
Computers & Operations Research 32 (2005) 683–705
www.elsevier.com/locate/dsw

Machine scheduling with earliness, tardiness and
non-execution penalties

Refael Hassin∗, Mati Shani1

Department of Statistics and Operations Research, School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel

Abstract

The study of scheduling problems with earliness–tardiness (E/T) penalties is motivated by the just-in-time
(JIT) philosophy, which supports the notion that earliness, as well as tardiness, should be discouraged. In this
work, we consider several scheduling problems. We begin by generalizing a known polynomial time algorithm
that calculates an optimal schedule for a given sequence of tasks, on a single machine, assuming that the
tasks have distinct E/T penalty weights, distinct processing times and distinct due dates. We then present
new results to problems, where tasks have common processing times. We also introduce a new concept in
E/T scheduling problems, where we allow the non-execution of tasks and consequently, are penalized for
each non-executed task. The notion of task’s non-execution, coincides with the JIT philosophy in that every
violation or a breach of an agreement, should be penalized. We develop polynomial time algorithms for special
cases in E/T scheduling problems with non-execution penalties.
? 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The study of scheduling problems with earliness and tardiness (E/T) penalties is relatively recent.
For many years, the research of scheduling problems focused on minimizing measures such as
mean :ow-time, maximum tardiness, and makespan, all non-decreasing in the completion times of
tasks. For these measures, delaying execution of tasks results in a higher cost. However, the current
emphasis in industry on the just-in-time (JIT) philosophy, which supports the notion that earliness,
as well as tardiness, should be discouraged, has motivated the study of scheduling problems in which
tasks are preferred to be ready just at their respective due dates, and both early and tardy products
are penalized.

∗ Corresponding author.
E-mail addresses: hassin@post.tau.ac.il (R. Hassin), kermat@inter.net.il (M. Shani).

1 Present address: 59 Ben-Gurion St., Kfar Saba 44204, Israel.

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2003.08.012

mailto:hassin@post.tau.ac.il
mailto:kermat@inter.net.il

684 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

In this paper, we consider several E/T scheduling problems. We are given a set T̃={T1; : : : ; TN} of
tasks. Task Ti has an integer processing time pi ¿ 0 and a target starting time ai¿ 0 (or equivalently,
a due date di, where di¿pi). There are m parallel machines, {M1; : : : ; Mm}. Our notation follows
that of Garey et al. [1].

A solution for T̃ , is an assignment of each task Ti to a machine Mj and a schedule corresponding
to that assignment, which determines a starting time si for Ti on Mj. The scheduling of starting
times, must satisfy that no two tasks assigned to the same machine overlap in their execution time,
and that the tasks are to be scheduled non-preemptively; once started, a task Ti must be executed to
its completion, pi time units later.

A sequence deInes the order in which, tasks are to be processed, whereas a schedule is a se-
quence with starting times calculated for each task. We assume nonnegative earliness penalty weight
�i and nonnegative tardiness penalty weight �i, associated with task Ti. Ti incurs the earliness
penalty �i(ai − si) if si ¡ai and it incurs the tardiness penalty �i(si − ai) if si ¿ai. We deIne ei =
max{0; ai−si} ≡ (ai−si)+ and ti=max{0; si−ai} ≡ (si−ai)+ and thus, the penalty incurred by Ti is
�iei + �iti. The overall cost of a solution, which we wish to minimize, is the sum of the individual
penalties, i.e.,

∑N
i=1 (�iei + �iti). We refer to this cost function, as the Total Weighted Earliness and

Tardiness problem (TWET—see [2]). In general, we denote the cost of solution T̃ by cost(T̃).
In Section 4, we introduce a new type of penalty to the E/T scheduling problems. Assume we

are allowed to not-execute one or more of the tasks. Denote by �i the penalty incurred if Ti is not
executed (processed). Thus, a modiIed TWET problem, is to minimize

∑N
i=1 [(1−xi)(�iei+�iti)+xi�i]

where xi = 0 if Ti is executed and xi = 1, otherwise. The notion of task’s non-execution, Its the JIT
philosophy in that every violation or a breach of an agreement, should be penalized.

2. Literature review

The research can be classiIed into two main categories, which re:ect the due date speciIcations:

1. Problems with common due date {di = d}, which we denote CDD.
2. Problems with distinct due dates {di}, which we denote DDD.

The problems can be further categorized with respect to other criteria such as, number of machines
and cost functions.

2.1. Common due date problems

We distinguish between restricted and unrestricted problems. The problem is restricted, when no
task can start before time zero. The problem is unrestricted, when d is large enough for example,
d¿

∑N
i=1 pi. The restricted problems are often more diMcult to solve. Baker and Scudder [3] and

Gordon et al. [2] give a comprehensive review on the restricted and the unrestricted problems. In
this work, we consider only unrestricted problems.

Baker and Scudder [3] state three necessary properties, that any optimal solution to CDD problems
must satisfy:

Property 1. No idle time is inserted.

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 685

Property 2. The sequence is V -shaped; that is, early tasks are sequenced in non-increasing order of
the pi=�i ratio and tardy tasks are sequenced in non-decreasing order of the pi=�i ratio.

Property 3. The bth task in the sequence, completes precisely at the due date, where b is the smallest
integer satisfying the inequality

∑b
i=1 �i¿

∑N
i=b+1 �i.

An important special case, is the unrestricted problem with �i = �i = 1 for 16 i6N (unit E/T
penalty weights). In this problem, which we refer to as the Mean Absolute deviation problem
(MAD—see [3]), we minimize

∑N
i=1 (ei + ti). The analysis of this problem is due to Kanet [4], Hall

[5] and Bagchi et al. [6]. Kanet [4] and Hall [5] introduce an O(N 2) time algorithm, which solves
MAD. Bagchi et al. [6] present a modiIcation which reduces the complexity to an O(N logN) time
algorithm.

The Weighted Earliness and Tardiness problem (WET—see [2]) is a generalization of MAD,
where �i = � and �i = � for 16 i6N . Thus, we minimize

∑N
i=1 (�ei + �ti). Bagchi et al. [7],

present an O(N logN) time algorithm for WET.
Recall the three properties that any optimal solution of a CDD problem must hold. Property 1 states

that there is no idle time in any optimal solution and property 3 states that a certain task completes
precisely at the due date. Thus, the only factor that determines the starting time (or equivalently, the
due date) of each task, is its relative position in the sequence. With some algebraic manipulation, the
cost function can be formulated in terms of positional weights. Denote by B the set of strictly early
tasks, i.e., B ≡ {Ti|si ¡a} and denote by A the set of tardy tasks, i.e., A ≡ {Ti|si¿ a}. Also denote
by B(i) the ith task processed in B and by A(i) the ith task processed in A. Thus, the cost function
of MAD can be rewritten as

∑|B|
i=1 ipB(i) +

∑|A|
i=1 (|A| − i)pA(i) and the cost function of WET can be

rewritten as
∑|B|

i=1 �ipB(i) +
∑|A|

i=1 �(|A| − i)pA(i), where |B| = �N�=(�+ �)� and |A| = �N�=(�+ �)	
(where |A| + |B| = N). The positional weight is the term �ipB(i) or �(|A| − i)pA(i), which gives the
contribution of a task to the cost function conditioned on its position in the solution.

