SIAM J. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 14, No. 3, August 1985 008

AN O(nlog? n) ALGORITHM FOR MAXIMUM FLOW
IN UNDIRECTED PLANAR NETWORKS*

REFAEL HASSINT anp DONALD B. JOHNSON#

Abstract. A new algorithm is given to find a maximum flow in an undirected planar flow network in
O(n log? n) time, which is faster than the best method previously known by a factor of \/n/log n. The
algorithm constructs a transformation of the dual of the given flow network in which differences between
shortest distances are equal, under suitable edge correspondences, to edge flows in the given network. The
transformation depends on the value of a maximum flow. The algorithm then solves the shortest distances
problem efliciently by exploiting certain structural properties of the transformed dual, as well as using a set
of cuts constructible in O(n log? n) time by a known method which is also used to find the requisite flow
value. The main result can be further improved by a factor of log n/log* n if a recently developed shortest
path algorithm for planar networks is used in place of Dijkstra’s algorithm in each step where shortest paths
are computed.

Key words. flow, maximum flow, planar, network, duality, graph algorithm

1. Introduction. The best algorithms known for solving the maximum flow problem
in capacitated networks with n vertices and m edges run in O(min {n*>m?*> nm log n})
computational steps [4], [12], [13].- On planar networks this bound reduces to
O(n’*log n), a bound known earlier for undirected networks [6], since m = O(n).

The best bound for general planar networks is O(n*? log n). This bound is achieved
by a divide-and-conquer algorithm, due to Johnson and Venkatesan [8], that operates
on recursively subdivided regions of a planar representation of the given network.
More efficient algorithms exist for (s, t)-planar networks, those that can be drawn in
the plane with the source and the sink on a common face. These algorithms run in
O(n log n) steps. One, due to Itai and Shiloach [6], derives from the ‘“‘uppermost path”
method of Ford and Fulkerson [3]. The other, due to Hassin [5], makes use of the
properties of shortest paths in a planar dual network.

The algorithm of Itai and Shiloach [6] for flows in (general) undirected planar
networks consists of two phases, each of which runs in O(n?log n) time. In the first
phase a minimum (s, t)-cut is found; in the second a flow with value equal to the
capacity of this cut is constructed. Reif [11] has shown how to find a minimum (s, t)-cut
in an undirected planar network in O(n log? n) time. In this paper we show how to
extend the ideas of [5] so that a shortest path computation in a derived network that
depends on a given feasible flow value yields a flow function of this value for a general
undirected planar network. We then show how to solve this shortest path problem
quickly using a set of cuts which can be constructed by a modification of Reif’s
algorithm. Given a flow value and these cuts, our algorithm runs in O(n log n) time,
thus giving a combined algorithm which solves the maximum flow problem in un-
directed planar networks in O(n log®n) time.

Our bounds cited above are derived using Dijkstra’s shortest path algorithm (see
[1], [7]) as a subroutine. If the algorithms of Frederickson [2] are used, these bounds
can be improved as will be discussed later. It is interesting to observe that, in the case
of finding flows in (s, t)-planar networks, the algorithm of reference [5] is amenable

* Received by the editors December 7, 1982, and in final revised form May 9, 1984.

t Department of Statistics, Tel Aviv University, Tel Aviv 69978, Israel.

t Department of Computer Science, Pennsylvania State University, University Park, Pennsylvania 16802.
The work of this author was partially supported by the National Science Foundation under grant MCS
80-02684.

612

MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 613

to improvement using Frederickson’s algorithm, but the “uppermost path” algorithm
is not since sorting can be reduced to the uppermost path computation [6].

2. Definitions and assumptions.
A flow network N is a quadruple (G, s, 1, c) where
(i) G =(V, E)isanundirected graph with n vertices and m edges and, throughout
this paper, is assumed to be given with a fixed planar embedding,

(ii) s and t are distinct vertices, the source and sink, respectively, and

(iii) ¢: E>R" is a capacity function assigning a positive real to each edge.

