DISCRETE
APPLIED
MATHEMATICS

ELSEVIER Discrete Applied Mathematics 87 (1998) 117-137

Approximation algorithms for minimum tree partition

Nili Guttmann-Beck, Refael Hassin*

Department of Stratistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel

Received 29 October 1996; received in revised form 17 November 1997; accepted 6 April 1998

Abstract

We consider a problem of locating communication centers. In this problem, it is required to
partition the set of # customers into subsets minimizing the length of nets required to connect
all the customers to the communication centers. Suppose that communication centers are to be
placed in p of the customers locations. The number of customers each center supports is also
given. The problem remains to divide a graph into sets of the given sizes, keeping the sum
of the spanning trees minimal. The problem is NP-complete, and no polynomial algorithm with
bounded error ratio can be given, unless P =NP. We present an approximation algorithm for the
problem assuming that the edge lengths satisfy the triangle inequality. It runs in O(p*4” + n*)
time (n=|V) and comes within a factor of 2p — | of optimal. When the sets’ sizes are all equal
this algorithm runs in O(n*) time. Next, an improved algorithm is presented which obtains as an
input a positive integer x (x<n — p) and runs in O(f(p,x)n*) time, where f is an exponential
function of p and x, and comes within a factor of 2+(2p — 3)/x of optimal. When the sets’
sizes are all equal it runs in O(2'”*'p?) time. A special algorithm is presented for the case
p=2. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Graph partitioning; Minimum spanning tree; Approximation algorithms

1. Introduction

Let G=(V,E) be a complete undirected graph, with a node set V' and an edge set
E. The edges e € E have lengths /(e) that satisfy the triangle inequality, We assume
that each vertex represents a customer. The goal is to partition V into p subsets of
given sizes, in order to locate a communication center in one node of each subset.
The nodes of each subset will then be connected to this server through a subnetwork
of minimum total length, that is, a minimum spanning tree (MST) of the subgraph
induced by this subset of nodes. The Minimum Tree Partition Problem is to compute
a partition with minimum total length.

More formally: Given G =(V,E) with [V|=n, and p positive integers {k;}” , such
that 37 ki=n. The Minimum Tree Partition Problem is to find a partition of V
into disjoint sets {P}”, such that Vie {l,..., p} |P|=k, and 3.7 I(MST(P)) is

* Corresponding author. E-mail: {nili hassin }@math.tau.ac.il.

0166-218X/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PIIS0166-218X(98)00052-3

118 N. Guttmann-Beck, R. Hassin! Discrete Applied Mathematics 87 (1998) 117-137

minimized, where MST(P(i)) is a2 minimum spanning tree in the graph induced on B
and l(E')=3,c; l(e) for E'CE.

The problem is NP-hard [6]. In this paper we introduce approximation algorithms
with bounded error ratio. First, we describe a general algorithm for dividing the graph
into p sets of customers. It runs in O(p?4” +n?) time where n=|V|, and comes
within a factor of 2p—1 of optimal. When the sizes of the sets are all equal it
runs in O(n?) time. Next, we describe an algorithmic scheme, for any given value of
a parameter x € {1,2,...,n— p+1} this algorithm runs in O(f(p,x)n*) time, where
f is an exponential function of p and x, and comes within a factor of 24+ (2p ~3)/x
of optimal. When the sizes of the sets are all equal this algorithm runs in O(2(P**)n?)
time.

For the case p=2 we present an O(n”) time algorithm that comes within a factor of
2 of optimal. For dividing the graph into 2 equal-sized sets we prove that the optimal
solution value is bounded by 3/(MST(G))/2. For approximating the solution to this
problem we define a ‘K-centroid’ which generalizes the concept of a centroid of a tree
and prove its existence.

For small values of p these algorithms improve previously best-known performance
of 4(1 — p/n) for partitioning the graph into p equal-sized sets, given by Goemans and
Williamson in [4] (see also, {2, 10]). Qur algorithms also improve for small p values
the time requirement (from O(#?/log log 7)) and generalize the problem allowing the
sets to be of different sizes.

For a given S CV consider all the partitions of S into p sets. For each partition
compute the sum of lengths of the MSTs over the subgraphs induced by the partition.
Denote z(S) the minimum sum obtained over all the possible partitions. Qur problem
is to approximate z(¥'), while Chandra and Halldorsson [1] present a 4-approximation
algorithm for the problem of maximizing z(S) over all subsets S C ¥, |S| =k, where &
is given.

Imielinska et al. [7] and Goemans and Williamson [5] present polynomial algorithms
with bounded performance guarantees for the following problem (without the triangle
inequality assumption): Given m¢€ {2,...,n}, find a minimum length spanning forest
such that each of its trees spans at least m vertices. This is different from our problem
in which the trees’ exact sizes are given and for which it has been shown in [6] that
no such approximation can be given unless P =NP. '

Approximation algorithm with bounded performance guarantees for the related min-
max tree partition problem in which the goal is to partition the node set into p sets
of equal size P,...,F, minimizing maxe(, ., py [(MST(F,)), are described in [6].

Our algorithms can also be used to approximate the problem of covering the graph
by cycles, (by doubling all the trees and using the triangle inequality to replace each
tree by a cycle whose size is at most twice the size of the tree). The resulting error
bound is twice the corresponding bound for the tree partition problem.

We will use the following notations: For an edge e, /(¢) is the length of e. For a set
of edges E, (E)=3,cp l(e). For a graph G=(V,E), I{(G)=I(E). For a set of nodes
V', MST(V') is a MST on the subgraph induced by V. For a subgraph B we denote

N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137 119

by V3 and Ep the sets of nodes and edges in B, respectively. We denote by opf the
optimal solution value of the problem.

