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We consider the problem of partitioning the node set of a graph into p equal
sized subsets. The objective is to minimize the maximum length, over these subsets,
of a minimum spanning tree. We show that no polynomial algorithm with bounded

Ž 2 .error ratio can be given for the problem unless P s NP. We present an O n time
algorithm for the problem, where n is the number of nodes in the graph. Assuming
that the edge lengths satisfy the triangle inequality, its error ratio is at most
2 p y 1. We also present an improved algorithm that obtains as an input a positive

Ž Ž pqx . p 2 . Žinteger x. It runs in O 2 n time, and its error ratio is at most 2 y xr
Ž ..x q p y 1 p. Q 1997 Academic Press

1. INTRODUCTION

In the min-max tree partition problem, a complete weighted undirected
Ž .graph G s V, E is given, where V is its node set and E is the edge set,

together with nonnegative edge lengths satisfying the triangle inequality.
The set V must be partitioned into p equal-sized subsets. A minimum

Ž .spanning tree MST is then found in each of the subgraphs induced by the
partition. The objective is to minimize the weight of the longest MST.

Ž .The problem as well as the related min-sum problem is NP complete
even for p s 2, as we prove in the appendix. We therefore develop
approximation algorithms.

Ž 2 .We present an O n time algorithm whose error ratio is bounded by
< <2 p y 1, where n s V . We then describe an improved algorithmic scheme

that gives a better bound, but with higher complexity. For any given value
� 4 Ž Ž pqx . p 2 .of a parameter x g 1, 2, . . . it runs in O 2 n time and its error

Ž Ž ..ratio is bounded by 2 y xr x q p y 1 p. For example, setting x s log n,
Ž 3.we obtain for any fixed p an O n algorithm with an asymptotic error
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ratio of p. For p fixed and setting x to any slowly increasing unbounded
Ž 2 .function, the same asymptotic bound can be achieved in about O n time

Ž Ž 2 . .setting x s log log n yields O n log n time .
w x Ž w x.Goemans and Williamson in 4, 5 see also 1, 7 , and Guttmann and

w xHassin in 3 gave approximate algorithms for partitioning G to achieve
minimum total length of the MSTs in the partition. Let S* be an optimal

Ž .partition in the min-sum problem. Define Max S* to be the length of the
Ž .longest MST in an S* and let Sum S* be the sum of the lengths of all the

trees in this solution. Let OPT be an optimal partition in the min-max
Ž . Ž .problem; define Max OPT and Sum OPT in a similar way. Then

Max S* F Sum S* F Sum OPT F p Max OPT .Ž . Ž . Ž . Ž .
Similarly, an approximation algorithm with an error ratio at most a for
the min-sum problem is also an approximation algorithm with an error
ratio at most a p for the min-max problem.

For the min-sum version, Goemans and Williamson gave a bound of
Ž .Ž .4 1 y prn 1 y 1rn , which gives a bound of 4 p for the min-max version

Ž . w x Ž .and p s o n . In 3 , for small values of p and any e ) 0, a 2 1 q e -
Žapproximation was obtained for the min-sum problem, implying a 2 p 1 q

.e -approximation for the min-max version. The present paper contains a
Ž .1 q e p approximation for the min-max version for every e ) 0.

The idea of the approximation algorithm is as follows: Compute a MST
on G. If the removal of some edges breaks it into two pieces whose sizes
are multiples of nrp then do this and recurse; otherwise, double the edges
to get a Hamiltonian cycle and break this cycle into p equal-sized pieces.

Our algorithms can also be used to approximate the problem of covering
G by disjoint cycles. This can be done by doubling all the trees and using
the triangle inequality to replace each tree by a cycle whose size is at most
twice the size of the tree. The resulting error bound is twice the corre-
sponding bound for the tree partition problem.

2. DEFINITIONS

Ž .For an edge e, l e is the length of e.
Ž . Ž .For a set of edges E9 : E, l E9 s Ý l e .eg E9

Ž . Ž . Ž .For a graph G s V, E , l G s l E .
Ž .For V 9 ; V, MST V 9 is a MST on the subgraph induced by V 9.

For a subgraph B we denote by V and E the sets of nodes and edgesB B
in B, respectively.

Ž . < <Given a graph G s V, E V s n, where n is a multiple of p, the
Ž .min-max tree partition problem MMTP is to partition V into disjoint sets

� Ž Ž .4P of size nrp each so that max l MST P is minimized.i 1F iF p i
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3. THE CYCLE PROCEDURE

The subject of this section is Procedure Cycle Part, given in Fig. 1.
However, we first present a general result.