Hall and Posner [8] consider the TWET problem with �i = �i = wi for 16 i6N , where wi is
the symmetric E/T penalty weight of Ti. We will refer to this problem as the Symmetric TWET
(STWET—see [2]) and the objective is to minimize

∑N
i=1 wi(ei + ti). They prove that the problem

is NP-hard and provide an O(N
∑N

i=1 pi) pseudopolynomial time Dynamic programming (DP) al-
gorithm, which solves STWET. They also present special cases in which the STWET problem is
polynomial. De et al. [9] and Jurisch et al. [10], provide another special case in which STWET is
polynomially solvable. Kovalyov and Kubiak [11], present a fully polynomial approximation scheme
to STWET.

Szwarc [12] considers the TWET problem in which tasks have agreeable ratios, i.e., pi=�i ¡
pj=�j ⇒ pi=�i ¡pj=�j ∀i; j where 16 i �= j6N .

In problems with almost equal due dates (AEDD), the due date of each Ti maintains di ∈ [d; d+pi]
for some given large d (i.e., the unrestricted version). Hoogeveen and van de Velde [13] present
an O(N 2) time DP algorithm to the AEDD WET problem and a pseudopolynomial O(N 2 ∑N

i=1 pi)
time DP algorithm to the AEDD STWET problem.

2.2. Distinct due dates problems

The three properties, which any optimal solution for the CDD problems must hold, do not neces-
sarily hold in the DDD problem. James and Buchanan [14] redeIne these properties for the DDD

686 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

scheduling problems. They deIne a block as the maximal set of tasks that are scheduled contiguously
without idle time inserted between them. Any optimal solution to a DDD problem, must satisfy the
three properties with simple modiIcations, with respect to blocks of tasks.

Garey et al. [1] prove that even the single machine DDD MAD problem, is NP-hard. To the
special case where tasks must be processed in a given order (sequence), they present an O(N logN)
time optimal scheduling algorithm, which we refer to as Algorithm GTW. They also prove that even
if the tasks are not pre-ordered but have a common length of processing time p¿ 0, sequencing
the tasks with the property ai6 ai+1 for 16 i¡N and applying Algorithm GTW to this sequence,
results in an optimal solution. There are other scheduling algorithms that are described in literature,
such as of Davis and Kanet [15] or, of Szwarc and Mukhopadhyay [16] (both papers consider
the DDD TWET problem). All algorithms are polynomial and their computational ePort is at most
O(N 2).

The diMcult phase however, is the sequencing. Fry et al. [17,18], Kim and Yano [19], Ow and
Morton [20], Lee and Choi [21] and James and Buchanan [14] present heuristic procedures for
sequencing.

One of the most innovative works on the DDD TWET problem is of Verma and Dessouky
[22]. They assume that pi = 1 for 16 i6N . Note that if di ∈N for 16 i6N , the problem can
be formulated as an assignment problem; the diMculty arises when the due dates are fractional.
They formulate the problem as an integer linear programming (ILP) and assume the following
dominance condition over the penalty weights: Tasks are indexed such that both �16 �26 · · ·6 �N
and �16 �26 · · ·6 �N hold. If the “6” signs are replaced by the “¡” signs, they refer to it as
the strict dominance condition. They prove that if the set of tasks satisIes the dominance condition,
there exists an integral extremal optimal solution to the linear programming (LP) relaxation of the
ILP formulation and thus, the problem is solved in polynomial time. Moreover, if the tasks satisfy
the strict dominance condition, any extremal optimal solution to the LP relaxation is integral. They
also present four cases in which the dominance condition is met. Note that the complexity of the
DDD TWET problem, with a common processing time, general due dates and general E/T penalty
weights, is still an open question.

Two important papers are worthwhile noting. The Irst, by Kanet and Sridharan [23], is a re-
view of problems with inserted idle time (IIT). They also deIne a taxonomy of the IIT problems.
The second, by Gordon et al. [2], is a recent and a thorough survey of the CDD assignment and
scheduling problems. They summarize most of the work published in the previous decade. Although
their survey emphasizes on CDD problems, they also note important works, which consider DDD
problems.

2.3. Parallel machines

Machines are identical, if they operate at the same speed and thus, pj is the Ixed process-
ing time for Tj. Machines are uniform, if machine Mi has a distinct speed ui and thus, pij =
pj=ui is the processing time for Tj on Mi. Machines are unrelated, if machine Mi has a distinct
task-dependent speed uij for processing Tj and thus, pij = pj=uij is the processing time for Tj
on Mi.

Sundararaghavan and Ahmed [24], Hall [5] and Emmons [25] solve the CDD MAD problem,
with parallel identical machines. Hall [5] presents an O(N 2) time algorithm and Sundararaghavan

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 687

and Ahmed [24] and Emmons [25], present an O(N logN) time algorithms. Emmons [25] also
considers the CDD WET problem, with parallel identical and parallel uniform machines and the
O(N logN) time algorithm is extended to these problems. Kubiak et al. [26] prove that the CDD
MAD problem and the problem of minimizing the mean :ow time with parallel uniform machines,
are equivalent. They also prove that in the case of parallel unrelated machines, the problem can be
reduced to a transportation problem.

Webster [27] proves that the CDD STWET problem, which is NP-hard in the case of single-
machine, is strongly NP-hard for parallel identical machines. Thus, the CDD TWET problem is also
strongly NP-hard for parallel identical machines. Chen and Powell [28] present a Branch-and-Bound
algorithm for the CDD TWET problem with parallel identical machines.

2.4. Problem summary

To conclude this review, we summarize the E/T scheduling problems described so far and the
problems we shall further address. We adopt the method for problem classiIcation of Lageweg et al.
[29] and present in Table 1 the “maximal easy problems” (the most general cases of polynomially
solvable problems) and the “minimal hard problems” (the most simple cases of NP problems). Other
problems are cited below the table and are related to speciIc problems described in the table. To
simplify, we use the standard three-Ield notation a|b|c used for scheduling problems (Lawler et al.
[30]), where a describes the machine environment, b describes the schedule and task characteristics
and c describes the cost function. We use P, Q and R to denote, respectively, parallel identical,
uniform and unrelated machines, with an index m denoting a Ixed (given) number of m machines.
d, dres, [d; d + pi] and di denote, respectively, CDD, restricted CDD, AEDD and DDD problems.
p and pi denote, respectively, common and distinct processing times. � and �i denote, respectively,
common and distinct non-execution penalty weights. Unless clearly presented in the b-Ield, the
non-execution penalties are not considered. GENERAL denotes common, general, non-decreasing
E/T penalty functions or,

∑N
i=1 [h(ei) + g(ti)]. CONVEX denotes common, convex, non-negative

and not necessarily symmetrical E/T penalty function P, where P(0) = 0 and P(x)¿ 0 ∀x �= 0. NPC
and SNPC denote, respectively, NP-hard and strongly NP-hard problems and “?” denotes that the
complexity of the problem is unknown.

