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1. Introduction. In a common situation in combinatorial optimization, there is a family
of problems defined over the same set of possible solutions, where one wants an optimal
solution for every problem in this family. Some of these cases capture an amount of degen-
eracy, that is, there are solutions that are optimal for more than one problem. In these kinds
of problems-solutions systems, we raise the question of how big a set we need, in order to
supply an optimal solution for every problem.
As an example, consider the multiterminal min-cut family of problems. Let G= �V �E�

be an edge-weighted graph with �V � = n. For s� t ∈ V , the �s� t� min-cut problem is to find
a minimum weight cut separating s and t in G. Gomory and Hu [9] proved that there is
a set of only n− 1 cuts such that for each of the (n2)�s� t� problems there is at least one
optimal solution in this set. We say that such a family of problems is �n− 1�-solvable.
Hassin [11] and Cheng and Hu [4] proved a stronger version of this result. Consider a

set X. Let a cut denote a partition of X into two sets. Assign to each cut an arbitrary weight.
The problem is to find, for every pair s� t ∈ X a minimum weight cut that separates it.
Hassin [11] and Cheng and Hu [4] showed that even under this generalization, the problem
is �n− 1�-solvable.
An interesting generalization of this problem is the k-pairs problem, in which every

problem consists of k pairs of elements, and the problem is to find an optimal cut that
separates all the pairs simultaneously. Hassin [11] proved that the family of k-pairs problems
on a set of n elements is d-solvable with d=∑k

m=1
(
n−1
m

)
. We note that for k= 1 and k= 2

the value of the minimum k-pairs cut equals the multicommodity max flow between the
pairs, and for a bigger k it constitutes an upper bound on the flow.
This framework is not restricted to 0-1 problems. For instance, Hassin [11] considered

the k-cut problem, which is another generalization of the min-cut problem. In this problem,
the input is a k-element subset of X, and a solution is a partition of the set into k nonempty
subsets, each containing one element out of the input k-tuple. Hassin showed that this family
of problems is d-solvable for d= (

n−1
k−1

)
. Moreover, this d is the rank of the solution matrix

for this problem (the solution matrix will be defined and discussed in the next section).
Hassin generalized in this work a result of Lovász [16], giving this bound for the number
of edges in a k-forest, which is a k-uniform hypergraph with the property that for each edge
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there is a k-cut separating all of its vertices and does not do so to any of the other edges.
The edges of such a hypergraph can be viewed as a family of k-cut problems where each
problem has a solution—a k-cut—that does not solve any other problem. Another proof for
Lovász’s result can be found in Parekh [17].
In some systems, we are able not only to prove the existence of the small-sized solutions

set, but also to characterize its combinatorial structure, show an algorithm for finding it,
and answer optimal solution queries using it. In the original work of Gomory and Hu [9],
they also found a compact representation for the set of optimal solutions—a small-sized
data structure containing all the n− 1 solutions. They showed that if one builds a graph
where each edge �u� v� is assigned the weight of the minimum cut between u and v, then
there exists a spanning tree of this graph whose n− 1 edges contain, for every problem
�s� t�, an edge corresponding to a minimum cut for �s� t�. This highly regular structure is
called the Gomory-Hu cut tree. Such a tree can be built by solving only n− 1 min-cut
problems. Given s� t ∈X, the �s� t� min-cut can be computed out of the tree in O�1� time
if maintained properly.
Hassin [13] considered the family of xcut problems. In this set of problems one is given

a pair s, t, and needs to find the optimal cut such that s and t are on the same side.
Hassin showed a compact representation for all the optimal xcut solutions, analogous to the
Gomory-Hu cut tree. This representation consists of a tree with one extra pair of elements,
i.e., a base of the 2-forest matroid.
Hartvigsen [10] provided a compact representation for the k-cut and the k-pairs problems

as well. This representation is based on matrices rather than graphs.
In the remainder of this section, we give an overview of the paper. In §2 we provide

several definitions and notation that will be used throughout the paper. In §3 we give the
necessary background for the three methods that we use to obtain the bounds. Section 4
contains our main results: In §4.1 we consider the family of k-pairs problems, all defined
over a common ground set X of n elements. We first give a new proof for the result
by Hassin [11] mentioned earlier, stating that there exists a set of size

∑k
m=1

(
n−1
m

)
, which

contains an optimal solution for every problem in this family. We then consider some
subfamilies of this family of problems. For the family of disjoint pairs problems we show
that a smaller set exists, one with

(
n

k

)−1 solutions. Strengthening the latter result, we show
that for the case where each problem has exactly k disjoint pairs (instead of at most k),
a set containing an optimal solution to every problem exists with only

(
n

k

)− (
n

k−1
)
cuts.

In §4.2, we look at the problem of 2-coloring a hypergraph with at most k edges. Again
all problems considered are defined over the same set of n elements. This family is an
extension of the k-pairs one. We show that although the number of problems in this family
is much bigger than for the k-pairs problem, there exists a set containing an optimal solution
to every problem of the same size as the one whose existence was proved for the k-pairs,
namely

∑k
m=1

(
n−1
m

)
. For the coloring problem of one hyperedge �k= 1� of size at least t, we

show the existence of an �n− t+ 1�-sized optimal solutions set, and that the Gomory-Hu
tree of the complete graph on the n vertices contains such a set.
In §4.3, we prove the existence of a small optimal-solutions set for a family of problems

we call the k-in-one-side problems. The problem here is again to find a minimum cut of
the n elements, but this time we require that the cut puts k given elements on the same side.
The size of the set whose existence we prove is

∑k−1
m=0

(
n−1
m

)
. Next we look at the subfamily

that contains instances with exactly k elements, and show that a smaller set exists for it—
one with cardinality

(
n

k−1
)
. We derive from the latter bound a result by Lovász concerning

critically chromatic hypergraphs, and show how to “translate” some of our other results into
this language.
In §4.4, we consider the very general s-SAT problem. This is the problem of finding a

satisfying assignment of minimum cost for a given Boolean formula in CNF with n variables
and at most s clauses. In the price of finding a somewhat worse bound than the bounds
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in previous sections, we generalize a substantial amount of �0�1� problems. For the s-SAT
family of problems, we show the existence of a set of optimal solutions of size

∑s
m=0

(
n

m

)
.

In §4.5, we investigate a special kind of problems-solutions systems that we call take-out
problems, where one has to find the optimal subset of the ground set X after a number of
elements have been removed from it, and possibly some other constraints have been applied.
One such system is the MST-failure system, in which k edges may be taken out of a given
graph with n vertices, and one has to find a minimum spanning tree for every instance. In
this case we present a constructive combinatorial proof, i.e., one that tells us how to find
the set of optimal solutions, whose size is

(
n−1+k
n−1

)
, and do so without solving unnecessary

problems. We also apply a theorem from extremal combinatorics by Frankl [6], to show an
extension of this bound for a wider collection of take-out systems, although the proof is
nonconstructive.

