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We consider the problem of partitioning the node set of a graph into p equal
sized subsets. The objective is to minimize the maximum length, over these subsets,
of a minimum spanning tree. We show that no polynomial algorithm with bounded
error ratio can be given for the problem unless P = NP. We present an O(n?) time
algorithm for the problem, where #n is the number of nodes in the graph. Assuming
that the edge lengths satisfy the triangle inequality, its error ratio is at most
2p — 1. We also present an improved algorithm that obtains as an input a positive
integer x. It runs in OQ(*9P,?) time, and its error ratio is at most (2 — x/
(x+p—1)p. © 1997 Academic Press

1. INTRODUCTION

In the min-max tree partition problem, a complete weighted undirected
graph G = (V, E) is given, where 1/ is its node set and E is the edge set,
together with nonnegative edge lengths satisfying the triangle inequality.
The set IV must be partitioned into p equal-sized subsets. A minimum
spanning tree (MST) is then found in each of the subgraphs induced by the
partition. The objective is to minimize the weight of the longest MST.

The problem (as well as the related min-sum problem) is NP complete
even for p =2, as we prove in the appendix. We therefore develop
approximation algorithms.

We present an O(n?) time algorithm whose error ratio is bounded by
2p — 1, where n = |V|. We then describe an improved algorithmic scheme
that gives a better bound, but with higher complexity. For any given value
of a parameter x € {1,2,...} it runs in O *ryx?) time and its error
ratio is bounded by (2 — x/(x + p — 1))p. For example, setting x = log n,
we obtain for any fixed p an O(n®) algorithm with an asymptotic error
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ratio of p. For p fixed and setting x to any slowly increasing unbounded
function, the same asymptotic bound can be achieved in about O(n?) time
(setting x = log log n yields O(n?log n) time).

Goemans and Williamson in [4, 5] (see also [1, 7]), and Guttmann and
Hassin in [3] gave approximate algorithms for partitioning G to achieve
minimum fotal length of the MSTs in the partition. Let 3* be an optimal
partition in the min-sum problem. Define Max(2*) to be the length of the
longest MST in an 3* and let Sum(Z*) be the sum of the lengths of all the
trees in this solution. Let OPT be an optimal partition in the min-max
problem; define Max(OPT) and Sum(OPT) in a similar way. Then

Max(2*) < Sum(2*) < Sum(OPT) < p Max(OPT).

Similarly, an approximation algorithm with an error ratio at most « for
the min-sum problem is also an approximation algorithm with an error
ratio at most ap for the min-max problem.

For the min-sum version, Goemans and Williamson gave a bound of
41 — p/n)1 — 1/n), which gives a bound of 4p for the min-max version
and p = o(n). In [3], for small values of p and any € > 0, a 2(1 + €)-
approximation was obtained for the min-sum problem, implying a 2p(1 +
€)-approximation for the min-max version. The present paper contains a
(1 + e)p approximation for the min-max version for every € > 0.

The idea of the approximation algorithm is as follows: Compute a MST
on G. If the removal of some edges breaks it into two pieces whose sizes
are multiples of n/p then do this and recurse; otherwise, double the edges
to get a Hamiltonian cycle and break this cycle into p equal-sized pieces.

Our algorithms can also be used to approximate the problem of covering
G by disjoint cycles. This can be done by doubling all the trees and using
the triangle inequality to replace each tree by a cycle whose size is at most
twice the size of the tree. The resulting error bound is twice the corre-
sponding bound for the tree partition problem.

2. DEFINITIONS

For an edge e, I(e) is the length of e.

For a set of edges E' CE, I(E') = ¥,z l(e).

For a graph G = (V, E), I(G) = I(E).

For IV’ c VV, MST(V') is a MST on the subgraph induced by V',

For a subgraph B we denote by 17; and Ej the sets of nodes and edges
in B, respectively.