Table 1
Problem summary

Problem Complexity References; Algorithms Remarks

1 1|dres; pi|MAD NPC [31], [32]; O(N
∑N

i=1 pi) 1,2,3,4
2 1|d; pi|STWET NPC [8]; O(N

∑N
i=1 pi) 5,6

3 1|d; pi|GENERAL NPC [33] 7,8
4 1|[d; d+ pi]|WET P [13]; O(N 2) 9,10
5 1|di; pi|MAD NPC [1] 11,12
6 Qm|d; pi|WET P [25]; O(N logN) 13,14,15
7 Pm|d; pi|STWET SNPC [27] 16
8 Pm|di; p|CONVEX P [Algorithm 11]; O(N logN) 17,18
9 1|di; p; �i|CONVEX ? [Algorithm 16]; O(N 2p) 19

688 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

Table 1 (continued)

Problem Complexity References; Algorithms Remarks

10 1|d; p; �|STWET P [Algorithm 18]; O(N logN) 20
11 1|d; pi; �i|WET ? 21
12 1|d; p; �i|WET P [Algorithm 23]; O(N)

13 1
∣∣∣d; pi�i = r

∣∣∣ WET P [Algorithm 25]; O(N logN) 22

Note: 1. With the restriction that the solution must start at time zero, an eMcient heuristic is given in [24]. Enumeration procedures
are given in [6] and [34]. An O(N logN) time 4

3 -approximation algorithm is presented in [35].
2. To the version of WET (1|dres; pi|WET), an enumeration procedure is presented in [7].
3. The unrestricted version of MAD (1|d; pi|MAD), is considered in [4–6] and O(N logN) time algorithms are presented. The optimal
solution is not unique. The problem reduces to a two parallel identical machines, mean :ow time problem.
4. To the version of unrestricted WET (1|d; pi|WET), an O(N logN) time algorithm is presented in [7]. The uniqueness of the optimal
solution depends upon the E/T penalty weights. The problem reduces to a two parallel nonidentical machines, mean :ow time problem.
5. The problem is polynomial in special cases (see [8–10] and [Algorithm 18]). A FPTAS approximation is given in [11].
6. The version of TWET (1|d; pi|TWET), is considered in [12]. Pseudopolynomial time algorithms are given to the special case, where
tasks have agreeable ratios of E/T penalty weights.
7. In [36], an O(N 3) time greedy heuristic is presented. For a common, convex E/T penalty function, the algorithm has a performance
guarantee of e−1 ∼ 0:36.
8. In [37], the E/T penalty weights consist of two parts, one being a variable cost (a function of |si − ai|), while the other being a Ixed
cost incurred once a task is early/tardy. The optimal solution is “W-shaped” if the tasks are agreeably weighted and a pseudopolynomial
O(N 2 ∑N

i=1 pi) time DP algorithm is presented. Under certain conditions, a faster, pseudopolynomial O(N
∑N
i=1 pi) time DP approxi-

mation algorithm, with a relative error that tends to 0, as N increases, is applicable. In more restrictive special cases, the latter algorithm
also calculates the optimal solution.
9. The O(N 2) time algorithm is applicable to E/T problems other than the AEDD, as long as the cost function can be formulated in
terms of positional weights, the optimal schedule has no idle time, and there exists an optimal schedule that can be characterized by the
task that completes on time and the set of early tasks.
10. The version of STWET (1|[d; d+pi]|STWET) is considered in [13] and a pseudopolynomial O(N 2 ∑N

i=1 pi) time DP algorithm is
presented.
11. In [1], the problem is proved to be polynomially solvable if either: (1) there is a given sequence of tasks, (2) the tasks have a
common length of processing times. In the special case of a given sequence, an O(N logN) time algorithm is presented in [1] and three
generalizations to the algorithm are presented in the cases of: (1) each task has a given target window of starting time, (2) tasks are
given with consecutive processing constraints, and (3) the cost function is STWET. Heuristic solution procedures are given in [18,19].
12. The version of the TWET problem (1|di; pi|TWET), is polynomially solvable if there is a given sequence of tasks and an O(N logN)
time algorithm is given in [Section 3.1]. For a given sequence of tasks, other scheduling algorithms are presented in [15,16]. If p = 1,
TWET is also polynomially solvable and even the parallel uniform problem (Qm|di; p= 1|GENERAL), can be formulated as an assign-
ment problem. The problem is also polynomially solvable, if there is a common processing time p �= 1, general di and the E/T penalty
weights satisfy the dominance condition and it is solved through LP in [22]. In [22], they also present special cases of E/T penalty
weights in which the dominance condition is met and thus, the problem is polynomially solvable. Heuristic solution procedures are given
in [14,17,21]. The complexity of the problem, with a common processing time p �= 1, general di and general E/T penalty weights, which
do not satisfy the dominance condition, is still an open question.
13. The version of MAD (Qm|d; pi|MAD), is considered in [25,26]. In [26], the problem is proved to be equivalent to a mean :ow time
problem.
14. The version of MAD with parallel identical machines (Pm|d; pi|MAD), is considered in [24,5,25] and O(N logN) time algorithms
are presented.
15. The version of MAD with unrelated machines (Rm|d; pi|MAD), is considered in [26] and it reduces to a transportation problem.
16. The version of TWET (Pm|d; pi|TWET), is considered in [28] and a Branch-and-Bound procedure is developed.
17. For the version of the single-machine problem (1|di; p|CONVEX), an O(N logN) time algorithm is presented in [Theorem 4].
18. For the version of the two parallel identical machines problem (P2|di; p|CONVEX), an O(N logN) time algorithm is presented in
[Algorithm 8].
19. The 1|di; p; �i|TWET problem, assuming that the E/T penalty weights satisfy the dominance condition, is solved polynomially in
Section 4.2.
20. The complexity is unknown for the 1|d; p; �i|STWET problem. The complexity is unknown also for the 1|d; pi = wi; �|STWET
problem (a case solved polynomially in [8], when � = ∞).
21. The case of agreeably reversed tasks is considered in Section 4.4. [Algorithm 21] yields the optimal solution in an O(N logN) time.
22. The complexity is unknown for the 1|d; pi=�i|WET problem (when the ratio pi=�i is not common), even if (1) pi and �i are
agreeable, i.e., p16 · · ·6pN and �16 · · ·6 �N , or (2) if the tasks can be ordered in a non-decreasing ratio of processing times and
non-execution penalty weights, i.e., p1=�16 · · ·6pN =�N .

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 689

It is interesting to note that under unrestricted due dates and linear E/T penalty functions, all
NPC scheduling problems described in this work, have at least two degrees of freedom in terms
of task parameters, whereas polynomial scheduling problems, have a single degree of freedom. For
example, in the NPC problem 1|d; pi|STWET (Problem 2), tasks have distinct processing times and
distinct (although symmetric) E/T penalty weights. On the other hand, in the polynomial problem
1|d; p; �i|WET (Problem 12), tasks only have distinct non-execution penalty weights. Therefore, it
is plausible to suggest that open problems such as 1|di; p; �i|TWET and 1|d; pi; �i|WET, which have
two or more degrees of freedom, are NPC problems.

In the following sections, we present some new results to speciIc E/T scheduling problems. In
Section 3 we present generalizations of Algorithm GTW to single and parallel machine problems.
In Section 4 we present E/T scheduling problems, which include a non-execution penalty.

3. Generalizations of Algorithm GTW

Garey et al. [1], consider the 1|di; pi|MAD problem under a given sequence of tasks and present
an O(N logN) time scheduling algorithm (Algorithm GTW). They also prove that if the tasks are
not pre-ordered but, have a common length of processing time p¿ 0, it is optimal to sequence the
tasks such that ai6 ai+1 for 16 i¡N . The solution generated by the algorithm to this optimal
sequence, is a minimum cost schedule in which si6 si+1 for 16 i¡N . We start this section by
presenting Algorithm GTW after modifying it to handle the TWET problem. We then show that the
special case of common processing times can be generalized under extended conditions, allowing
the tasks to have a common non-negative convex—not necessarily symmetrical—penalty function.
Finally, we present a zigzagging algorithm extension to handle parallel machines.