We denote an (undirected) edge with endvertices v and w as (v—w). A flow is a
function f:VXxV->R"U{0} satisfying f(v,w)=0 whenever (v—w)ZE, 0=
S(v, w)+ f(w, v)=c(e) foreveryedgee = (v—w) € E,and } (,—)ce [f(v, w) = f(w, v)] =
0 for every vertex ve V—{s,t}. The value of a flow f is defined by v(f)=
Yw-nece Lf(v, 1)=f(1,v)]. A flow f is a maximum flow if v(f)= v(f’) for every other
flow f'. We denote the value of a maximum flow by v, where the network referred
to is understood.

A cut C < E is a minimal set of edges that disconnects t from s. The capacity of
a cut is the sum of the capacities of its edges. A classical result is that the value of a
maximum flow is equal to the minimum over the capacities of all cuts [3].

Without loss of generality we assume that G is triconnected. (If G were not, it
could be triangulated in linear time.) Therefore G has a unique dual G*=(V? E%)
which is a graph without loops and multiple edges. (The uniqueness is by virtue
of the fixed embedding.) Let F and F® denote the set of faces of G and G
respectively.

The following one-to-one correspondences exist: Ve F!, Feo V* and E & E°.
For corresponding edges (v'—w’)€ E and (v—w)e E?, v’ is taken to correspond to v
and w’' to w when w' follows v’ in the clockwise direction in the face corresponding
to v. For each ee E? we define its length I(e) to be equal to the capacity c(e’) of the
corresponding primal edge e’ € E. These definitions give us a distance network N®=
(G, I) corresponding to the given capacitated network N. The procedure for dualizing
planar graphs, including the correspondence between the endpoints of the edges, is
described, for instance, in [9]. '

3. Finding a minimum (s, r)-cut. We start with a brief description of Itai and
Shiloach’s algorithm.

Let ¢* and ¢’ denote the faces in N* which correspond to s and ¢, respectively.
Without loss of generality we assume that ¢* is the exterior face of N®. A minimum
cut in N corresponds therefore to a cycle of minimum length enclosing ¢ in N*°.

LetII=(&=¢, -, &=¢") be a shortest (£°, £')-path in N* where ¢° is a dual
vertex on ¢* and £’ is a dual vertex on ¢', both chosen so as to minimize the length
of I1 over all shortest paths between such pairs. Call an edge (£ —¢;) Il-left if £211
and when traversing II from ¢* to ¢' it is incident with & on the left. Define I1-right
edges similarly. These definitions are extended to the edges incident with £° and ¢£' by
viewing II as extended at each of its two ends by an edge to a new vertex situated
properly within ¢ and ¢, respectively. Figure 1 illustrates these concepts. Since N*
is triconnected and has a fixed embedding, every edge incident with I is either IT-left
or Il-right but not both.

Since 1 is a shortest (¢, £')-path, there exists a cycle of minimum length enclosing
¢' which intersects II exactly once, and uses exactly one II-right and one II-left edge.
The algorithm of Itai and Shiloach finds such a cycle and the corresponding minimum
cut in the primal network as follows.

614 REFAEL HASSIN AND DONALD B. JOHNSON

ALGORITHM MIN-CUT (N) [6]
{N is a flow network with dual N9
{MIN-CUT (N) is a minimum (s, t)-cut of N}
fori=1,---,kdo
Direct every Il-left edge (&—¢) in N from ¢ to £ and every Il-right edge
(&—¢) from £ to &.
endfor
for i=1,---,kdo
Let C¢ in N be a minimum ¢-cycle, a shortest cycle that uses exactly one
II-left and one Il-right edge, and its I1-left edge is incident with &. {It is
easy to see that such a cycle encloses ¢ '}

endfor
return (the minimum (s,t)-cut corresponding to C| for which
I(CH=min{l(CHli=1,- -, k})
end MIN-CUT

Fi1G. |. A partial rendition of the dual N® of some. given network N showing a shortest (£°, £')-path 11
and I1-left and I1-right edges.

Given the directing of the edges in-the first step, each cycle C{ in the second step
can be found by splitting vertex & into &;, with the Il-left edges, and & with the other
edges incident with £, and then finding a shortest (¢, £&/)-path. When Dijkstra’s
algorithm (see [1],[7]) is used, the time required for finding each of these paths is
bounded by O(n log n). Thus, since k = n, it follows that MIN-CUT(-) terminates in
o(n?® log n) time.

