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Abstract. The input to the minimum latency set cover problem
(MLSC) consists of a set of jobs and a set of tools. Each job j needs
a specific subset Sj of the tools in order to be processed. It is possible
to install a single tool in every time unit. Once the entire subset Sj has
been installed, job j can be processed instantly. The problem is to de-
termine an order of job installations which minimizes the weighted sum
of job completion times. We show that this problem is NP-hard in the
strong sense and provide an e-approximation algorithm. Our approxi-
mation algorithm uses a framework of approximation algorithms which
were developed for the minimum latency problem.3
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1 Introduction

The minimum latency set cover problem (MLSC ) is defined as follows:
Let J = {J1, J2, . . . , Jm} be a set of jobs to be processed by a factory. A job
Ji has non-negative weight wi. Let T = {t1, t2, . . . , tn} be a set of tools. Job j
is associated with a nonempty subset Sj ⊆T . Each time unit the factory can
install a single tool. Once the entire tool subset Sj has been installed, job j can
be processed instantly. The problem is to determine the order of tool installation
so that the weighted sum of job completion times is minimized.

We rephrase MLSC as a variant of the minimum set cover problem in
the following way. Given a set of items J and a collection of subsets S1, . . . , Sm

of a ground set T . We want to order the elements of T so that when each item
3 As suggested by Samir Khuller there is an easy improvement of the algorithm of

this paper using known 2-approximation algorithm for the minimizing weighted sum
of job completion times on a single machine with precedence constraints, where the
jobs in the scheduling problem consists of the set of tools and the set of MLSC-jobs,
a tool-job has zero weight and unit processing time, and a MLSC-job has its weight
and zero processing time, and the precedence constraints are that each MLSC-job
can be processed only after all its tools are completed.



j incurs a cost that equals its weight times the last time when an element of Sj

appears in the order. The goal is to minimize the total cost.
Feige et al. [6] considered the related problem where each job incurs a cost

equal to the first time where an element of Sj appears in the order. They proved
that a greedy algorithm is a 4-approximation algorithm, and showed that unless
P = NP there is no polynomial time algorithm with an approximation ratio
4− ε where ε > 0.

The minimum latency problem is defined as follows: we are given a set
of n points. A feasible solution is a Hamiltonian path that traverses the points.
Each point j (of the n points) incurs a cost that equals the total length of the
prefix of the path from its beginning towards the (first) appearance of j in the
path. The goal is to find the path that minimizes the total incurred cost. Our
approximation algorithm follows similar arguments to the ones used by Goemans
and Kleinberg [7] and Archer, Levin and Williamson [1] for the minimum latency
problem in a metric space.

The densest k-subgraph problem is defined as follows. We are given a
graph G = (V, E) where each edge e has a non-negative weight we. The goal
is to pick k vertices U = {v1, . . . , vk} ⊆ V such that

∑
(u,v)∈E∩(U×U) w(u,v) is

maximized. This problem is known to be NP-hard even if all weights are equal,
and the current best approximation algorithm for it [5] has an approximation
ratio of O(n−

1
3 ).

Given a hyper-graph G = (V, E) and a subset of vertices U ⊆ V , a hyper-edge
e is induced by U if e ⊆ U . We will use in our algorithm a new problem named
the densest k-sub-hyper-graph problem which generalizes the densest k-
subgraph problem to hyper-graphs where each hyper-edge e contributes to the
goal function if and only if it is induced by U . The densest k-sub-hyper-graph
problem is at least as difficult as the densest k-subgraph problem. However, we
are not aware of any prior results on this new variant.

Paper preview. In Section 2 we prove that MLSC is NP-hard in the strong
sense. In Section 3 we develop a basic approximation algorithm assuming that
the densest k-sub-hyper-graph problem can be solved in polynomial time. Af-
terwards, in Section 4 we show how to remove this assumption and obtain our
e-approximation algorithm. In Section 5 we discuss bad examples for our anal-
ysis.

2 NP-hardness of MLSC

The following problem is known as the minimum weighted sum of job com-
pletion times on a single machine under precedence constraints
with unit processing times problem: given m jobs {j1, j2, . . . , jm} each
has a unit processing time and a non-negative weight wj , and precedence con-
straints between the jobs in the form of an acyclic digraph G. A feasible schedule
must satisfy that for all (j, k) ∈ A, the machine starts to process job k only after
job s is finished (not necessarily immediately after). The goal is to find a feasible
schedule (that satisfies the precedence constraints) that minimizes the weighted



sum of job completion times. In the scheduling notation this problem is denoted
as 1|prec; pj = 1|∑wjCj . This problem is known to be NP-hard in the strong
sense (see [12, 13] and also [4, 10]), and there is a 2-approximation algorithm for
it [8].