Given a graph G = (V, E)|V| = n, where n is a multiple of p, the
min-max tree partition problem (MMTP) is to partition J into disjoint sets
P; of size n/p each so that max, _; _ {/(MST(P,)} is minimized.
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3. THE CYCLE PROCEDURE

The subject of this section is Procedure Cycle Part, given in Fig. 1.
However, we first present a general result. B

Consider a cycle with edges of lengths /,,...,1, > 0 (/; is the length of
edge ¢;) in this (cyclic) order. For i = 1,...,n/p consider the partition of
the cycle generated by deleting the edges with index j = i (mod n/p). Let

Cycle_Part
input
1. A graph G = (V, E), |V| =n.
2. A spanning tree T on G.
3. An integer p dividing n.

returns
{PYirg' where URG'P; = Vi and |P;| = T2l
begin
if (p=1)
then
Po = VT
return {Fp}
end if

Double all the edges in Er. A cycle has been created.
Change the cycle into a simple cycle C of equal or smaller length,
using the triangle inequality.
Number the nodes in Vp so that
E¢ = {(v1,v2), (v2,v3), ..., (Vn-1,vn), (va,v1) }.
for (i =110 %)
i+(5+1)2-2

r; = max E {(va, Vat1)-
0<i<p-1 in
a.:s+_1;
end for

Let i be an indez in {1,...,2} for which: r;, = minlgigg{”'z‘}-
for (j—O top—1)
= {va|a =40+ j2
end for
return {P;}52,
end Cycle_Part

+(+12 -1}

p?’

Fic. 1. The cycle routines.
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h' denote the maximum length of a subpath generated by this partition:
i+(j+n/p—1
hi= max Yy .
J€0 P~ k=itjn/p+1

LEMMA 3.1, There exists iy € {1,...,n/p} such that

Proof.  Suppose otherwise. Then, the removal of ¢ ¢;,, ,,, ... creates
on the cycle one path, §,, satisfying /(S,) > I(C)/2. Without loss of
generality assume that

So={eir1. €z €ivnyp 1}

The edges touching S, on both sides are ¢; and ¢, , ,,. The remove of the
edges e;, 1,€;,1.,,,--- again creates on the cycle one path, §,, satisfying
S, > I(C)/2. Since both I(S,) and I(S,) are greater than I/(C)/2, it must
be that S, N S; # ¢, so that

Sy ={ei1s, €43 "€i+n/p}'

If we continue in the same manner, defining §; to be the longest path

created on the cycle when removing e, ;, €;..,,,---, then

S; = {ei+j+l’ Cigjrar vy ei+/+n/p—1}-

In this case,

Su/p = {ei+j+n/pv€i+j+n/p + 11---1€i+j+2n/p—1}-

So S, NS, ,, = ¢. But since I(Sy) >I(C)/2 and I(S
contradiction. |

)>1(C)/2, a

n/p

LEMMA 3.2, Let {P}/",' be the partition returned by Cycle Part. Then

r= max I(MST(P)) <I(T).
<i<p-1

Proof. Define I, = I(v;,v;,,) = 0. According to Lemma 3.1 there is
i €{1,...,n/p} such that

(C)
< .
=7
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From the way the cycle was created, /(C,) < 2I(T). Therefore,

h < I(T)
i+(+Dn/p-1

= max Y I, <I(T)
O<j=p-1 k=i+jn/p+1

i+(j+Ln/p-1

= Y I, <I(T) Vje{o0,....,p—1}.
k=i+jn/p+1

It follows from the definition of r,, , that

i+1+(+Dn/p-2

Tiv1 = maX Z l(Ua’Ua+1) = Z(T)
O0<j<p=1  4—iti+ju/p

=71, <71 <I(T).
Since the edges {(v;,j, /s Vigsjnp+1) -+ Wit a1y p-2> Vigs (2 1y p— 1)}
form a spanning tree of P,

k=ig+(j+Dn/p-2

[(MST(P)) < Y (v, V51q) <713,
k=io+jn/p
[(MST(P; T
= max I(MST(R)) < /(T)
=r</T). 1

To see that when p > 3 Cycle Part may give a bad approximation
consider the graph shown in Fig. 2a. There are three sets of two nodes
each.

An edge between nodes inside the same set is of length 0. An edge
connecting nodes from different sets is of length 1.

A MST for this graph is shown in Fig. 2b. Since p = 3 # 1 we double
the edges to obtain the graph shown in Fig. 2c. The graph after the simple
cycle is created is shown in Fig. 2d.

In this case

i, can then be set to 2, giving P, = {v,, 05}, P, = {v,,vs}, P, = {vg, vy}
This partition is shown in Fig. 2e, giving a value r = 1, while an optimal
partition with opt = 0 is shown in Fig. 2f.

When p = 2, Cycle Part computes a bounded approximation. We will
use the following theorem to prove it.
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Fic. 2. Abad instance for Cycle Part.