2. Terminology. A problems-solutions system consists of a pair �P�S� as follows: S is
the set of all potential solutions. This set is common to all problems. Typically, the solutions
themselves are subsets or partitions of some ground set. A problem p is defined by the
subset Sp ⊆ S of solutions that are feasible for it—i.e., that conform with the problem
constraints. P is a family of such problems, defined over the same set of solutions S. This
defines a relation we call the feasibility relation of the system �P�S�, which consists of
the set of all pairs ��pi� sj�� for which solution sj is feasible for problem pi, i.e., sj ∈ Spi .
Over the set of all possible solutions S, we define a weight function w� S → � (or a
cost function, depending on the context). We define w to be an arbitrary function, with no
additional demands. In particular, it does not have to be nonnegative, additive, or one-to-
one. Another way to look at w is as a weak total order, or a weak permutation over all
solutions, determining for every two solutions whether one is better than the other. Solutions
are allowed to have the same weight. The set of optimal solutions for problem p is defined
by S∗p�w = �s � s ∈ Sp and ∀ s′ ∈ Sp w�s′� ≥ w�s��. S∗p�w is the set of all feasible solutions
of p with minimal weight (or sometimes maximal, again, depending on the context) among
all other feasible solutions of p.
Given a problems-solutions system �P�S� and a weight function w�S�, a set of solutions

S ′ ⊆ S is called an Optimal-Solutions Set (or OSS for short) if for every p ∈ P for which
Sp �= 
, S∗p�w ∩S ′ �= 
. An OSS is a set that contains at least one optimal solution for every
problem in P , not including those problems in P for which there is no feasible solution
at all. A minimal OSS is an OSS of minimum cardinality. While the latter is a property of
the weight function, the next property we define is solely a property of the system �P�S�:
Let W�S� be the set of all possible weight functions on S. The family of problems P is
called d-solvable if for every w ∈W there exists an OSS Sw of cardinality �Sw� ≤ d. The
solvability number of the family of problems P is the minimum d for which P is d-solvable.
A hypergraph H is a collection of sets, called edges, whose members are called vertices.

The order of a hypergraph is the number of vertices in the union of its edges. A hypergraph
is called k-uniform if for each edge (i.e., set) e ∈H , �e� = k. The rank of H is the maximum
cardinality of a set in H . For a matrix A we will denote its rank over �2 by rk2�A�, and the
rank over � by rk��A�. For a set of vectors T we will denote the subspace spanned by T
by sp�T �. The notation ∪̇ stands for the disjoint union of sets. We will usually denote the
ground set by X, and its size by n.

3. Methods. In this section, we develop some tools that will be useful in §4.

3.1. Triangular OSSs. Let �P�S� be a problems-solutions system.
Definition 3.1. We call an ordered set T = ��pi� si�� of problem and solution pairs

triangular if: {
sj is feasible for pi� i= j�
sj is not feasible for pi� i > j!

(1)
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Proposition 3.1. For every weight function w, there exists an OSS �si� of �P�S� with
different solutions weights, and a set of corresponding problems �pi�, such that the set of
pairs Tw = ��pi� si��, ordered according to w, is triangular.

Proof. We assume that the optimal solution has the lowest weight. For a given cost
function w ∈W , let w�S� be the set of solution weights. For every val ∈ w�S�, let S�val�
be the set of solutions of weight val. Here is a greedy algorithm for finding Tw:

1. Tw =
.
2. For each val from min�w�S�� to max�w�S�� do:
2.1. While there exists a problem pi, whose optimal solutions’ weight is val, with no

optimal solution in Tw, do:
2.1.1. Choose some optimal solution si of pi and set Tw = Tw ∪ ��pi� si��. i= i+ 1.
The halting terms of Loop 2 and Loop 2.1 ensure that the set of solutions in Tw is

indeed an OSS. To see that Tw is triangular, consider the step where the pair �pi� si� was
added to Tw. We want to show that for every j < i, sj were not feasible for pi. Indeed, if
w�sj�=w�si�, then by the term of Loop 2.1, sj were not feasible for pi. In addition, in the
case w�sj� < w�si�, if sj would be feasible to pi, then si could not have been an optimal
solution of pi. �

We will frequently use Proposition 3.1 via the following corollary:

Corollary 3.1. For every cost function w, the minimum d for which P is d-solvable
(i.e., the solvability number of P) equals the maximum cardinality of a triangular set in
�P�S�.

Proof. Let tmax denote the maximum size of a triangular problems-solutions pairs set.
We have seen that for every weight function w, there exists a triangular OSS, thus the
system is tmax-solvable. To complete the proof, we need to show that for t < tmax the system
is not t-solvable. Indeed, let T be the maximum-sized triangular set, and let wT be a weight
function giving the solutions in T the best (smallest) values. Then every OSS needs to
contain all the solutions in T , so it has to be of size tmax or bigger, and the system is not
t-solvable. �

The advantage in this point of view is that we no longer look at weight functions, but
rather at a property of the feasibility relation of the system—the maximum cardinality of a
triangular set in it.
Another two corollaries from Proposition 3.1 relate d-solvability to the number of differ-

ent optimal solutions of a system:

Corollary 3.2. If P is d-solvable, then there are no more than d distinct optimal
solution values for the problems in P .

Corollary 3.3. If P is d-solvable and, in addition, every w ∈W is one-to-one, then
the problems in P have no more than d different optimal solutions.

3.2. The solution matrix. The solution matrix is a representation of the feasibility
relation of the solutions to the problems.

Definition 3.2. The solution matrix A = A�P�S� of a system �P�S� is defined as
follows:

Ap�s =
{
1 solution s is feasible for problem p;

0 otherwise.

A square matrix is said to be proper triangular if it is triangular and its diagonal is
all 1. By Corollary 3.1, finding the minimum d for which the family P is d-solvable can
be reduced to the following formulation: What is the maximum size of a proper triangular
submatrix over all permutations of the rows and columns of the solution matrix?
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Finding the maximum proper triangular submatrix of a given matrix is NP-hard in general,
as was shown in Bartholdi [3]. However, there exists a general bound on the size of the
proper triangular submatrix: A proper triangular matrix is, in particular, a regular matrix,
and this is true over any field �. For a given matrix A, the maximum size of a regular
submatrix (where the order of the rows and columns is not a factor) is nothing but the rank
of A. Thus, the maximum size of a triangular submatrix of A is bounded by A’s rank. In
order to get the best bound, we will take the rank over �2, and we get the following useful
theorem:

Theorem 3.1 (Hassin [11]). Let �P�S� be a problems-solutions system. Then P is
d-solvable for d= rk2�A�P�S��.
In many of the systems we consider here and in Hassin [11], this bound is tight enough

to find the solvability number of P . There are, however, instances in which using this bound
is not such a good idea. For example, the matrix J + I over �2, where J is the all 1s matrix
and I is the identity matrix, is of almost full rank, but the maximum proper triangular
submatrix of it is only of size 2.
We call a solution basis a basis of the row space of A. The solution basis is an interesting

property of the system, for several reasons. First, it often gives the above-mentioned upper
bound together with a lower bound on the size of the OSS. This is the case where the
solution basis itself contains a triangular submatrix. Second, for a given weight function,
one can look at the maximum solution basis, a basis whose total weight of solutions is
maximal. From an algorithmic point of view, the maximum solution basis contains all the
information needed to recover the solution to every problem. Hassin [12] gave the first
algorithm for computing the maximum solution basis. This algorithm was later improved
by Hartvigsen [10] to require solving only rk2�A� number of problems. The solution basis
often has a nice combinatorial structure, as is the case in the �s� t� min-cut system, with a
general cut weight function. Hassin [11] showed that every solution basis for this system
takes the form of a tree in the graph, and that problems associated with the edges of the
Gomory-Hu tree form a maximum solution basis for these problems-solutions systems.
Finally, we define the transposed system of �P�S� to be �S�P�, i.e., the problems become

solutions and vice versa. It is easy to see that the solvability number of �P�S� equals
the solvability number of �S�P�: the solution matrices of two transposed systems satisfy
A�S�P�=A�P�S�T , and in addition, for every proper triangular matrix in A�P�S�, there is
a proper triangular submatrix of the same size in A�P�S�T (when the order of the solutions
is reversed from that of A�P�S�).

