Available online at www.sciencedirect.com
SCIENCE @Dl!!cf’

Operations Research Letters 31 (2003) 273-276

Operations
Research
Letters

www.elsevier.com/locate/dsw

Reconstructing edge-disjoint paths

M. Conforti?, R. Hassin®*!, R, Ravi®-2

3 Dipartimento di Matematica Pura ed Applicata, Universita di Padova, Via Belzoni 7, 35131 Padova, Italy
®Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
CGSIA, Carnegie Mellon University, Pitisburgh, PA 15213, USA

Received 18 September 2002; received in revised form 21 January 2003; accepted 27 January 2003

Abstract

For an undirected graph G = (V,E), the edge connectivity values between every pair of nodes of G can be succinctly
recorded in a flow-equivalent tree that contains the edge connectivity value for a linear number of pairs of nodes. We
generalize this result to show how we can efficiently recover a maximum set of disjoint paths between any pair of nodes of
G by storing such sets for a linear number of pairs of nodes. At the heart of our result is an observation that combining two
flow solutions of the same value, one between nodes s and r and the second between nodes r and ¢, into a feasible flow
solution of value f between nodes s and ¢, is equivalent to solving a stable matching problem on a bipartite multigraph.

Our observation, combined with an observation of Chazelle, leads to a data structure, which takes O(n**) time to
generate, that can construct the maximum number A(u,v) of edge-disjoint paths between any pair (u,v) of nodes in time

O(a(n,n)A(u,v)n) time.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: flow equivalent tree, stable matching

1. Introduction

Given an undirected graph G = (V,E) with |V|=n,
let A(s,¢) be the st-edge connectivity of G, i.e., the
maximum number of edge-disjoint s¢-paths. Gomory
and Hu [4] showed that the edge connectivity function

* Corresponding author.

E-mail addresses: conforti@math.unipd.it (M. Conforti),
hassin@post.tau.ac.il (R. Hassin), ravi@cmu.edu (R. Ravi).

! This paper was written while the author visited GSIA, Carnegie
Mellon University.

2 Supported in part by an NSF CAREER Award CCR 96-25297.
Ravi also acknowledges support from IBM SRC, New Delhi, for
hosting a visit during January—February 1999 when this paper was
completed.

A = {A(s,t): s,t €V} has a compact tree representa-
tion, i.e., there exists a weighted spanning tree on V'
such that for every pair of nodes s, € VA(s,¢) is the
minimum weight of an edge on the (unique) st-path
in this tree. This tree is known as a flow-equivalent
tree of G.

Suppose that a set of A(s,) edge-disjoint st-paths
are given for every edge (s,t) of the |V| — 1 edges
of the flow equivalent tree: Can we efficiently con-
struct A(u,v) edge-disjoint uv-paths for an arbitrary
pair u,v € ¥'? Such a question may potentially arise in
applications that need to compute the maximum flow,
or alternately the maximum number of edge-disjoint
paths, between arbitrary pairs of vertices at several
points in the course of its execution.

0167-6377/03/$ - see front matter © 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-6377(03)00022-1

274 M. Conforti et al. | Operations Research Letters 31 (2003) 273-276

In this paper we describe a compact representa-
tion of the sets of the A(u,v) edge-disjoint paths for
every pair u,v € V. This representation consists of a
graph with node set V' and O(n) edges, where n =
|V|. Each edge (s,t) in this graph is associated with
A(s, t) edge-disjoint sz-paths. This data structure can
be computed in a preprocessing step that takes time
O(n*?) and O(n?®) space. We then show how to con-
struct A(u,v) edge-disjoint uv-paths for an arbitrary
pair u,v € ¥V in O(an, n)A(u,v)n) time, where a(n, n)
is the inverse Ackermann function.

2. Stable matchings

Let G=(P, Q,E), |P|=|Q]|, be a bipartite multigraph
which is complete, i.e. every pair of nodes in P and
Q are adjacent. Assume further that every node p € P
ranks the edges having p as end node according to its
preference and every node g € Q also ranks the edges
having g as end node, so that every edge is ranked
twice, at both end nodes. A perfect matching M of G
is stable if for every edge e in E\ M with end nodes p
and g, either in the p-ranking, e is less desirable than
the edge e, € M that saturates p, or in the g-ranking,
e is less desirable than the edge e; € M that saturates
q. Gale and Shapley in their seminal paper {3] (see
also [5]) show that every complete bipartite simple
graph has a stable matching. Their proof is algorithmic
and we give below a straightforward adaptation to the
multigraph case.