3.1. Modi;ed Algorithm GTW

In this subsection, we consider the optimal scheduling of a given sequence of tasks, under the
TWET cost function. Let Sn be the partial solution computed for the Irst n tasks. We use the
deInition of a block as was stated in Section 2.2. We denote the tasks in a block by {Ti0 ; : : : ; Ti1}
and they obtain si + pi = si+1 for i06 i¡ i1, si0−1 + pi0−1¡si0 (or i0 = 1) and si1 + pi1 ¡si1+1 (or
i1 = N). Assume that there are t blocks B1; : : : ; Bt in Sn. We deIne a partition of each block Bj
into two subsets of tasks, Dec(j) and Inc(j), as follows: Dec(j) ≡ {Ti ∈Bj|si ¿ai} and Inc(j) ≡
{Ti ∈Bj|si6 ai}. The idea is that if Ti ∈ Dec(j), reducing si (but not earlier than ai) decreases the
discrepancy of Ti, whereas if Ti ∈ Inc(j), reducing si increases its discrepancy.

We deIne I(j) =
∑

Ti∈Inc(j) �i and D(j) =
∑

Ti∈Dec(j) �i. As a way of representing the blocks, we
denote by Irst(j) and last(j) the smallest and largest indices, respectively, of the tasks in Bj.

Our initial solution S1, simply schedules T1 to start at a1. In general, given Sn, we schedule Tn+1

as follows: If sn +pn6 an+1, we schedule Tn+1 to start at an+1. Here, Tn+1 has no discrepancy, and
Sn and Sn+1 have the same cost. If on the other hand sn+pn¿an+1, we begin by scheduling Tn+1 to
start at sn+pn. Now Tn+1 has a positive discrepancy and both, the last block Bt and its corresponding
set Dec(t), have gained Tn+1 as a member. A key property that the algorithm maintains is that, for
each Bj ∈ Sn, either D(j)¡I(j) or sIrst(j) = 0 (i.e., Irst(j) = 1). If sn +pn¿an+1, depending upon
the values of the E/T penalty weights, scheduling Tn+1 to start at sn +pn may result in D(t)¿ I(t).

690 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

If sIrst(t) = 0 or D(t)¡I(t), we take no further action; the current solution (schedule) is Sn+1. On
the other hand, if sIrst(t)¿ 0 and D(t)¿ I(t), we can shift Bt earlier, without increasing the total
E/T penalties of this solution. We may even decrease the total penalty had we had D(t)¿I(t) prior
to the shift. The shift is performed, until one of the following three cases occur:

1. sIrst(t) becomes zero. In such a case, we stop the shift. Or,
2. for some Ti ∈Bt , si becomes equal to ai. In such a case, we recalculate D(t) and I(t). One of

two cases occur:
(a) D(t)¡I(t). In such a case, we stop the shift. Or,
(b) D(t)¿ I(t). In such a case, we continue the shift until one of the three cases occur (i.e.,

1, 2 or 3). Or,
3. sIrst(t) becomes equal to slast(t−1) +plast(t−1). In such a case, we recalculate the values of D(t−1)

and I(t − 1) of the uniIed block Bt−1. One of two cases occur:
(a) D(t − 1)¡I(t − 1). In such a case, we stop the shift. Or,
(b) D(t − 1)¿ I(t − 1). In such a case, we continue the shift with Bt−1 until one of the three

cases occur (i.e., 1, 2 or 3).

The resulting solution is Sn+1.
Case (1) can only occur if t = 1; if it occurs, block Bt (or actually B1) cannot be moved earlier

because it now starts at time zero. In case (2), Ti is transferred from Dec(t) to Inc(t). If D(t)¡I(t),
further shifting of Bt will only increase the cost of the solution. If on the other hand D(t)¿ I(t),
further shifting is desirable or at least, not harmful. In case (3), Bt is merged into Bt−1. As in case
(2), the values of D(t − 1) and I(t − 1) in the merged block, depend upon the speciIc values of
the E/T penalty weights. Therefore, by the properties mentioned earlier, if either D(t− 1)¡I(t− 1)
or sIrst(t−1) = 0, further shifting of Bt−1 will either increase the cost of the solution or illegally start
a task before time 0. If on the other hand D(t − 1)¿ I(t − 1) and sIrst(t−1)¿ 0, further shifting is
desirable.

The modiIed algorithm GTW begins with S1 and applies the above construction to form S2; S3;
: : : ; SN . The observations above suggest why the algorithm should work. When forming SN , the
algorithm terminates with an optimal solution.

3.2. Convex E/T penalties

Algorithm GTW can be further generalized to the case, where each Ti has a distinct, convex E/T
penalty function Pi (not necessarily symmetrical) over R, such that Pi(0) = 0 and Pi(x)¿ 0 ∀x �= 0
for i= 1; : : : ; N . We deIne the earliness penalty of Ti as Pi(ai−si) and the tardiness penalty as Pi(si−
ai). We also deIne I(j) and D(j) as I(j) =

∑
Ti∈Inc(j) P

′
i(ai− si) and D(j) =

∑
Ti∈Dec(j) P

′
i(si−ai),

where P′
i is the derivative of Pi. Thus, the decision of whether a shift will take place, is determined

through the marginal values of the E/T penalties in Inc(j) and in Dec(j). Case (2) of the algorithm
is no longer valid, since the desirability of a shift does not necessarily change in time points of
target starting times but, in any point along the time scale for which the balance between I(j) and
D(j) is changed. Note however, that the special case of common processing times cannot be solved
with this modiIcation of the algorithm and in order to solve the problem, we need to assume that
Pi = P for i = 1; : : : ; N (a common, convex E/T penalty function).

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 691

3.3. Common processing times

Garey et al. [1] prove that in the 1|di; p|MAD problem it is optimal to execute the tasks in a
nondecreasing order of their target starting times. We now prove that this sequence is also optimal
for the more general problem of 1|di; p|CONVEX. We note that the 1|di; p|TWET problem is
polynomially solvable under the dominance condition on the E/T penalty weights, due to Verma and
Dessouky [22]. Although we assume a common penalty function, which is a stricter demand than
the dominance condition, we allow any convex function and the time complexity of our algorithm
is smaller than that of Verma and Dessouky [22].

For the following properties, let P be a convex function over R, where P(0) = 0 and P(x)¿ 0
∀x �= 0.

Property 1. ∀x1; x2; x3 ∈R such that x16 x26 x3,

P(x3) − P(x2)
x3 − x2

¿
P(x2) − P(x1)
x2 − x1

:

Property 2. 1. ∀x1; x2; x3 ∈R such that 0¡x1; x2; x3,

P(x2) + P(x1 + x2 + x3)¿P(x1 + x2) + P(x2 + x3):

2. ∀x1; x2; x3 ∈R such that x1; x2; x3¡ 0,

P(x2) + P(x1 + x2 + x3)¿P(x1 + x2) + P(x2 + x3):

Property 3. 1. ∀x1; x2 ∈R such that 0¡x1; x2,

P(x1 + x2)¿P(x1) + P(x2):

2. ∀x1; x2 ∈R such that x1; x2¡ 0,

P(x1 + x2)¿P(x1) + P(x2):

Theorem 4. Consider the 1|di; p|CONVEX problem and assume that 06 a16 · · ·6 aN . Then,
there exists a minimum cost solution in which si6 si+1 for 16 i¡N .

