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The Price of Anarchy in the Markovian Single
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Abstract

The Price of Anarchy (PoA) is a measure for the loss of optimality due to decentralized behavior.

It has been studied in many settings. Surprisingly, it has not been studied in the most fundamental

queueing system involving customers’ decisions, namely, the single server Markovian queue. While

much study has been devoted to reducing the inefficiency of customers’ selfishness in this model, this

paper is the first to investigate the significance of this inefficiency. We find that the loss of efficiency

is bounded by 50% in most practical cases, and that it has an odd behavior in two aspects: First, it

sharply increases as the arrival rate comes close to the service rate; Second, it becomes unbounded

exactly when the arrival rate is greater than the service rate, which is odd because the system is always

stable. Knowing these bounds is important for the queue controller, for example when considering an

investment in added service capacity or better control of the arrival process.

I. INTRODUCTION

Non-optimality of equilibrium behavior is an intrinsic feature of observable queues: customers’

joining behavior, which is based on the queue length, does not maximize the social welfare. Naor

[21] was the first to demonstrate this phenomena assuming a simple M/M/1 observable queue

with linear waiting costs and a fixed service value. The arrival process can be controlled by

a central entity (the manager) to optimize social welfare. Control can be achieved directly by

admitting or rejecting customers , for example [7], [15], [20], or by appropriate pricing of the

service, for example [16], [17], [21], [27]. Implementing control mechanisms may be costly.

Therefore, it is important to ask in what cases it is worthy to invest in the regulation of the

customers, and in what cases it is not.
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The inefficiency of selfish behavior is often measured by the Price of Anarchy (PoA) [14],

[19]. PoA bounds the ratio of the social welfare under optimum to the social welfare under

equilibrium. Thus, PoA measures the extent to which non-cooperation approximates cooperation.

The PoA has been studies in various settings: congestion games [14], routing [9], [23], [25],

toll competition in a parallel network [26], network-creation game [4], [8], supply chains [5],

[6], system resource allocation [13], [24], greedy auctions [18], multiple-items auctions [25],

network resource allocation games [12], spectrum-sharing games [9], network-pricing games [1]

and more.

Surprisingly, there has been little research on quantifying the inefficiency of queuing systems.

Haviv and Roughgarden [11] consider a multi-server queueing system, in which the arrivals

are routed to the servers, and the routing decisions are not based on the queue lengths. The

PoA in such system is bounded from above by the number of servers. Anselmi and Gaujal [2]

considers a system of parallel unobservable queues, in which the router has a memory of previous

dispatching choices and the demands grow with the network size. We explore the PoA of an

observable M/M/1, which is the most fundamental queueing system that involves customers’

decision. This model has been studied by Noar [21].

Naor’s M/M/1 model assumes a First-Come First-Served observable queue (the length can

be observed by the decision maker) with a single server, Poisson arrivals, exponential service,

linear waiting costs and fixed rewards from obtaining service. Balking is associated with zero

reward. The equilibrium solution in this model is very simple since there exists a dominant pure

threshold strategy. Namely, for some integer n, an arriving customer joins the queue if and only

if the observed queue length upon arrival is shorter than n, and this strategy maximizes the

individual’s expected welfare no matter what strategies are adopted by the others. The socially

optimal behavior is also characterized by a threshold strategy. Naor observes that the threshold

of the optimal strategy is in general smaller than that of the Nash equilibrium strategy. This

result also holds for more general queueing models (see §2 in [10] for a survey of strategic

behavior in observable queueing systems).

In this paper, we explore the behavior of the PoA and bound its value as a function of the

model’s parameters. After some preliminary derivations in Section II, we investigate in Section

III the PoA as a function of the normalized service values. Our main results are obtained in

Section IV were we investigate the behavior of the PoA as a function of the system’s utilization,
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and we conclude with some comments in Section V.