THEOREM 3.3 (Gale). Given a graph G = (V, E). Let T, = (V, H) be a
MST of G, and let T, = (V, F) be a spanning tree of G. Suppose that

H = {hy, hy,..., h,_,} isordered so that I(h,) < -+ <I(h,),
F={f,f3,....f,_1) isordered so that I( f;) < - <I(f,)-
Then
I(h)) <I(f) Vie{l,....n—1}.
The proof is given by Gale in [2] (see also [6]).

THEOREM 3.4. When p = 2 and the input tree T, to Cycle Part is a MST
of G, the value r returned by this procedure satisfies

r < 3opt.



272 GUTTMANN-BECK AND HASSIN

Proof. Let O,,0, be an optimal partition. Denote the set of edges of
MST(O,) and MST(O,) as E, and E, , respectively. Let ¢* be a shortest
edge between O, and O,:

I(e*) = pe()mizPe() (v, u).

According to the definitions E, U E, U {e*} is a spanning tree of G,
hence:

I(Ty) <I(e*) +(MST(0,)) + (MST(0,))
<I(e*) + 2max{I(MST(0,)), [(MST(0,))}.
Therefore,
I(T,y) <1(e*) + 2opt.

There are two cases to be considered:
I(e*) < opt. According to Lemma 3.2, the value r for the returned
partition satisfies r < [(T,). Therefore,

r<lI(e*) + 2opt < 3opt.

I(e*) > opt. In this case, the set of edges E, U E, U {e*} contains at
most one edge of length /(e*). According to Theorem 3.3 T, contains at
most one edge of length I(e*), so that 7, contains at most one edge
between O, and O,. After doubling the edges there can be at most two
edges between O, and O,. Changing the cycle into a simple one does not
change the number of edges between O, and O,. Hence, the simple cycle
C contains precisely two edges between O, and O,. Since the number of
nodes in O, and O, is equal, the cycle C is ordered to contain n /2 nodes
from O,, an edge from the O, to O,, n/2 nodes from O,, and a second
edge between O, and O,. Hence, in this case r = opt. ||

4. FIRST APPROXIMATION ALGORITHM

To partition G into p parts call Part Alg(G, p), where Part Alg is
defined in Fig. 3. This algorithm uses the Cycle Part defined in Fig. 1.

Step 1 of Part Alg removes the longest edge of a MST of G. It then
checks whether the size of each of the created components is a multiple of
[V|/p. If the components satisfy this requirement, Part Alg is recursively
called to partition each of the components into parts of sizes |[V|/p.
Otherwise, Step 2 applies Cycle Part to the MST.
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Part_Alg
input
1. A graph G = (V, E).
2. T = MST(G).
3. An integer p which divides |V|.
returns
{P;}22s where U2, P; =V and |Pj| = I%l.
begin
Step 1if (p=1)
then return {V}.
end if
Find e, the longest edge in Er and remove it from Er.
Two connected components C; and C, are created.
if (|Vg, | is a multiple of J%l)
then

a = Vg, Ip
vl -

G, := the subgraph of G induced by Vg, .
T, := the subtree of T induced by V¢, .
G, := the subgraph of G induced by Vg, .
T, := the subtree of T induced by V,.
Call Part_Alg(G1,Ti, a) where:
{Ps,...,Pr_} is the returned partitioning.
Call Part_Alg(G2, T2, p — a) where:
{P:,..., P;_,} is the returned partitioning.
return {F;,..., Py}
end if
end Step 1
Step 2 Call Cycle_Part(T,p) where:
{PFs,...,P;_,} is the returned partitioning,
return {Fg,..., Py ;}
end Step 2
end Part_Alg

Fic. 3. The partitioning algorithm.
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4.1. Evaluating Part Alg
LEMMA 4.1.  Let {P}'",' be the partition returned by Part Alg. Then

r= max [(MST(P))<IT).
O<i<p-1

Proof. The proof is by induction on p. For p =1, the procedure
returns ¥, giving that r = I(MST(})), and the lemma holds.

Assuming the hypothesis is correct for partitioning the graph into
Po < p sets, we prove its correctness for partitioning into p sets. We
consider two cases.

e The partition returned by Part Alg was found in Step 1. According
to the induction’s hypothesis (and since clearly a <p and p —a < p),
ry=max,_;_,_/(MST(P)) < (T and r, =max,_,;_, /(MST(P}))
< I(T,).