Proof. Let S be a solution such that for some i¡ j, ai ¡aj but si ¿ sj. We will show that Ti and
Tj can be interchanged in S, without increasing its cost. The theorem then follows by induction on
the number of interchanges needed to put the tasks in order of their indices (and their target starting
times). Since Ti and Tj have equal lengths of processing time, interchanging their starting times
results in a feasible schedule. Note that the starting times of all other tasks remain unchanged and
thus, their corresponding E/T penalties remain unchanged. There are six cases to consider, depending
on the relative ordering of ai, aj, si and sj. For example, assume that sj ¡ si6 ai ¡aj. We deIne
for convenience a = si − sj, b = ai − si and c = aj − ai. In S, the E/T penalty of Ti and Tj is
P(b) + P(a + b + c), whereas after the interchange, the penalty is P(a + b) + P(b + c). Using
Property 2 we have P(b) + P(a+ b+ c)¿P(a+ b) + P(b+ c) and thus, the E/T penalties incurred

692 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

by Ti and Tj do not increase. Similarly, using Properties 2 and 3 we prove the other Ive pos-
sible relative orderings ai ¡aj6 sj ¡ si, sj6 ai6 si6 aj, sj6 ai ¡aj6 si, ai6 sj ¡ si6 aj and
ai6 sj6 aj6 si. In all six cases, the E/T penalties incurred by Ti and Tj do not increase.

3.4. Parallel machines

In this subsection we will consider parallel machine problems. We start however, with some
properties that characterize the single-machine solutions computed by Algorithm GTW. Denote by
GTW(a1; : : : ; aN) the solution (schedule) returned by Algorithm GTW given the input a16 · · ·6 aN .

Property 5. Let S = GTW(a1; : : : ; aN) and S̃ = GTW(ã1; : : : ; ãN). Denote by si, the starting time of
Ti in S and by s̃i the starting time of T̃ i in S̃. Assume that the E/T penalty functions satisfy P= P̃.
If ai6 ãi for i = 1; : : : ; N , then si6 s̃i for i = 1; : : : ; N .

Proof. Assume ai= ãi for every i �= j and aj ¡ ãj. Then, by executing Algorithm GTW it is evident
that si6 s̃i for i = 1; : : : ; N . Now, Property 5 is achieved by applying this claim repeatedly, each
time considering a diPerent j for which aj ¡ ãj.

Property 6. Let S = GTW(a1; : : : ; aN) and S̃ = GTW(a0; a1; : : : ; aN), where 06 a06 a1. Denote by
si the starting time of Ti in S and by s̃i the starting time of Ti in S̃, then si6 s̃i for i = 1; : : : ; N .

Proof. Solution S is obtained from the set {T1; : : : ; TN} of tasks. Assume a task T0 with a0 = 0.
Let S∗ = GTW(0; a1; : : : ; aN). Clearly, if p6 s1, si = s∗i for i = 1; : : : ; N . On the other hand,
if p¿s1, si6 s∗i for i = 1; : : : ; N . Meanwhile, apply Property 5 to S∗ = GTW(0; a1; : : : ; aN) and
S̃ = GTW(a0; a1; : : : ; aN) where 06 a0, which results in s∗i 6 s̃i for i= 0; : : : ; N . Combining the two
results we get si6 s̃i for i = 1; : : : ; N .

Property 7. Let S = GTW(a1; : : : ; aN−1), S̃ = GTW(a1; : : : ; aN−1; aN). Denote by si, the starting time
of Ti in S and denote by s̃i, the starting time of Ti in S̃. Then, si6 s̃i+1 for i = 1; : : : ; N − 1.

Proof. As with Property 6, compare solution S to solution S∗ = GTW(0; a1; : : : ; aN−1) and compare
solution S∗ to solution S̃ and combine the two results to get si6 s̃i+1 for i = 1; : : : ; N − 1.

Consider now the P2|di; p|CONVEX problem, with machines denoted M1 and M2. We suggest
the following Zigzagging algorithm with an O(N logN) time complexity.

Algorithm 8.

P2|di; p|CONVEX
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of T̃ .
begin
1. Order the tasks in a nondecreasing order of their target starting times, i.e., a16 · · ·6 aN .
2. S1 := GTW(a1; a3; : : : ; a2
(N−1)=2� + 1).

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 693

3. S2 := GTW(a2; a4; : : : ; a2
N=2�).
4. Apply schedule Si to machine Mi for i := 1; 2.
return The schedule of Si on Mi. [The solution.]
end P2|di; p|CONVEX

Lemma 9. The Zigzagging solution satis;es si6 si+1 for 16 i¡N − 1.

Proof. Consider Irst an odd i, then si is obtained from GTW(a1; a3; : : : ; ai; : : :) whereas si+1 is
obtained from GTW(a2; a4; : : : ; ai+1; : : :). It follows from Property 5 that si6 si+1 and in general,
sj6 sj+1 for any odd j, where 16 j¡N − 1.

Consider now an even i, then si is obtained from S = GTW(a2; a4; : : : ; ai; : : :) whereas si+1 is
obtained from S̃ = GTW(a1; a3; a5; : : : ; ai+1; : : :). Let S∗ = GTW(a3; a5; : : : ; ai+1; : : :) and by Property
5, si6 s∗i+1 (we add a virtual T ∗

N+1 to have N tasks in S∗). Apply Property 6 to S̃ and S∗ and thus,
s∗i+16 s̃i+1. Combining the two results we get si6 s∗i+16 s̃i+1 and thus, si6 si+1 for any even i,
where 16 i¡N − 1.

Theorem 10. The Zigzagging solution is optimal for the P2|di; p|CONVEX problem.

Proof. Let S̃ be the solution generated by the zigzagging algorithm and let S be an arbitrary solution.
Because of the optimality of Algorithm GTW, we assume that it was applied to the sequence of S,
separately to each machine. According to Theorem 4, the assignment in S will maintain the property
such that, the tasks are sequenced with nondecreasing target starting times. Thus, the only possible
diPerence between S and S̃ is a diPerent assignment of tasks to machines. Assume that Ti−1 and Ti
are assigned to the same machine, say M1, in S and are the Irst such pair of consecutive tasks (on
either machine). Thus, the assignment of tasks {T1; : : : ; Ti−1} is equivalent in S and in S̃. Denote
by Tk , the Irst task assigned to M2 in S, following Ti−2. Clearly, k ¿ i and thus ak¿ ai. Denote
by si, the starting time of Ti in S.

1. Assume sk ¡ si. Interchanging Tk with Ti in S is feasible, and by the same observations given
in Theorem 4, such an interchange will result in a schedule with less or equal cost. If following
this interchange S= S̃, we stop the procedure, having a zigzagging sequence with no greater cost,
which concludes our proof. Otherwise, the value of i is greater.

2. Assume si6 sk and si−26 si−1. Clearly, p6 si − si−1 and thus p6 sk − si−1 and p6 si − si−2.
We now interchange tasks {T1; T3; : : : ; Ti−1} and tasks {T2; T4; : : : ; Ti−2} maintaining the original
starting times of each set. The interchange is feasible, the cost of the schedule remains the same
and either S = S̃ or, the value of i is greater.

3. Assume si6 sk and si−1¡si−2. We interchange Ti−2 and Ti−1 maintaining the original starting
times of the tasks. The interchange is feasible and results in a schedule with less or equal cost. We
now observe si−3 and si−4. If si−3¡si−4, we create a similar interchange. Otherwise, we perform
the feasible interchange of tasks {T1; T3; : : : ; Ti−3} and tasks {T2; T4; : : : ; Ti−4} maintaining the
original starting times of each set. If the former instance occurs (si−3¡si−4), we observe si−5

and si−6 and so on. Once completed, we maintain a schedule with less or equal cost and either
S = S̃ or, the value of i is greater.