2. First approximation
2.1. The cycle procedure

Consider Cycle_Part given in Fig. 1. This procedure takes a MST on the given graph
and doubles its edges, getting an Eulerian cycle. This cycle is changed into a simple
one of shorter or equal length using the triangle inequality. Then we divide the nodes
in the graph according to the order by which they appear in the cycle. Starting by
removing the longest edge, then taking the first k) nodes into the first set, the next &,
nodes to the second set, etc.

Lemma 2.1. Let é be the longest edge in an MST T of G. Then the value r returned
by Cycle_Part satisfies r <2{(T)— I(é).

Proof. If p=1, r=UT)<2I(T) - I(é).
Suppose p>1. Forie{l,..., p}, if ;=2 then {(Vm,, Vm41)+ (Vmi4hi=2 Oyt —1) }
is a spanning tree of P. Thus,

mi+ki—2

IMST(P)< Y Uvjop) Vie{l,....p}

J=m;
Note that when &, =1 I(MST(P;))=0 and the sum is also 0, It follows that

mi+ki~2

14 14
r=Y IMST(E)<Y | > Hvj,00)<HC) = (vn,01).
i=1 i=1

J=mi

Since (vn, vy) is the longest edge in C, I(v,,v1)2(€). (The longest edge in the MST
appears in the cycle which was created by doubling the edges, when changing the cycle
into a simple one this edge is either untouched, or is changed into a longer edge.) So
the cycle contains an edge of length > /(¢é).) Hence, r </(C) - I(é)<2I(T)—I(¢). O

To see that Cycle_Part may produce a bad approximation consider the graph with
V={v,v2,03}, {v1,v2)=I(vy,v3)=1 and /(v3,v3)=0. The desired sizes for parti-
tioning are: {2,1}. A MST for this graph consists of the edges (vy,v2),(v2,03). The
resulting simple cycle is (v; — v; — vy —v;) with the numbering of the nodes giving
that (v3,r1) is a longest edge of the cycle. In this case P = {vi, 12}, = {v3}. giving
r=1, while opt =0.

120 N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137

Cycle_Part
input
1. A graph G=(V,E), |V|=n and a MST T.
2. A set of positive integers {ki,...,k,} satisfying Y2 ki=n.
returns
L AP}, where L, B =V and |P|=kVie{l,..., p}.
2. A value r satisfying r =737 I(MST(P))).

begin
if (p=1)
then
P :=V.
r:=IT).
return ({P },r)
end if

Double all the edges in Er. 4 cycle C = (V,E.) is created.
Change it into a simple cycle of equal or smaller size,
using the triangle inequality.

Number the nodes in V so that E. = {(v1,v2),(¥2,03)- .., (Un—1, Un); (U, 01)},
where (v,,v1) is the longest edge in C.

myi=1

mpi=mi_y+ki_1,i=2,...,p.

F= {Um,)-“vvm;-Fk,—l}» 1:1571)

ri=3 o0, MST(R)).

return ({P}7 ,r)

end Cycle_Part

Fig. 1. The cycle partitioning routine.

2.2. Algorithm Part_Alg

To partition G into p sets of sizes {ki,...,k,} call Part_Alg(G, {ki,...,kp}), where
Part_Alg is defined in Fig. 2. This algorithm uses the previously defined Cycle_Part.

Step 2 of Part_Alg removes, during its jth application, a set of j longest edges from
a MST of G, creating j+ 1 components. It then checks whether a partition of the
components into subsets of sizes ki,...,k, can be obtained. The step is repeated as
long as such a partition exists. Finally, Step 3 applies Cycle_Part to each component
obtained in the last iteration.

Lemma 2.2. Let y be the value of ecou when Part_Alg reaches Step 3, let
{91,....9y—1} be the y—1 longest edges in T, where g is the longest of them.
Let apx be the value returned by Part Alg(G,{ky,...,k,}). Then,

apx <2U(T) = l(gv),

N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137

Part_Alg
input
1. A graph G=(V,E), |[V|=n
2. A set of positive integers {ky,...,k,} satisfying S0 ki=n.
returns
1. {R}., where UL, P=V and |B|=k;.
2. A value apx satisfying apx =% (MST(F)).
begin
Step 1
T :=MST(G).
PT :={(T,{ki,....k,)}
end Step 1
Step 2
done :=0. e_cou:= 1. (e_cou for edge-count).
while (done =0)
Remove the e_cou longest edges in Er.
A set of connected components {T;}¢="!
(T; is a spanning tree of Vr,).
Compute a partition of {k,...,k,} into e_cou+1 sets
{K], ces aKe_cau+l }, where Zk,EK; kj = ‘V’rli
if (a partitioning {K,,...,Ke_cour1} is found)

is created.

then
PT:={(T.K))i=1,...,eccou—1}.
ecou:=e.cou+1,
if (e_cou=p)
then done:=1.
end if
else
done =1,
end if
end while
end Step 2

Step 3 for every (i=1,...,e_cou)
Call Cycle_Pari(T;,K;) where:
{P},. ..,P,-'K’|} is the returned partition,
r; is the returned value.

end for
K e_cou e
return ({Pl',..,,P,| P JKecol} - apx 1= S)
end Step 3

end Part_Alg

Fig. 2. The partitioning algorithm.