3.3. Spaces of polynomials. A useful method for bounding the number of objects in
some configuration is associating a polynomial to each object. If we know the dimension
of the space where these polynomials reside, then all we have to prove is their linear
independence.

Definition 3.3. Let �P�S� be a problems-solutions system. Let �Qp � p ∈ P� be a
family of polynomials. We say that �Qp� are separating polynomials for the family P if
there exists a set of vectors �vs � s ∈ S�, such that Qp�vs�= 0 iff solution s is not feasible
for problem p.
The following “triangular criterion” is a useful sufficient criterion for the independence

of a set of functions.

Proposition 3.2 (The Triangular Criterion, Babai and Frankl [2]). Let S = �fi �
fi� )→ �� be a set of functions from a set to a field, and let ei ∈) be elements such that:

fi�ej�

{�= 0� i= j�
= 0� i > j!

Then the set S is linearly independent.
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The way we will use this criterion is by associating a polynomial with each problem
and a vector with each solution or the other way around. There is a special case where we
can also bound the rank of the solution matrix using the dimension of the space where
the polynomials lie:

Lemma 3.1. Let �Qp� be separating polynomials for the family of problems P , such that
∀p Qp ∈ �0�1�. Let d be the dimension of sp��Qp�� (taken either over �2 or over �). Then
rk2�A�P�S��≤ d.

Proof. The solution matrix here satisfies Ap�s =Qp�vs�, where vs is the vector corre-
sponding to solution s and Qp is the polynomial of problem p. Note that dim2 sp��Qp��≤
dim� sp��Qp��, so it is enough to show this lemma for the dimension taken over �2. Assume
for contradiction that rk2�A�P�S�� > d. Then A contains a nonsingular submatrix B of size
greater than d. The polynomials corresponding to the rows of B are linearly dependent and
have some linear combinations equal to zero

∑
+pQp = 0. Substituting the vectors aj , we

get a linear combination equals to zero, the same one for all columns. Thus, there is a linear
dependence in the rows of B—a contradiction. �

Another relation between the solution matrix and the separating polynomials is the
following:

Proposition 3.3. Let �Qp� be separating polynomials in n unknowns over �2 for the
system �P�S�. Assume that S is the power set of n elements. Let d be the dimension of
sp��Qp��. Then rk2�A�P�S��= d.

Proof. We already know by Lemma 3.1 that rk2�A�P�S��≤ d and would like to prove
the other direction. Let Q′ ⊆ �Qp� be a set of polynomials, such that �Q′�> rk2�A�P�S��.
We want to prove that Q′ is linearly dependent. Let P ′ ⊆ P be the problems corresponding
to Q′. The set of rows in the matrix corresponding to P ′ must be dependent, as it has more
than rk2�A�P�S�� rows. Now take the linear combination to 0 of this set (which is, in fact,
a sum) and apply it to Q′. Because S is the power set, this linear combination of Q′ gives 0
�mod2� for every point in the space; thus, it is the zero polynomial, and the polynomials
are linearly dependent. �

Most of our results regard �0�1� problems such as cuts, over a ground set X. In such
problems the set of solutions S is the power set 2X , so that Proposition 3.3 applies.
For a more comprehensive introduction to algebraic methods in combinatorics in general,

and using polynomials in particular, see Babai and Frankl [2].

4. Bounds. Recall from §2 that for a system of problems-solutions �P�S�, P is called
d-solvable if for every weight function w there exists a set Sw of cardinality �Sw� ≤ d
containing an optimal solution to every problem (an OSS).

4.1. The k-pairs problem. Let X be a ground set of n elements. An instance of the
k-pairs problem consists of l ≤ k pairs of elements: ��si� ti� � si �= ti�li=1, i = 1� , , , � l.
A feasible solution to this problem is a cut C = �I1� I2�, where X = I1∪̇I2, so that for every
1≤ i≤ l either si ∈ I1 and ti ∈ I2, or si ∈ I2 and ti ∈ I1. For each cut C we associate a weight
w�C�. The optimal solution to problem p is a feasible cut of minimum weight. We want
to determine how big a set we need, in order to have a representative optimal solution to
every k-pairs problem. A tight bound on the size of such a set is given by the following
theorem:

Theorem 4.1 (Hassin [11]). The family of k-pairs problems is d-solvable for

d=
k∑
m=1

(
n− 1
m

)
! (2)

Furthermore, d is the solvability number of this family.
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Using different techniques, we present an alternative proof for the d-solvability of this
family of problems, with the advantage of giving an improved bound for some interesting
cases.

Proof. With each element si ∈ X, associate a binary variable xsi . With each problem
p that consists of the pairs ��si� ti��

l
i=1, associate the following polynomial over �2� Qp =∏l

i=1�xsi + xti �. Further, associate with each cut C = �I1� I2� a vector vC for which the
jth component is 1 if the corresponding element is in I1, and 0 otherwise (we call it the
incidence vector of C).
Because the problems are symmetric in the sense that we do not distinguish the incidence

vector of a solution and its complementary vector, we assume w.l.o.g. that x1 = 0, so that we
have n−1 unknowns. Clearly, all these polynomials reside in the space V of all polynomials
of degree less than or equal to k over �2, whose dimension is

∑k
m=1

(
n−1
m

)
. In addition,

the polynomials �Qp� are separating for this family of problems, because Qp vanishes by
substituting an incidence vector of a cut C iff C is not a feasible solution for p. For a given
cost function w, let Tw = �P ′� S ′� be a triangular problems-solutions pairs set such that S ′

is an OSS. The existence of one is guaranteed in Proposition 3.1. By Proposition 3.2, the
polynomials associated with the problems of Tw are linearly independent. Thus, there are
at most

∑k
m=1

(
n−1
m

)
of them, and by Corollary 3.1 the theorem follows. �

Because the separating polynomials in the proof are over �2, by Lemma 3.1, the rank of
the solution matrix for this system is also no more than

∑k
m=1

(
n−1
m

)
.

The disjoint k-pairs problem is a special case of the k-pairs problem, in which no two
pairs have a common element. An instance of this problem consists of l ≤ k pairs: �si� ti�
i = 1� ! ! ! � l, such that for every i �= j , si, ti, sj , tj are distinct elements. The feasibility
relation is defined as before. We will assume n≥ 2k, so that it is meaningful to consider k
disjoint pairs. For n elements, there are /�n2k� potential problems.