694 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

In all three instances, following the interchange, either S = S̃ or, the value of i is greater. We
continue to the next two consecutive tasks until all tasks are assigned in a zigzagging sequence,
similar to S̃. Since all interchanges do not increase the cost of S, the zigzagging sequence in S̃ is
thus, an optimal assignment procedure.

We now consider the Pm|di; p|CONVEX problem, with m machines denoted M1; : : : ; Mm, and
suggest the following Extended Zigzagging algorithm with an O(N logN) time complexity.

Algorithm 11.

Pm|di; p|CONVEX
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of T̃ .
begin
1. Order the tasks in a nondecreasing order of their target starting times, i.e., a16 · · ·6 aN .
for i = 1; : : : ; m:

1. Si := GTW(ai; am+i; a2m+i; : : : ; a(
N=m�−1)m+i).
2. Apply schedule Si to machine Mi.
end for

return The schedule of Si on Mi. [The solution.]
end Pm|di; p|CONVEX

We may apply Lemma 9 and Theorem 10 on any two machines and thus, we conclude by the
following lemma and theorem.

Lemma 12. The Extended Zigzagging solution satis;es si6 si+1 for 16 i¡N − 1.

Theorem 13. The extended Zigzagging solution is optimal for the Pm|di; p|CONVEX
problem.

4. Non-execution penalty

In this section we remove the requirement that all tasks must be executed. Denote by �i the
penalty incurred if Ti is not executed. For example, a modiIed TWET problem is to minimize∑N

i=1 [(1 − xi)(�iei + �iti) + xi�i] where xi = 0 if Ti is executed and xi = 1, otherwise. We will
consider diPerent cost functions and present polynomial time algorithms.

4.1. 1|di; p; �i|CONVEX

We present a pseudopolynomial time DP algorithm, which computes an optimal solution for the
1|di; p; �i|CONVEX problem.

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 695

Lemma 14. Consider the 1|di; p; �i|CONVEX problem, and denote by S the optimal solution. Also
denote by S∞ the optimal solution to the 1|di; p; �i = ∞|CONVEX problem (i.e., the problems are
identical, except for their non-execution penalty weights). If S∞ includes idle time between Tk and
Tk+1, such an idle time also exists in S.

Proof. According to Theorem 4, sequencing the tasks in a non-decreasing order of their target
starting times, assuming all tasks are executed, is optimal. Without loss of generality, assume that
06 a16 · · ·6 aN , that there is an idle time in S∞ between Tk and Tk+1, and that Tj is the only
non-executed task in S. The case with more than a single non-executed task, is proved by applying the
arguments inductively. Note that in S∞ all tasks must be executed. Assume that 16 j6 k. The proof
for the case where k+16 j6N , is analogous. Denote by {si} and {s∞i}, the starting times in S and
in S∞, respectively. Clearly, si=s∞i for k+16 i6N and speciIcally, sk+1 =s∞k+1 . Apply Property
5 to S̃= GTW(0; a1; : : : ; aj−1; aj+1; : : : ; ak) and S̃∞ = GTW(a1; : : : ; aj−1; aj; aj+1; : : : ; ak), which results
in s̃i6 s̃∞i , where {s̃i} and {s̃∞i} are the starting times in S̃ and in S̃∞, respectively. SpeciIcally,
s̃k6 s̃∞k . Apply Property 6 to S and S̃, which results in si6 s̃i for i = 1; : : : ; j − 1; j + 1; : : : ; k and
speciIcally, sk6 s̃k . Combining the results, we achieve sk6 s̃∞k = s∞k . Thus, the idle time between
Tk and Tk+1 in S, is not smaller than the corresponding idle time in S∞.

Lemma 14 does not hold if tasks may have distinct processing times. Observe the follow-
ing example. There are 3 tasks, T1, T2 and T3. Target starting times are a1 = a2 = 2 and a3 =
4. The E/T penalty weights are �1 = �2 = �3 = �1 = �3 = 1 and �2 = 2. The processing times
of the tasks are p1 = 2 and p2 = p3 = 1. The optimal solution without allowing non-execution
is S1 = (T1; T2; T3), with cost(S1) = 2 and starting times are (0; 2; 4) respectively, with an idle
time in the time interval [3,4]. Assume that non-execution is allowed and that �2 = *¡ 2 and
�1 and �3 are very large. Thus, the optimal solution is executing S2 = (T1; T3), with cost(S2) =
*¡ 2 and starting times are (2; 4) respectively. T2 is not executed and S2 does not have an idle
time.

Corollary 15. Consider the 1|di; p; �i|CONVEX problem and assume a16 · · ·6 aN . Assume that
S∞ includes idle time. Then, under any given set of values of �i, the problem can be divided into
sub-problems, each sub-problem considers a di>erent block of tasks from S∞.

Therefore, without loss of generality, we assume that S∞ does not include an idle time. Thus,
s∞1 6 a1, aN6 s∞N , s∞N = s∞1 + (N − 1)p, and the time domain of the DP algorithm is the time
interval [s∞1 ; s∞N]. Applying a common shift to the target starting times (and as a result, the starting
times are shifted), we may assume without loss of generality that s∞1 = 0 and that the time domain
of the starting times is [0; (N − 1)p].

DeIne fi(t) as the cost of an optimal solution for the sub-problem including tasks {Ti; Ti+1; : : : ; TN},
where the machine is free for processing only from time t, in which t ∈ [0; 1; : : : ; (N − 1)p]. The
algorithm calculates the value of fi(t) for diPerent values of t, where t=(N−1)p; (N−1)p−1; : : : ; 0
and then proceeds to calculate the value of fi−1(t) for t = (N − 1)p; (N − 1)p− 1; : : : ; 0, etc. The
result is the optimal solution f1(0). At each decision point, we may execute Ti and pay a potential
E/T penalty or, we may prefer to not-execute Ti and pay a non-execution penalty �i. Denote by
P(t; ai) the cost of scheduling Ti to start at t given that ai is its target starting time.

696 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

Algorithm 16.

1|di; p; �i|CONVEX
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of the executed tasks.
begin
1. Order the tasks in a nondecreasing order of their target starting times, i.e., a16 · · ·6 aN .
2. fN+1(t) := 0 for t = 0; 1; 2; : : : ; (N − 1)p.
3. fi(t) := ∞ for i = 1; : : : ; N and (i − 1)p¡ t6 (N − 1)p.
4. Calculate fi(t) for i = N; : : : ; 1 and t = (N − 1)p; : : : ; 0, where

fi(t) := min

fi+1(t) + �i if Ti is not executed

fi+1(t + p) + P(t; ai) if Ti starts execution at t

fi(t + 1) if Ti starts execution after t:
return f1(0) [The solution.]
end 1|di; p; �i|CONVEX

The time complexity of Algorithm 16 is O(N 2p), due to O(N) iterations and an O(Np) time
complexity of each iteration.

4.2. 1|di; p; �i|TWET

We now show, that under the dominance condition of the E/T penalty weights described in
Section 2.2, the 1|di; p; �i|TWET problem is polynomially solvable. We use the result of Verma and
Dessouky [22] for the 1|di; p|TWET problem and perform necessary modiIcations to their algorithm.
To enable easy reference, we use their terminology (see Problem 2.1 in [22]), assuming p= 1 and
{di} are not necessarily integers. We use the following notations:

• xi; j ∈ {0; 1} denotes whether Ti is executed at time j, where xi; j = 1 if Ti is scheduled to start at
j, and xi; j = 0, otherwise.