Dijkstra’s algorithm has been improved upon recently by Frederickson [2] in the
case where the shortest path problem to be solved is on a planar network. As with
Dijkstra’s algorithm, Frederickson’s results apply when all edge lengths are nonnega-
tive. He shows that a single shortest path computation can be done in O(n/log n)
time. With O(n log n) preprocessing, each of any number of single source computations
can be done in O(nlog* n) time. Thus Itai and Shiloach’s minimum-cut algorithm
can be implemented to run in O(n?log* n) time. Similar improvements are obtainable
in Reif’s algorithm (discussed below) and in ours.

For simplicity of presentation we shall assume the use of Dijkstra’s algorithm in
each of the results in what follows and then, where appropriate, we shall indicate how
Frederickson’s algorithms can be employed. (As is well known, when computing with
edge lengths from some restricted domains, the running time of Dijkstra’s algorithm
can also be improved. We omit discussion of what can be done in such special cases
except to note that each of our bounds can be improved when finding shortest paths
from a single source to all other vertices is o(n log n).)

Reif[11] describes a more efficient implementation of Itai and Shiloach’s minimum-
cut algorithm. He observes that if C® is a minimum &-cycle then, for j=1,---,i—1,

MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 615

there exist minimum §;-cycles that enclose C*¢ (that is, have no vertices strictly within
C* and, for j=i+1,- - -, k, there exist minimum ¢-cycles which are enclosed by C*.
This observation allows the following divide-and-conquer algorithm, which we state
for our purposes so that it generates a representation for each of the cuts corresponding
to a minimum &-cycle foreach i=1,-- - k.

ALcoriTHM CUTS (N;) [11]
{N; is an undirected planar flow network with n; vertices}
{CUTS (N,) is the set of cuts in N; that correspond to the cycles in a set of
minimum &-cycles in N§, one for each i=1,- -, k;}
if kj=1 then return({HIMID (N;)})
else if k; =2 then return({LOMID (N;)}U {HIMID (N;)})
else return({ HIMID (N;)}U CUTS (N,(N;)) U CUTS (N,(N;)))
end CUTS

Here

(i) HIMID (N;) returns in O(n; log n;) time the cut corresponding to a minimum
£mia-cycle of N; where I1;= (£ =¢,,- - -, & = ¢') and mid = [k;/2]. (An algorithm to
do this is obtained from Algorithm MIN-CUT by replacing “for i=1,- - -, k" with
“for i = [k/2]".) LOMID (N;) is similarly defined with mid = | k;/2]. (The introduction
of the two “MIDs” corrects a minor error in the original presentation where, in fact,
termination is not assured.)

(ii) The networks N,(N;) and N,(N;) are obtained from N,;—HIMID (N;) by
adding a second source vertex s, and a second sink vertex f, and then, for each edge
(v—w)e HIMID (N;) where v is connected by some path to s in N,—HIMID (N;),
adding (v—1t,) and an edge (s,— w), replacing multiple edges with a single *“super”
edge of capacity equal to the sum of the capacities of the replaced edges. The resulting
network has two connected components; the one containing s is the (s, t,)-flow network
N;(N;) and the other, containing ¢, is the (s, t)-flow network N,(N,).

Let a network N; which is an argument to CUTS (-) be at level [if it is generated
as a result of / prior calls to CUTS (-) applied to N, that is, if it is generated at level
I in the recursion. Thus the given network N is at level 0 and no network is at a level
greater than [log (k—1)], since no (&%, ¢')-path at level I has more than |V(II,_,)|+1
vertices, where |V(I1,_,)| is the number of vertices in the longest such path at level
I—1, if the simple expedient is employed of inheriting, rather than recomputing, I1
for each of N,(N;) and N,(N;) from II for N,

From the construction it is evident that o, the total number of vertices of networks
at level I, must satisfy '

!
o =0p+ Y 29<n+2-2°8"=3n,
g=1
Thus, since both LOMID (N;) and HIMID (N;) run in O(n;log n;) time, where a
network N; has n; vertices, the running time of Algorithm CUTS () on a given network
N with n vertices, is

Mog(k—1)1 '
O(Y olog n>=0(nlognlog k)= O(nlog® n).