Theorem 4.2. The family of disjoint k-pairs problems is d-solvable with

d=
(
n

k

)
− 1! (3)

Proof. For every cost function w, let Tw = �P ′� S ′� be a triangular problems-solutions
pairs set such that S ′ is an OSS. The existence of one is guaranteed in Proposition 3.1.
Observe that because n ≥ 2k, in every solution s ∈ S ′, at least one of the sides of the
cut contains at least k elements. Associate with every such solution a vector that is 1
for the elements of the bigger side and zeros for the other side. For a problem p ∈ P ′

of separating the l pairs ��si� ti��, with a corresponding optimal solution in Tw, opt�p�,
consider first the polynomial Qp =

∏l
i=1�xsi + xti �, as in the proof of Theorem 4.1. Now,

associate with the problem p the polynomial Q′
p =Qp · xu1xu2 , , , xuk−l , where u1� , , , � uk−l

are arbitrary elements whose components in the vector associated with opt�p� are 1 and
which do not appear in p. For problems of separating exactly k pairs, Qp and Q

′
p are the

same. The polynomial Q′
p still vanishes under substitution of every solution that is not

feasible for p, but not by substituting opt�p�. (Note, however, that these polynomials are
not separating for �P�S� anymore.) Thus, by the triangular criterion, these polynomials are
linearly independent. The polynomials Q′

p lie in the space V of all polynomials of degree
exactly k, and dim�V �= (

n

k

)
. Because we want to get a slightly smaller bound (by 1), we

add the polynomial Qlast =
∏k
i=1 xi together with the all ones vector 1 at the beginning of the

list of pairs. Obviously Qlast�1� �= 0, but ∀p Qp�1�= 0. Thus, all the polynomials together
still satisfy the terms of the triangular criterion for independence of functions, and they are
linearly independent in V .
It follows that there are no more than dim�V � polynomials altogether. Because for every

problem p there exists such a polynomial, and because there exists one additional indepen-
dent polynomial in V , we get the bound dim�V �− 1 on the size of a triangular problems-
solutions pairs set, and by Corollary 3.1 the theorem follows. �
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We now turn to prove a stronger result, one that implies Theorem 4.2. However, the
latter has the advantage of having a simpler proof. The disjoint exact k-pairs problem
is a further restriction of the k-pairs problem. An instance of this problem is composed of
exactly k-pairs. The feasibility relation remains as before, namely, a cut solves the problem
iff it separates every pair in it. We still assume n≥ 2k. To prove d-solvability for this family
of problems, we need a lemma. The following definition is a variation of one that appears
in Jukna [14]:

Definition 4.1. Let k, l, n be three natural numbers such that k� l≤ n, and let X be a
set of n elements. The �n� k� l� disjointness matrix Dn�k� l� over X is a 0-1 matrix whose
rows are labeled by subsets of X of size exactly k and whose columns are labeled by subsets
of X of size at most l. The entry DA�B in the Ath row and Bth column is defined by:

D�A�B�=
{
0� A∩B �= 
�
1� A∩B=
!

Lemma 4.1. Suppose k+ l≤ n, and let m=min�k� l�. Then, rk2Dn�k� l�=
(
n

m

)
.

We discuss and prove Lemma 4.1 in Appendix A.

Theorem 4.3. The family of disjoint exact k-pairs problems is d-solvable with

d=
(
n

k

)
−
(
n

k− 1
)
! (4)

Proof. Associate with each problem the polynomial Qp =
∏k
i=1�xsi+xti �. As mentioned

in the proof of Theorem 4.1, the polynomials associated with a triangular OSS of this fam-
ily are linearly independent, and the dimension of the polynomial space in which they lie
is easily seen to be

(
n

k

)
. However, we will show that there are additional

(
n

k−1
)
polynomi-

als, such that the whole set is linearly independent in that space. We will add all monic
monomials �Q′

i� of degree exactly k. Consider the following matrix, which is composed of
four submatrices B = (

B1 B2
B3 B4

)
. The rows of B1 and B2 are labeled by the polynomials Qp.

The rows of B3 and B4 are labeled by the polynomials Q
′
i. The columns of B2 and B4 are

labeled by binary vectors with strictly less than k zeros, and the columns of B1 and B3 are
labeled by vectors with k zeros or more. The item Bi� j is the result of substituting the vector
of the column j in the polynomial of the row i. First note that B2 is an all-zeros matrix,
because every Qi, being a separating polynomial for an exact k-pair problem, vanishes by
substituting a vector with less than k zeros.
Thus, we get that rk2�B1�+ rk2�B4�≤ rk2�B�. By Lemma 3.1, because all polynomials

reside in a space of dimension
(
n

k

)
, rk2�B� ≤

(
n

k

)
. Thus, rk2�B1�+ rk2�B4� ≤

(
n

k

)
. We will

next show that rk2�B4� =
(
n

k−1
)
. It is easy to see that the entry B4i� j is 0 iff the k-tuple

of the monomial Q′
i intersects the <k zeros of the vector aj . Thus, B4 is an �n� k� k− 1�

disjointness matrix, so by Lemma 4.1, rk2�B4�=
(
n

k−1
)
. Because B2 is all zeros, it follows

that rk2�B1 � B2� = rk2�B1� ≤
(
n

k

) − (
n

k−1
)
. Notice that the matrix �B1 � B2� is nothing but

the solution matrix for this system, so by Theorem 3.1, this family is d-solvable for d =(
n

k

)− (
n

k−1
)
. �

4.2. 2-Coloring a hypergraph with at most k edges. The problem of 2-coloring a
hypergraph has been considered in various contexts in combinatorics. In its most common
form, a problem instance is a hypergraph H , and a feasible solution is a coloring of its
nodes in two colors, where no edge is monochromatic. For each coloring C out of the 2n−1

possible colorings (we do not distinguish opposite colorings) we associate a weight w�C�.
The problem is to find a feasible coloring of minimum weight. Note that this problem
generalizes the k-pairs problem, in which every edge is of size 2. We are interested in
bounding the number d for which this family of problems is d-solvable.
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Theorem 4.4. The family of hypergraph 2-coloring problems on hypergraphs with
at most k edges is d-solvable for

d=
k∑
m=1

(
n− 1
m

)
! (5)

Furthermore, d is the solvability number of this family.

