls) =
ls + 1

µ
Cs − E(W |ls)Cv. (21)

A customer arriving when there are ls customers in the SQ is indifferent
between the two queues when f(ls) = 0 and chooses to join the SQ
when f(ls) < 0. Therefore,

µf(ls)

Cs

= Ê(W |ls)ϕ− (ls + 1) .
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Figure 6: Cost of joining the SQ and cost in the VQ for 5 ≤ T ≤ 15 and
ϕ = 0.2

Substituting Ê(W |ls) ≈ (ls + 1)/(1− ρ) gives

µf(ls)

Cs

≈ (ls + 1)

(

ϕ

1− ρ
− 1

)

. (22)

Figures 6-8 show the two cost components of Equation (21) in
each of the queues for different values of ϕ and ρ. The VQ costs are
almost linear in ls and very close to each other for close values of T ,
in accordance to the VQ expected waiting times shown in Figure 5.
Therefore we have marked the area in the graph were all the VQ costs
reside by two solid lines. The broken line is the expected cost associated
with joining the SQ. When the VQ cost area is above the SQ cost line,
the cost of joining the SQ is always smaller than the cost of joining the
VQ and therefore all arriving customers will join the SQ regardless of
its size. As one expects from Equation (22), this case occurs when ϕ is
significantly greater than 1− ρ. Customers will always join the VQ in
the opposite case, when ϕ is significantly smaller than 1−ρ. When the
SQ line passes the VQ costs area or resides inside it there are values of
T for which f(ls) = 0 and therefore are candidates to be equilibrium
strategies. This case is obtained when ϕ ≈ 1 − ρ, because, as implied
by Equation (22), in this case the expected waiting times at the SQ
and the VQ are approximately equal. For example, in Figure 7, when
ρ = 0.4 joining the VQ is a dominating strategy, when ρ = 0.8 joining
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Figure 7: Cost in the SQ and cost in the VQ for 5 ≤ T ≤ 15 and ϕ = 0.4
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Figure 8: Cost in the SQ and cost in the VQ for 5 ≤ T ≤ 15 and ϕ = 0.6
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Figure 9: Expected cost difference SQ−VQ for thresholds T = 7 + r, r =
(0.05, 0.14, 0.2, 0.3, 0.4), ϕ = 0.2 and ρ = 0.8.

the SQ dominates, and when ρ = 0.6 we have ϕ = 1−ρ and (multiple)
non-dominating equilibria exist.

We search for best response and equilibrium best response strate-
gies for a given n by looking at the expected cost-difference graph.
Figure 9 plots the expected cost difference (SQ-VQ), a horizontal line
at y = 0 and a vertical line x = n for n = 7. In a pure equilibrium
the cost-difference function is negative at n − 1 and positive at n. In
a mixed equilibrium it is zero at n, as obtained for T ≈ 7.14 in the
figure.

Figures 10-12 show the best response for three pairs (ρ, ϕ = 1−
ρ). As explained above, we expect non-dominating equilibria for such
pairs. The intersection of the best response function and the 45◦ line
are either equilibrium points or points at the end of the action space.
For example, for ϕ = 0.2, ρ = 0.8 (Figures 10), if all others use a
threshold T = 1 then the queue length is at most 2 and the best
response of a customer is to join even when arriving to a system queue
of this length. Thus T = 1 is not an equilibrium. The pure equilibria
are at T = 3, . . . , 12 and between every two pure equilibria n and n+1
there is a mixed equilibrium n + r for some 0 < r < 1. (The first
ones are difficult to observe in the figure as r is close to 0.) These
mixed solutions occur at the intersection of the 45◦ line with a vertical
“jump” of the best response function, indicating indifference between
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Figure 10: Best response for ϕ = 0.2, ρ = 0.8

0 5 10 15 20 25
0

5

10

15

20

25

BR

T

B
es

t R
es

po
ns

e

ρ = 0.6

Figure 11: Best response for ϕ = 0.4, ρ = 0.6
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Figure 12: Best response for ϕ = 0.6, ρ = 0.4
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two integer thresholds. In Figure 11 the pure equilibria are 12, . . . , 17,
and in Figure 12 they are 15, . . . , 18.

The best response functions are increasing and then decreasing in
ls which reflect follow-the-crowd (FTC) and avoid the crowd (ATC)
strategies respectively. FTC behavior is common in priority queues,
but in our case when the threshold adopted by others is very high
the individual prefers not to compete with them and joins the SQ
instead. Another example of such behavior has been found by Haviv
and Ravner [20] while investigating an accumulating priority queue
system with different costs per unit time per customer class.

5 Concluding remarks

We investigated a non-preemptive single-server M/M/1 system with a
System Queue (SQ) and a Virtual Queue (VQ). When the server is
busy an arriving customer chooses between joining the VQ or the SQ.
Waiting in the VQ is less costly. In the unobservable case customers are
notified only whether the server is busy or not, and in the observable
case they are also informed about ls, the number of customers in the
SQ.

For each case we compute the expected waiting time in each of the
queues and the equilibrium joining strategy of an arriving customer.
In the observable case, the conditional expected waiting time in the
VQ turns out to be almost linear in ls. We use this fact to charac-
terize the equilibrium behavior, that shows similarities to that of the
unobservable case. Multiple equilibrium strategies may exist, all in
the monotone increasing part of the best response function, and this
is compatible with a follow-the-crowd (FTC) behavior.

Clearly, since the customers’ joining strategy has no effect on their
expected waiting time, it is socially optimal, in both models, that all
customers join VQ, and a social planner would encourage all the cus-
tomers to join the VQ. This can be done in many ways involving penal-
ties, subsidies, or a change in the service priority regime.