I=0

Then, to find a minimum cut of the given network N takes time equal to O(|CUTS (N)|)
which is surely O(n log n log k) by the timing analysis above. The reader may find a
more thorough exposition of a more complicated proof in the original reference [11].

616 REFAEL HASSIN AND DONALD B. JOHNSON

As indicated above, the result can be improved to O(min{nlogn+
n log* n log k, nvlog n k}) when Frederickson’s shortest path algorithms are used.

In the original reference, the set CUTS (N) is not constructed. Instead, only a
minimum cut is found. With respect to our generalization, it must be noticed that in
general some cuts in CUTS (N) are described in terms of “‘super” edges that represent
sets of edges in some network nearer the root in the execution tree, and not explicitly
in terms of the original edges of N. However, we may keep in CUTS (N) the information
necessary to expand any cut to a description in terms of the edges of N.

It in fact is possible to obtain a representation for CUTS (N), which is in terms
of the original edges of N and is O(n) in size, at no asymptotically significant increase
in running time and from which one minimum cut corresponding to £-cycle C{ can
be recovered for each i in the order i=1, - - -, k, where a shortest (£°, ¢')-path in the
dual of the given network is I[I= (£ =¢,,+ -, & =¢'). The first step is to record the
execution tree of CUTS (-) applied to N, assigning to the root the cut HIMID (N),
to each of the two tree edges from the root the changes that need to be made to
HIMID (N) to produce HIMID (N;(N)) and HIMID (N,(N)), respectively, etc.,
recording no cuts themselves at tree vertices other than the root. The edges to some
leaves will need changes for both LOMID and HIMID.

This information can be recorded in terms of the “super’” edges during the
execution of CUTS () applied to N. Then the second step is an inorder traversal of
the labeled execution tree to produce the changes, in I1 order, in terms of the original
edges of N. This step can be done within the same running time as CUTS (-) since
“super’” edges need be expanded at most twice, once when they enter some cut and
once when they leave it or a later cut. If the edges of the cut C,, corresponding to the
minimum §&,;-cycle, are placed initially in a search tree, ordered lexicographically on
the edges taken as ordered pairs of vertices, the cuts can be constructed (though not
output) in II order in O(n log n) time by using the changes to modify the search tree
containing the edges of one cut to obtain the next.

4. Finding a maximum (s, t) flow. An algorithm for constructing a flow of value
D, if one exists, in a general (directed or undirected) planar network is described in
[6]. This algorithm runs in O(n”log n) time and can be used to construct a maximum
flow whenever the flow’s value v,,,, is known.

In this section we describe an alternative algorithm which can be applied to
undirected networks if v, is known.

We first define a transformation of distance network N¢ as follows:

(i) For each vertex & eIl, two vertices £, and ¢/ are created.

(ii) Each edge (& —¢&;,,) on I1 is replaced by two edges (&;— €i.) and (&7 — €14y

each with length equal to I(& — &;+1)-

(iii) Edges directed from £ to ¢] with length —v,,.x are added for i=1, -, k

(These are the only directed edges.)
(iv) Every I1-left edge (& — &) is replaced by (& — &) with length equal to I(&; — £).
Every I1-right edge (¢; — £) is replaced by (£7 — £) with length equal to I(¢; — £).
(v) Every vertex & €Il is now isolated and may be removed.
The transformation is illustrated in Fig. 2. We denote the transformed graph by
G'=(V", E") and the transformed distance network by N".

Let 1 = r=k be an index for which it was found that the length of the minimum
&,-cycle was v, For every vertex ve V'let u(v) be the length of a shortest (£;, v)-path
in N*. Since the length of every minimum £-cycle in N? was found to be at least vy,
N'* has no negative cycles and u(v) is defined for every v.

MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 617

FIG. 2. A partial rendition of the transformed dual N* of some given network N showing how the vertices
& are split into £ and ¢} and new directed edges are introduced.

LEMMA 1. u(&)=u(€!)—vmax fori=1,--- k.