Proof. We prove the theorem by a reduction to the k-pairs problem.1 Note that the two
problem families—the coloring and the k-pairs—are defined over the same set of solutions.
We show that each optimal solution for the coloring problem is also an optimal solution
for some instance of the k-pairs problem. Let H be a hypergraph with l edges �l ≤ k�,
p its coloring problem, and C an optimal coloring for it. Let p′ = ��si� ti��li=1 be l pairs,
not necessarily distinct; each pair belongs to the same edge, which are separated by this
coloring (an arbitrary choice out of all possible ones). For a given cost function w, denote
the set of optimal cuts for p′ by S∗p′�w. Claim: Every optimal solution for p′ is also an
optimal solution for p. Proof : Fact 1: Every solution C ′ for the k-pairs problem p′ is also
a feasible solution for the coloring problem p, in particular, S∗p′�w is feasible for p. Fact 2:
Every s ∈ S∗p′�w has the lowest weight among all solutions feasible for p. This is true because
there exists (by the way p′ was chosen) at least one optimal solution C for p that is feasible
for p′, so the optimal solution weight for p′ must be smaller than or equal to it. From these
two facts together, the claim follows.
Let O be an OSS for the k-pairs problems under w. We have shown that for each coloring

problem p there exists a k-pairs problem p′ such that the set of optimal solutions for these
two problems satisfies S∗p′�w ⊆ S∗p�w. Because O contains an optimal solution for p′ out
of S∗p′�w, it contains one also for p. Thus, O is an OSS for the coloring problems as well.
Because by Theorem 4.1 the k-pairs family of problems is d-solvable for d =∑k

m=1
(
n−1
m

)
,

the same is true for the coloring family of problems. �

The result of Theorem 4.4 is tight, as it generalizes Theorem 4.1.
Note that if all the hypergraphs considered have disjoint edges, then by a reduction to

the disjoint k-pairs family of problems, we get the improved bound of d= (
n

k

)− 1 (without
the “tail”). If in addition these hypergraphs have exactly k edges, then by reduction to the
exact-disjoint k-pairs problem, we get d= (

n

k

)− (
n

k−1
)
.

A generalization of Theorem 4.4 can be made such that the term “H has at most k edges”
is replaced by a weaker one: For a hypergraph H let the inclusion number of H be the
minimum number of hyperedges in a subhypergraph H ′ of H , in which for every edge
e ∈H there exists e′ ∈H ′ such that e′ ⊆ e.

Proposition 4.1. The family of hypergraph 2-coloring on hypergraphs with inclusion
number at most l is d-solvable for d=∑l

m=1
(
n−1
m

)
.

Proof. The proof is the same as that of Theorem 4.4, except that we take the same pair
�si� ti� for all edges containing the same edge e

′ in H ′ (if two edges contain the same e′,
then we choose one arbitrarily). These pairs constitute p′, which is a k-pairs problem with
k= l. �

Let us also consider in more detail the case k= 1 for the hypergraph 2-coloring problem
(which might also be called the cutting edge problem , , , ): A problem instance now is a
single hyperedge e (a set), and a feasible solution to it is a coloring of the n elements in two
colors, such that e is not monochromatic. First, a nice result of the proof of Theorem 4.4
is based on the fact that for k = 1 each optimal solution to this problem is an optimal
1 In the special case where the hypergraphs are q-uniform, where q is prime, we can use the same technique as in
the k-pairs problem, by considering the polynomials

∏
e∈H

∑
i∈e xi over �q . For q nonprime (or prime power) �q

is not a field. The k-pairs problem is the case q = 2.
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solution for some �s� t� min-cut problem. Thus, given the set of elements X and the weight
function w, the Gomory-Hu cut tree for all the �s� t� min-cut problems on X forms an OSS
for the family of problems we consider.
In this case of one hyperedge, if every problem instance is of size at least t, then one

can prove an even better bound that improves as a function of t:

Proposition 4.2. The family of 2-coloring a single hyperedge of size at least t problems
is �n− t+ 1�-solvable.

Proof. For a given cost function w, let Tw = ��pi� si�� be a triangular problems-solutions
pairs set such that S ′ = �si� is an OSS. The existence of one is guaranteed in Proposition 3.1.
Assume that Tw is ordered in the opposite way than the one found in Definition 3.1 (so that
s1 is the solution of highest weight in S

′—i.e., the worst one). For the t-sized hyperedge
problem p1, all solutions in S

′\�s1� are not feasible, by the triangularity of Tw. Therefore,
for every cut in S ′\�s1� all elements of p1 form a cluster of elements that belong to the
same side. Similarly, for every cut in S ′\�s1� s2� all elements of p1 form a cluster, and all
elements of p2 form another cluster. In each step other than the first, a t-tuple of elements
that were not previously all in the same cluster stick together to form one cluster for the
next steps, i.e., at least two former clusters become one, so the number of clusters reduces
by one. In the first step t elements become one cluster, so the number of clusters reduces
by t− 1. Thus, there cannot be more than n− t+ 1 steps and the proposition follows. �

This simple proof still generalizes, by taking t = 2, the case considered by Cheng and Hu
in [4] and by Hassin in [11], that is, the extension of the Gomory-Hu bound for arbitrary
cut weights.

4.3. The k-in-one-side (k-xcut) problem. Let C = �I1� I2�, where X = I1∪̇I2, be a cut.
We say that a set R ⊆ X crosses C if R ∩ I1 �= 
 and R ∩ I2 �= 
. The k-in-one-side
problem is a generalization of the xcut problem posed by Hassin [13], in which k = 2.
Given a universe X of n elements, an instance of this problem is a set R ⊂ X, such that
�R� ≤ k. A feasible solution to problem p, represented by the set R, is a cut C = �I1� I2�
where X = I1∪̇I2, such that R does not cross this cut, i.e., either R⊆ I1 or R⊆ I2. Given
a weight function w over the cuts, the problem is to find a feasible cut for R of minimum
weight. There are

∑k
m=1

(
n

m

)
k-in-one-side problems.

Theorem 4.5. The family of k-in-one-side problems is d-solvable for

d=
k−1∑
m=0

(
n− 1
m

)
! (6)

Proof. Associate with each element ei ∈X a binary variable xi and associate with each
problem p the following polynomial over �2� Qp =

∏
ei∈p xi +

∏
ei∈p�1 + xi�. With each

solution s, associate as always the incidence vector of its cut vs . Obviously Qp vanishes
by substituting the incidence vector of solutions that are not feasible for p, and only by
such solutions. The term with highest degree,

∏
ei∈p xi, appears exactly twice in the sum,

so the polynomial over �2 is of degree k− 1. Because the problems are symmetric, in the
sense that we do not distinguish the incidence vector of a solution and its complementary
vector, we may assume w.l.o.g that x1 = 0. Thus, we have only n− 1 unknowns. We get
that the dimension of the space here is d =∑k−1

m=0
(
n−1
m

)
. For a given cost function w, let

Tw = �P ′� S ′� be a triangular problems-solutions pairs set such that S ′ is an OSS. Then by
Proposition 3.2, the polynomials corresponding to problems in P ′ are linearly independent,
so there are no more than d of them, and �P ′� ≤ d. �

Because the polynomials are separating over �2, by Lemma 3.1 we also get that the rank
of the solution matrix for this system is bounded by

∑k−1
m=0

(
n−1
m

)
. In the following theorem

we will also see that this bound is tight.
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Recall that a solution basis for a problems-solutions system is a basis for the row space of
its solution matrix. We would now like to find a solution basis for this family of problems.
This result extends Theorem 4.5 as it also gives another proof for the d-solvability of this
family of problems.

Theorem 4.6. Let 1 ∈ X be an arbitrary element, let P ′ be the family of all k-in-
one-side problems defined by the sets �R � R ⊆ X� �R� ≤ k� 1 ∈ R�, and let BP ′ be the
corresponding rows in the solution matrix A�P�S� of this system. Then BP ′ constitutes
a solution basis for the family of all k-in-one-side problems. Thus, rk2�A�P�S�� = d =∑k−1
m=0

(
n−1
m

)
. Furthermore, d is the solvability number of the k-in-one-side family.