T, and T, are subtrees of T satisfying /(T,) < I(T) and I(T,) < I(T).
Hence, r;, < I(T) and r, < I(T), giving that r < I(T).

e The partition returned by Part_Alg was found in Step 2. In this case,
the partition offered is the one returned from Cycle Part(T, p). According
toLemma 3.2, r <IT). 1

Let {O0}7°,} be an optimal partition, and denote the set of edges of
MST(O)) as E,, i €{0,..., p — 1}. Thus,

opt = o X {1(Ey))}-

For every i # j{i, j} <{0,..., p — 1} define ¢ ; to be an edge connect-
ing O; and O; such that

I(ei ;) = min {l(v,u)}.

vEO,;, uEOj

Define a graph G, where nodes represent the sets O;, and the length of
the edge between the node representing O; and the node representing O,
is I(e; ;) for all i and j.

Define {e*}7_! to be the p — 1 edges of a MST in this graph. Rename
the edges thus: I(e}) < l(e5) < l(e}) -+ < I(ej_y).

The set of edges U/ ('E,, U {ef, ..., ef} defines a subgraph of G with
p — j connected components. Let {U{,..., Upf_j_l} be the sets of nodes in
these components. For j = 0, {Up, ..., U ,} is exactly {Oy, ..., 0, _,}.

LEMMA 4.2.  The shortest edge between a node in U/ and a node in U] for
i+ k{i,k} c{0,...,p —j — 1} is of length > l(e]’.ﬁl).
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Proof. The set of edges {ef,...,e5_,} is a MST in the graph G,

Suppose there is an edge g between anode in U/ and a node in Uf, such
that /(g) < I(ef, ). Add a corresponding edge in G, g, to {ef,...,e;_4}.
A cycle has been created (possibly consisting of two parallel edges). This
cycle contains at least one edge, f, from {ei*ﬂ, ... ey_q) (since {ef, ..., ef}
are all edges inside the U/ sets). Then, I(f) > l(e]H) and {e1 PR BN
(Au {g} is a strictly shorter spanning tree then {ef, ..., e;_,}, contradict-
ing the fact that the latter is a MST.

THEOREM 4.3.  Let {P}/-,! be the partition returned by Procedure Part Alg
and let apx = max{{((MST(P,)): 0 <i <p — 1}. Then
apx < (2p — 1)opt.
Proof. Let T be a MST of G. UZZ('E, U {ef,...,e}_4} is a spanning
tree of G. Therefore,

(T) < L)+ AZ-‘BZ(MST(OI»))
<(p—1l(e;_1) +pOS';TL5}DX_1{l(MST(Oi))}
<(p—-1)l(e;_,) +popt. (1)

The rest of the proof is by induction on p: For p = 1, opt = I(T), while
the algorithm returns V7, so that apx = opt.

Assuming the hypothesis is correct for partitioning the graph into
Po < p sets, we prove its correctness for partitioning into p sets. We
consider two cases:

1. opt <l(es_,). Let g be the number of edges in {ef,..., e} ;} of
length I(e_,).

In this case the set of edges U~ EO U {ef,...,e5_;} is a spanning
tree with at most ¢ edges of Iength > I(ej_1). Then, according to
Theorem 3.3, T contains at most g edges of thls length. Removing from T
its g longest edges will leave only edges of length <l(e;_,) = l(e;_,).
Consider {U§~7*,...,UP~71}, defined before. According to Lemma 4.2
a shortest edge between a node in U”~ 9~ ! and a node in UP~ 7~ for every
i, k is at least as long as l(e _ ) Thus after the removal of the g longest
edges from T there are no edges left between nodes from different
UP~4971s. T is disconnected into ¢ + 1 connected components, so that this
partitioning has to be {U{~7"*,..., U” 7" '}. So when removing the longest
edge from T we remove an edge which connects nodes from two different
sets among {U{ =77 1,..., U171},

By the induction hypothesis,

r < (2a - 1)I(C,).
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Since C; is a subtree of T and since a < p:
r<@2p—-1IT).
Similarly,
r, < (2p—-1)IT),
giving that
r=max{r,,r,} <(2p—1)IT).
2. l(e;f,l) < opt. From Lemma 4.1 and Eq. (1),

apx <I(T) < (p — 1)l(ey_,) +popt < (2p — L)opt. 1

4.2. Complexity
THEOREM 4.4.  The time complexity of Part Alg is O(n®), where n = |V/|.

Proof. We first note that before calling Part Alg we need to find a
MST on G, and when leaving Part Alg we need to find the length of the
longest MST in the offered partition. Finding these MSTs takes O(n?),
and should be added to the complexity of Part Alg when the complexity of
the approximation algorithm is evaluated.