Proof. By construction, u(¢£,) =0 and u(£)) = vmax. Since Il is a shortest (¢°, £')-
path there are only two possibilities concerning a shortest (&, £i)-path:

(i) Tt reaches ¢; from &7. In this case the lemma holds immediately.

(ii) It terminates in a sequence of vertices (§}|je J). If &, is the first vertex in this
sequence, then u(£,) = u(£,) — Umax, since either p = r or a shortest (¢;, £,)-path reaches
&, from &,. This establishes that u(£7) = u(£i) + Umax-

On the other hand, £] can be reached from ¢; along edge (&7 — £!) and, since
(€] = €)) = — Umay, it follows that u(&)) = u(€7) — Umax- The lemma in this case follows
from the last two inequalities. [

For every edge (v—e) € E', let us define u},, = —u',,=u(w)—u(v). By Lemma 1,
u(é)—u(€)=u(él)—u(¢)), so that u?, is well defined for each edge (v—w)e E® as
follows.

(i) For every Il-left edge (¢, —w)e E°, ug , = u}.,.

(ii) For every Il-right edge (v—§&,) € E, ul, = ul,..

(ili) For every Il-edge (&, —&)€ EY, ul, = uj:e; = sy

(iv) For every other edge (v—w)e E®, ul,=u', =u(w)—u(v).

THEOREM 1. A maximum flow f can be constructed as follows.

For each edge (v—w)e€ E® and associated edge (v'—w') € E where v corresponds

with v' and.w corresponds with w', let
S, w') =max {0, u,,.} and f(w', v') = max {0, u,,}.

Proof. The following observations show that f is a flow with value v,,,, and thus
a maximum flow.
(i) 0=max {0, u,.} =I(v, w) =c(v’, w').
(ii) For every dual face ¢ € F'—{¢°, ¢'}, with dual vertices v,, - - -, Vgs Vg1 = U,
in clockwise order and primal vertex ae€ V —{s, t} associated with ¢,

Y o= T (f(b,a)=f(a,b)) =0,

(a—b)eE
See Fig. 3.
(iii) Let &k =v,, -+, v, = &% be the vertices belonging to ¢' in N' in clockwise
order (see Fig. 4). By Lemma 1,
u(vy) — u(v,) = u(£) — u(€L) = — Vmax,

so that

618 REFAEL HASSIN AND DONALD B. JOHNSON

v v
| 3
\.q”/
¥
|
v } v
|

¢

Fi1G. 3. Dual face ¢ =(v,, v,, 03, v,, vs) corresponding to primal vertex a, for the case ¢ € F*—{¢°, ¢'},
where q = 5. Primal edges are shown dashed. As described in § 2, primal and dual edges that cross correspond.

This implies
Y (S, D)= f(1,v) = Uax-

(1—v')eE

Once the labeling function u(V") is obtained, the above construction can easily
be seen to yield a flow function in O(n) time. Thus, it remains to show how to compute

u(V") efficiently.

We note before proceeding to this discussion that, when k = O(1), the bound in
§ 3 for finding CUTS (N) reduces to O(nlog n). In the case when the network is
(s, t)-planar (i.e. k=1), the dual faces ¢* and ¢' have a common dual vertex which
can be chosen as £° = ¢’ so that only one cycle need be found. In this case the algorithm
is essentially the one described in [5] and the time needed to find both a minimum
cut and a maximum flow is O(nlogn) when Dijkstra’s algorithm is used and

O(n+vl1og n) when Frederickson’s algorithm is used.

F1G. 4. Dual face ¢ =(v,, vy, U3, U4, Us) corresponding to primal vertex t. Notice that there is no primal
edge corresponding to dual edge (vs— v,), since this directed edge was introduced in the transformation of N°.

MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 619

5. Computing distances in the transformed dual network. As‘above, let a minimum
cut cycle of N be a ¢,-cycle for some r, | =r= k. Shortest (£,, v)-paths in N can be
computed for every ve V' in O(n*?) time [10] and thus a maximum flow can be
obtained, as described in the previous section, within this bound. It is not known how
to solve the shortest path problem faster in general in planar networks when Q(n) of
the edges have negative lengths. However, our network N* has a structure which we
exploit to obtain the required shortest distances in O(n log n) time, using repeated
applications of Dijkstra’s algorithm, when given a suitable representation of the
minimum &-cycles in N*that correspond to the (noncrossing) cuts in the set CUTS (N).