• ci; j denotes the E/T penalty incurred as Ti is executed at time j, where ci; j = �iei + �iti with
ei = (ai − j)+ and ti = (j − ai)+.

• Qi is the set of feasible starting times of Ti (i.e., if Ti is executed, its starting time must be a
member of Qi). Note that the set Qi is calculated as a part of the solution, but its size |Qi|, is
polynomially bounded and thus the complexity of the algorithm remains polynomial.

• Hj is the set of feasible starting times of all tasks, which are not later than time j and not earlier
than one time unit from j, i.e., Hj ≡ {j′ ∈ {Qi}Ni=1|06 j− j′¡ 1}. Note that |Hj| is polynomially
bounded, since all |Qi| are polynomially bounded. Thus, the complexity of the algorithm remains
polynomial.

The problem can be formulated as follows:

min z =
N∑
i=1

∑
j∈Qi

ci; jxi; j +
N∑
i=1

�i

1 −

∑
j∈Qi

xi; j

s:t:
∑
j∈Qi

xi; j6 1 for 16 i6N;

(1)

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 697

N∑
i=1

∑
j′∈Hj∩Qi

xi; j′ 6 1 ∀j; (2)

xi; j ∈ {0; 1} for 16 i6N and ∀j∈Qi: (3)

The only diPerences between the formulation of Verma and Dessouky [22] and ours, are the right
term of the objective function (the penalty for non-execution) and that constraint (1) is an inequality
instead of an equation (since we allow non-execution). All proofs given in Verma and Dessouky
[22] except for their Theorem 3.1, do not consider the objective function and thus, hold also in our
case. The proof of Theorem 3.1 is based upon a mutual decrease of strictly positive variables and
an equal increase of other variables, which represent the same task. Thus, such a change in variable
values, does not change the total sum of variables of each task and therefore, the penalty accrued
by the non-execution penalty remains Ixed. Thus, Theorem 3.1 also holds in this problem and it is
polynomially solvable.

Note that the Qm|di; p = 1|GENERAL problem is solved as an assignment problem. We now
present special cases, where more eMcient algorithms apply. In the algorithms, we use the concept
of positional weights, which was introduced in Section 2.1. We will speciIcally describe the structure
of the positional weights, in each problem. In all four cases, we consider a common due date.

4.3. 1|d; p; �|STWET

Assume that the tasks are ordered in a non-increasing order of their E/T penalty weights w1¿ · · ·
¿wN . We will show that the set of executed tasks consists of those with the smallest E/T penalty
weights. We deIne a strictly early set B and a tardy set A, as in Section 2.1 and assign half of the
tasks to B and the other half to A in a “V-shape” sequence (see Section 2.1). Since the Irst task in
A does not incur an E/T penalty, we assign T1 to start at a. Thus, all odd indexed tasks are assigned
to A and all even indexed tasks are assigned to B. The positional weight of Tj ∈B is

∑
i=j; j+2; ::: pwi

and the positional weight of Tj ∈A is
∑

i=j+2; j+4; ::: pwi. Thus, T2 has the largest positional weight.
If �¡

∑
i=2;4; ::: pwi, T1 is not executed and the process is repeated with the set {T2; : : : ; TN} of

N − 1 tasks. Now, T2 is the task with the largest E/T penalty weight, and thus is assigned to start
at a. Therefore, all even indexed tasks are now assigned to A and all odd indexed tasks (except
for T1, which is not executed) are now assigned to B. Now, T3 has the largest positional weight∑

i=3;5; ::: pwi and we verify whether �¡
∑

i=3;5; ::: pwi. Generally, assume that we do not execute
the task with the current smallest index, say Tj. Thus, the positional weight of Tj+1 (becomes the
Irst processed task in A), decreases by pwj+1.

Property 17. There exists an optimal solution, which executes {Ti∗ ; : : : ; TN} and does not execute
{T1; : : : ; Ti∗−1}, where i∗ is the minimal index such that �¿

∑
i=i∗+1; i∗+3; ::: pwi.

Proof. First, we show that the set of executed tasks, denoted S, consists of those with the smallest
E/T penalty weights, i.e., S = {Ti∗ ; : : : ; TN}. To the contrary, assume that ∃Tk �∈ S and ∃Tj ∈ S such
that wk6wj. If we execute Tk instead of Tj, the E/T penalties incurred by all other tasks in S do
not change, and the saving . in the total cost due to the change is: .=pwj −pwk¿ 0. Therefore,
performing the change does not increase the total cost of the solution. The property then follows by
induction on the number of interchanges needed, so that the set of tasks {Ti∗ ; : : : ; TN} is executed.

698 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

We now show, that i∗ is the minimal index such that, �¿
∑

i=i∗+1; i∗+3; ::: pwi. To the contrary,
assume that i∗ is smaller than the minimal possible such index. Thus, �¡

∑
i=i∗+1; i∗+3; ::: pwi and not

executing Ti∗ as directed by the algorithm, results in a positive reduction in the total cost.
Similarly, if i∗ is larger than the minimal possible such index, �¿

∑
i=i∗ ; i∗+2; ::: pwi and executing

Ti∗−1 is desirable, since it results in a non-negative cost reduction.

Algorithm 18.

1|d; p; �|STWET
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of the executed tasks.
begin
1. Order the tasks in a non-increasing order of their E/T penalty weights,
i.e., w1¿ · · ·¿wN .
2. b := p(w2 + w4 + w6 + · · · + w

2
N2 �).

3. a := p(w3 + w5 + w7 + · · · + w2
(N−1)=2�+1).
4. i∗ := 1.
while �¡max{a; b} do

i∗ := i∗ + 1.
if i∗ is even

then
b := b− pwi∗ .

else
a := a− pwi∗ .

end if
end while

5. Assign {Ti∗ ; : : : ; TN} to B and A such that, B := (: : : ; Ti∗+5; Ti∗+3; Ti∗+1)
and A := (Ti∗ ; Ti∗+2; Ti∗+4; : : :).
6. Schedule set B to complete at a and schedule set A to start at a.
return The schedule of sets B and A. [The solution.]
end 1|d; p; �|STWET

O(N logN) time is needed to order the tasks and to calculate the initial values of b and a. O(N)
time is needed to determine the value of i∗ (the while loop) and for sequencing. Thus, the overall
complexity of the algorithm is O(N logN).

Note that the solution is not unique, as the Irst scheduled task in A could be replaced by any
non-executed task and the cost remains the same.

4.4. 1|d; pi; �i|WET

For arbitrary and distinct pi and �i, the complexity of the problem is unknown. However, if
the processing times and the non-execution penalty weights maintain the following condition, the
problem is polynomially solvable.

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 699

De/nition 19. Assume that tasks T1; : : : ; TN are ordered in a non-decreasing order of their processing
times, i.e., p16 · · ·6pN . We say that the tasks are agreeably reversed, if the non-execution penalty
weights �i maintain �1¿ · · ·¿ �N .

The case with agreeably reversed tasks, is solved in an O(N logN) time complexity. There are
two special cases in which the tasks are agreeably reversed.

• Common non-execution penalty weight. In this case, we assume that �i = � for i = 1; : : : ; N .
• Common processing time. In this case, we assume pi = p for i = 1; : : : ; N and a more eMcient
O(N) time algorithm is presented. The problem is considered in Section 4.5.