ŽConsider a cycle with edges of lengths l , . . . , l G 0 l is the length of1 n i
. Ž .edge e in this cyclic order. For i s 1, . . . , nrp consider the partition ofi

Ž .the cycle generated by deleting the edges with index j s i mod nrp . Let

FIG. 1. The cycle routines.
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hi denote the maximum length of a subpath generated by this partition:

Ž .iq jq1 nrpy1
ih s max l .Ý k

� 4jg 0, . . . , py1 ksiqjnrpq1

� 4LEMMA 3.1. There exists i g 1, . . . , nrp such that0

l CŽ .
i0h F .

2

Proof. Suppose otherwise. Then, the removal of e , e , . . . createsi iqn r p
Ž . Ž .on the cycle one path, S , satisfying l S ) l C r2. Without loss of0 0

generality assume that

� 4S s e , e , . . . , e .0 iq1 iq2 iqn r py1

The edges touching S on both sides are e and e . The remove of the0 i iqn r p
edges e , e , . . . again creates on the cycle one path, S , satisfyingiq1 iq1qn r p 1

Ž . Ž . Ž . Ž .S ) l C r2. Since both l S and l S are greater than l C r2, it must1 0 1
be that S l S / f, so that0 1

� 4S s e , e , . . . , e .1 iq2 iq3 iqn r p

If we continue in the same manner, defining S to be the longest pathj
created on the cycle when removing e , e , . . . , theniq j iqjqn r p

� 4S s e , e , . . . , e .j iqjq1 iqjq2 iqjqn r py1

In this case,

S s e , e q 1, . . . , e .� 4n r p iqjqn r p iqjqn r p iqjq2 n r py1

Ž . Ž . Ž . Ž .So S l S s f. But since l S ) l C r2 and l S ) l C r2, a0 n r p 0 n r p
contradiction.

� 4 py1LEMMA 3.2. Let P be the partition returned by Cycle Part. Theni is0

r s max l MST P F l T .Ž . Ž .Ž .i
0FiFpy1

Ž .Proof. Define l s l ¨ , ¨ G 0. According to Lemma 3.1 there isi i iq1
� 4i g 1, . . . , nrp such that

l CŽ .rih F .
2
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Ž . Ž .From the way the cycle was created, l C F 2 l T . Therefore,r

hi F l TŽ .
Ž .iq jq1 nrpy1

« max l F l TŽ .Ý k
0FjFpy1 ksiqjnrpq1

Ž .iq jq1 nrpy1

� 4« l F l T ; j g 0, . . . , p y 1 .Ž .Ý k
ksiqjnrpq1

It follows from the definition of r thatiq1

Ž .iq1q jq1 nrpy2

r s max l ¨ , ¨ F l TŽ . Ž .Ýiq1 a aq1
0FjFpy1 asiq1qjnrp

« r F r F l T .Ž .i iq10

�Ž . Ž .4Since the edges ¨ , ¨ , . . . , ¨ , ¨i qjn r p i qjn r pq1 i qŽ jq1.n r py2 i qŽ jq1.n r py10 0 0 0

form a spanning tree of P ,j
Ž .ksi q jq1 nrpy20

l MST P F l ¨ , ¨ F rŽ .Ž .Ž . Ýj k kq1 i0
ksi qjnrp0

« max l MST P F l TŽ .Ž .Ž .j
0FjFpy1

« r F l T .Ž .

To see that when p G 3 Cycle Part may give a bad approximation
consider the graph shown in Fig. 2a. There are three sets of two nodes
each.

An edge between nodes inside the same set is of length 0. An edge
connecting nodes from different sets is of length 1.

A MST for this graph is shown in Fig. 2b. Since p s 3 / 1 we double
the edges to obtain the graph shown in Fig. 2c. The graph after the simple
cycle is created is shown in Fig. 2d.

In this case

r s r s r s 1.1 2 3

� 4 � 4 � 4i can then be set to 2, giving P s ¨ , ¨ , P s ¨ , ¨ , P s ¨ , ¨ .0 0 2 3 1 4 5 2 6 1
This partition is shown in Fig. 2e, giving a value r s 1, while an optimal
partition with opt s 0 is shown in Fig. 2f.

When p s 2, Cycle Part computes a bounded approximation. We will
use the following theorem to prove it.
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FIG. 2. A bad instance for Cycle Part.