II. POA GENERAL BEHAVIOR

Following Naor’s notation, λ denotes the arrival rate, and µ denotes the service rate. The

customer obtains a reward of value R upon completing service, and a cost of C per unit of time

spent waiting or in service. The model’s parameters can be normalized so that there are only

two relevant parameters: ρ = λ
µ

, which is the arrival rate normalized in service capacity units,

and νs = Rµ
C

, which is the value of service in terms of expected waiting cost during a service

duration.1

The Nash equilibrium and optimal thresholds, ne and n∗ respectively, and their associated

social welfare, have been studied by Naor [21]. It is straightforward that ne =
⌊

Rµ
C

⌋
= bνsc.

Define g(ν) = ν(1−ρ)−ρ(1−ρν)
(1−ρ)2

, then n∗ = bν∗c, where ν∗ is the unique solution to

g(ν) = νs. (1)

Naor showed that n∗ ≤ ne. Moreover, n∗ = ne if and only if ne = 1.

The social welfare associated with a threshold n is

Sn = Rλ
1− ρn

1− ρn+1
− C

[
ρ

1− ρ
− (n + 1)ρn+1

1− ρn+1

]
.

PoA is defined as the ratio of the expected optimal net gain per time unit Sn∗ , and the expected

equilibrium one Sne:

PoA(ρ, νs) =

1−ρn∗

1−ρn∗+1 − 1
νs

[
1

1−ρ
− (n∗+1)ρn∗

1−ρn∗+1

]

1−ρbνsc
1−ρbνsc+1 − 1

νs

[
1

1−ρ
− (bνsc+1)ρbνsc

1−ρbνsc+1

] (2)

=
pjoin(n

∗)− 1
νs

q(n∗)

pjoin(ne)− 1
νs

q(ne)
, (3)

where q(n) is the expected queue length, and pjoin(n) is the probability that an arriving customer

joins the queue. under a threshold n. PoA(ρ, νs) is shown in Figures 1.

1To avoid triviality, νs ≥ 1. Otherwise, an arriving customers would balk even if the system is empty.
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Fig. 1. PoA(ρ, νs). The inset is a zoom-in of the results, where the PoA is non monotonous.

The definition of the PoA in M/M/1 is not an explicit function of ρ and νs. Instead, it is

also a function of the optimal strategy n∗. This strategy has to be computed according to a

numeric procedure, designed by Naor [21]. Accordingly, the investigation of the PoA is not a

straightforward analysis of a 2-variable function. It is a combination of analytical and numerical

approaches. In the following subsections, we isolate the influence of νs and ρ on the PoA.

III. POA AS A FUNCTION OF νs

Figure 2 demonstrates the behavior of PoA(νs) for various values of ρ. We pay a special

interest to the behavior of the PoA when νs →∞, because an infinite asymptotic limit indicates

that the PoA is unbounded. The three following lemmas describe the three possible limits in

association with the value of ρ:

Lemma III.1. limνs→∞ PoA(1, νs) = 2.

Proof: Consider the function h(x) = x
x+1

− x
2νs

. For ρ = 1, the optimal social welfare Sn∗

equals h(n∗), because the queue length distribution is uniform on {0, 1, . . . , n}, and in particular

q(n) = n/2 and pjoin = n/(n + 1).
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Fig. 2. PoA as a function of νs for various values of ρ

A continuous (with respect to x) analysis of h(x) yields that it is maximized by x =
√

2νs−1.

Thus, Sn∗ = h(n∗) ≤ h(
√

2νs−1). By Naor’s results, ne is the floor of νs; n∗ < ne; and the social

welfare is an unimodal function which is decreasing for x > n∗+1. Thus, Sne = h(bνsc) ≥ h(νs).

We conclude that:

PoA(1, νs) ≤
√

2νs−1√
2νs

−
√

2νs−1
2νs

νs

νs+1
− 1

2

(4)

Specifically, we explore the case when νs →∞. According to Naor’s results: n∗ is either the

floor or the ceil of
√

2νs− 1; ne is the floor of νs; both ne and n∗ goes to infinity when νs goes

to infinity. Thus, when νs →∞, Sn∗ = h(n∗) goes to h(
√

2νs − 1) and Sne = h(bνsc) goes to

h(νs). Therefore,

lim
νs→∞

PoA(1, νs) = lim
νs→∞

√
2νs−1√
2νs

−
√

2νs−1
2νs

νs

νs+1
− 1

2

= 2 (5)
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Lemma III.2. ∀ρ > 1, limνs→∞ PoA(ρ, νs) →∞.