StableMatch(bipartite multigraph)

1. Start with M ={. Initially, all nodes in P are
exposed and all edges are unexplored.
2. While a node p € P is exposed, explore the
unexplored edge e that has highest p-ranking.
Let g be the other end node of e.
If g is exposed,
Then set M =M U {e}.
Else if the edge e, € M that
saturates g is less preferable
than e in the g-ranking, set
M =MU{e}\{e,}.

The matching M is stable upon termination of the
algorithm. At the end, M is a perfect matching. For,
assume not: then all the edges incident to p are ex-
plored, for some exposed node p. Note that when an
edge is explored, its end node in Q is saturated and
remains saturated throughout the algorithm. So when
the least desirable edge in the p-ranking is explored
and its end node in Q is saturated, all nodes in Q are
saturated. This is impossible since |P| = |Q| and p is
exposed.

Finally, an edge is explored at most once in the
algorithm, so its complexity is O(|E|).

We remark that the above problem can be inter-
preted as a multi-ethnic marriage problem, in which
P represents the set of suitors, Q the set of brides,
and the edges with end nodes p and g represent the
set of possible marriage ceremonies that can unite p
and g. A perfect matching that is stable corresponds
to a set of ceremonies C that unites all the suitors to
all the brides so that no suitor p and bride ¢ would
both prefer a ceremony not in C (possibly with other
partners).

3. Composing flow solutions

Let P = {pi,..., ps} be a set of f edge-disjoint
sr-paths and Q = {qi,...,9,} be a set of f
edge-disjoint rt-paths. Since each flow path has at
most n edges, it is straightforward to find a set of
f edge-disjoint st-paths in the graph formed by the
union of the sr- and r¢-paths having O(fn) edges.
Using a classical flow-augmenting algorithm to find
such a decomposition takes O(f?n) time [1]. Us-
ing a method of Karger and Levine [6], this can be
accomplished in time O(f*?n).

Theorem 3.1. Let P = {pi,...,ps} be a set of [
edge-disjoint sr-paths and Q = {qi,...,q,}, a set
of f edge-disjoint rt-paths where each flow path
has at most n edges. Then, there exists a set of [
edge-disjoint st-paths such that each path in this set
is the concatenation of a “prefix” of a path in P and
a “suffix” of a path in Q. Moreover, this set can be
computed in O(fn) time.

Proof. Construct the following complete bipartite
multigraph B = (P,Q,E): The node sets P and

M. Conforti et al. | Operations Research Letters 31 (2003) 273-276 275

Q represent the paths in P = {p),...,ps} and
O={qi,...,qr}. For every edge g, that is common to
paths p; and g;, B contains an edge e with end nodes
pi and g;. If, after adding all these edges the resulting
bipartite multigraph is not complete, add a “dummy”
edge between each pair of nonadjacent nodes in P
and Q, to make it complete. The priority (from most
desirable to least desirable) of the edges of B having
p; as end node is given by the order in which the
edges are encountered when traversing path p; from s
to r. The “dummy” edges receive the lowest possible
priority (the ranking among them is immaterial). The
priority of the edges of B having g; as end node is
given by the order in which the edges are encoun-
tered when traversing path g; from ¢ to r. Again, the
“dummy” edges receive the lowest possible priority.

From a stable perfect matching M of B one can
construct the desired sz-paths as follows: For every
edge e in M with end nodes p; and g; which is not
a dummy edge, traverse path p; starting from s until
e is met and then continue on g; to ¢. (Edge e may
or may not belong to the path thus constructed.) For
every edge e in M with end nodes p; and g; which is
a dummy edge, traverse path p; starting from s to r
and then traverse g; from r to ¢.

The fact that the matching M is stable on B insures
that the f* s¢-paths thus constructed are edge disjoint.
Indeed, suppose for a contradiction that an edge g is
used in two of these concatenated paths, which are
represented by two edges in the stable matching, say
(p',q") and (p? q*). These edges are witnessed by
the fact that there are edges g' common to p' and ¢'
and g?> common to p? and ¢%. Since p, and p, are
disjoint, the edge g must occur in only one of them,
so assume that g occurs in p' and ¢?. Since g is in the
concatenated path from p' and ¢', it must be the case
that g occurs before g; in p' going from s to r: This
means that an edge between p' and ¢? in the auxiliary
bipartite multigraph has higher priority than the edge
(p',q") witnessed by g' in the P-ranking. Similarly,
since the edge g occurs in the concatenated path from
p? and g2, it must be the case that g occurs before g2
in g* going from ¢ to : This means that the edge be-
tween p' and ¢? in the auxiliary bipartite multigraph
has higher priority than (p?,¢?) witnessed by g? in
the Q-ranking. Thus, this unmatched edge (p', ¢?) vi-
olates the definition of stability of the matching found,
a contradiction.