We prove by induction on p that for some constant C > 0, Part Alg
requires at most C(pn) time. Clearly, for p = 1 the inductive assumption
holds.

Assuming the hypothesis is correct for partitioning the graph into
Po < p sets, we prove its correctness for partitioning into p sets.

If V| is not a multiple of n/p, Step 1 terminates in O(n) time.
Otherwise:

* Calling Part_Alg(G,, T}, a) takes (by the hypothesis) at most CalV7; |
time.

e Calling Part Alg(G,,T,, p — a) takes (by the hypothesis) at most
C(p — a)IVGZI time.

Since the function is convex, the worst case for the two calls to Part Alg is
when |V, = n/p, IV,| = n(1 — 1/p) and then they take Cp(n/p + n(1 —
1/p) = CpBn, where B < 1. Altogether, Step 1 takes at most O(Cpm).
Procedure Cycle Part requires as follows:

e O(n) time to double the edges and find the simple cycle.

e Tofind i, we calculate for each i the length of the edges we remove
from the cycle, and find the i for which the edges remove the longest
length. This takes O(n).
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Thus, for large enough C, the computation time is bounded by Cpn and
the dominating step is finding the MST in the start and end of the
algorithm. Hence, the whole algorithm takes O(n?). 1

4.3. A Bad Example

We now describe an instance such that Part Alg(G, 2) gives apx = 3 opt.

Consider the graph with four sets of nodes described in Fig. 4a. The
distance between nodes in the same set is 0. The distance between nodes
from different sets is 1. Let p = 2.

A MST T of the graph is shown in Fig. 4b, I(T) = 3.

Step 1 removes ¢ and checks the size of the components created. Since
one of them contains a single node, [V | is not a multiple of |V|/2 = 6.
The algorithm then continues to Step 2.

Step 2 calls Cycle Part. p = 2 # 1 so we double the edges, yielding the
graph shown in Fig. 4c. Changing the cycle into a simple one yields the
graph in Fig. 4d. The numbering of the nodes is shown in this figure, and
for the simplicity of the figure a node v; is denoted just by its index i.

é

Cee> ED0

8 9 10 11 12 89 1011 12

(e) (d)

Fic. 4. A bad instance for Part_Algs.
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According to the notation of the algorithm, r; =5, r, =rs =4, r, = 1,
=r, = 3,50 i, may be any one of {2, 3,4}. The algorithm may thus choose
i, = 4. The offered partitioning is ({4,5,6,7,8,9},{10,11,12,1,2,3}). This
partitioning is shown in Fig. 5 with apx = 3. An optimal partitioning is shown
in Fig. 5b with opt = 1. Thus, apx = 3 opt.

5. IMPROVING THE BOUND

In this section we present an algorithm with a better performance
guarantee, at the expense of higher complexity. This algorithm defines a
new parameter x that controls the improvement in the bound, and the
higher complexity.

To partition G into p parts call Part Alg x(G, p), defined in Fig. 6. This
algorithm considers the x + p — 1 components obtained when x + p — 2
longest edges are removed from a MST of G. It considers all of the
possible combination to aggregate part of these components into sets
containing a multiple of [V'|/p nodes. For every such combination Part Alg
x is recursively called to partition the above defined set of nodes and its
complement. The combination which yields the best partitioning value is
selected.

LEMMA 5.1.  Let {P}",' be the partition returned by Part Alg x. Then

r= max [(MST(P))<IT).
O<i<p-—-1
Proof. There are two cases to be considered:

e The partition returned by Part Alg x was found in Step 2.
In this case, PT # ¢, so that r calculated according to the partitioning
PT must satisfy r < I(T) (else it would not substitute for the previous
value of r).