Proof.
Claim 1. The rows of BP ′ are linearly independent over �2. Proof: For each problem p

composed of the set R= �1� i1� , , , � ik′� ∈ B where 0< k′ < k, the cut C = �R�X\R� solves
it, but no other problem p′ ∈ P ′ satisfying �p′� ≥ �p�.

Claim 2. The rows of BP ′ span the rows of the solution matrix. Proof: Let p be a problem
not in P ′, i.e., R= �j1� , , , � jk′�, where 1≤ k′ ≤ k and 1�R. Consider the set of problems
P0 = ��1�∪R′ � R′ ⊂ R�, and its corresponding set of rows B0. Note that B0 ⊆ B and that
�B0� = 2k′ − 1. We will show that the rows corresponding to B0 span the row of p. For
the claim to hold, we show that each cut solves an even number of problems in P0 ∪ �p�.
Consider first a cut C = �I1� I2�, where X = I1∪̇I2, that solves p. Assume w.l.o.g that R⊆ I1
(the other option being R⊆ I2). If 1� I1 then C solves only p and �1�—an even number of
problems. Otherwise, if 1 ∈ I1, then C solves all the 2k′ − 1 problems in P0 plus p—again,
an even number of problems. Consider next a cut C that does not solve p, i.e., p crosses C.
Assume w.l.o.g that 1 ∈ I1 and let R = p ∩ I1 and �R� = k′′ where 0 < k′′ < k′. C solves
only the problems ��1�∪R′ �R′ ⊆R�. Thus, C solves exactly 2k′′ problems—again, an even
number. To summarize, no matter if C solves p or not, it always solves 0 �mod2� problems
from B0 ∪ �p�. Thus, the rows corresponding to B0 ∪ �p� are dependent, and because the
rows of B0 are independent, we get that B0 spans p. Thus, B spans p, and we get that B
forms a solution basis.
By the proof of Claim 1, the bound of Theorem 4.5 is tight, for the problems correspond-

ing to this solution basis, together with their optimal solutions, form a triangular set of size∑k−1
m=0

(
n−1
m

)
. Thus, this is the solvability number of this family. �

Consider now the set of uniform problems, for which �R� = k (instead of �R� ≤ k). We
can get a somewhat better bound for the d-solvability of these problems only.

Theorem 4.7. The family of uniform k-in-one-side problems on a set of n elements is
d-solvable for

d=
(
n

k− 1
)
! (7)

The proof is based on ideas from Alon et al. [1].
Proof. This time we associate polynomials with solutions. Associate with each ele-

ment ei the variable xi. With each problem p = �e1� , , , � ek� we associate its incidence
vector xp. With each solution we associate its incidence vector vs and the following polyno-
mial over �� Qs =

∏k−1
t=1 �vsx−t�. Qs vanishes by substituting xp iff vs is the incidence vector

of a cut that does not solve p. For a given cost function w, let Tw = �P ′� S ′� be a triangular
problems-solutions pairs set such that S ′ is an OSS for this family of problems, ordered
opposite to the order of Definition 3.1. Then, by the triangular criterion for independence
of functions, the polynomials associated with all s ∈ S ′ are linearly independent. The poly-
nomials reside in a space of dimension

∑k−1
m=0

(
n

m

)
. To get the smaller bound, we now add to

this list of polynomials/vectors pairs, several other pairs at the end of the list: For every sub-
set I of the ground set satisfying �I � ≤ k− 2, we add the polynomial ∏i∈I xi�

∑n
j=1 xj − k�,

along with the incidence vectors of I , where the pairs are ordered by the cardinality of I
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from smallest to biggest. The whole set of polynomials/vectors remains triangular and thus,
by the triangular criterion, the polynomials are linearly independent. Therefore, the number
of polynomials before the addition must not be greater than

(
n

k−1
)
. �

Whether the number in Theorem 4.7 is indeed the solvability number of the system
remains an open problem.
Note that neither of the Theorems 4.5 and 4.7 follow from the other. The relation between

the bounds is
∑k−1
m=0

(
n−1
m

)= (
n

k−1
)+∑k−3

m=0
(
n−1
m

)
. Note also that Theorem 4.7 does not imply

a bound on the rank of the solution matrix for this system.
For the case k= 2, the xcut problem, Hassin [13] proved that the system is d-solvable for

d= n. This result is easily seen to be a special case both for Theorem 4.5 and Theorem 4.7.
This is the one case where these two bounds coincide.
From Theorem 4.7 we can derive a result by Lovász [16]: The chromatic number of a

(hyper)graph H is the minimum number of colors needed to color the vertices of H in a
legal way, i.e., in a way for which no hyperedge is monochromatic. We call H critically
l-chromatic if it is l-chromatic, but removing any edge from H yields a (hyper)graph that
can be colored properly with fewer than l colors.

Corollary 4.1. Let H be a critically 3-chromatic k-uniform hypergraph of order n
with edge set E. Then �E� ≤ (

n

k−1
)
.

Proof. Removing any edge creates a 2-chromatic hypergraph. Thus, for each edge there
is a cut that crosses all edges but it. In particular, looking at each edge as a k-in-one-side
problem, and assigning each cut with a different weight w, these problems have different
optimal solutions. Thus, an OSS for this weight function has to contain a solution for every
problem—that is, for every edge. By Theorem 4.7, a family of k-in-one-side problems is(
n

k−1
)
-solvable, thus �E� ≤ (

n

k−1
)
. �

Note that in Theorem 4.7 we get the bound under weaker terms than those assumed in
Lovász [16]: Lovász’s result demands that the hypergraph H is not 2-colorable, that is,
there is no cut separating all edges, whereas ours does not, as well as the skew (triangular)
nature of our theorem, which is not obtained by any easy modification of Lovász’s proof.
Now, we can derive an analogous result from Theorem 4.5:

Corollary 4.2. Let H be a critically 3-chromatic hypergraph of order n and rank k,
with edge set E. Then �E� ≤∑k−1

m=0
(
n−1
m

)
!

Continuing this line, we translate Proposition 4.2 to these terms as well:

Corollary 4.3. Let H be a t-uniform hypergraph of order n with edge set E. If for
every e ∈H there exists a coloring C in which e is the only nonmonochromatic edge, then
�E� ≤ n− t+ 1.
To end this section, consider the problem of finding the minimum weight illegal

2-coloring for a hypergraph of order n and rank k, which we name the noncoloring
problem.

Proposition 4.3. The noncoloring problem is d-solvable for d=∑k−1
m=0

(
n−1
m

)
!

Proof. The proof is by reduction to the k-in-one-side problem. Let H be a hypergraph
of rank k, p a noncoloring problem on H , and C an optimal illegal coloring for it. Let e be
one of the monochromatic edges of H in C. For a given cost function w, consider the set of
optimal cuts for the uniform k-in-one-side problem defined by e. It is easy to see that every
optimal solution for e is also an optimal solution for p, and the proposition follows. �

An asymmetric variant of the noncoloring problem is the set inclusion problem. A prob-
lem instance is a k-uniform hypergraph H , and a feasible solution is a set of minimum
weight that contains at least one of H ’s edges.