Theorem 1. MLSC is NP-hard in the strong sense.

Proof. We will describe a reduction from 1|prec; pj = 1|∑wjCj . We are given
an instance I defined as J= {j1, j2, . . . , jn}, such that ji has weight wi, and an
acyclic directed graph G defining the precedence constraints. For i = 1, . . . , n, let
Pi denote the set of all predecessors of ji. We define an instance I ′ to MLSC in
the following way: Define a job j′i and a tool ti for i = 1, . . . , n. Define for job
j′i the job set S′i = {ti}

⋃
q∈Pi

S′q. Finally, we assign a weight wi to j′i. Denote
the resulting instance of MLSC by I ′. Since problem 1|prec; pj = 1|∑wjCj is
NP-hard in the strong sense we can restrict ourselves to instances of 1|prec; pj =
1|∑ wjCj in which the weights are polynomially bounded, and therefore I ′ has
polynomial size even if the numbers are represented in unary. To prove the
theorem, it suffices to show that given a solution of cost C to I there is a
solution to I ′ of cost at most C, and vice versa.

First assume that π is a feasible schedule to I with cost C. Then, at time unit
i we install tool tπ(i). Since π satisfies the precedence constraints, we conclude
that at time i the set S′π(i) has been installed, and therefore we gain a weight
of wπ(i). This is exactly the weight of π(i) such that Cπ(i) = i (the completion
time of job π(i) is i and this term is multiplied by wπ(i) in the objective function∑

wjCj). Therefore, the resulting solution costs C as well.
Consider now a solution π′ to I ′, i.e., at time i we install tπ′(i). W.l.o.g. we

assume that prior to the i-th time unit we have already installed the sets Si′ for
all i′ such that (i′, π′(i)) ∈ G. This assumption is w.l.o.g. because otherwise at
time unit i we cannot complete the processing of any job, and we can exchange
the positions of the tools in π′ without additional cost. With this assumption,
π′ is a feasible solution to I, and as in the previous case, π′ has a cost of at most
C ′. ut
Remark 1. MLSC is NP-hard even for unweighted instances. The changes that
are needed in the construction is to replace a job with weight wj by a family of
wj identical jobs, each with unit weight. Since MLSC is NP-hard in the strong
sense the resulting instance has a polynomial size.

3 The Basic Approximation Algorithm

In this section, we assume that there is a polynomial time algorithm for the
densest k-sub-hyper-graph problem. In the next section we will show how to
remove this assumption. We follow similar arguments as used by Goemans and
Kleinberg [7] for the minimum latency problem.

Our algorithm will make use of the values of the densest k-sub-hyper-graph
for k = 2, 3, . . . , n, in the following auxiliary hyper-graph. The vertex set is T , for



each job j we will have a hyper-edge ej = Sj that is its tool set with weight wj .
Denote by V1, V2, . . . , Vn the resulting vertex-sets and denote by Wi the weight
of hyper-edges induced by Vi. In other words, Wi is the maximum weight of jobs
that can be processed (covered) in i units of time (by i tools).

Given an increasing set of indices

j0 = 0 < j1 < j2 < · · · < jt = n,

we define the concatenated solution as follows: for all i = 0, . . . , t − 1, at time∑i
k=0 jk we finished installation of the tools of the Vj0 ∪Vj1 ∪· · ·∪Vji and in the

next ji+1 time units we install the yet uninstalled tools of Vji+1 in an arbitrary or-
der (perhaps leaving idle time until the end of this time period). A job j is served
at time no later than min

{∑i
k=0 jk : Sj ⊆

⋃i
k=0 Vk

}
. Consider the following

upper bound on the cost of the concatenated solution. Suppose that the weight
of jobs that are completed during the time interval

[∑i−1
k=0 jk + 1,

∑i
k=0 jk

]
, is

vi. Let qi =
∑i

l=0 vl be the weight of jobs completed until
∑i

k=0 ji. Denote by
W the total weight of all the jobs, i.e., W =

∑m
j=1 wj .