We denote the minimum §&-cycles that we obtain in § 3 as C! where, for each
i=1,--,k, cycle C} corresponds with the primal cut C. We now define the sets A;
and A; fori=1,---, k—1 by the relation

V(Ci) =(V(C)H—-AT)UAT,
where
(i) V(C3) is the vertex set of Cifori=1,---, k, and
(ii) the intersection A7 N A; contains only those vertices in C!N C!,, connected

by an edge to some vertex in C}— C{,,. See Fig. 5. We note that the inverse relation
also holds,

V(CH=(V(Cii)—-AT)UAT.

Fi1G. 5. Example of C} and C',, in the general case where there may be vertices in common. The set A]
is comprised of all vertices of C— C\., plus the first and last vertices on C'N C',,. The set A} is comprised
of all vertices of C},,— C} plus the first and last vertices on C'N C,,.

i

_ The sets A] and A; for i=1,---,k—1 can be generated in order i=1,--- k—~1
in O(n) time by a traversal of the Reif execution tree as described in § 3. This fact
would be immediate if A} and A; were defined so that ATN A7 =. However, even
though there is overlap, the bound of O(n) can be seen to hold by observing that the
sum over all vertices of the number of times a vertex can repeat within either all the
A" sets or all the A sets is bounded by the number of edges in N*, which is O(n).
Not only can these sets be used, as described in § 3, to recover the minimum length

620 REFAEL HASSIN AND DONALD B. JOHNSON

cycles C¢, they are also of essential use in reducing the complexity of the computation
of the labels u(v) for ve V' to O(nlog n).
The cycles C§ for i=1,--- k divide N' into k+1 subnetworks N, - - -, N
where, for i=1,---,k—1, N} is the subnetwork bounded by and including C} and
t+1, N§ is everything outside and including Ci, and N is everything within and
including C. See Fig. 6. Since the intersection of two adjacent subnetworks is a
shortest cycle we obtain the following result.

Fi1G. 6. Example of subnetworks of N' induced by the cycles C}, i=1, -,k It may be that adjacent
cycles have subpaths in common as shown in Fig. 5.

LEMMA 2. Let v be a vertex in N;. Then if i <r there exists a shortest (&), v)-path
in N* which is contained in U ;_, ,_, N;. Similarly, ifi = r there exists a shortest (£, v)-path
in N* which is contained in U ;_,, N.

This lemma implies that the computation of u(v) for ve V' can be restricted to
the subnetwork U ;_o,-, Nj for v in this subnetwork, and similarly for vin U;_,, Nj.
We confine our detailed discussion to the latter case. The former case is treated similarly.

Let P(v) be a shortest (&), v)-path. An example is given in Fig. 7, where P, is.
shown as a concatenation of subpaths P,, P,, P,, P,, and Ps. In general, for any vertex
ve V' where v is in N! let a normal path be a simple (¢, v)-path P(v)=
(P,--,P,--+,Py_;) such that, for j=r,---,g, subpath P, is in Nj, and, for
j=q+1,---,2q9—i subpath P, is in N3,_; and uses no edges of negative length. We
require also that g be minimal subject to these conditions. Call g the index of reversal
of P(v). As the following lemma states, for every v there exists a shortest (£;, v)-path
that is normal. :

LEMMA 3. Foranyi=r,- - - k, for every vertex vin N} there exists a normal shortest

path P(v).

MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 621

Proof. (It may be helpful to consider the example in Figure 7.) Assume that a
shortest path P touches some shortest cycle C* corresponding to some member of
CUTS (N). If the last shortest cycle it touched was also C*, then there is a subpath
of the cycle that can be used to replace the subpath of P whose endpoints are on the
cycle. Then, once P departs from some cycle C; into Nj_;, P cannot use a negative
edge because, to do so, it would cross itself and the embedded cycle thus created
(which could not have negative length) could be removed. 0O

FiG. 7. Example of shortest (£, v)-path P(v)=(P,, P,, Py, P,, P5). In this example r =1, the index of
reversal =4, and v is in N\.