() (b)

Fic. 5. The approximate (a) and optimal (b) solutions.
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Part_Alg_z
input
1. A graph G = (V, E).
2. An integer p that divides |V|.

returns

-1
{P;}; 0whereUP Vand|P|—

=0
begin
Step 1
T:= MST(G)
end Step 1
Step 2
if (p=1)
then return {V'}.
end if
r:=(T). PT := ¢.
Remove the z + p — 2 longest edges in Er.
A set of connected components {C1,...,Coyp_1} i3 created.
for every (S C {1,...,z + p — 1} such that % divides jzé;s|ch|)
ii= Uj€3ch. a:= l‘lf‘l,lp
G1 :=The subgraph of G induced by V;.
G, := The subgraph of G induced by V\V;.
Call Part_Alg z(G,,a) where:
{Ps,...,P;_,} is the returned partitioning.
Call Part_Alg_z(G,,p — a) where:
{P;,...,P;_,} is the returned partitioning.
= maxOSJSP-l (MST(F})) .
if (r*<7)
then r ;= 7",
PT:={F5,.... P51, P,..., p—l}'
end if
end for
if (PT # )
then
return PT
end if
end Step 2
Step 3 Call Cycle_Part(T,p) where:
{P5,--., Py_} is the returned partitioning. return {P;,..., P;_;}
end Step 3

end Part_Alg_z

FiG. 6. The improved partitioning algorithm.
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e The partition returned by Part Alg x was found in Step 3. In this
case, the partition was found by Cycle Part(7, p). By Lemma 3.2, in this
case too, r < I(T). 1

THEOREM 5.2.  Let {P}/;' be the partition returned by Part Alg x(G, p).
Then

X
apx oS?Exfll(MST(E)) < (2 — )p opt.

Proof. Using the same definitions as in the proof of Theorem 4.3, it
follows that Eq. (1) still applies. The rest of the proof is by induction on p.
For p = 1, obviously apx = I(T) = opt and since 2 —x/(x +p — 1) =1
the proof is concluded.

Assuming the hypothesis is correct for partitioning the graph into
Po < p sets, we prove its correctness for partitioning into p sets. We
consider two cases:

1. opt<(x+p—1D/ple;_,).

Let g be the number of edges in {ef,...,e;_,} of length I(e}_,).

In this case, the number of edges of length > l(e;,“_l) in a MST of a set
in an optimal solution is less than or equal (x +p — 1)/p) — 1 = (x —
1)/p. The set of edges U 2 ('E,, U {ef,...,e5_,} is a spanning tree of G
with at most p(x — 1)/p + ¢ =x — 1 + q edges of length > I(e;_,) =
I(e;_,). Therefore, by Theorem 3.3, T will also contain at most x — 1 + ¢
edges of this length. Removing from 7 its x — 1 + g longest edges will
leave only edges of length < i(e¥ ). Consider {Uf 4" *,...,Ur 4 '}
defined above. According to Lemma 4.2, a shortest edge between a node in
Ur~1~' and a node in Up~4~' for every i,k is at least as long as
Il(e_,) = l(e}_,). Thus, after the removal of the x —1+p—1>x—
1 + g longest edges from T there are no edges left between nodes from
different U7~ 7~ 's. Hence, there is a subset {C, ,...,C; } such that

Uve=ug .
jeSs ,
For this partitioning, according to the induction hypothesis (since a < p
and p —a <p),
rp= max I[(MST(P*))
1

O<i<a-—

< (2 - x+;c——1)“ max [(MST(O,))

o;cuf it
(2 a ) [(MST(O
< I — max i
x+p-1 pOiCU({’*‘]*1 ( ( l))
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and
r, = a<rln<zi7x 1l(MST(Pl.*))
X
sl o, e o))
X
< (2 - w——l)p0i¢T]?lell(MST(Oi))'
Therefore,

max{r,, r,} < (2 - p max I[(MST(0,))
i= p

x+p—1) 1.,

2 * t
=|2— — |popt.
( x+p—1)pp

According to the flow of the algorithm, at the end of the algorithm the
value r = max,_,_,_/{(MST(P)) satisfies r < max{r,, r,} for this parti-
tioning. Therefore, the returned value apx = r satisfies

X
apx < (2 - )C—Fp——l)p opt.
2. ((x+p—1/ple;_y) < opt.
From Eq. (1),
l(T) < (p - 1)l(€p71) + popt < 1+ x—l—p——l p opt

X
=2—- ——|popt.
( x+p—1)p P

Finally, from Lemma 5.1,
p (1 2 — _ p opt
apx < < opt.
( ) ( 1) p

THEOREM 5.3.  The time complexity of Part Alg x is OQ2'?*?n?), where
n=|\Vl

Proof.  As before, Cycle Part takes O(n). We use induction on p. For
p = 1, the time is dominated by the MST computation, which is O(n?).
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Suppose that for partitioning the graph into p, < p sets the algorithm
requires at most C2(Po*¥)Pon? time for some constant C > 0. Now con-
sider partitioning into p sets.

