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This paper is concerned with the minimum cost flow problem. It is shown that the class of
dual algorithms which sclve this problem consists of different variants of a common general
algorithm. We develop a new variant which is, in fact, a new form of the ‘primal-dual
algorithm’ and which has several interesting properties. It uses, explicitly, only dual variables.
The slope of the change in the (dual) objective is monotone. The bound on the maximum num-
ber of iterations to solve a problem with integral bounds on the flow is better than bounds for
other algorithms.
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Let (N, A) be a directed network, where N is a finite set and where AC N X
N. We investigate the familiar minimal cost network flow problem:

(P)

Minimize 2 CiiXiiy
(LNEA

subject to 2 X = x; =0, i€N, ¢))
(LEA (.EA
di=x;=k;, (,j)EA. 2

In problem (P), x; is the flow along arc (i, j), ¢; is the unit cost of this flow, and
d; and k; are lower and upper bounds on this flow, possibly with k; = «. The
flow into each node equals the flow out of it, and therefore (P) is a circulation
problem. The dual to (P) can be written as follows:

(D) Maximize > {d;(Vi)" +ky(Vy)7},
uneAa
subjectto U, —U;+ Vy=c¢; (G, ]J)EA, (3)
U, V; unrestricted, i€ N, (i, ) € A. )]

In (D) and throughout the paper (x)* = max{0, x} and (x)” = min{0, x}.
* This paper is part of the author's doctoral dissertation submitted at Yale University.
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Numerous computational and theoretical works developed algorithms for
solving the minimal cost network flow problem (cf. [1-6, 8-13]). Recently, Jensen
and Barnes [9] classified minimum cost network algorithms. They define four
classes; primal, dual-node-infeasible, dual-arc-infeasible, and primal-dual. In this
paper we investigate the essential features of these algorithms in order to find
the relations between them, and to evaluate the advantages each one has over
the other. We divide the most common algorithms into two classes, the primal
and the dual algorithms, each class consisting of different variants of a common
general algorithm. Further we show that the so called primal-dual algorithm can
be carried out in the same manner as a pure dual algorithm by using only dual
variables and a slight modification of the well-known version of this algorithm.
Finally, we show that this modification presents two valuable properties: the
slope of the change in the (dual) objective is monotonous, and the bound on the
maximum number of iterations is better (at least in some special cases) than the
bounds for other algorithms.

We note that in [5] and [6] the superiority of the primal simplex procedure for
the minimum cost problem was attested. However, it is important to have
improved dual algorithms, as these methods are useful in some situations such as
sensitivity analysis.

1. Notation and terminology

A path in (N, A) is a sequence (a,,...,a,) of n (n=1) arcs having, for
m=1,...,n,arc a, € A and either a,, = (i,,, I;m+1) OF a,, = (i1, in). This pathis a
cycle if i, =1i,,,. Arc a,, in this path has positive orientation if «,, = (i, i,..,) and
negative orientation if «,, = (i,.41, i,). A cycle is a directed cycle if all its arcs
have positive orientation. If arc (i, j) has cost c;, then the cost of this path is the
sum of the costs of its positively oriented arcs less the sum of the costs of its
negatively oriented arcs.

A subgraph (M, B) of (N, A) has 9 M CN, BC M xM and BC A. (We
allow a subgraph to have no arcs.) A subgraph (M, B) of (N, A) is connected if
(M, B) contains a path from each node i € M to each node j € M having j#i. A
subgraph is called a tree if it is connected and if it has no cylces. A set of
node-disjoint trees is called a forest.

For sets SCN, TCN, BCA and a function f, we have the following
definitions:

S'={ieN: &S},
S, T)={G,))EA: i€ S, jET),

f(B) = 2 fij-

(i.pEB
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2. Classification of algorithms

The most common algorithms for solving network flow problems can be
classified to ‘primal’ and ‘dual’ algorithms, according to the method by which
they improve solutions and the optimality criterion they use. We note that some
algorithms which use both primal and dual variables may belong to both classes.

Primal Algorithms. For a given feasible circulation x; define the modified
network with the set of arcs A™ and the costs ¢™ as follows:

(,)EA™ and cT=c; if (i,J)E A and x; <k;.
(i, j) (= Am and C;}l = _cji if (J, l) (= A and x,-,' > dji-

To improve the solution, find in the modified network a directed cycle with
negative cost (i.e., a negative cycle) and increase all the flow values of its arcs by
the same amount until some x; not previously equal to one of its bounds
becomes equal to it (and a modified cost changes). The following theorem gives a
necessary and sufficient condition for the termination of the algorithm.