We now give an algorithm to compute u(v) for all v in U ;_,, Ni.

ALGORITHM INSIDE-LABELS (N'Y)°
{Given the transformed dual N', INSIDE-LABELS (-) produces the labels
u(v) for all the vertices v in U ,_,, Ni}
{Initialize the labels}
for v in U ,;_,, N} do u(v) <« co endfor
u(é;) <0
{Compute shortest paths in C!}
SP (C1, {&))
{Compute shortest paths in the forward direction}
for i< r until k do
{Compute shortest paths in N} from start vertices in A;}
SP (NS, A;)
endfor
{Extend shortest paths in the backward direction}
SP((U i NY), AL_))
end INSIDE-LABELS

622 REFAEL HASSIN AND DONALD B. JOHNSON

In Algorithm INSIDE-LABELS (-), SP (X, W) is a two-step algorithm. The first
step is Dijkstra’s shortest path algorithm applied to network X from which all edges
of negative length have been removed and with whatever u-labels its vertices have,
starting the candidate set with the vertices in W. This is equivalent to running the usual
version of the algorithm from w after deleting the edges of negative length and
augmenting X with a new vertex w and edges (w —v) of length u(v) for each ve W.
The second step is to treat the edges of negatlve length individually as follows. For
edge (£"—¢') execute the assignment

u(gl) =min {u(fl)’ u(gn) - vmax}-

LEmMMA 4. Algorithm INSIDE-LABELS (+) computes u(v) correctly for all ve
U ..« Ni. Whenever a vertex ve V(C})—A; is expanded in a shortest path computation
on N} in the forward loop, no labels change.

Proof. Observe that Dijkstra’s algorithm is applied always to subnetworks without
edges of negative length. The effect of the edges of negative length is obtained explicitly
following each application of Dijkstra’s algorithm.

Give C' the name N'_,. First, it can be seen that all labels u(v) for ve N'_, are
computed correctly by the first three lines of the algorithm. Then, let V|, be the set of
all vertices v for which there is a normal shortest (&), v)-path P(v)=(P,, -, P,_,).

Consider first such paths for which h—1 is the index of reversal (that is, there is
no reversal). Assume that u(v) has been correctly computed by INSIDE-LABELS (-)
for all ve V, when i= h =k before the beginning of some iteration of the loop that
starts with ““for i « r until k do”. Consider a vertex we N}, for which there is a normal
shortest (¢, w)-path P(w)=(P,,---, P,). If we C}, then u(w) is already correct by
assumption. Otherwise, w¢ C}, and the last vertex x on P(w) that is in N}_, and
therefore with correct label u(x), is in A,. It follows that the iteration with i = h must
compute u(w) correctly and that no label is changed by an expansion of a vertex in
V(C!)—A;. By induction, then, it is shown that u(v) is computed correctly for all
veV, r=h=k

A simpler argument is applicable to the segment (P, - -, P,), of any normal
shortest path P(v)=(P,,- -, P, -+, P,) with index of reversal g <b, given as we
have just proved that u(w) is correct for all w for which there exists a normal shortest
path P(w)=(P,, - -, P,) upon completion of the loop that starts with “‘for i « r until
k do”. These segments contain no edges of negative length. Thus a single application
of Dijkstra’s algorithm suffices and, in fact, the second step in SP can be omitted. The
desired results follow from Lemma 2. [

When INSIDE-LABELS () is combined with a similar procedure to calculate
labels on U ;.,,., N} we have a correct procedure for the entire problem. Call this
combined procedure LABELS (-).

From earlier discussions it follows that the running time of LABELS(-) is
O(slog n), where s <n'+¥,.,,|C}| for n*=|V(N")|= O(n). There exist networks N
for which ¥,_, ,/C!=Q(n?, so LABELS() as stated above has a running time of
O(n’log n).