Step 1 takes O(n?) time and Step 3 O(n) time.

The time consuming operations of Step 2 consist of scanning the 2**7
unions of components and whenever the number of nodes in the union is a
multiple of |V|/p:

e Calling Part Alg x(G,, a) takes (by the hypothesis) at most
C20(x+a)|VGl|2- — iy

e Calling Part Alg x(G,, p — a) takes (by the hypothesis) at most
C2(p*ﬂ)(X+p*a)|VG |2.

Altogether, this takes less than 2C 27~V +r=Dy2 Multiplying by 2771
we obtain 2C27*P~Yu? which for p > 2 is < ;C27"*Pp2. Adding
C'n? for Steps 1 and 3 and assuming C > C’, we obtain a bound of
C27+Pp? as claimed. |

A COMPLEXITY OF THE PROBLEM
A.1l. NP-Completeness

THEOREM A.1

The MMTP is NP-complete even for p = 2 and when the edge lengths
satisfy the triangle inequality.

Proof. Consider the recognition version of the MMTP with p = 2:
Given agraph G = (V, E) and a constant K, find disjoint subsets P,Q c V
such that |P| = |Q| = |V|/2 and I[(MST(P)), ((MST(Q)) < K.

It is easy to see that the problem is in NP. We will now reduce the
satisfiability problem to MMTP via a polynomial transformation.

Given B, an instance of the satisfiability problem with variables
X, ..., X, and clauses C,,...,C,, we construct an instance of MMTP
with 2(M? + mM + n) nodes (where M = m + n), and K = M? + mM +
n — 1. Next we prove that this instance has P and Q as required if and
only if B is satisfiable.

For each variable X;, two nodes x; and X, are defined. For each clause
C;, M modes, c}ch are defined. The reduction also adds sets of
nodes L = {l;,..., 12}, E={ey,...,ey2tand D ={d,,...,d,, )}
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The following pairs of nodes are connected by edges of length 1:

e X, is connected to x; , and X, ,. X; is connected to x,,, and X, ,.
e Vie{2,...,mM} d, is connected to d,.
eVie{l,...,m}Vje{2,..., M} ¢! is connected to c;.
e Vie{l,...,m c} is connected to the node x; (or x,) if X, (or )_(,.)
is in the clause C;.
e d, is connected to x, and to X,,.
e [, is connected to x,, and to X,.
e e, is connected to cj.
e Vie({2,...,M?} [, is connected to /; and e, is connected to c;.
All the other edges (there is an edge between every two nodes) are of
length 2.
The nodes of the graph and all the edges of length 1 for the expression
(% +X,)(xy + x5 +x,)
where m = 2, n = 4, and M = 6, are described in Fig. 7.

e e €35 €36
o e e

d;

~
N®

dy

Fic. 7. The reduction of (x; + X,)(x; + x5 +x,):m=2,n=4, M = 6.
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The next step is to show that B is satisfiable if and only if the instance
of MMTP has a solution.

Suppose the MMTP instance has a solution. In this case |P| =|Q| =n
+ mM + M?. Since K=n+mM + M? — 1 and each of MST(P) or
MST(Q) has exactly n + mM + M? — 1 edges, all the edges in MST(P)
and MST(Q) must be of length 1.

Since P and Q have to be chosen so that all the edges of MST(P) and
MST(Q) are of length 1, the next statements follow:

1. The nodes of D must be in the same set. Without loss of
generality we assume that D C P.

2. Yiell,...,m}Vje{2,..., M} ¢/ must be in the same set as c;.
3. The nodes of L must be in the same set.
4. The nodes of E and ¢} must be in the same set.

Since |L| + |E| =2M? > |V|/2 the sets L and E cannot be in the same
set, P or Q.