Theorem 1 (Busacker and Saaty [2]). A feasible solution to (P) is optimal if and
only if the modified network (N, A™) has no negative cycles.

Dual Algorithms. In our study of (D), we call U; the potential of node i, and V
the reduced cost of arc (i, j). Each reduced cost V;; appears in exactly one dual
constraint. The potentials U; and the reduced cost V; are not restricted in sign.
Consequently, every set {U;} of potentials is dual feasible, since (3) is satisfied
by taking V; =c; — U;+ U;

For a given feasible set of reduced costs V;, define the modified network
(N, A) with upper (b;) and lower (a;) bounds as follows:

(dj dy) if V;>0,
(aija bij) = (dij, kij) if Vij =0,
(kij, ky) if V; <O0.
Find a set M C N with I(M) > 0, where

I(M)=a(M’, M) - b(M, M), (5)

and increase all potentials in the set M by the same amount e, until some Vi
previously not 0 becomes 0 (and a modified bound changes).

The effect of this step is to increase V; by e for (i,j)&(M’, M) and to
decrease V; by € for (i, j) € (M, M’). It is an elementary matter to check that for
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0= e < T(M) where

(o 2]
’

T(M) = min { {-Vj: (i, ) E(M’', M), V; <0}, (6)
{Vﬁ: (i, j) € (M’ M’)’ Vij > 0}’

the change in the objective of (D) is I(M) - €. Since I(M) > 0 we obtained a new
feasible solution with a greater objective value. Therefore we call M an
improving set. If T(M) = «, then (D) is feasible and unbounded, which indicates
that (P) is infeasible. The following theorem gives a necessary and sufficient
condition for the termination of the algorithm.

Theorem 2. A feasible solution to (D) is optimal if and only if the modified
network has no improving sets.

Proof. The condition is trivially necessary. To prove sufficiency, we use
‘Hoffman’s Existence Theorem for Circulations’ [7;13, p. 268]: A feasible
circulation exists in a network (N, A) if and only if k(M, M')=d(M’', M) for
every M C N.

Suppose no improving sets exist. By Hoffman’s Theorem, there exists a
feasible circulation with respect to the modified bounds. That is,

x;=d; for V;>0,
dij=x;=k; for V;=0,
x; =k; for V; <0.
By ‘complementary slackness’ this circulation is an optimal solution to (P) and

the set of reduced costs constitutes an optimal solution to (D).

The most important part of the algorithm is the search for improving sets, and
it is here that the various algorithms differ.

3. Some existing dual algorithms

In this section we demonstrate how some of the most common existing
algorithms fit into the class of dual algorithms described in Section 2.

3.1. The out of kilter algorithm
The deviation of an arc is defined as:

d; —x; if V;=0, x; <dj,
x;—dy; if Vy>0,x;>dy,
x;— ki if V=0, x; >k,

ki —x; if V; <0, x; <k;;, and
Zero otherwise.
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Improving sets are chosen as follows:

Step 1: Arbitrarily choose an arc with a positive deviation.

Step 2: By any flow algorithm (e.g. the labeling algorithm), try to find a cycle
which includes this arc, such that, by increasing all flows in arcs oriented in one
way, and decreasing flows in arcs of opposite orientation, no deviation is
increased (and the deviation of the original arc is decreased).

Step 3: By repeating Step 2, attempt to decrease the deviation of the arc to
zero. If the attempt succeeds, go to Step 1. Else, let M be the set of labeled
nodes; then I(M) > 0.

~ The last assertion requires proof. If (i, j) is an arc for which the origin i is
labeled, and the extremity j cannot be labeled, then either

Vi;>0and x; =dj, or V;=0and x; =k

If (i,j) is an arc for which the extremity j is labeled, and the origin i is not
labeled, then either Vii >0 and Xij = d,'j, or V,‘j <0 and Xjj = k,’j.
Since x is a circulation,

b(M, M) = d({(i, ) € (M, M"): V;; > 0D + k({(i, )) € (M, M"): V;; =0})
=x(M, M) = x(M’, M)
=d{(i, ) EM', M): V;=0)
+k({(i, ) € (M, M): V;; <0) = a(M', M).

However, since at least one arc in (M, M) U (M’, M) has positive deviation
(by construction), one of the inequalities is strict and, b(M, M) < a(M’', M) or,
IM)>0.