Our motivation for investigating service systems with virtual queues
arises from call centers and similar systems where reaching VQ cus-
tomers is practically costless and instantaneous. We believe however
that analyzing similar systems in which contacting a customer from
the VQ requires non-negligible time or expenditure is an interesting
direction for future research. Such a system, but without an SQ, is
solved by Economou and Kanta [12]. Another interesting variation of
our model would allow customers to move from one queue to the other.
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Appendix: Notations and proofs

Notations and Definitions

SQ System queue.
VQ Virtual queue.
Cs, Cv Waiting costs in the SQ and VQ.

ϕ The cost ratio, ϕ = Cv

Cs

.

λ Mean arrival rate of customers to the system.
µ Mean service rate.
rs Probability of joining the SQ in the unobservable case.
S(rs) Expected net benefit for a customer following the strategy rs.
Ls(t), Lv(t) The number of customers in SQ and the VQ at time t.
E(L), E(Ws), E(Wv) Expected waiting time in the system, SQ and VQ, respectively.

Ê[W |ls] The expected waiting time in the VQ in time units per customer.
E(Ls), E(Lv) Expected number of customers in the SQ and VQ.
ρ, ρs, ρv Occupation rates in the entire system, the SQ and the VQ.
P Stationary probabilities.
ls Number of customers in the SQ.
s(ls) Threshold strategy of joining the SQ.
T Threshold strategy, T = n+ r (r ∈ [0, 1], n ∈ N).
f Number of unoccupied places in the SQ
b(f) Mean busy period when there are n+ 1− f customers in the SQ.
b′(f) Normalized b(f).

Proof of Proposition 4.1 From the transition rate diagram

(λ+ µ)Pn+1,0 = λrPn0

and therefore
Pn+1,0 =

ρr

ρ+ 1
Pn0 . (23)

A cut around nodes 0′, 00, 10, . . . , j0 gives

λPj0 = µP01 + µPj+1,0 , j = 0, 1, . . . , n ,

or, after reindexing,
Pj0 = ρPj−1,0 − P01.

We now substitute P01 from the upper horizontal cut equation

λ(1 − r)Pn0 + λPn+1,0 = µP01

and Pn+1,0 from (23) and obtain

Pj0 = ρPj−1,0 −
1 + ρ− r

1 + ρ
ρPn0 , j = 1, . . . , n+ 1 .
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A recursive application of this equation gives

Pj0 = ρjP00 −
1 + ρ− r

1 + ρ
Pn0

j
∑

k=1

ρk , j = 1, . . . , n+ 1 . (24)

Specifically for j = n

Pn0 = ρnP00 −
1 + ρ− r

1 + ρ
Pn0

n
∑

k=1

ρk ,

giving

Pn0 =
(1 + ρ)ρn

(1 + ρ)
n
∑

k=0

ρk − r
n
∑

k=1

ρk
P00 . (25)

Substituting Pn0 in (23) gives (4).
From Equations (25) and (24) we obtain

Pj0 = ρjP00 −
1 + ρ− r

1 + ρ

(1 + ρ)ρn

(1 + ρ)
n
∑

k=0

ρk − r
n
∑

k=1

ρk

j
∑

k=1

ρkP00

which gives (3).

Proof of Proposition 4.2

Equation (8) follows from the horizontal cut between the rows i, i−1

λ(1− r)Pni + λPn+1,i = µP0,i+1 , i = 0, 1, 2, . . . . (26)

A cut that contains the nodes 0i, 1i, . . . , ji gives

λPji + µP0i = µPj+1,i + µP0,i+1

i = 1, 2, . . .
j = 0, 1, 2, . . . , n− 1 .

(27)

By Equation (26) and re-indexing we have

Pji = P0i − (1 − r)ρPni − ρPn+1,i + ρPj−1,i
i = 1, 2, . . .
j = 1, 2, . . . , n

.

A recursive application of this relation leads to Equation (7).
We now find an expression for Pni and Pn+1,i. Equation (7) for Pni

yields
[

n
∑

k=0

ρk − r

n
∑

k=1

ρk

]

Pni =

n
∑

k=0

ρkP0i −

n
∑

k=1

ρkPn+1,i , (28)

and the cut around the node (n+ 1)i is

(1 + ρ)Pn+1,i = ρPn+1,i−1 + ρrPni . (29)
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By Equations (8), (28) and (29) we have

Pni =

(1 + ρ)(1 − r)
n+1
∑

k=1

ρk

n+1
∑

k=1

ρk +
n
∑

k=0

ρk − r
n
∑

k=1

ρk
Pn,i−1+

n+2
∑

k=1

ρk

n+1
∑

k=1

ρk +
n
∑

k=0

ρk − r
n
∑

k=1

ρk
Pn+1,i−1 .

(30)
With this result and Equation (29) we also get

Pn+1,i =









1 +

ρr
n+2
∑

k=1

ρk

n+1
∑

k=1

ρk +
n
∑

k=0

ρk − r
n
∑

k=1

ρk









ρ

ρ+ 1
Pn+1,i−1

+

(1 + ρ)(1− r)r
n+2
∑

k=2

ρk

n+1
∑

k=1

ρk +
n
∑

k=0

ρk − r
n
∑

k=1

ρk
Pn,i−1 .

(31)

In terms of X,Y, Z as defined in Equations (9) - (11) we have

Pni = Y Pn,i−1 +XPn+1,i−1 , Pn+1,i = ZPn+1,i−1 +
ρr

1 + ρ
Y Pn,i−1

therefore

Pni = Y iPn0 +X

i−1
∑

k=0

Y kPn+1,i−1−k ,

Pn+1,i = ZiPn+1,0 +
ρr

1 + ρ
Y

i−1
∑

k=0

ZkPn,i−1−k

and we get (5) and (6).

23