The set Vji adds at most ji to the waiting time of each of the W − qi−1 units
of weights of jobs that were not processed until time

∑i−1
k=0 jk. Thus, the total

cost of the concatenated solution is at most

t∑

i=1

(W − qi−1) · ji ≤
t∑

i=1

(W −Wi−1) · ji, (1)

where the inequality follows since by definition qi ≥ Wi for all i.
Our algorithm for approximating MLSC is as follows:
Algorithm A:

1. For k = 0, 1, 2, . . . , n, compute Vk, an optimal densest k-sub-hyper-graph
solution and its value Wk.

2. Let G be the graph on the vertex set {0, 1, 2, . . . , n}, such that, for all i ≤ j,
G has an arc from i to j with length (W −Wi) · j.

3. Compute a shortest 0 − n path in G. Denote its length by σ and suppose
that it goes through j0 = 0 < j1 < · · · < jt = n.

4. Output the concatenated solution .

The next lemma follows from (1):

Lemma 1. The cost of the concatenated solution is at most σ.

Let opt denote the optimal solution cost and let σ denote the length of a
shortest path in G.

Theorem 2.
σ ≤ e · opt.



Proof. To prove the theorem, we replace each job j by wj unit weight jobs each
having the same tool set Sj . Thus, the number of jobs is now W . This change
clearly has no effect on opt or σ. Let OPT be an optimal solution and denote
by l∗k the time it takes OPT to finish the first k jobs, k = 1, . . . , W . Note that
1 ≤ l∗1 ≤ · · · ≤ l∗W . We construct a 1 − n path in G and compare its length to
opt =

∑W
k=1 l∗k.

Fix c > 1 and 1 ≤ L0 < c. For i = 1, . . . , t let ji = bL0c
i−1c where t = min{i :

L0c
i ≥ n}. We may also assume w.l.o.g. that every tool is needed for some job so

that the total time for the process is n, and therefore jt = n. Consider the path
j0 = 0, j1, . . . , jt = n in G. Its length is

∑t
i=1(W −Wji−1) · ji. Since Wt = W ,

t∑

i=1

(W −Wji−1)ji =
t∑

i=1

ji

t∑

r=i

(Wjr
−Wjr−1)

=
t∑

i=1

[
(Wji −Wji−1) ·

i∑
r=1

jr

]

=
W∑

k=1

δk,

where δk =
∑i

l=1 jl for Wji−1 < k ≤ Wji .
Let Lk = min{L0c

i : L0c
i ≥ l∗k}.4 By definition, l∗k ≤ Lk. Let sk be such that

Lk = L0c
sk . Therefore,

δk =
sk∑

l=1

jl ≤
sk∑

l=1

L0c
l−1 =

sk∑

l=1

Lk

csk−l+1
≤ Lk +

Lk

c
+

Lk

c2
+ · · · = Lkc

c− 1
,

where the first equation holds by definition of δk, the first inequality holds by
definition of jl, the second equation holds because Lk = L0c

sk .
Let L0 = cU where U is a random variable uniformly distributed over [0, 1].

This defines a random path whose expected length is
∑n

k=1 E[δk]. Moreover,
E[δk] ≤ c

c−1E[Lk]. We now compute E[Lk]. First, assume that l∗k ≥ L0. Observe

that Lk

l∗
k

, is a random variable of the form cY , where Y =
⌈
logc

(
l∗k
L0

)⌉
−logc

(
l∗k
L0

)

is a uniform random variable over [0, 1]. Hence,

E[Lk] = l∗kE[cY ] = l∗k

∫ 1

0

cxdx = l∗k
c− 1
ln c

.

Even if l∗k < L0 then Lk = L0 ≤ c and E[Lk] = E[L0] = c−1
ln c ≤ l∗k

c−1
ln c , where the

last inequality holds because l∗k ≥ 1.
Thus,

E[δk] ≤ c

ln c
l∗k.

4 δk is the minimum time in our logarithmic scale that the solution defined by the
path j0, . . . , jt completes k jobs, whereas Lk is the time - in the same scale- it takes
OPT to accomplish this task.



Therefore, the expected length of our random path is at most c
ln c times

∑
l∗k.

Hence, the length of a shortest path is at most c
ln c times

∑
l∗k. This value is

optimized by setting c to be the root of ln(c)−1 = 0, and hence c = e ∼ 2.71828.
Therefore, σ ≤ e · opt. ut
Corollary 1. Algorithm A is an e-approximation algorithm.