12

122 N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137

and if y>1,

y—I
apx<2<z(r) > l(g,-)).

i=1

Proof. When entering Step 3 the set PT satisfies PT = {(T\,K1),...,(T},K,)}, where
the T;s are the comnected components created from 7 when removing the edges
{g1,...,9y—1} from it, (if y=1 then T\ =T). Suppose that y = 1. Activating the cycle
routine on 7 according to Lemma 2.1 gives a value r <2/(T) — I(g,). Hence for this
special case apx =r<2I(T)— I(gy).

Suppose now that y>1. From the way the 7;s were obtained,

¥ y=1
D UT)=KT)= > Kan). (1)
i=1

=]

For every i€ {1,...,y}, by Lemma 2.1, r; <2I(T;), and with Eq. (1) we get
Yy y y-1
apx=er<Zzl<Tf)<2(l<T)- > l<g,-)> <UT)-g). O
i=l i=1 i=l

Let {O0;}7, be an optimal partition, and denote the set of edges of MST(O;) as
Eo, i€{l,..., p}. For every i#; {i,j} C{1,..., p}, define ey ;, to be an edge satis-
fying

l(e(,',j)) = uecr)r,l,%oj {l(U, u)}

Consider the graph Gy in which nodes represent the sets O;, and the length of the
edge between the node representing O; and the node representing O; is /(e j)).

Define {eX}”"! to be the p—1 edges of a MST in Gy. Rename the edges so:
Ief)<lef)<l(ed)< - <l(ej_)).

The set of edges {7, Eo, U {e},...,e} defines a set of p — j connected components.
Let {U/ ,...,Ui_ ;1 be the sets of nodes in these components.

Lemma 2.3. The shortest edge between U/ and U} for i#k, {i,k} C{1,...,p—j} is
of length >1(ef,)).

Proof. The set of edges {e’f,...,e:_l} is a MST in Gy. Suppose there is an edge g
between U,.j and U/, such that l(g)<l(e}‘+,). Add the corresponding edge in Gy, 4,
to {e?‘,...,e;~1}~ A cycle has been created. This cycle contains at least one edge,
£, Afrom {ef,1---,ep_1} (since {e?‘,;..,e*f} are all edges inside the U/ sets). Then,
I(f)=I(ef,,) and {ef,...,e;_ }\{f}U{g} is a strictly shorter spanning tree then
{ef....,e5_}, contradicting the fact that the latter is a MST. D

N. Guttmann-Beck, R. Hassin| Discrete Applied Mathematics 87 (1998) 117-137 123

Theorem 2.4 (Gale [3], see also Lawler [9)). Let T1=(V,H) be a MST of G=(V,E),
and let T,=(V,F) be any spanning tree of G. Suppose that H={h,hs,...,hn_1}
is ordered so that I(h)< - - <l(hy_y), and F={f1, fa,..., fu=1} is ordered so that
1)< <I(for). Then, Ih)<I(f) Vie {L,...,n—1}.

Theorem 2.5. apx<(2p— 1)opt.

Proof. When adding {e,...,e}_} to U, Eo, a spanning tree of G is created. Hence

p—1
(Ty<opt+ _I(e}). (2)

i=|

Since T is a spanning tree it must contain at least p—1 edges between the sets of
the optimal solution. Let the number of these edges in T be z. Consider a graph that
contains p nodes (same nodes as in Gy), corresponding to Oy,...,0,. Let the edges in
this graph correspond to the z edges of T mentioned above, where such an edge con-
nects a node corresponding to O; to the node corresponding to O; if the original edge
connected in 7 a node from O; with a node from O;. Look at p —1 edges that create
a spanning tree in this graph. Let these edges be fi,..., -1, [(/1)<I(f2)< <
I(fp—1). These edges satisfy that {fi, f2,..., f,—1} C E7 and that (by Theorem 2.4)

Kef)<I(f;) Yie{l,...p—1}. 3)

We consider three cases:

1. opt<I(ef). The set of edges |J/' Eo, U {ef,....e5_,} is a spanning tree with at
most p— 1 edges of length >/(ef). Hence, by Theorem 2.4, T contains at most
p—1 edges of length >I(e). Removing from 7 its p— 1 longest edges leaves
p components with all of their edges inside the optimal solution’s sets of nodes.
(Because the shortest edge between two nodes from two different O;s has to be at
least of length (e}).) Therefore, these components are exactly the optimal solution,
the value e_cou = p will be reached, and apx =opt.

2. l(e})<opt<l(ef,,) for some j€{l,..., p—2}. We will show that in this case y,
the value of e_cou when Step 3 is reached, satisfies y> p— /. The set of edges
U2 Eou {e},....e5_,} is a spanning tree with at most p—j — | edges of length
>l(ef+,). Then, according to Theorem 2.4, T contains at most p —j — 1 edges of
this length. Removing from T its p—j— 1 longest edges, will leave only edges
of length <l(eﬁ,,]). Look at {Uj,...,U;;_j} defined before. By Lemma 2.3, the

shortest edge between U,j and U] for every i,k is at least as long as l(eﬂ_,).
Thus after the removal of the p—j— 1 longest edges from T there are no edges
left between nodes from different U/s. T is disconnected into p—, connected
components, giving that this partitioning has to be {U‘{,...,U{,_ﬂ. So, y=

p—J

124 N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137

From j< p~2 it follows that y>2. We now use Lemma 2.2, the fact that the
fi edges are in T, and Eq. (3),

y=1 p—j-1
apx < 2<I(T) > l(gi)) <2(1(T) - l(g,-))
i=1 i=1
p—j=1
<2<I(T)~ Y 1(1;_,~))

i=1
p—j—1

-l J
<2<I(T)— Y l(e:_,-)>=2(1(T)—Zl(e,’-"))+221(e,-*).
i=1 i=1

i=1

By Eq. (2) and the assumption of this case, and since j< p ~2

J
apx <2opt+2 Z I(e})<20pt + 2jl(ef) <20pt+2f opt <(2p —2)opt.