Proof: When ρ > 1 and when νs →∞, by (1)

n∗ = logρ νs + o(logρ νs) (6)

By (2)

PoA(ρ, νs) ∼
1−ρlogρ νs

1−ρlogρ νs+1 − 1
νs

[
1

1−ρ
− (logρ νs+1)ρlogρ νs

1−ρlogρ νs+1

]

1−ρbνsc
1−ρbνsc+1 − 1

νs

[
1

1−ρ
− (bνsc+1)ρbνsc

1−ρbνsc+1

] .

Since

1−ρlogρ νs

1−ρlogρ νs+1 − 1
νs

[
1

1−ρ
− (logρ νs+1)ρlogρ νs

1−ρlogρ νs+1

]
= 1−νs

1−ρνs
− 1

νs

[
1

1−ρ
− (logρ νs+1)νs

1−ρνs

]
∼

1
ρ
− 1

νs

[
1

1−ρ
+

logρ νs

ρ

]
=

νs(1−ρ)−ρ−(1−ρ) logρ νs

νs(1−ρ)ρ
∼ 1

ρ

and

1−ρbνsc
1−ρbνsc+1 − 1

νs

[
1

1−ρ
− (bνsc+1)ρbνsc

1−ρbνsc+1

]
∼ 1

ρ
− 1

νs

[
1

1−ρ
+ bνsc

ρ

]

= νs(1−ρ)−ρ−(1−ρ)bνsc
νs(1−ρ)ρ

= (νs−bνsc)(1−ρ)−ρ
νs(1−ρ)ρ

< 1−2ρ
νs(1−ρ)ρ

−−−→
νs→∞

0,

we conclude that PoA(ρ, νs) −−−→
νs→∞

∞.

In contrast, ∀ρ < 1, the PoA is decreasing to 1 when νs →∞:

Lemma III.3. ∀ρ < 1, limνs→∞ PoA(ρ, νs) = 1.

Proof: When ρ ≤ 1, the solution of Equation (1) satisfies

lim
νs→∞

n∗

νs

= 1− ρ. (7)

Substituting this relation into (2) gives:

lim
νs→∞

PoA(ρ, νs) =

1−ρνs(1−ρ)

1−ρνs(1−ρ)+1 − 1
ρ

[
1

1−ρ
− (νs(1−ρ)+1)ρνs(1−ρ)

1−ρνs(1−ρ)+1

]

1−ρbνsc
1−ρbνsc+1 − 1

νs

[
1

1−ρ
− (bνsc+1)ρbνsc

1−ρbνsc+1

] −−−→
νs→∞

1

By the three lemmas above, we conclude that the PoA is not bounded when ρ > 1. In the

next section we will prove that the PoA is bounded when ρ ≤ 1 and we will find the bound.
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Fig. 3. PoA as a function of ρ for different values of νS . The inset is the upper envelope which is defined by 8

IV. POA AS A FUNCTION OF ρ

Figure 3 demonstrates the behavior of PoA(ρ) for various values of νs.

We consider the upper envelope of the function PoA(ρ, νs) for νs ≥ 1, which is demonstrated

at the inset of Figure 3:

PoA(ρ) = sup
νs≥1

PoA(ρ, νs) (8)

We describe the characteristics of the upper envelope PoA(ρ) in association with the value of

ρ by Lemma IV.1,Lemma IV.2 and Theorem IV.5:

Lemma IV.1. For any ρ > 1, PoA(ρ) is unbounded.

Proof: By Lemma III.2.

Remark: Under the limit case, when ρ →∞, given any threshold n, the number of customers

in the system is always n. This is because at any departure instant, an arrival occurs, due to

the infinite arrival rate. The social welfare per unit of time is then Rµ− nC. Thus, n∗ = 1. An

explanation to the latter is that in general, under optimization, customers are allowed to wait
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to prevent idleness of the server in the future. When the arrival rate is infinite, idleness never

occurs. On the other hand, for fixed µ, C and R, ne does not depend on λ and ne remains the

same. The PoA is
Rµ− C

Rµ− Cne

=
1− 1

νs

1− bνsc
νs

=
νs − 1

νs − bνsc
νs→∞−−−→∞

Lemma IV.2. PoA(1) = 2.