Ž . Ž . Ž .THEOREM 3.3 Gale . Gï en a graph G s V, E . Let T s V, H be a1
Ž .MST of G, and let T s V, F be a spanning tree of G. Suppose that2

� 4H s h , h , . . . , h is ordered so that l h F ??? F l h ,Ž . Ž .1 2 ny1 1 n1

� 4F s f , f , . . . , f is ordered so that l f F ??? F l f .Ž . Ž .1 2 ny1 1 n1

Then

� 4l h F l f ; i g 1, . . . , n y 1 .Ž . Ž .i i

w x Ž w x.The proof is given by Gale in 2 see also 6 .

THEOREM 3.4. When p s 2 and the input tree T to Cycle Part is a MST0
of G, the ¨alue r returned by this procedure satisfies

r F 3 opt.



GUTTMANN-BECK AND HASSIN272

Proof. Let O , O be an optimal partition. Denote the set of edges of1 2
Ž . Ž .MST O and MST O as E and E , respectively. Let e* be a shortest1 2 O O1 2

edge between O and O :1 2

l e* s min l ¨ , u .Ž . Ž .
¨gO , ugO1 2

� 4According to the definitions E j E j e* is a spanning tree of G,O O1 2

hence:

l T F l e* q l MST O q l MST OŽ . Ž . Ž . Ž .Ž . Ž .0 1 2

F l e* q 2 max l MST O , l MST O .� 4Ž . Ž . Ž .Ž . Ž .1 2

Therefore,

l T F l e* q 2 opt.Ž . Ž .0

There are two cases to be considered:
Ž .l e* F opt. According to Lemma 3.2, the value r for the returned

Ž .partition satisfies r F l T . Therefore,0

r F l e* q 2 opt F 3 opt.Ž .

Ž . � 4l e* ) opt. In this case, the set of edges E j E j e* contains atO O1 2
Ž .most one edge of length l e* . According to Theorem 3.3 T contains at0
Ž .most one edge of length l e* , so that T contains at most one edge0

between O and O . After doubling the edges there can be at most two1 2
edges between O and O . Changing the cycle into a simple one does not1 2
change the number of edges between O and O . Hence, the simple cycle1 2
C contains precisely two edges between O and O . Since the number of1 2
nodes in O and O is equal, the cycle C is ordered to contain nr2 nodes1 2
from O , an edge from the O to O , nr2 nodes from O , and a second1 1 2 2
edge between O and O . Hence, in this case r s opt.2 2

4. FIRST APPROXIMATION ALGORITHM

Ž .To partition G into p parts call Part Alg G, p , where Part Alg is
defined in Fig. 3. This algorithm uses the Cycle Part defined in Fig. 1.

Step 1 of Part Alg removes the longest edge of a MST of G. It then
checks whether the size of each of the created components is a multiple of
< <V rp. If the components satisfy this requirement, Part Alg is recursively

< <called to partition each of the components into parts of sizes V rp.
Otherwise, Step 2 applies Cycle Part to the MST.
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FIG. 3. The partitioning algorithm.
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4.1. E¨aluating Part Alg

� 4 py1LEMMA 4.1. Let P be the partition returned by Part Alg. Theni is0

r s max l MST P F l T .Ž . Ž .Ž .i
0FiFpy1

Proof. The proof is by induction on p. For p s 1, the procedure
Ž Ž ..returns V, giving that r s l MST V , and the lemma holds.

Assuming the hypothesis is correct for partitioning the graph into
p - p sets, we prove its correctness for partitioning into p sets. We0
consider two cases.

v The partition returned by Part Alg was found in Step 1. According
Ž .to the induction’s hypothesis and since clearly a - p and p y a - p ,

Ž Ž U .. Ž . Ž Ž U ..r s max l MST P F l T and r s max l MST P1 0 F iF ay1 i 1 2 aF iF py1 i
Ž .F l T .2

Ž . Ž . Ž . Ž .T and T are subtrees of T satisfying l T F l T and l T F l T .1 2 1 2
Ž . Ž . Ž .Hence, r F l T and r F l T , giving that r F l T .1 2

v The partition returned by Part Alg was found in Step 2. In this case,
Ž .the partition offered is the one returned from Cycle Part T , p . According

Ž .to Lemma 3.2, r F l T .