Proposition 4.4. The family of all set inclusion problems is d-solvable, with d= (
n

k

)
.
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Proof. Associate with every element i ∈X a variable xi, and with every hypergraph H
the polynomial: QH = ∑

e∈H
∏
i∈e xi. Associate further with every solution its incidence

vector. �QH� are easily seen to be separating polynomials for this family of problems, and
they lie in a space of dimension

(
n

k

)
. �

We note that a proof using reduction could be applied here as well.

4.4. SAT problems. A very general �0�1� problem is the one of satisfying a Boolean
formula. We call a Boolean function s-CNF-able if it can be written in CNF form with
at most s clauses.
For a given s-CNF-able formula f on n variables, and a weight function w� 2n → �

that associates with each truth assignment of these variables an arbitrary weight, the s-SAT
problem is that of finding a minimum weight satisfying assignment to f .

Theorem 4.8. The family of s-SAT problems is d-solvable for

d=
s∑

m=0

(
n

m

)
! (8)

Furthermore, d is the solvability number of this system.

Proof. Denote the r th clause in an arbitrary problem p by Cr . With p associate the
polynomial Qp =

∏s
r=1�

∑
xi∈Cr xi +

∑
x̄i∈Cr �1− xi�) over �. Each such polynomial vanishes

by substituting x for an incidence vector of a solution not feasible to p, and does not
vanish by substituting a feasible solution. For a given weight function w, let Tw = �P ′� S ′�
be a triangular problems-solutions pairs set such that S ′ is an OSS. The existence of one
is guaranteed in Proposition 3.1. Then, by Corollary 3.1, the terms of the theorem and the
triangular criterion, polynomials associated with problems in P ′ are linearly independent.
In addition, all these problems lie in a space of dimension

∑s
m=0

(
n

m

)
and the upper bound

follows.
This bound is tight, as can be seen from taking the conjunction of every set of m ≤ s

literals with no negation, out of the given n. For every conjunction, the assignment giving all
its literals the value “true,” and all the rest the value “false,” satisfies it, but no other formula
with fewer or the same number of literals. For m= 0, we take a formula with negation only
(or alternatively, an empty formula), together with the all-false assignment. �

Following Jukna [14], a Boolean function f in DNF form is called s-or-and function
if every clause in it has at most s literals. There is an immediate corollary regarding the
optimal assignment problems for such functions over a set of n variables:

Corollary 4.4. The family of s-or-and problems is d-solvable for:

d=
s∑

m=0

(
n

m

)
! (9)

Proof. By applying the distributive law, every s-or-and function can be written as a
CNF formula with at most s clauses and vice versa. Thus, they are in fact the same family
of problems, and by Theorem 4.8 the s-SAT family is

∑s
m=0

(
n

m

)
-solvable. �

Another result one can draw from Theorem 4.8 and its corollary regards a family of
formulas in propositional calculus where there are at most r literals appearing in every
formula. We call such formulas r-literals formulas. Note that for this corollary to hold, one
does not have to assume a certain form of the formula:

Corollary 4.5. The family of r-literals formulas is d-solvable with

d=
r∑

m=0

(
n

m

)
! (10)
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Proof. For every r-literals formula, its DNF form has at most r literals in every clause.
Now apply Corollary 4.4. �

Our general results on SAT problems can be given some interesting interpretations. Here
is one example: A transversal in a hypergraph, sometimes also called a blocking set, is a
set that intersects every edge in the hypergraph. The s-set-cover problem obtains as an
input a hypergraph H with at most s edges and outputs a set of minimum weight which
is a transversal of H . Note that every instance of this problem can be seen as an s-SAT
problem, whose literals appear with no negation (such formulas are also called monotone),
so we have the following interpretation:

Proposition 4.5. The s-set-cover family of problems on hypergraphs with at most k
edges is d-solvable with d =∑k

m=1
(
n

m

)
. Furthermore, this is the solvability number of this

family.

The proof is similar to that of Theorem 4.8.
Remark. A transversal is a set that does not have an intersection of size 0 with any

edge in H . Proposition 4.5 can be easily extended to the problem of finding a set that avoids
intersections of size u.

4.5. Take-out problems. Let G= �V �E� be a multigraph. Suppose that a failure may
occur for at most k edges in G. We would like to be prepared for these failures and find
a minimum spanning tree (MST) for all possible resulting connected graphs in advance.
How many minimum spanning trees must we find and keep? We call this the MST-failure
family of problems.
For every such multigraph G= �V �E� and edges E ′ ⊆ E, we define G′ = �V �E\E ′� to

be the graph after the failure of these edges. For simplicity we assume k < n.

Lemma 4.2. Let T = �VT �ET � be an MST of G. Let E ′ be the set of failed edges, and
denote by E0 = ET \E ′ the remaining edges of T . Then there exists an MST of G′ that
contains E0.

Proof. Because E0 are edges of an MST of G, there is no cycle of G in which one of
these edges is strictly the most expensive one (otherwise, there was a cheaper MST to G
than the one assumed). Let T ′ be some MST of G′. We iteratively add each edge in E0\ET
to T ′. Every such edge e closes a cycle in T ′, in which there is at least one edge not in E0
that is the most expensive one. Deleting the expensive edge, we again get an MST. After
the last iteration, we get an MST of G′ containing all the edges in E0. �

Theorem 4.9. The MST-failure family of problems has solvability number d= (
n−1+k
n−1

)
.

Furthermore, the OSS of a given weight function w can be constructed by solving only
d problems.

Proof. By induction on k, the number of edges removed. For k= 0 the claim is trivial.
Now, assume the claim is true for all values smaller than k and we took out at most k edges:
i out of the MST of G and at most k− i other edges. For i = 0, the MST remains as is.
Now consider the case i > 0, and let E0 be the MST edges not removed. By Lemma 4.2,
the edges of E0 remain tree edges together in some new tree of G

′. Thus we may shrink
every connectivity component of the tree not removed into a single vertex. Because there
exists an MST of G′ that contains all the edges of E0, obviously such a tree can be found
by connecting these components in the optimal way. We get a new multigraph G′′ with i+1
vertices. By the induction hypothesis, there is a set containing an MST for every graph that
may be created out of G′′ by taking out the remaining k− i edges, and the cardinality of this
set is at most

(
k−i+i
k−i

)= (
k

i

)
. Summing over all values of i, the cardinality of the set containing

all MSTs obtained from G by removing at most k edges is
∑k
i=0

(
n−1
i

)(
k

i

)= (
n−1+k
k

)
.
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To see that this bound is tight, consider a multigraph on n vertices numbered 1� , , , � n
where for every 1≤ i≤ n−1, there are k+1 differently weighted edges connecting vertex i
to vertex i+ 1, and these are the only edges. Consider a vector J = �j1� , , , � jn� such that∑n
i=1 ji = k. Taking out the ji lightest edges between vertex i and i+ 1 creates some new

MST. For every choice J we get a different MST. jn completes the sum to be exactly k.
Because

∑
i ji = k, the number of possibilities of choosing the numbers ji is

(
n−1+k
k

)
. �

A generalization of the MST-failure problem can be made as follows: Let X be some
ground set of elements, with a weight function defined on its power set. A problem instance
consists of a set A of forbidden elements, together with the corresponding collection of
allowed subsets � = 2X\A, some of which may have infinite weight. The task is to find a
subset B ∈ � of minimum weight. We call such problems take-out problems. A bound
may be given for a very general family of take-out problems using a theorem from extremal
combinatorics:

Theorem 4.10 (Frankl [6]). Let A1� , , , �Am and B1� , , , �Bm be finite sets such that
Ai ∩ Bi = 
 and Ai ∩ Bj �= 
 for j < i. Suppose also that �Ai� ≤ k and �Bi� ≤ l. Then
m≤ (

k+l
k

)
.