3.2. The dual simplex algorithm

The dual simplex algorithm maintains a circulation and a spanning tree T
with V =0, such that all arcs not in the tree satisfy complementary slackness:
x; =dy; if V;>0, x; =k; if V; <0. For simplicity we assume that the current
dual solution is nondegenerate. In this case, all arcs not in T have non-zero
reduced costs. The algorithm chooses the arc (m, n) € A which has the maxi-
mum deviation from the feasible region (d;—x; for x;<d; x;—k; for
x; > k;;). The tree is cut at this arc and its components are M, M’. One of them is
an improving set. Its potentials are increased until a new tree is obtained. Then
flow is sent through the unique path of T connecting the end nodes of the arc
which blocks the change of potentials, to create a new primal solution.

To see that either I(M) >0 or I(M') > 0, suppose for example that (m, n) €
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(M, M"). If xpm > ks then
IM)=a(M', M)—-b(M, M)
=[d{(i, ) € (M', M): V;> 0D+ k({(i, ) E(M', M): V; <0})]
—[d{G, HE M, M"): V; >0}
+k{@i, )y €M, M"): V; =0D + k]
>x(M', M) —x(M,M")=0.
Similarily, if x,,, <d,,,, then I(M") > 0.

3.3. The primal-dual algorithm

For each set of reduced costs, a flow is constructed such that complementary
slackness holds, and the sum of ‘node infeasibilities’ is minimum. This requires
solving the following ‘restricted’ primal problem:

minimize Y (Y{+Y)),

iEN

subject to x(i, N)—x(N,i)+Y/ —-Y; =0, iEN,

x; = ky, Vi <0,
x; = dy, Vi>0,
dy = x; < ky, V=0,
Y! Y =0

If the solution equals zero, then the flow values x constitute a feasible
circulation and complementary slackness holds. Hence, this circulation is opti-
mal. Otherwise, let U be the corresponding optimal dual solution. Then the set
of nodes i for which-U; >0 is an improving set. In fact, for every vertex of the
dual polyhedron U; € {+1, —1}, and the set {i: U, = +1} is an improving set.

4. A tree-search algorithm

The utility of Theorem 2 is enhanced if one finds efficient ways to determine
improving sets. So far we described some common methods that perform the
search. We describe below a more direct algorithm which is a modified version
of the primal—dual algorithm. This algorithm solves the ‘restricted’ dual problem
directly by using explicitly only dual variables.

Network (N, A) is said to have independent costs if it contains no simple cycle
whose cost is 0. It is always possible to perturb the c;’s so that a network has
this property [3, p. 231]. To simplify the exposition, we assume throughout that
network (N, A) has independent costs. We note, however, the algorithm des-
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cribed in this section can be executed also with costs which are not independent.
In this case, when some reduced costs become simultaneously zero, all except
for one are assumed to retain their sign. Consequently it may happen that
T(m) = 0 in equation (6).

Consider any feasible solution to (D), and set

F ={(, J) Vij =0, dij < kij}:

so that F is the set of arcs whose reduced costs are (currently) 0. Suppose F
contained a simple cycle. Sum (3) to see that the cost of this cycle equals 0. But
this contradicts our assumption of independent costs. Hence, F has no cycle.
Consequently, (N, F) is a forest.

Call M a good improving set if I(M) >0 and if I(M) > I(S) for every proper
subset S of M. Call M the best improving set if M is the unique good improving
set such that I(M) = I(S) for every SC N.

The tree-search algorithm locates the best improving set:

Step 1: Set f(i)=0 for eachi € N. Set F ={(i,j)€ A: V;; =0, d; <k;}.

Step 2: For each (i,j)€E€F, set f(i) < [f(i)+ 1] and f(j) < [f(j) + 1]. (Step 2
initializes f(i) to the number of arcs in F which are incident with node i.)

Step 3: Set S=N, M =0 and P@G)={i}, J(@)=I{i}) for each i € N. (This
procedure is intended to terminate with S =@ and M = best improving set. At
each stage J(i) is the ‘effective’ improvement for node i, and P(i) is a set of
nodes which belong to the best improving set if and only if node i belongs to the
set.)

Step 4: Stop if S=0. Else find i € S such that f(i)<1. Set S—[S—{/}].

Step 5: If J(i) <0, go to Step 8. Else set M «— [M U P(i)].

Step 6: If f(i) =0, go to Step 4. Else find the unique j such that either (i, j) € F
or (j,i)EF.