� 4 py1Let O be an optimal partition, and denote the set of edges ofi is0
Ž . � 4MST O as E , i g 0, . . . , p y 1 . Thus,i O i

opt s max l E .� 4Ž .O i0FiFpy1

� 4 � 4For every i / j i, j ; 0, . . . , p y 1 define e to be an edge connect-Ž i, j.
ing O and O such thati j

l e s min l ¨ , u .� 4Ž . Ž .Ž i , j.
¨gO , ugOi j

Define a graph G where nodes represent the sets O , and the length of0 i
the edge between the node representing O and the node representing Oi j

Ž .is l e for all i and j.Ž i, j.
� U4 py1Define e to be the p y 1 edges of a MST in this graph. Renamea as1

Ž U . Ž U . Ž U . Ž U .the edges thus: l e F l e F l e ??? F l e .1 2 3 py1
py1 � U U4The set of edges D E j e , . . . , e defines a subgraph of G withis0 O 1 ji

� j j 4p y j connected components. Let U , . . . , U be the sets of nodes in0 pyjy1
� 0 0 4 � 4these components. For j s 0, U , . . . , U is exactly O , . . . , O .0 py1 0 py1

LEMMA 4.2. The shortest edge between a node in U j and a node in U j fori k
� 4 � 4 Ž U .i / k, i, k ; 0, . . . , p y j y 1 is of length G l e .jq1
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� U U 4Proof. The set of edges e , . . . , e is a MST in the graph G .1 py1 0
Suppose there is an edge g between a node in U j and a node in U j, suchi k

Ž . Ž U . � U U 4that l g - l e . Add a corresponding edge in G , g, to e , . . . , e .ˆjq1 0 1 py1
Ž .A cycle has been created possibly consisting of two parallel edges . This

ˆ U U U U� 4 Ž � 4cycle contains at least one edge, f , from e , . . . , e since e , . . . , ejq1 py1 1 j
j ˆ U U U. Ž . Ž . � 4are all edges inside the U sets . Then, l f G l e and e , . . . , e Ri jq1 1 py1

ˆ U U� 4 � 4 � 4f j g is a strictly shorter spanning tree then e , . . . , e , contradict-ˆ 1 py1
ing the fact that the latter is a MST.

� 4 py1THEOREM 4.3. Let P be the partition returned by Procedure Part Algi is0
� Ž Ž .. 4and let apx s max l MST P : 0 F i F p y 1 . Theni

apx F 2 p y 1 opt.Ž .
py1 � U U 4Proof. Let T be a MST of G. D E j e , . . . , e is a spanningis0 O 1 py1i

tree of G. Therefore,
py1 p-1

Ul T F l e q l MST OŽ . Ž . Ž .Ž .Ý Ýi i
is1 is0

F p y 1 l eU q p max l MST O� 4Ž . Ž . Ž .Ž .py1 i
0FiFpy1

F p y 1 l eU q p opt. 1Ž . Ž . Ž .py1

Ž .The rest of the proof is by induction on p: For p s 1, opt s l T , while
the algorithm returns V, so that apx s opt.

Assuming the hypothesis is correct for partitioning the graph into
p - p sets, we prove its correctness for partitioning into p sets. We0
consider two cases:

Ž U . � U U 41. opt - l e . Let q be the number of edges in e , . . . , e ofpy1 1 py1
Ž U .length l e .py1

py1 � U U 4In this case, the set of edges D E j e , . . . , e is a spanningis0 O 1 py1i
Ž U .tree with at most q edges of length G l e . Then, according topy1

Theorem 3.3, T contains at most q edges of this length. Removing from T
Ž U . Ž U .its q longest edges will leave only edges of length - l e s l e .py1 pyq

� pyqy1 pyqy14Consider U , . . . , U , defined before. According to Lemma 4.20 q
a shortest edge between a node in U pyqy1 and a node in U pyqy1 for everyi k

Ž U .i, k is at least as long as l e . Thus, after the removal of the q longestpyq
edges from T there are no edges left between nodes from different
U pyqy1s. T is disconnected into q q 1 connected components, so that this

� pyqy1 pyqy14partitioning has to be U , . . . , U . So when removing the longest0 q
edge from T we remove an edge which connects nodes from two different

� pyqy1 pyqy14sets among U , . . . , U .0 q
By the induction hypothesis,

r F 2 a y 1 l C .Ž . Ž .1 1
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Since C is a subtree of T and since a - p:1

r - 2 p y 1 l T .Ž . Ž .1

Similarly,

r - 2 p y 1 l T ,Ž . Ž .2

giving that

� 4r s max r , r - 2 p y 1 l T .Ž . Ž .1 2

Ž U . Ž .2. l e F opt. From Lemma 4.1 and Eq. 1 ,py1

Uapx F l T F p y 1 l e q p opt F 2 p y 1 opt.Ž . Ž . Ž . Ž .py1

4.2. Complexity

Ž 2 . < <THEOREM 4.4. The time complexity of Part Alg is O n , where n s V .