i=1

3. I{e}_))<opt. By Lemma 2.2 and since f,; is in 7, apx <2U(T)—I(g,)<2KT)
—I(fp—1)- By Egs. (3) and (2), and the assumption of this case,

apx < 2UT) - Uey_))
1

pP— p—2
= 2(1(T) > l(e,.*)> +23 Uel)+ ey)
1

i=1

i=

p—-1
<2 (1(T) - Z l(e;*)) +Q2p-3)(e;_))
i=1

20pt+(2p—~ 3)l(e:_l)

<
<(2p-—Dopt. ad

2.3. Tight example for Part_Alg

Consider the graph with p(p + 1) nodes in Fig. 3(a). There are p + | sets of nodes
in this graph. p—1 of these sets contain p+ 1 nodes each. There is one more set
of nodes containing p nodes and one more set containing only one node. The edges
inside each one of these sets are of length 0. Edges between two sets have length 1.
The objective is to divide the nodes into p sets of p+ 1 nodes each.

A MST is shown in Fig. 3(b). Step 2 tries to remove a longest edge. Let the chosen
edge be € shown in the figure. There is no partitioning of {ki,...,k,} into sets of sizes
{I, p(p+1)—1} so eccou=1 when Step 3 is reached.

The cycle routine is activated for the MST. The simple cycle achieved is shown in
Fig. 3(c) and the resulting partitioning is shown in Fig. 3(d), giving apx=2p— 1. An
optimal solution consists of using the original p + l-nodes sets as sets in the partition,

N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137

p+1inodes p+1lnodes p+Ilnodes p+1nodes p+1 nodes

9101010

®
1 node ()
p nodes
p edges p edges p edges p edges p edges
~_ bt S~
p ~ 1 edges
&
1 node (b)
p—1 edges p—ledges P~ 1 edges p — 1 edges

p—~ 1 edges

ol®

p — 1 nodes

Hode p nodes
N7
\ [\ e

Fig. 3. A tight example for p partitioning.

125

126 N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117~137

and putting the original p nodes set together with the single node set, giving opt= 1.
So, apx=(2p — 1)opt.

2.4. Complexity

We now analyze the complexity of Part_Alg.

Step | takes O(n?).

Step 2 implements a loop which is activated at most p times. In each iteration the
tree is scanned to find the next longest edge and the sizes of connected components
when removing this edge. Next, a partitioning of {ki,...,k,} is searched (only one is
needed). Finding such a partitioning takes O(47). To find whether there is a partitioning
of {ki,...,k,} into e_cou+1 sets of sizes {ay,...,dc_cou+ 1} define the next dynamic
search:

fi(8) is defined for every i€ {l,...,ecou+1} and every SC{ki,....k,}. fi(S)
receives the value frue if there is a partitioning of S into i sets of sizes {ay,...,a;}.

Sir1(S) :=true iff there is T C S such that f{(S\T)=true and Ek,ETkj =ay.

S1(S)i=true if Ek,-ES k;=a,. There are 27 possible values of S and ecou+1<p
values of i. Hence there are O(p2”) values to compute. Every value takes O(27) time
to calculate (there are O(2”) possible subsets T'). So each iteration takes O(p4?) time.

Thus Step 2 requires O(p(n + p4”)) altogether. When k; =n/p Vie {1,..., p} this
step only requires to find the longest edge at each iteration and to compute the com-
ponents’ sizes, thus requiring only O(pn).

Step 3 calls Cycle_Part for every pair in PT. This takes O(|F4,]%). So all the calls
for this procedure take O(n?). Calculating » will take additional O(p). Thus Step 3
takes altogether O(n?).

Altogether the algorithm takes O(p(n+ p4?)+n?). When k;=n/p Vi€ {1,..., p}
the algorithm will take O(pn + n?)=O(n?).

3. Improving the hound

In this section we describe an algorithmi that achieves a better bound at the expense
of a higher complexity. It uses a parameter x (x<n— p+1) which determines the
improvement in the bound, and the higher complexity.

To partition G into p parts with sizes {ky,...,k,} call Part_ Alg x(G, {ki,...,kp}),
where Part_Alg x is defined in Fig. 4. This algorithm considers the x+ p—1 com-
ponents obtained when x+ p—2 longest edges are removed from a MST of G. It
considers all of the possible combinations to aggregate these components into sets of
sizes that enable us to produce a solution by applying the cycle routine to each set.
The case x=1 gives the same bound as Part_Alg, but with higher time complexity
because it enumerates all of the possible combinations while Part_Alg only checks the
existence of such a combination for each value of e_cou.