The consequence for take-out problems is immediate:

Corollary 4.6. Let �P�S� be a system of take-out problems. Suppose that ∀ i �Pi� ≤ k
and ∀ i �Si� ≤ l. Then the family P is d-solvable for d= (

k+l
k

)
.

This result generalizes the bound of Theorem 4.9. However, the proof of Theorem 4.10
(as is the case with many of the above bounds) is nonconstructive, i.e., it does not tell
us how to find the set of all the optimal solutions whose existence it guarantees. We note
also that there is no combinatorial proof known for the general case. In the special case of
MSTs, we showed a constructive simple combinatorial proof for this bound. In addition,
we showed that although the terms of the problem were stricter, the result remained tight.
An analogous result regarding take-out shortest paths can be found in Eilam-Tzoreff [5].
Given two vertices, the problem there is to find all shortest paths between them after at
most k edges have been removed.
The family of take-out problems considered in Corollary 4.6, with k = l, is a natural

example for a case where the bound of Theorem 3.1 gives a very poor result: The solution
matrix of such a system has full row rank, that is,

∑k
i=0

(
n

i

)
(see Razborov [18]), whereas

this family is
(2k
k

)
-solvable (from Theorem 4.10), no matter how big the size n of the ground

set is.

Appendix A. Proof of Lemma 4.1. Lemma 4.1 can also be derived from other more
general results in the literature (see e.g., Frankl [7], Frumkin and Yakir [8], Linial and
Rothschild [15], and Wilson [19]). We derive the result here in a different way, which we
believe is a bit simpler. Recall that the �n� k� l� disjointness matrix Dn�k� l� over X is a 0-1
matrix whose rows are labeled by subsets of X of size exactly k, whose columns are labeled
by subsets of X of size at most l, and whose entry DA�B is 1 iff A and B are disjoint.

Lemma A.1. rk2Dn�k�k�=
(
n

k

)
.

Proof (Razborov [18] and Jukna [14]).2 We will show that the rows of D are linearly
independent. Any nontrivial linear combination of the rows of D is a sum over �2 of a
subset of the rows. Let M be the nonempty set of k-tuples associated with these rows.
Now consider the polynomial q = ∑

I∈M
∏
i∈I xi. Take some arbitrary k-tuple I0 ∈M and

substitute in q, xi = 1 for every i � I0 to get a new polynomial q′. Because the term
∏
i∈I0 xi

2 Actually Razborov has proved a stronger result, stating that the matrix of at most k-tuples against at most k-tuples
has full row rank.
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is left untouched, q′ is a nonzero polynomial. Thus, there exists an assignment b′ for the
k variables of q′, for which q′�b′�= 1. Let b be the extension of that assignment to all other
variables, so we know q�b�= 1. Let J0 be the set of elements whose variables are assigned
zero in b. Because q�b� = 1, the number of nonzero additives in the sum q�b� is odd.
However, this is the number of k-tuples disjoint to J0. We get that for every subset of the
rows of D, there exists a column (labeled by J0) for which the sum of rows is 1 �mod2�.
Thus, every nontrivial linear combination of D’s rows is nonzero. �

Lemma A.2. Let k, l, n be natural numbers such that k+ l≤ n, and let m=min�k� l�.
Then rk2Dn�k� l�≥

(
n

m

)
.

Proof. We apply induction on k and l. The base cases are k= 0 and l= 0, and in these
cases the matrix is a single row/column of ones, so the rank is trivially 1. Another case
we already know to be true is the case k = l, for which we have Lemma A.1, so in the
following we will prove the lemma only for l �= k. Our induction hypothesis is that for every
k′ ≤ k and l′ < l, and for every k′ < k and l′ ≤ l, if n≥ k′ + l′, then rk2�D�k′� l′� n��≥

(
n

m′
)

for m′ =min�k′� l′�. Consider now the matrix Dn�k� l� and its submatrix D1 that consists
of rows corresponding to all subsets of size at most k that include some specific element e,
and columns corresponding to subsets of size exactly l that do not include e. D1 is an
�n− 1� k� l − 1� disjointness matrix over X\�e�, which satisfies the terms of the lemma.
Thus, by the induction hypothesis, rk2�D1�≥

(
n−1

min�k� l−1�
)
. Now consider the submatrix D2,

whose rows correspond to all subsets of size at most k that do not include e and whose
columns correspond to subsets of size exactly l that include e. D2 is an �n− 1� k− 1� l�
disjointness matrix so, by the induction hypothesis, rk2�D2� ≥

(
n−1

min�k−1�l�
)
. The submatrix

of D whose rows include e and whose columns include e is a zero matrix, because all these
sets intersect. Thus, the situation is as follows: D= ( 0 D1

D2 E

)
. Because k �= l, it follows that

rk2�Dn�k� l��≥ rk2�D1�+ rk2�D2�≥
(

n− 1
min�k� l− 1�

)
+
(

n− 1
min�k− 1� l�

)
=
(
n

m

)
�

for m=min�k� l�. �

The term k+ l≤ n is required so that when n gets smaller in the course of the induction,
it will still satisfy k� l ≤ n. Although we only need this lower bound for the proof of
Theorem 4.3, for completeness we show the upper bound as well.
For the sake of proving the upper bound, it is useful to consider the inclusion matrix

In�t� l�, whose rows are labeled by t-sets and whose columns are labeled by l-sets.
I�A�B� = 1 iff B ⊆ A. Similarly, denote by I∗n �t� l� the inclusion matrix whose columns
correspond to subsets of size at most l. It is easy to see that Dn�t� l�= I∗n �n− t� l�. Denote
also the column space of a matrix M by Cols�M�.

Lemma A.3 (4.1). Let k, l, n be natural numbers such that k + l ≤ n, and let m =
min�k� l�. Then rk2Dn�k� l�=

(
n

m

)
.

Proof. The upper bound for l ≥ k is trivial, as the number of rows in Dn�k� l� is
(
n

k

)
.

Here is a proof for the case l≤ k (see Babai and Frankl [2]): The number of l-subsets that
contain a specific j-subset and are contained in a specific t-subset is

(
t−j
l−j

)
if the j-tuple

is contained in the t-tuple and 0 otherwise, so for every 0 ≤ j ≤ l ≤ t, In�t� l�In�l� j� =(
t−j
l−j

)
In�t� j�, and thereby Cols�In�t� j��⊆ Cols�In�t� l��. Thus, rk��I∗n �t� l��= rk��In�t� l��

≤ (
n

l

)
. Now, because l≤ n− k, we can take t = n− k, and get:

rk2�Dn�k� l��≤ rk��Dn�k� l��= rk��I∗n �n− k� l��≤
(
n

l

)
! �

Remark. All arguments in the appendix hold for any field �p where p is prime, and
not only �2.
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