Proof. We first note that before calling Part Alg we need to find a
MST on G, and when leaving Part Alg we need to find the length of the

Ž 2 .longest MST in the offered partition. Finding these MSTs takes O n ,
and should be added to the complexity of Part Alg when the complexity of
the approximation algorithm is evaluated.

We prove by induction on p that for some constant C ) 0, Part Alg
Ž .requires at most C pn time. Clearly, for p s 1 the inductive assumption

holds.
Assuming the hypothesis is correct for partitioning the graph into

p - p sets, we prove its correctness for partitioning into p sets.0
< < Ž .If V is not a multiple of nrp, Step 1 terminates in O n time.C1

Otherwise:

v Ž . Ž . < <Calling Part Alg G , T , a takes by the hypothesis at most Ca V1 1 G1

time.
v Ž . Ž .Calling Part Alg G , T , p y a takes by the hypothesis at most2 2

Ž . < <C p y a V time.G 2

Since the function is convex, the worst case for the two calls to Part Alg is
< < < < Ž . Ž Žwhen V s nrp, V s n 1 y 1rp and then they take Cp nrp q n 1 y1 2

. Ž .1rp s Cpb n, where b - 1. Altogether, Step 1 takes at most O Cpm .
Procedure Cycle Part requires as follows:

v Ž .O n time to double the edges and find the simple cycle.
v To find i we calculate for each i the length of the edges we remove0

from the cycle, and find the i for which the edges remove the longest
Ž .length. This takes O n .
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Thus, for large enough C, the computation time is bounded by Cpn and
the dominating step is finding the MST in the start and end of the

2Ž .algorithm. Hence, the whole algorithm takes O n .

4.3. A Bad Example

Ž .We now describe an instance such that Part Alg G, 2 gives apx s 3 opt.
Consider the graph with four sets of nodes described in Fig. 4a. The

distance between nodes in the same set is 0. The distance between nodes
from different sets is 1. Let p s 2.

Ž .A MST T of the graph is shown in Fig. 4b, l T s 3.
Step 1 removes e and checks the size of the components created. Sinceˆ

< < < <one of them contains a single node, V is not a multiple of V r2 s 6.C1

The algorithm then continues to Step 2.
Step 2 calls Cycle Part. p s 2 / 1 so we double the edges, yielding the

graph shown in Fig. 4c. Changing the cycle into a simple one yields the
graph in Fig. 4d. The numbering of the nodes is shown in this figure, and
for the simplicity of the figure a node ¨ is denoted just by its index i.i

FIG. 4. A bad instance for Part Algs.
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According to the notation of the algorithm, r s 5, r s r s 4, r s r6 1 5 2 3
� 4s r s 3, so i may be any one of 2, 3, 4 . The algorithm may thus choose4 0
Ž� 4 � 4.i s 4. The offered partitioning is 4, 5, 6, 7, 8, 9 , 10, 11, 12, 1, 2, 3 . This0

partitioning is shown in Fig. 5 with apx s 3. An optimal partitioning is shown
in Fig. 5b with opt s 1. Thus, apx s 3 opt.

5. IMPROVING THE BOUND

In this section we present an algorithm with a better performance
guarantee, at the expense of higher complexity. This algorithm defines a
new parameter x that controls the improvement in the bound, and the
higher complexity.

Ž .To partition G into p parts call Part Alg x G, p , defined in Fig. 6. This
algorithm considers the x q p y 1 components obtained when x q p y 2
longest edges are removed from a MST of G. It considers all of the
possible combination to aggregate part of these components into sets

< <containing a multiple of V rp nodes. For every such combination Part Alg
x is recursively called to partition the above defined set of nodes and its

complement. The combination which yields the best partitioning value is
selected.

� 4 py1LEMMA 5.1. Let P be the partition returned by Part Alg x. Theni is0

r s max l MST P F l T .Ž . Ž .Ž .i
0FiFpy1

Proof. There are two cases to be considered:
v The partition returned by Part Alg x was found in Step 2.

In this case, PT / f, so that r calculated according to the partitioning
Ž . ŽPT must satisfy r - l T else it would not substitute for the previous

.value of r .

Ž . Ž .FIG. 5. The approximate a and optimal b solutions.