N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137

Part_Alg x
input
1. A graph G=(V,E).
2. A set of positive integers {ky,....k,} satisfying 3.0 ki=n.
returns
1. {P}YL., where YL\ PB=V and |P|=k.
2. A value apx satisfying apx =37 | (MST(F)).
begin
Step 1
T :=MST(G). PT := {(T,{ki,....k,})}.
rFi=NT)- @, where gy Is the longest edge in T.
end Step 1
Step 2
Remove the x+ p —2 longest edges in Er.
A set of connected components {C),...,Cxyp-1} has been created,
Compute all the partitions of {ki,...,k,} into y sets {Ki,...,K,},
and all the partitions of V into y sets {W....,W,} such that.
L 2<y<p.
2.9je{l,....x+ p—1}3ie{l,...,y} for which Vo, CW.
3. Zk,-ek,. k= Wi.
for every pair of such partitions {K,,...,K,} and {W,,...,W,}:
Fremp = Z,v:l I(MST(W)).
if (Ftemp <r)
then r:=Fremp.
PT := {(MST(W)),K;)i=1,...,y}.
end if
end for
end Step 2
Step 3
y:=|PT|
for every (i=1,...,p).
Call Cycle_Part(T;,K;) where:
(2',...,P"WY is the returned partition,
ri Is the returned value.
end for
return ({P[‘,...,P,lK",...,P\',,,..,Pylk“'l}, apx:=3y_1 r.)
end Step 3 '
end Part Alg x

Fig. 4, The improved partitioning algorithm.

127

128 N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117137
3.1. Evaluating Part_Alg x

The next 2 lemmas will be proved together.
Lemma 3.1. Let g, be the longest edge in T, then apx <2I(T) - l(g;).

Lemma 3.2. Let remp be a value calculated in Step 2. If in Step 3 y>1 then
apx < 2remp-

Proof. When entering Step 3 the set PT is given by PT ={(T1,K,),...,(T},K,)} and
if y>1 then 0 I(T;)=r.

Suppose that y = 1. Activating the cycle routine of T gives, by Lemma 2.1, a value
r1 <2I(T)—I(g:). Hence for this special case apx =r; <2I(T) - l(g1).

Suppose now that y> 1. In this case, the value of r when entering Step 3 is different
from the initial value /(T) — [(g1)/2. For every remp along the algorithm

y
Y UT) =r <riemp. (4)
i=1

By Lemma 2.1, for every i € {1,...,y} r;<2/(T}), implying

y y
apx =Y n<y 20(T)).
i=l1 i=|

From Eq. (4), apx < 27iemp. Since r at the end of the algorithm obviously satisfies that
r<I(T)y— 1(g1)/2, for this case too apx <2r <2HT)-lg1). O

Theorem 3.3. apx<(2+(2p—3)/x)opt.

Proof. By adding {ef,...,e}_,}, to UL, Eo, a spanning tree of G is created. Hence,

p—1

KT)<opt+Y_ Ie). (5)

i=1

1. opt<xl(ef). The set of edges | J2 —llEol contains at most x — [edges of length
> I(e}). It follows that the set of edges Z~,' Eo, U {ef,...,e%_,} is a spanning tree
with at most (x — 1)+ (p — 1) edges of length >I(e). Hence, by Theorem 2.4, T
contains at most x + p — 2 edges of length > I(e]"). Removing from 7 its x + p —2
longest edges leaves only edges inside the optimal solution set of nodes. (Because
the shortest edge between two nodes from two different O;s has to be at least
of length I(ef).) So there is a partitioning {W,..., W,} which is exactly the op-
timal solution. That proves that when reaching Step 3, r <opt, and according to
Lemma 3.2, apx <2r<2opt.

2. xl(ef)<0p1<xl(ef+,) for some j&€{l1,..., p—2}. In this case the set of edges

PV Ep U{ef,...,e5_|} isa spanning tree with at most x — 1 + p—j—1 edges of

N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137 129

length > l(e;‘H). Then according to Theorem 2.4, T contains at most x + p—j — 2
edges of this length. Removing from T its x + p —2 longest edges, will leave only
edges of length </(e},,). Look at (vi,..., U;;_ ;} defined before. By Lemma 2.3,
the shortest edge between U,-j and U,{ for every i,k is at least as long as 1(e}‘+l).
Thus after the removal of the x + p — 2 longest edges from T there are no edges
left between nodes from different Uij s. So there is a partitioning {#,...,W,_;}
which is exactly {U",...,U;;_ ;}- Hence, when Step 3 is reached

P—J
r<y UMST(UY)).

i=l
By the way the U,-j were defined
pP—j

J
> IMST(UD) <opt+Y_ Ie]).

i=1 i=\
J
=>r<0pt+z I(e}).
=1

By Lemma 3.2 apx <2r<2(opt + Z{:l I(e}))<20pt + 2jl(ej‘). Since j< p—2 and
according to the assumption of this case

2p—4
apx<2opt+(2p—4)l(ef)<<2+ Px)opt.

3. xl(e:_l)Sopt. By Lemma 3.1 apx <2I(T) — l(g). Clearly /(g,) > l(e:_I), and with
Eq. (5) and the assumption of this case,

apx <2U(T)—I(e;_))

p—1 p—2
< z(z(r)—z l(e?‘))+2 KN +1eh-)
i=1

i=1

p—1
< 2(1(T) -y 1(e,*)) +(2p—3)(ej)

i=1

2pn—
<20pt+(2p—3)1(e:_1)<<2+ ‘Dx 3>0pt. |

3.2. Complexity

The complexity of this algorithm is O(f(p,x)n?) where f is an exponential function
of p and x.

Step 1: Finding a MST takes O(n?).

Step 2: We can scan the tree to find the x4+ p—2 longest edges. This requires
O((x + p)n). Looking for all the partitions of {C\,...,C;yp—1} requires O(f1(p,x)),

130 N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137

where fi is an exponential function of p and x. Then scan all the partitions of
{ki,....kp} taking O(f2(p.x)), where f, is an exponential function of p and x.
For every acceptable pair of partitions finding all the MSTs and their lengths require
O(n?). Altogether this step requires O(f(p,x)n?), where f is an exponential function
of p and x. When k;=(n/p) Vie {l,..., p} finding all the possible partitions takes
O(2(7+*)) time, and for each partitions O(n?) work is needed. Altogether this step
requires O(2(P+*)n?) time.