Note however, that the concatenated paths con-
structed as above, while being edge disjoint, may
not be simple, in which case we can delete cycles
without destroying the ‘prefix-suffix’ property. This
clean-up step takes time proportional to the size of
the paths. O

We finally remark that every stable matching prob-
lem in a complete bipartite multigraph can be con-
verted into a path-pairing problem of the above type
between f edge-disjoint sr-paths and f* edge-disjoint
rt-paths.

4. Augmenting flow-equivalent trees

Given the above method for composing a pair of
edge-disjoint path solutions, we now show how we can
maintain the maximum edge-disjoint paths solution
for O(n) pairs of nodes in an n-node undirected graph,
so that the maximum edge-disjoint paths solution for
any arbitrary pair of nodes s and ¢ can be recovered
by applying the stable matching procedure O(a(n,n))
times. We exploit the natural connection that the max-
imum number of edge-disjoint paths in unit capacity
undirected graph between a pair of nodes is equal to
the value of the maximum flow between them [1], and
use the flow-equivalent tree as our starting point.

Consider a pair of nodes s and ¢ separated by &
edges in a given flow-equivalent tree. To compute the
maximum flow between them using the above pro-
cedure, we must use & applications of the procedure.
The key to speeding this up is to add O(n) addi-
tional flow solutions in such a way that for any pair of
nodes, there always exists a small number of pairs of
nodes connecting them from which we can compose
the required flow. Note that for any pair of nodes, the
flow decomposition of a maximum flow (say f°) so-
lution can be computed as mentioned above in time
O(f'3n) = 0(n*?>) time. This will lead to a total time
complexity of O(n3-) for this preprocessing step since
we need to do this for O(n) pairs. In the unit capac-
ity case, every pair of nodes can have O(n) paths in
their max-flow decomposition leading to a space re-
quirement of O(n®) for this data structure. Next, we
describe how to specify these pairs.

To do this, we use a method due to Chazelle [2]:
Given an n-node edge-weighted tree, he provides an

276 M. Conforti et al./ Operations Research Letters 31 (2003) 273-276

algorithm to choose O(n) shortcut edges with weights
on them such that for any path in the given tree, it
is possible to compute the partial sum of the weights
in the path using O(a(n,n)) summations involving
the original and added edges (see Theorem 2 in [2]).
More formally, Chazelle proved the following under
the RAM model of computation.

Theorem 4.1 (Chazelle [2]). Let T be a free tree with
n weighted edges. There exists a constant ¢ > 1 such
that, for any integer m > cn, it is possible to sum up
weights along an arbitrary query path of T in time
O(a(m,n)). The data structure is of size at most m
and can be constructed in time O(m).

Chazelle’s result is framed in a more general setting
where the weight function maps the edges to a semi-
group, and the partial sum in the above theorem can
be replaced with the semigroup operation. We use this
generalization and observe that (Z*,min) is a semi-
group, and hence Chazelle’s construction applies to
deriving the minimum-weight edge along a tree path
(rather than the sum) using shortcut edges. In fact, this
is accomplished by weighting every shortcut edge with
the minimum weight of an edge along the tree-path
between its endpoints. We also maintain a maximum
flow decomposition between pairs of nodes connected
by shortcut edges. This enables us to reconstruct the
maximum flow for any pair of nodes using O(a(n,n))
flow compositions. Each flow composition was argued

earlier to take time O(fn) for a flow of value f giv-
ing the claimed time of O(a(n,n)A(u,v)n) time to re-
construct the maximum number of flow paths A(u,v)
between any pair of nodes (u,v). We thus have our
main theorem.

Theorem 4.2. Given an undirected unit capacity
graph on n nodes, in time O(n*%), a data structure
using space O(n*) can be constructed that, given
any pair of nodes, can compute the maximum num-
ber f of edge-disjoint paths between them in time
O(o(n,n) fn) where a(n,n) is the inverse Ackermann
function.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows:
Theory, Algorithms and Applications, Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[2] B. Chazelle, Computing on free trees via complexity-pre-
serving mappings, Algorithmica 2 (1987) 337-361.

[3] D. Gale, L.S. Shapley, College admissions and the stability of
marriage, Am. Math. Monthly 69 (1962) 9-15.

[4] R.E. Gomory, T.C. Hu, Multi-terminal network flows, SIAM
J. Appl. Math. 9 (1961) 551-556.

[5] D. Gusfield, R.W. Irving, The Stable Marriage Problem:
Structure and Algorithms, The MIT Press, Cambridge, MA,
1989.

[6] D.R. Karger, M.S. Levine, Finding maximum flows in
undirected graphs seems easier than bipartite matching,
Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, Dallas, TX, 1998, pp. 69-78.