APPROXIMATION ALGORITHM FOR MIN]MAX TREE PARTITION 279

FIG. 6. The improved partitioning algorithm.
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v The partition returned by Part Alg x was found in Step 3. In this
Ž .case, the partition was found by Cycle Part T , p . By Lemma 3.2, in this

Ž .case too, r F l T .

� 4 py1 Ž .THEOREM 5.2. Let P be the partition returned by Part Alg x G, p .i is0
Then

x
apx s max l MST P F 2 y p opt.Ž .Ž .i ž /x q p y 10FiFpy1

Proof. Using the same definitions as in the proof of Theorem 4.3, it
Ž .follows that Eq. 1 still applies. The rest of the proof is by induction on p.

Ž . Ž .For p s 1, obviously apx s l T s opt and since 2 y xr x q p y 1 s 1
the proof is concluded.

Assuming the hypothesis is correct for partitioning the graph into
p - p sets, we prove its correctness for partitioning into p sets. We0
consider two cases:

Ž . . Ž U .1. opt - x q p y 1 rp l e .py1
� U U 4 Ž U .Let q be the number of edges in e , . . . , e of length l e .1 py1 py1

Ž U .In this case, the number of edges of length G l e in a MST of a setpy1
Ž . . Žin an optimal solution is less than or equal x q p y 1 rp y 1 s x y

. py1 � U U 41 rp. The set of edges D E j e , . . . , e is a spanning tree of Gis0 O 1 py1i
Ž . Ž U .with at most p x y 1 rp q q s x y 1 q q edges of length G l e spy1

Ž U .l e . Therefore, by Theorem 3.3, T will also contain at most x y 1 q qpyq
edges of this length. Removing from T its x y 1 q q longest edges will

Ž U . � pyqy1 pyqy14leave only edges of length - l e . Consider U , . . . , Upyq 0 q
defined above. According to Lemma 4.2, a shortest edge between a node in
U pyqy1 and a node in U pyqy1 for every i, k is at least as long asi k
Ž U . Ž U .l e s l e . Thus, after the removal of the x y 1 q p y 1 G x ypyq py1

1 q q longest edges from T there are no edges left between nodes from
pyqy1 � 4different U s. Hence, there is a subset C , . . . , C such thati i i1 m

V s U pyqy1 .D C 0j
jgS

ŽFor this partitioning, according to the induction hypothesis since a - p
.and p y a - p ,

r s max l MST PUŽ .Ž .1 i
0FiFay1

x
F 2 y a max l MST OŽ .Ž .iž / pyqy1x q a y 1 O ;Ui 0

x
F 2 y p max l MST OŽ .Ž .iž / pyqy1x q p y 1 O ;Ui 0
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and

r s max l MST PUŽ .Ž .2 i
aFiFpy1

x
F 2 y p y a max l MST OŽ . Ž .Ž .iž / pyqy1x q p y a y 1Ž . O oUi 0

x
F 2 y p max l MST O .Ž .Ž .iž / pyqy1x q p y 1 O oUi 0

Therefore,

x
� 4max r , r F 2 y p max l MST OŽ .Ž .1 2 iž /x q p y 1 is1, . . . , p

x
s 2 y p opt.ž /x q p y 1

According to the flow of the algorithm, at the end of the algorithm the
Ž Ž .. � 4value r s max l MST P satisfies r F max r , r for this parti-0 F iF py1 i 1 2

tioning. Therefore, the returned value apx s r satisfies

x
apx F 2 y p opt.ž /x q p y 1

ŽŽ . . Ž U .2. x q p y 1 rp l e F opt.py1
Ž .From Eq. 1 ,

p y 1
Ul T F p y 1 l e q p opt F 1 q p optŽ . Ž . Ž .py1 ž /x q p y 1

x
s 2 y p opt.ž /x q p y 1

Finally, from Lemma 5.1,

x
apx F l T F 2 y p opt.Ž . ž /x q p y 1

Ž Ž pqx . p 2 .THEOREM 5.3. The time complexity of Part Alg x is O 2 n , where
< <n s V .

Ž .Proof. As before, Cycle Part takes O n . We use induction on p. For
Ž 2 .p s 1, the time is dominated by the MST computation, which is O n .
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Suppose that for partitioning the graph into p - p sets the algorithm0
requires at most C2Ž p0qx . p0 n2 time for some constant C ) 0. Now con-
sider partitioning into p sets.