To improve this bound we give the following refinements in which shortest paths
are computed on the subnetworks Ni—(V(C!)—A;), as Lemma 4 permits, and these
subnetworks are produced explicitly by removing and replacing edges in N'. In
INSIDE-LABELS (-) replace

{Compute shortest paths in C}}
SP(C', {&])

MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 623

with

{Isolate C} in N'}
N'eN'—{(v-w)lve C,,we C}}
{Compute shortest paths in C}}
SP (N {£&})

{Disconnect C'}

N'e N'—{(v-w)|v, we C}},

and replace

for i < r until k do
{Compute shortest paths in N} from start vertices in A7}
SP (N}, A7)

endfor

with

for i « r until k do

{At each iteration, C} is disconnected}

{Put into N the edges that enter the proper interior of N§ from C}, and delete
the edges that are incident on some vertex properly within the region bounded
by Ci.,. Thus, since no edges come into N} from the two regions surrounding
it, SP () will compute on N}

N'«(N'U{(v—w)|ve Ay, we C! and within C}})

—{(v—-w)|lve A, wg C!,, and within C},,}

{Compute shortest paths in N} from start vertices in A7}

SP(N', A7)

{Maintain C},, disconnected}

N'e N'—={(v—w)|v, we AT}

endfor.

Now, the sum over all forward shortest path computations of the number of
vertices processed in each computation is O(n) since Ziz,,kIAf) is O(n), so these
computations are of complexity O(nlog n). The manipulations of N' can also be
implemented to run in O(n log n) time over all. This gives us our theorem.

THEOREM 2. Shortest (£,, v)-paths can be computed for every ve V' in O(n log n)
time, given the set CUTS (N).

Frederickson's shortest path algorithm without preprocessing [2] can be used in
each instance where Dijkstra’s algorithm is used in our algorithm, giving a bound of
O(nlog n) overall when given the set CUTS (N).

Theorems | and 2, together with the results of § 3, imply an algorithm for maximum
flows in undirected planar networks that runs in O(n log” n) time and O(n) space.
With Frederickson’s improvements, the time bound is O(n log n log* n) when k= Q(n)
and as small as O(n/log n log k) when k is small.

6. Acknowledgment. We are grateful to a referee for pointing out an error, now
corrected, in the result of § 5.

REFERENCES

[1] E. W. DUKSTRA, A note on two problems in connexion with graphs, Numer. Math., 1 (1959), pp. 269-271.
[2] G. N. FREDERICKSON, Shortest path problems in planar graphs, Proc. 24th Annual Symposium on
Foundations of Computer Science, 1983, pp. 242-247.

624 REFAEL HASSIN AND DONALD B. JOHNSON

[3] L. R. FORD AND D. R. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956), pp.
399-404. .
[4] Z. GALIL, A new algorithm for the maximal flow problem, Proc. }19TH Annual Symposium on Foundations
of Computer Science, 1978, pp. 231-245. .
[5] R. HAsSIN, Maximum flow in (s, t) planar networks, Inform. Proc. Lett., 13 (1981), p. 107.
[6] A. ITA1 AND Y. SHILOACH, Maximum flow in planar networks, this Journal, 8 (1979), pp. 135-150.
[7] D. B. JOHNSON, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput. Mach., 24
(1977), pp. 1-13.
(8] D. B. JOHNSON AND S. M. VENKATESAN, Using divide and conquer to find flows in directed planar
networks in O(n*?log n) time, Proc. Twentieth Annual Allerton Conference on Communication,
Control, and Computing, Univ. lllinois, Urbana, October 1982, pp. 898-905.
[9] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston,
New York, 1976. ’
[10] R.J. LirTON, D. J. ROSE, AND R. E. TARJIAN, Generalized nested dissection, SIAM J. Numer. Anal.,
16 (1979), pp. 346-358.
[11] J. H. REIE, Minimum s-t cut of a planar undirected network in O(n log? (n)) time, this Journal, 12 (1983),
pp. 71-81.
[12] D. D. SLEATOR, An O(nm log n) algorithm for maximum network flow, Ph.D. Dissertation, Comp. Sci.
Dept., Stanford Univ., Stanford, CA, 1980.
[13] D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, Proc. 13th Annual ACM

Symposium on Theory of Computing, 1981, pp. 114-122; J. Comput. System Sci., 26 (1983), pp.
362-391.