Proof: By (4)

PoA(1, νs) ≤
√

2νs−1√
2νs

−
√

2νs−1
2νs

νs

νs+1
− 1

2

=
(
√

2νs − 1)2(νs + 1)

νs(νs − 1)
, (9)

For νs = 2, 3, the right-hand side is at most 1.5, and for νs > 2 +
√

3 its derivative is positive.

Therefore, PoA(1, νs) is bounded by the limit when νs goes to infinity, which is 2 by III.1.

The following lemmas will be used in the proof of Theorem IV.5.

Lemma IV.3. For any ρ < 1, if PoA(ρ, x) is maximized at x = νs then νs is an integer.

Proof: We show that PoA is monotone decreasing with νs in the range where ne is fixed,

i.e. νs ∈ [n, n + 1). This range is divided into a finite number of intervals, such that in each

interval n∗ is also fixed. The PoA is continuous where n∗ changes because at these values

Sn∗ = Sn∗+1. Therefore it is sufficient to show that PoA is monotone decreasing with νs in each

of the intervals, where both n∗ and ne are fixed.

Consider two values ν1
s < ν2

s in such interval. The Derivative of (3) with respect to νs is

d

dνs

PoA(ρ, νs) =
q(n∗)pjoin(ne)− q(ne)pjoin(n

∗)

ν2
s

[
pjoin(ne)− 1

νs
q(ne)

]2

which is negative when q(n∗)pjoin(ne) < q(ne)pjoin(n
∗):

(
1

1−ρ
− (n∗+1)ρn∗

1−ρn∗+1

)(
1−ρne

1−ρne+1

)
<

(
1

1−ρ
− (ne+1)ρne

1−ρne+1

)(
1−ρn∗

1−ρn∗+1

)
.

This inequality holds when

(1− ρne)(1− ρn∗+1)− (n∗ + 1)ρn∗(1− ρne)(1− ρ)−

(1− ρn∗)(1− ρne+1) + (ne + 1)ρn
e (1− ρn∗)(1− ρ) < 0
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Simplifying the last expression, it is left to show that neρ
ne(1 − ρn∗) − n∗ρn∗(1 − ρn

e ) < 0 or
ρ−n∗ (1−ρn∗ )

n∗ − ρ−ne (1−ρne)
ne

< 0, which is true since n∗ < ne and ρ−n(1−ρn)
n

is increasing with n

when ρ < 1.

We conclude that PoA(ρ, νs) is decreasing with νs ∈ [n, n + 1]. In particular this means that

the maximum value of PoA in this range is obtained at νs = n.

Lemma IV.4. For ρ < 1, 1+(n+1)ρn−ρn+1(n+2)
1−ρn+1 is a monotone decreasing function of n.

Proof: We have

1 + (n + 1)ρn − ρn+1(n + 2)

1− ρn+1
= 1 +

(n + 1)(1− ρ)ρn

1− ρn+1
= 1 +

n + 1
n∑

i=0

ρi−n

.

Thus, we want to show that n+1
n∑

i=0
ρi−n

is decreasing, or alternatively

n∑
i=0

ρ−i

n+1
is increasing. As the

sequence ρ−n is increasing (because ρ < 1), so is the sequence of averages.

Theorem IV.5. Suppose that ρ < 1, then PoA(ρ) < 2.

Proof: By (2) , we need to prove that ∀ ρ < 1 and νs ≥ 1:

1− ρn∗

1− ρn∗+1
− 1

νs

(
1

1− ρ
− (n∗ + 1)

ρn∗

1− ρn∗+1

)
≤ 2

[
1− ρbνsc

1− ρbνsc+1
− 1

νs

(
1

1− ρ
− (bνsc+ 1)

ρbνsc

1− ρbνsc+1

)]
.