4 The MLSC Approximation Algorithm

The results of Section 3 assumed that we are able to compute an optimal densest
k-sub-hyper-graph for all values of k. In this section we remove this assumption
by following the framework carried by Archer, Levin and Williamson [1] for the
minimum latency problem.

For k = 1, 2, . . . , n, we find either an optimal densest k-sub-hyper-graph or a
pair of values kl < k < kh with optimal solutions Vkl

, Vkh
for the densest kl-sub-

hyper-graph and the densest kh-sub-hyper-graph problems with costs Wl, Wh

(respectively) such that the following property holds: let k = αkl + (1 − α)kh,
then ak = αWl + (1− α)Wh ≥ Wk.

We note that there are values of k such that it is possible to compute a densest
k-sub-hyper-graph in polynomial time. To make this claim precise we will show
that given a parameter λ > 0 defining the cost of buying a tool, and the gain wj

obtained by purchasing the subset Sj (thus completing job j), it is possible to
compute a profit maximizing set of tools. This auxiliary problem can be solved
by a polynomial time algorithm for the provisioning problem: Given n items
to choose from where item j costs cj , and given m sets of items S1, S2, . . . , Sm

that are known to confer special benefit; if all the items of Si are chosen then a
benefit bi is gained. The goal is to maximize the net benefit, i.e., total benefit
gained minus total cost of items chosen. The provisioning problem is known to
be solvable in polynomial time (See [2, 14] and also [11] pages 125-127).

In fact using a single parametric min-cut procedure it is possible to compute
the entire upper-envelope of the points in the graph of Wk versus k ([15] and see
also [9] for more related results). This piecewise linear graph gives the desired
ak values for all values of k.

For values of k that for which we can compute the optimal densest k-sub-
hyper-graph we let ak = Wk, and for other values of k we let ak = αal + (1 −
α)ah ≥ Wk and say that they corresponds to phantom solutions (the notion of
phantom solutions is inspired by [1]). These phantom solutions are not solutions
as we are not able to compute a densest k-sub-hyper-graph in polynomial time,
however these phantom solutions provide values of ak. Lemma 2 shows that there
exists a shortest path in G which does not use phantom vertices, i.e. vertices
that correspond to phantom solutions, for which we are not able to compute
a densest k-sub-hyper-graph. As a consequence, Algorithm A can be applied
to the subgraph of G induced by the vertices that correspond to non-phantom
vertices, without loss of optimality.

Lemma 2. There exists a shortest path in G that does not use phantom vertices.



Proof. We prove the lemma by showing that even when the true parameter
Wk of a phantom vertex k is replaced by ak ≥ Wk, thus reducing the lengths
(W − Wk)j of all arcs (k, j), there exists a shortest path which does not use
phantom vertices.

Consider a shortest path that visits i → k → j, where k is a phantom
vertex with corresponding kl, kh as defined above. Set γ = ah−al

kh−kl
. By definition

ak = (1 − α)al + γ(k − kl). By the definition of the arc lengths, the sub-path
i → k → j costs

(W − ai)k + (W − ak)j = (W − ai)k + (W − [(1− α)al + γ(k − kl)])j
= k(W − ai − γj) + (W − (1− α)al + γkl)j.

This is a linear function of k and it is valid for max{i, kl} ≤ k ≤ min{j, kh}.
Therefore, it attains a minimum at one of the endpoints max{i, kl} or min{j, kh}.
We can either remove loops to reduce the length of the path and thus obtain a
contradiction, or we reduce the number of vertices along the path that correspond
to phantom vertices. Using an inductive argument we establish the lemma. ut

Therefore, we can apply Corollary 1 to get the main result of this paper:

Theorem 3. There is an e-approximation algorithm for the MLSC problem.

5 Bad example for our analysis

Goemans and Kleinberg [7] proved that using the randomized path in their
analysis does not hurt the approximation ratio (with respect to the shortest
path). It follows that there are networks where the ratio between the shortest
path and the optimal solution is arbitrary close to the provable approximation
ratio.

In our analysis, we have different arc lengths. Therefore, the question whether
our analysis is tight is open. So far we were able to construct networks (by
solving large linear programs) where the ratio between the shortest 1-n path
to the optimal cost is approximately 2.62 for n = 70. This bound although
monotone increasing does not approach e as n goes to infinity. Therefore, it
might be possible to improve our analysis by using a different randomized path
in the proof of the approximation ratio.
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