Step 3: As before this step calls Cycle_Part for every pair in PT, taking altogether
O(n?).

So the complexity of Part_Alg x is dominated by that of Step 2, that is, O(f(p,x)n?).
When ki =(n/p) Vie {1,..., p} the algorithm takes O(2{P**)n?) time.

4, Partitioning into 2 sets

In this section we treat the following case: Given a graph G =(V,E), |V|=n, and
a constant K <n/2. Partition ¥ into disjoint sets P and Q such that |P| =K, |Q] =n-K,
and {(MST(P))+ [(MST(Q)) is minimized.

4.1. The K-centroid

For approximating the solution in the case p =2 we define a ‘K-centroid’ and prove
its existence.

Given a tree T=(V,Er), and a constant K <n/2. For a node »&V remove all
the edges in Ey incident to ». A set of connected components is created. Let
{C\,C,,...,Cn} be all of these components which satisfy Vo, |<K. If 37, Ve | 2K
then » is a K-centreid.

For the special case K = n/2 the K-centroid is simply a centroid (a centroid is a node
which when removing it form the T, each one of the connected components created
contains at most n/2 nodes). The definition of a centroid of a tree, and a linear time
algorithm for finding it are presented in [8].

Lemma 4.1. A K-centroid exists for every tree and K <n/2. It can be found in O(n)
time.

Preof. Consider Find_K-cent defined in Fig. 5. During this procedure, the spanning
tree given to Find K-cent as input contains at least K + | nodes.

In each iteration, the number of nodes in the tree is no more than half the number
of nodes in the previous one. Since the tree is always kept to contain at least K + 1
nodes, Find_K-cent will always stop and find the required node.

In each iteration the most expensive operation is to find the centroid, which takes
linear time. Since the number of nodes in each new iteration is no more than half the
number of nodes in the previous iteration, the algorithm takes O(n). O

N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137 131

Find _K-cent
input
1. Aree T.
2. An integer K (1<K <7).
returns
1. A node r which is a K-centroid,
2. A forest {T\,..., T} such that |Vr|<KVie{l,...,m} and 3 [| || 2K.

begin
c:=a centroid in T.
Delete ¢ from T, a set of connected components {Cy,...,Cp} Is created.
if (Vel<K)i=1,...,m
then

return (¢, {Cy,...,Cn})
else S:= V¢, such that |Vg,| 2K
T, :=T induced on S.
return (Find_K-cent (T5,K)).
end if
end Find_K-cent

Fig. 5. Finding the K-centroid.
4.2. The approximation algorithm

To divide the graph into two sets of sizes K and |V|—K, call Part2_Alg(G,K),
where Part 2_Alg is defined in Figs. 6 and 7. This algorithm finds a MST of G. First
it tries to find one edge whose removal divides the graph into sets of the desired sizes.
If failed it doubles part of the tree’s edges getting a graph that can be easily divided
into sets of the desired sizes.

Note that when Step 3 is reached there is no edge whose removal creates a connected
component of size exactly K. Hence for every i€ {1,...,m} |V,|<K. Also, since in
Find K-cent S was always kept to contain at least K + 1 nodes, m>2.

When /(Er,)+ I{e;) = I(E7s) it is possible to find the defined above P since T, and
the cycle contain all the nodes not in ¥, U{u}, hence 7> and the cycle contain at least
n — K = K nodes.

When I(E1,) + I(e2) <I(Ers) it is possible to find the defined above P since |Vr, | <K,
but 7| and the cycle contain at least K + 1 nodes. Also, in that case the nodes from
the cycle that are inserted into P are obtained by walking on the cycle, starting at ¢
and walking X — |Vr,| — 1 nodes in one of the two possible directions,

4.3. Evaluating Part_2_Alg

Lemma 4.2. If Step 3 is reached then apx<2I(T)—(I(E7)+ I(e)) + max{l(Ey,)+
I(e2), I(ET5)}).

132 N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137

Cre Cycle
input
1. A tree Ty,
2. A set of edges F C Ey,.
returns
1. 4 graph H.
begin
Double all the edges in F.
A cycle has been created.
Change this cycle into a simple cycle of equal or smaller length
(using the triangle inequality).
Let H be the obtained graph.
return (H)
end Cre_Cycle

Fig. 6. Dividing the graph into 2 sets (Cre.cycle routine).

Proof. (1) If /(Er,)+ l(e2)=1(Ers) then the length of the part of graph which is
doubled is /(T)— (I(Er,)+ I(e1) + I(Er,)), and therefore,

apx SU(Gy) — l(e2) <2UT) — (I(ER) + ey) + I(Er,) + I(e2)).

By the assumption of this case this implies the claimed inequality.

@) If (Eq,) + l(e2) < I(E7s) then the length of the part of the graph which is doubled
is (T)—(I(Er,)+ I(er) + I(E7s)). Hence, apx <2U(T) —(I(Er,) + l(e1) + I(Ezs)). By
the assumption of this case this implies the claimed inequality. O

Lemma 4.3. If Step 3 is reached then apx <2U(T)— (I(g1)+ I(g2)) where g\ and g,
are two longest edges in T.

Proof. (1) If {g1,92} CEr,U{e\}UEL, U{e} then I(Er,)+I(et)+ I(Er,)+ (e2) =
1(g\)+ (g2). It follows from Lemma 4.2 that apx <2I(T)— (I(g1)+ I(g2)).