By Lemma IV.3 it is sufficient to consider νs = bνsc. Since νs is an integer and n∗ < νs, it is

sufficient to prove that for any two integers n < m:

1− ρn

1− ρn+1
− 1

m

(
1

1− ρ
− (n + 1)

ρn

1− ρn+1

)
≤ 2

[
1− ρm

1− ρm+1
− 1

m

(
1

1− ρ
− (m + 1)

ρm

1− ρm+1

)]
.

Since 1−ρn

1−ρn+1 is monotone increasing in n, it is sufficient to prove

1

m

1

1− ρ
+

1

m
(n + 1)

ρn

1− ρn+1
≤ 1− ρm

1− ρm+1
+

2

m
(m + 1)

ρm

1− ρm+1
.

Multiplying by m(1− ρ), it is sufficient to prove

1 + (n + 1)ρn − ρn+1(n + 2)

1− ρn+1
≤ m + ρm(m + 2)

1− ρm+1
(1− ρ).
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By Lemma IV.4, the left-hand side is monotone decreasing with n. Therefore it is sufficient to

show that the inequality holds for n = 1:

1 + 2ρ− 3ρ2

1− ρ2
<

m + ρm(m + 2)(1− ρ)

1− ρm+1
,

or

0 < (m− 1)− 2ρ− (m− 3)ρ2 + (m + 2)ρm − (m + 1)ρm+1 −mρm+2 + (m− 1)ρm+3

=
[
0 < 2 + (m− 3)(1 + ρ) + (m + 1)ρm + ρm(1 + ρ)− (m− 1)ρm+2

]
(1− ρ). (10)

Since ρ < 1, it is left to show that

0 < 2 + (m− 3)(1 + ρ) + (m + 1)ρm + ρm(1 + ρ)− (m− 1)ρm+2

which is true by m > n ≥ 2 and (m + 1)ρm > (m− 1)ρm+2.

Following the analytic results, we would like to add some numerical observations from Figure

3. The inset demonstrates that except from a small range near ρ = 1, the boundary is much

smaller than the boundary proved in Theorem IV.5. Specifically, when ρ < 0.98175, PoA(ρ) =

PoA(ρ, 2), which leads to the following observation:

Observation IV.6. If ρ ∈ [0, 0.98175], PoA(ρ, νs) ≤ 1+ρ+ρ2

1+ρ
< 1.48635

Proof: We observe that PoA(ρ) = PoA(ρ, 2) when ρ < 0.98175. Substituting νs = 2 in (2)

we have

PoA(ρ, νs) ≤ 1+ρ+ρ2

1+ρ
. We also have that PoA is uniformly bounded by the maximum of 1+ρ+ρ2

1+ρ

over [0, 0.98175] which is 1.48635.

In contrast, when ρ ∈ [0.98175, 1], PoA(ρ) is not equal to a single function PoA(ρ, νs).

Instead, there is an infinite number of functions which define the upper envelope of the PoA in

this range. In this small range, when ρ becomes close to 1, the boundary sharply increases to 2.

V. SUMMARY AND CONCLUSIONS

This study explores the PoA in the observable M/M/1 model. The first result is that the PoA

in M/M/1 is bounded if ρ ≤ 1. We emphasize that the model doesn’t need to assume ρ ≤ 1 for

stability, and in fact this number is of no significance in Naor’s results. It comes therefore as a

surprise that the PoA is bounded if and only if ρ ≤ 1. We assume that this finding is related to

the fact that n∗
νs

is bounded if and only if ρ ≤ 1 (see (7) and (6)).
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Another interesting result is that for most real situations the PoA is small in comparison with

other models discussed in the literature. In particular, when ρ is in [0, 0.98175], the bound is
1+ρ+ρ2

1+ρ
< 1.5. In most real situations ρ falls into this range. When ρ is in the small range between

0.98175 and 1, the PoA is not bounded by a single function. We prove that the tight bound for

this range is 2.

A further study could assess the PoA in other queueing systems, in which the self-optimization

by individual customers does not optimize public good. For example, it would be interesting

to explore the PoA in a GI/M/1 queue, where the arrival process is a general one, and in a

GI/M/s system, where there are parallel servers. Like the M/M/1, these systems also have a pure

threshold strategy for the Nash equilibrium solution, according to Yechialy [27], [28].
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