Step 7: Set f(N<[f(D—11. If (iL,))EF, set J()<[J(j)+b;—ay]l. Fe
[F —{(i, D}]. Else set J()<[J(j)+ b; — a;}., F<—[F —{(j. )}]. Go to Step 4. (The
new value of J(j) represents the change in (5) caused by joining j to M, given
ieEM)

Step 8: If f(i) =0, go to Step 4. Else find the unique j such that either (i, j)€ F
or (j,d ) €F. Set f(<—[f()—1]1. If (i,j))EF set a «—(i,j), and if (j,i)EF set
a<—(,i).Set Fe<F—a. IfJ(i))+b;—a;<0and a« =(i,j) orif J(i)+b; —a; =0
and a = (j, i) go to Step 4.

Step 9: Set P(j) < [P()UPQU)). If « =(i,)) set J(§) < [J(G)+ J(i) + b, — a;].
Else set J(j) < [J(§) + J(i) + b; — a;]. Go to Step 4.

Theorem 3. The tree-search algorithm finds the best improving set.

Proof. Denote by T the best improving set. Suppose that at a certain stage of the
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algorithm
@) PU)C TorP() C T’ foreveryi € N;
(ii) MCT, N-S-MCT'.

Note that since i € P(i), assumption (i) implies that for every i € N:
(i1i) P()CTif, and only if, i € T.

These assumptions clearly hold when Step 3 is executed, and we must show
that they still hold after each execution of Steps 5 and 9.

In Step S, if J(i) > 0, then joining i to any set which contains M increases the
value of (5) of this set. Since by (i) M C T also i € T, and by (iii) P(i)C T. If
J (i) =0 the value of (5) will not increase and P (i) C T'. We conclude that (ii) is
preserved in Step S.

In Step 9, if either J(i)+b;—a; >0 and (i,j)€ F or J(i)+ b; —a; >0 and
(j, i) € F, then joining i to any set containing P(j) increases the value of (5) for
this set. In any other case the value of (5) decreases. Together with (i) this
implies that (i) is preserved by this step.

Since (ii) holds until the algorithm terminates with s =¢, the final set M
satisfies M C T and M'C T’ so that M = T.

An alternative search policy is to apply the tree-search algorithm until any
(good but not necessarily the best) improving set is found, and then to change its
potentials. This policy requires less computations in each iteration. However,
when best improving sets are found, some theorems, including a bound on the
number of iterations, can be proved. We now state and prove these theorems.

Theorem 4. Let M, be the best improving set at iteration r. Let I(M, r) be the
value of I(M) at iteration r. Then I(M,, r) is nonincreasing in r.

Proof. Suppose, for example that only arc (i, j) € (M,. M}) blocks the change of
potentials at iteration r. (The same proof holds when more than one arc blocks
the change.) The only decrease in I(M,) is caused by b; which was changed
from d; to k. (f {j, i) €(M,, M,), then the decrease is caused only by a; which
was changed from k; to d;.)

(a) Suppose i € M,,,, then M,,, D M,.
If M,,, =M, then
IM,,,,r+1)=1I(M,r)+a; - b; <I(M,r).
If M,,, # M,, then M,, DM, jEM,,, and
IM,, r+ 1) =1(M,,,, 1) <I(M,, r).

(b) Suppose iZ M,,,, then M,,; C M, and since M, is a good improving set
I(Ml'+l) r+l)=I(MI'+]’ r)<I(Mr’ r)-
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Note that by perturbation it is possible to ensure that only one arc blocks the
change of potentials. In this case either M,,, C M, or M, D M, in each iteration.

Corollary 1. If I(M,, r)=I(M,,,,r+ 1), then M,,, D M,.
Corollary 2. The same value of I(M,, r) cannot recur more than |[N|—1 times.

Corollary 3. Suppose all bounds are integers, then no more than |N|- I(M,, 1)
iterations are needed to find an optimal solution.

Since the order of work needed in each iteration is |[N|?, the bound is of order
IN|? - I(M,, 1). This bound is better than the bound for the out-of-kilter method
which is [N}’ times the sum of initial primal infeasibilities (cf. [12]).

Corollary 4. The direction of change in the reduced cost of any arc cannot be
opposite in two successive iterations.

Corollary 5. If the same arc blocks the change of potentials in iterations m and
n, m <n, then m =<n - 3.

Proof for Corollary 5. Suppose that (i, j) blocks in iteration m. In iteration m + 1,
V; may become nonzero. In iteration m + 2 the direction of change in V; cannot
be opposite. Only in iteration m + 3, (i, j) can block again.