Ž 2 . Ž .Step 1 takes O n time and Step 3 O n time.
The time consuming operations of Step 2 consist of scanning the 2 xqp

unions of components and whenever the number of nodes in the union is a
< <multiple of V rp:

v Ž . Ž .Calling Part Alg x G , a takes by the hypothesis at most1
aŽ xqa. < < 2C2 V .G1

v Ž . Ž .Calling Part Alg x G , p y a takes by the hypothesis at most2
Ž pya.Ž xqpya. < < 2C2 V .G 2

Altogether, this takes less than 2C2Ž py1.Ž xqpy1.n2. Multiplying by 2 xqpy1

1pŽ xqpy1. 2 pŽ xqp. 2we obtain 2C2 n , which for p G 2 is F C2 n . Adding2

C9n2 for Steps 1 and 3 and assuming C 4 C9, we obtain a bound of
pŽ xqp. 2C2 n as claimed.

A COMPLEXITY OF THE PROBLEM

A.1. NP-Completeness

THEOREM A.1

The MMTP is NP-complete even for p s 2 and when the edge lengths
satisfy the triangle inequality.

Proof. Consider the recognition version of the MMTP with p s 2:
Ž .Given a graph G s V, E and a constant K, find disjoint subsets P, Q ; V

< < < < < < Ž Ž .. Ž Ž ..such that P s Q s V r2 and l MST P , l MST Q F K.
It is easy to see that the problem is in NP. We will now reduce the

satisfiability problem to MMTP via a polynomial transformation.
Given B, an instance of the satisfiability problem with variables

X , . . . , X and clauses C , . . . , C , we construct an instance of MMTP1 n 1 m
Ž 2 . Ž . 2with 2 M q mM q n nodes where M s m q n , and K s M q mM q

n y 1. Next we prove that this instance has P and Q as required if and
only if B is satisfiable.

For each variable X , two nodes x and x are defined. For each clausei i i
C , M modes, c1, . . . , c M, are defined. The reduction also adds sets ofj j j

� 4 � 4 � 42 2nodes L s l , . . . , l , E s e , . . . , e and D s d , . . . , d .1 M 1 M 1 m M
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The following pairs of nodes are connected by edges of length 1:
v x is connected to x and x . x is connected to x and x .i iq1 iq1 i iq1 iq1
v � 4; i g 2, . . . , mM d is connected to d .i 1
v

j 1� 4 � 4; i g 1, . . . , m ; j g 2, . . . , M c is connected to c .i i
1

v � 4 Ž . Ž .; j g 1, . . . , m c is connected to the node x or x if X or Xj i i i i
is in the clause C .j

v d is connected to x and to x .1 n n
v l is connected to x , and to x .1 1 1
v

1e is connected to c .1 1
v

2 1� 4; i g 2, . . . , M l is connected to l and e is connected to c .i 1 i 1

Ž .All the other edges there is an edge between every two nodes are of
length 2.

The nodes of the graph and all the edges of length 1 for the expression

x q x x q x q xŽ .Ž .1 2 1 3 4

where m s 2, n s 4, and M s 6, are described in Fig. 7.

Ž .Ž .FIG. 7. The reduction of x q x x q x q x : m s 2, n s 4, M s 6.1 2 1 3 4
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The next step is to show that B is satisfiable if and only if the instance
of MMTP has a solution.

< < < <Suppose the MMTP instance has a solution. In this case P s Q s n
2 2 Ž .q mM q M . Since K s n q mM q M y 1 and each of MST P or

Ž . 2 Ž .MST Q has exactly n q mM q M y 1 edges, all the edges in MST P
Ž .and MST Q must be of length 1.

Ž .Since P and Q have to be chosen so that all the edges of MST P and
Ž .MST Q are of length 1, the next statements follow:

1. The nodes of D must be in the same set. Without loss of
generality we assume that D ; P.

w 4 � 4 j 12. ; i g 1, . . . , m ; j g 2, . . . , M c must be in the same set as c .i i

3. The nodes of L must be in the same set.

4. The nodes of E and c1 must be in the same set.1

< < < < 2 < <Since L q E s 2 M ) V r2 the sets L and E cannot be in the same
set, P or Q.

We claim that c1 f P. Suppose otherwise that c1 g P. From statement 21 1
it follows that c j g P for every 1 F j F M, and from statement 4 it follows1
that E : P. Altogether there are at least mM q M q M 2 nodes in P
Ž j 2mM nodes of D, M nodes that are the c nodes for all j, and M nodes1

. 2 2of E . But since M is greater than n, mM q M q M ) mM q n q M s
< < 1P , a contradiction. Therefore c f P, and from statement 4, E ­ P.1
Consequently L : P. So far we have established that

L ; P , D ; P , E ; Q,

and, for all j c j g Q.1
Next we claim for all i, j c j g Q. Otherwise, by statement 2 there are ati

least M such nodes in P and with the nodes of D and L there are
2 < <mM q M q M ) V r2 nodes in P, which is a contradiction.