We claim that ¢} & P. Suppose otherwise that ¢; € P. From statement 2
it follows that ¢ € P for every 1 <j < M, and from statement 4 it follows
that E C P. Altogether there are at least mM + M + M? nodes in P
(mM nodes of D, M nodes that are the ¢] nodes for all j, and M? nodes
of E). Butsince M is greater than n, mM + M + M2 > mM +n + M? =
|P|, a contradiction. Therefore ¢} ¢ P, and from statement 4, E ¢ P.
Consequently L. € P. So far we have established that

LcP, DcP, EcCQ,

and, for all j ¢{ € Q.

Next we claim for all i, j ¢/ € Q. Otherwise, by statement 2 there are at
least M such nodes in P and with the nodes of D and L there are
mM + M? + M > |V|/2 nodes in P, which is a contradiction.

So L U D c P, altogether M? + Mm nodes, and there should be exactly
n more nodes in P. The only way that the nodes in D can be connected to
the nodes in L is by using a path of length (n + 2) nodes, which starts at
d,, ends at [, and traverses on the way exactly n of the nodes from
(e Xy

Let us name this path P,. For every i € {1,...,n} P, contains either x;
or x;. Now for every i such that x; € P, we set X, = False. And for every
i such that x, € P, we set X; = True.

All that is left to show now is that this assignment satisfies B. All the
nodes ¢; must be connected through a path of nodes in Q and edges of
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length 1 to E. In particular, ¢} must be connected by an edge of length 1
to a node in Q which represents a literal of C,. The complement node is in
P,, and the literal of C; was therefore set to True.

We established that for every clause of B one of its literal was set to
True and hence B is satisfiable as required.

On the other hand suppose that B is satisfiable. Let P, = (V;, E, ) be
the path between d; and [/, that traverses x; if X, is set to False and x; if
X; is set to True.

Set P=D UL UP, P has exactly m?> + Mm + n nodes and clearly
the MST of P contains only edges of length 1. Set Q = CUE UV,
where V,, is defined to {x;, ¥;}/\1 \ V}.

Since B is satisfiable, for every clause C; is at least one of its literals (x;
for example) is set to True. In this case x; ‘e Q, and therefore in MST(Q)
the node ¢; will be connected to x;. Hence Q has exactly m®> + mM + n
nodes, and MST(Q) contains only edges of length 1.

We established that P and Q are in the required size, and I((MST(P)) =
IMST(Q) =K. 1

A.2. Approximability without the Triangle Inequality Assumption

THEOREM A.2. If P # NP (and without assuming the triangle inequality),
the MMTP problem has no polynomial approximation algorithm with bounded
error guarantee, even when p = 2.

Proof. Suppose to the contrary that there is a polynomial approxima-
tion algorithm and a constant « > 0 such that for every instance B of the
problem the algorithm finds a solution Py, Qp satisfying
max{{(MST(Py)), IMST(Q)} < @ max{I{(MST(P,)), (MST(Q,))}, where
Py, Q, is an optimal partition.

Given an instance B of the satisfiability problem, we construct the same
graph as in the proof of Theorem A.1, except that in this case all the edges
whose lengths were not set to 1 are now set to length (at least) a(M?2 +
Mm + n — 1) + 1. It follows from the above proof that B is satisfiable if
and only if there exists a partition P,Q with MST(P) and MST(Q)
containing only edges of unit length, and then max{{(MST(P)), I((MST(Q))}
=M?+ Mm + n — 1. It follows that the approximation algorithm will
find such a partition whenever it exists; otherwise it will use an edge of
length a(M? + Mm + n — 1), in contradiction to the definition of « if
P+ NP. 1

A.3. Complexity of Min-Sum Tree Partition

Given G = (V,E), |[V|=n, n a multiple of p, the Min-Sum Tree
Partition problem (MSTP) is to partition } into disjoint sets P, |P,| = n/p,
so that 7 {{(MST(P,)} is minimized.
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THEOREM A.3. If P # NP (and without assuming the triangle inequality),
the MSTP problem has no polynomial approximation algorithm with bounded
error guarantee, even when p = 2.

Proof.  Again, consider the recognition version of the MSTP with p = 2,
k, =k, =1V|/2. Given a graph G = (VV, E) and a constant K, find dis-
joint subsets P,Q c IV such that |P|=1|0|=1V|/2 and [(MST(P)) +
L(MST(Q)) < K.

Again we build a reduction from the satisfiability problem as in the
proof for Theorem A.2, only in this case set K = 2(M? + mM + n — 1),
The same proof as before will give the desired result. i
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