Theorem 5. The algorithm converges to an optimal solution in a finite number of
iterations.

Proof. I(M) is equal to a linear combination 3, €;Z;, where ¢; €{0, 1, — 1}, Z; €
{d;, k;}. Hence there is only a finite set of possible values of I(M) for M = the

best improving set. By Corollary 2 of Theorem 3, the algorithm terminates after
a finite number of iterations.

Theorem 6. Let M,, I(M,r) be as in Theorem 3. Then (M ,M,+# @. (In other
words, there exists at least one node which is included in all best improving sets.)

Proof. Suppose the assertion is false. Then there exist r and M such that
IM,r)>0, I(S,r)<=0 for all SCM (i.e. M is a minimal improving set in
iteration r) and (N2 M) NM = 6.
Let s = max{t: t <r, M is not a minimal improving set in iteration t}. Then,

either (a) or (b) holds:

(a) Forall SC M, I(S, s)=0.

If M; " M =@, then M, is not the best improving set (since if we join M to M,
we obtain a better set).

M NM=M,then I(M, s)=I(M, s + 1). But this is a contradiction since we
assumed I(M, s +1)>0=I(M, s).

Therefore, M N M;#® and M N M.,#@ is incident to the blocking arc in
iteration s. Since M is a minimal improving set in iteration s + 1, I[(M N M,, s) =
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IMNM,s+1)=<0. But I(M,s +1)>0, hence by joining M N M; to M, we
obtain a better set. Again, this is a contradiction.

(b) There exists S C M such that I(S,s)>0. Replace M by S, r by s and
restart the procedure.

Since |N| is finite, the process must result in a contradiction. Therefore there
exists at least one node included in all best improving sets.

Corollary. If c;# 0 for all (i, j) € A, then exactly one node is contained in all the
best improving sets.

Similarily the following theorem can be proved:

Theorem 7. There exists at least one node, which is not included in any of the
best improving sets.

Note that the tree search algorithm and the related theorems can be devised
similarly when a best improving set is defined to be the set M such that
I(M)=I(S) for all SC N and if I(S) = I(M), then SC M.

5. Example and some comments

There need not be a unique sequence of iterations when the primal-dual
algorithm is applied in its common form. Uniqueness may be achieved when the
capacities are perturbed. But in this case, the integrality of data and the bound of
Corollary 3 of Theorem 3, are lost. However, for the cost perturbed problem
when the tree search version is applied the sequence of iterations is unique.

The following theorem and example illustrate that at least in the special case
presented there the use of the tree search version proves to be beneficial.

»

Theorem 8. A problem with four nodes and no more than one arc connecting
each pair of nodes, is always solved by no more than eight iterations.

Proof. Suppose node 1 is in all sets, and node 4 is not included in any of them.
Then only the arc connecting nodes 2 and 3 may block more than once. By
Corollary 5 to Theorem 3, between any two iterations in which this arc blocks,
there must be at least two other iterations in which the other five arcs block.
Hence this arc blocks at most three times.

The example presented in Fig. 1 is solved by the primal-dual algorithm.
Improving sets are marked by small circles. Nine improving sets are found and
each of them strictly improves the dual objective. This is more than the bound
given by Theorem 8. Note that the upper arc blocks four times. In the first five
iterations, best improving sets are found. But, in the next three iterations, the
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e()=-1(p 0 1(0,0) 2
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Fig. 1. The primal-dual algorithm.

best set consists of only the left lower node. Thus, Corollary 5 to Theorem 3
does not hold for the upper arc.

Note, however, that the number of iterations in the primal-dual method, even
in its modified form does not have a polynomial upper bound, relative to |N]|.
This can be observed by using it to solve Zadeh’s ‘bad’ problems [17]. These are

simple transportation problems with n sources and n sinks, which require
2" +2""2— 2 jterations.
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There is no unique sequence of iterations, when applying the out-of-kilter
algorithm. In this algorithm as opposed to the primal-dual algorithm, it is
possible that the removal of certain nodes from the improving set increases its
unit-improvement, I(-). Another possible dual algorithm consists of the following
steps: (1) apply the tree-search procedure until any good (not necessarily best)
improving set is determined; (2) change potentials. In this algorithm the removal
of a node from the set decreases its unit-improvement (in fact the set ceases to
be an improving set). This algorithm consists of shorter iterations but may lead
to long sequences of improving sets before reaching the optimal solution.
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