So L j D ; P, altogether M 2 q Mm nodes, and there should be exactly
n more nodes in P. The only way that the nodes in D can be connected to

Ž .the nodes in L is by using a path of length n q 2 nodes, which starts at
d , ends at l and traverses on the way exactly n of the nodes from1 1

n� 4x , x .i i is1
� 4Let us name this path P . For every i g 1, . . . , n P contains either xa a i

or x . Now for every i such that x g P we set X s False. And for everyi i a i
i such that x g P we set X s True.i a i

All that is left to show now is that this assignment satisfies B. All the
nodes c1 must be connected through a path of nodes in Q and edges ofi
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length 1 to E. In particular, c1 must be connected by an edge of length 1i
to a node in Q which represents a literal of C . The complement node is ini
P , and the literal of C was therefore set to True.a i

We established that for every clause of B one of its literal was set to
True and hence B is satisfiable as required.

Ž .On the other hand suppose that B is satisfiable. Let P s V , E bea P Pa a

the path between d and l that traverses x if X is set to False and x if1 1 i i i
X is set to True.i

Set P s D j L j P . P has exactly m2 q Mm q n nodes and clearlya
the MST of P contains only edges of length 1. Set Q s C j E j V ,Qan� 4where V is defined to x , x R V .Q i i iq1 Pa a

ŽSince B is satisfiable, for every clause C is at least one of its literals xj i
. Ž .for example is set to True. In this case x g Q and therefore in MST Qi a

the node c1 will be connected to x . Hence Q has exactly m2 q mM q ni i
Ž .nodes, and MST Q contains only edges of length 1.

Ž Ž ..We established that P and Q are in the required size, and l MST P s
Ž Ž ..l MST Q s K.

A.2. Approximability without the Triangle Inequality Assumption

Ž .THEOREM A.2. If P / NP and without assuming the triangle inequality ,
the MMTP problem has no polynomial approximation algorithm with bounded
error guarantee, e¨en when p s 2.

Proof. Suppose to the contrary that there is a polynomial approxima-
tion algorithm and a constant a ) 0 such that for every instance B of the
problem the algorithm finds a solution P , Q satisfyingB B

� Ž Ž .. Ž Ž ..4 � Ž Ž .. Ž Ž ..4max l MST P , l MST Q F a max l MST P , l MST Q , whereB B 0 0
P , Q is an optimal partition.0 0

Given an instance B of the satisfiability problem, we construct the same
graph as in the proof of Theorem A.1, except that in this case all the edges

Ž . Ž 2whose lengths were not set to 1 are now set to length at least a M q
.Mm q n y 1 q 1. It follows from the above proof that B is satisfiable if

Ž . Ž .and only if there exists a partition P, Q with MST P and MST Q
� Ž Ž .. Ž Ž ..4containing only edges of unit length, and then max l MST P , l MST Q

s M 2 q Mm q n y 1. It follows that the approximation algorithm will
find such a partition whenever it exists; otherwise it will use an edge of

Ž 2 .length a M q Mm q n y 1 , in contradiction to the definition of a if
P / NP.

A.3. Complexity of Min-Sum Tree Partition

Ž . < <Given G s V, E , V s n, n a multiple of p, the Min-Sum Tree
Ž . < <Partition problem MSTP is to partition V into disjoint sets P , P s nrp,i i

p � Ž Ž .4so that Ý l MST P is minimized.is1 i
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Ž .THEOREM A.3. If P / NP and without assuming the triangle inequality ,
the MSTP problem has no polynomial approximation algorithm with bounded
error guarantee, e¨en when p s 2.

Proof. Again, consider the recognition version of the MSTP with p s 2,
< < Ž .k s k s V r2. Given a graph G s V, E and a constant K, find dis-1 2

< < < < < < Ž Ž ..joint subsets P, Q ; V such that P s Q s V r2 and l MST P q
Ž Ž ..L MST Q F K.
Again we build a reduction from the satisfiability problem as in the

Ž 2 .proof for Theorem A.2, only in this case set K s 2 M q mM q n y 1 .
The same proof as before will give the desired result.
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