(2) If {g1,92} C Er, U{e1} UErs then I(Er,)+ l(e1) + H(Exs) > I(g1) + I(g2). Again
Lemma 4.2 gives the claimed result.

(3)If {g1,92} CEr, U{e,} UErs then I(Er,)+(e2) + I(Ers) = I(g1) + I(g2). Accord-
ing to the algorithm /(E7,)+ [(e\)= I(Er,) + l(e1). Therefore, I(Er,)+ {(e1) + I(Ers) =
[(g1)+1(g2), and from Lemma 4.2, apx <2I(T)—(I(g1) + I(g2)). O

Theorem 4.4. apx <2opt.

Proof. Consider an optimal solution. It divides ¥ into two sets O; and O, with
|01| =K and |0;]=n—K. Mark €* to be a shortest edge between O; and O,: The
edges Eg, UEg, U{e*} define a spanning tree of G, where Ep, and Ep, are the edges
in MST(0;) and MST(O,) respectively. Therefore,

KT)<I(MST(0))) + [(MST(0,)) + I(e*)=opt + I("). (6)

N. Guttmann-Beck, R. Hassinl Discrete Applied Mathematics 87 (1998) 117-137 133

Pqri_2_Alg
input
1. A graph G.
2. An integer (1 <K <n/2).
returns
1. {P,Q} where PUQ =V, |P|=K and |Q|=n—-K.
2. A value apx = I(MST(P)) + I(MST(Q)).
begin
Step 1
T :=MST(G).
end Step 1
Step 2 if (There exists an edge e; whose removal from T disconnects T
into 2 connected components, P and Q such that |P|=K)
then
return ({P,Q},apx = (MST(P)) + [(MST(Q))).
end if
end Step 2
Step 3
Call Find K-cent (T,K) where:
¢ is the returned K-centroid,
{T),....Tn} is the returned forest.
e;.=the edge connecting T; toc in T, i=1,...,m.
W.lo.g suppose that:
WED)+ (e))ZUER)+ le) 2 I(Er) + (e) Vie {3,...,m}.
TS := the subtree of T induced by V\(U., Vr,).
if (I(E1y)+ l(e2) 2 I(E7s))
then
G, = Cre_Cycle(T,Er\(Er, UET, U{e})) (see Fig. 8).
Delete e; from G,.
P .=V, U{the first K — |Vr,| nodes from the path connecting
Ty to c}.
Q:=V\P.
else
G; := Cre_Cycle(T,| U, ({&;} UET,)). (see Fig. 8).
P:=Vr, U{c}U{K — | —|V,| nodes that are adjacent to u
on the cycle, found when walking from c
on the cycle in one direction. }
Q:=V\P.
end if
return ({P, 0}, apx:=I(MST(P))+ I(MST(Q))).
end Step 3
end Part_2_Alg

Fig. 7. Dividing the graph into 2 sets.

134 N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137

TS

Gs Gs
Fig. 8. G, and Gj.

1. opt<i(e*). The set of edges Ep, UEp, U{e*} is a spanning tree of G with one
edge of length > /(e*). Therefore, by Theorem 2.4, T contains at most one edge
of length > /(e*). Removing this edge from T disconnects O; from O,. Since this
removal leaves 2 connected components, they must be O; and ;. So Step 2 will
find the edge e* and apx = opt.

2. l(e*)<opt. By Eq. (6), (T)<opt+ I(e*)<20pt. If the algorithm halts at Step 2
then apx <I(T)<2opt. If Step 3 is reached then T contains at least 2 edges
between Oy and O,. Hence, 2/(e*)<I(g1)+I(g2). By Lemma 4.3 apx<2/(T)
—(l(g1) + Kg2)), so that, apx<2I(T)—2l(e*)=2((T) - I(e*)), and by Eq. (6)
apx<Zopt. O

4.4. Example

We show now that the bound of Theorem 4.4 is tight, Consider the graph in Fig. 9(a),
and let K =2. The optimal partition is {vg,v3}, {v1,02}, with opt = 1.

The MST T, chosen in Step 1 of the algorithm, is described in Fig. 9(b) and
{(T)=2. Deleting any edge of T gives one set of 3 nodes and one set of 1 node.
Therefore the algorithm continues to Step 3.

In this case, K =n/2 so that the K-centroid we are looking for is the centroid ¢ = v,
The algorithm finds 7\, 7> and T3 (m=3). Let ¥, = {01}, ¥, = {v2}, ¥, = {v3}, so that
Er,=Er,=Er, =0, and e; = (vg,v1), €2 =(vo,v2), e3=(vp,v3). Then I(Er,)+ l(e)) =
I(Er,)+ l(e2)=1, and I(Er,)+ I(e3)=0. Doubling {e;} UEr, U{es} gives the graph
shown in Fig. 9(c), and creating the simple cycle gives the graph shown in Fig. 9(d).

Deleting e; = (vo,v;) and the opposite edge (vg,v3) leaves the edges (vg,v,) and
(v2,v3) so that the partitioning offered by Part2_Alg consists of {vg,v1} and {vs,v3}.
Thus, apx = l(ve,v1) + I(va, v3) =2 =20pt.

N. Guttmann-Beck, R. Hassin| Discrete Applied Mathematics 87 (1998) 117-137

ve 1 g N 1 _
0 0
1 1
V3 1
1
J
vz
(a) (b)
Yo Uy Yo _ U
L]
s Vs
Uz vz
(c) (d)

Fig. 9. A tight example for 2 partitioning.

4.5. A bound on opt

Theorem 4.5. Let T =MST(G), then opt <3I(T)/2.

135

To prove the bound we describe an algorithm that achieves apx <3I/(T)/2. Since

opt <apx, the theorem is proved.

The algorithm is described as Part.2_Bound in Fig. 10. It calls Cre_Cycle defined in
Fig. 6. The algorithm finds MST for G and a centroid ¢ in this spanning tree. It then
doubles part of the edges of the tree to find two spanning trees, each containing n/2
nodes, with lengths that sum up to <3/(7)/2.

Note that if I(ET,.O)+ I(e;,)<I(T)/2 then all the connected components satisfy this
inequality, so that when »n; is defined it must satisfy n;, >2.

4.5.1. Evaluating Part2_Bound

To evaluate the algorithm we distinguish several cases:
L. l(Er,)+ l(e;))=1(T)/2. In this case I(Er\(Er, U{e;,}))<I(T)/2. This gives
that the sum of the edges in the graph after creating the cycle is <3/(T)/2.
Spanning trees of P and { can be obtained by deleting edges from this graph.

Hence apx <31(T)/2.
2. l(Er,) + l(e;)< U(T)/2.

36 N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137

Part_2_Bound
input
1. 4 graph G.
returns
L. {P,Q} where PUQ=V and |P|=|Q|=n/2.
2. A value apx satisfying apx = [(MST(P))+ I(MST((Q)).
begin
Step 1
T := MST(G).
c:=a centroid of T.
end Step 1
Step 2
Remove ¢ and the edges incident with it from T.
A set of connected components {T\,Ts,..., T} is created.
(Since ¢ is a centroid m>22 and |Vr| <n/2 Vi).
e;:=the edge connecting T, toc in T, i=1,...,m.
Let iy be the index in {1,...,m} with the biggest I(Et,)+ I(e;,)-
if (I(Er,) + I(e,) > [(T)/2)
then
G, := Cre_Cycle(T, Er\(Er, U {e;, })).
P:= Vg, U{c}U{the adjacent n/2 — |V, |~ 1 nodes on the cycle}.
else
ny:=min{i€ {1,...,m}| S0 (UEr) + l(e)) 2 (T)/2}.
it (S0 Vi) + 1 <nf2)
then
Gy := Cre_Cycle(T,\ UL, ., (Er, U{e:})).
P:=J, Vr,U{c}U{adjacent 1n—3";", |V1,|-1 nodes on the cycle}
else
Gy := Cre_Cycle(T, 1, (Er, U{ei}).
P:=V;, U{c}U{the adjacent 3n—|Vz,
end if
end if
Q:=V\P.
return ({P,Q},apx := I(MST(P))+ ((MST(Q))).
end Step 2
end Part_2_Bound

—1 nodes on the cycle}.

Fig. 10. Dividing the graph into 2 sets, an algorithm to bound opt.

N. Guttmann-Beck, R. Hassin/ Discrete Applied Mathematics 87 (1998) 117-137 137

e 5 |V} +1<n/2. By the way n; was defined the sum of edges in the part of
the graph which is doubled </(7T)/2 and the bound is achieved.
e > ' |Vi| +1>n/2. By the definition of n:

I‘l|—'| l
Y (e + e <52

i=1

This is the part of the graph which is doubled. So the length of the graph after the

simple cycle was created is <3!(7T)/2.

Thus, in both cases apx <3!(T)/2 giving that opt <3I(T)/2.

This algorithm however does not improve the two bounds achieved before, since
/(T) may be bigger then opt.

To see that the bound 3/(7)/2 can be (asymptotically) achieved consider a graph
with n+ 1 (n odd) nodes: a node u and the nodes {v‘,...,v,,}. The distances between
the nodes are: (v, u)=1Vie {l,....n}. l(v;,v;)=2 Vi#ke{l,...,n}. A MST, T,
has I(T)=n, while opt =(n —1)/2+2({(n+1)/2—1)=3(n— 1)/2.

References

[1] B. Chandra, M. Halldérsson, Facility dispersion and remote subgraphs, Proc. S5th Scandinavian
Workshop on Algorithm Theory (SWAT), Lecture Notes in Computer Science, vol. 1097, Springer,
Berlin, 1996, pp. 53-65.

[2] H.N. Gabow, M.X. Goemans, D.P. Williamson, An efficient approximation algorithm for the survivable
network design problem, Mathematical Programming 82 (1998) 13-40.

[3] D. Gale, Optimal assignments in an ordered set: An application of matroid theory, J. Comb. Theory 4
(1968) 176-180.

{4] M.X. Goemans, D.P. Williamson, A general approximation technique for constrained forest problems,
SIAM J. Comput. 24 (1995) 296-317.

[5] M.X. Goemans, D.P. Williamson, Approximating minimum-cost graph problems with spanning tree
edges, Oper. Res. Lett. 16 (1994) 183-189.

[6] N. Guttmann-Beck, R. Hassin, Approximation algorithms for min-max tree partition, J. Algorithms 24
(1997) 266-286.

[7] C. Imielinska, B. Kalantari, L. Khachiyan, A greedy heuristic for a minimum-weight forest problem
Oper. Res. Lett. 14, (1993) 65-71.

[8] O. Kariv, S.L Hakimi, An algorithmic approach to network location problems, Part II: p-medians,
SIAM J. Appl. Math. 37 (1979) 539-560.

[9] E.L Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[10] D.P. Williamson, On the design of approximation algorithms for a class of graph problems, Ph.D.
Thesis, MIT, Cambridge, MA, 1990,