Assume that the tasks are ordered in a non-decreasing order of their processing times p16 · · ·6pN
and that the tasks are agreeably reversed. We will show, that the set of executed tasks consists of
those with the smallest processing times (and the largest non-execution penalty weights). We deIne
the sets B and A, as before. Assume that k tasks are executed and thus, we assign �k�=(� + �)�
tasks to B and �k�=(� + �)	 tasks to A, in a “V-shape” sequence (see Section 2.1), where Tk is
scheduled last. The E/T penalty of the Irst processed task is

∑
i∈B �pi and the E/T penalty of

Tk , is
∑

i∈A\{k} �pi. Therefore, if �k ¡max{∑
i∈B �pi;

∑
i∈A\{k} �pi}, Tk is not executed and the

process is repeated with the set {T1; : : : ; Tk−1} of k − 1 remaining tasks. Otherwise, all k tasks are
executed, and ∀Tj ∈ {T1; : : : ; Tk}, �j¿max{∑

i∈B �pi;
∑

i∈A\{k} �pi}. We refer to this condition as
the execution property. If Ti ∈B, is the lth processed task, its positional weight is l�pi and if Ti ∈A,
is the lth processed task in A, its positional weight is (�k�=(�+ �)	 − l)�pi.

Property 20. Assume that the tasks are ordered in a non-decreasing order of their processing times
p16 · · ·6pN , and that the tasks are agreeably reversed. There exists an optimal solution, which
executes the set of tasks {T1; : : : ; Ti∗} and does not execute {Ti∗+1; : : : ; TN}, where i∗ is the maximal
index such that the set {T1; : : : ; Ti∗} maintains the execution property.

Proof. Assume to the contrary, that ∃Tk �∈ S and ∃Tj ∈ S such that pk6pj (and �k¿ �j), where
S denotes the set of executed tasks. Assume that we execute Tk instead of Tj and that Tj (Tk after
the change) is processed as the lth task in B. Thus, the saving . is: . = l�pj + �k − l�pk − �j =
l�(pj−pk)+(�k−�j)¿ 0. The proof for the case where Tj (Tk after the change) is processed as the
lth task in A, is analogous. The property then follows by induction on the number of interchanges
needed, so that the set of tasks {T1; : : : ; Ti∗} is executed.

If i∗ is not the maximal index such that the set {T1; : : : ; Ti∗} maintains the execution property,
then either not executing Ti∗ or executing Ti∗+1 is desirable, which contradicts the assumption that
i∗ is the optimal index.

Algorithm 21.

1|d; pi; �i|WET
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of the executed tasks.
begin
1. Order the tasks in a non-decreasing order of their processing times, i.e., p16 · · ·6pN .

700 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

2. NL := 1 [Lower border of index interval.]
3. NH := N [Upper border of index interval.]
4. i∗ := �(NL + NH)=2	 [The index of i∗.]
while NH¿NL do

1. Call Procedure Assignment with i∗.
if �i∗ ¿max{∑

i∈B �pi;
∑

i∈A\{i∗} �pi}
then

NL := i∗.
else

NH := i∗ − 1.
end if

2. i∗ := �(NL + NH)=2	.
end while

5. Call Procedure Assignment with i∗.
6. Schedule set B to complete at a and schedule set A to start at a.
return The schedule of {T1; : : : ; Ti∗}. [The solution.]
end 1|d; pi; �i|WET

Procedure Assignment
input i∗. [The ordered set of tasks {T1; : : : ; Ti∗}.]
returns Assignment of tasks {T1; : : : ; Ti∗} to sets B and A.
begin
A := ∅; B := ∅.
for i = i∗; : : : ; 1:

if �(|B| + 1)¿�|A|
then

A := (Ti; A) [Ti is the current Irst processed task in A.]
else

B := (B; Ti) [Ti is the current last processed task in B.]
end if

end for
return Sets B and A.
end Procedure Assignment

Ordering the tasks requires O(N logN) time. The while loop requires O(N logN) time, (O(logN)
iterations are needed for the binary search of i∗ and in each iteration, Procedure Assignment requires
O(N) time). Thus, the overall time complexity of the algorithm is O(N logN).

4.5. 1|d; p; �i|WET

The problem is a special case of the 1|d; pi; �i|WET problem with agreeably reversed tasks, which
was discussed in the previous section. The purpose of this subsection is to solve the problem more
eMciently. Assume that �1¿ · · ·¿ �N . We will show that the set of executed tasks consists of those
with the largest non-execution penalty weights. We deIne the sets B and A, as before. Assume that

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 701

k tasks are executed and thus, we assign �k�=(�+ �)� tasks to B and �k�=(�+ �)	 tasks to A. The
earliness penalty of the Irst processed task is p��k�=(� + �)� and the tardiness penalty of the last
processed task is p�(�k�=(� + �)	 − 1). Denote �min ≡ mini=1; :::; k{�i}. If �min¡max{p��k�=(� +
�)�; p�(�k�=(� + �)	 − 1)}, T�min is not executed and the process is repeated with the set of k − 1
remaining tasks. Otherwise, all k tasks are executed. Each executed Ti maintains the execution
property, i.e., �i¿max{p��k�=(�+ �)�; p�(�k�=(�+ �)	 − 1)}.

Property 22. There exists an optimal solution, which executes the set of tasks {T1; : : : ; Ti∗} and does
not execute {Ti∗+1; : : : ; TN}, where i∗ is the maximal index such that the set {T1; : : : ; Ti∗} maintains
the execution property.

Proof. Assume to the contrary, that ∃Tk �∈ S and ∃Tj ∈ S such that �k¿ �j, where S denotes the set
of executed tasks. Assume that we execute Tk instead of Tj. Thus, the saving . is: .= �k − �j¿ 0.
The property then follows by induction on the number of interchanges needed, so that the set of
tasks {T1; : : : ; Ti∗} is executed.

If i∗ is not the maximal index such that the set {T1; : : : ; Ti∗} maintains the execution property,
then either not executing Ti∗ or executing Ti∗+1 is desirable, which contradicts the assumption that
i∗ is the optimal index.

Algorithm 23.

1|d; p; �i|WET
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of the executed tasks.
begin
1. NL := 1 [Lower border of index interval.]
2. NH := N [Upper border of index interval.]
3. i∗ := �(NL + NH)=2	 [The index of i∗.]
4. T := T̃ [The set of tasks considered.]
5. M := i∗ − NL + 1 [The median index of the set of tasks considered.]
while NH¿NL do

1. Find �{M} from the tasks in T .
if �{M}¿max{p��i∗�=(�+ �)�; p�(�i∗�=(�+ �)	 − 1)}

then
T := {Tj ∈T |�j6 �{M}}.
NL := i∗.

else
T := {Tj ∈T \ T{M}|�j¿ �{M}}.
NH := i∗ − 1.

end if
2. i∗ := �(NL + NH)=2	.
3. M := i∗ − NL + 1.
end while

702 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

6. T := {Tj ∈ T̃ |�j¿ �{i∗}}.
7. Assign �i∗�=(�+ �)� tasks from T as set B and assign the remaining �i∗�=(�+ �)	
tasks, as set A.
8. Schedule set B to complete at a and schedule set A to start at a.
return The schedule of T . [The solution.]
end 1|d; p; �i|WET

In Algorithm 23, we denote by �{i} the ith largest non-execution penalty in a given set of tasks.
Without loss of generality, assume that the non-execution penalty weights are distinct to all tasks.
The assumption is necessary, as the median of the non-execution penalty weights in the binary
search, has to be distinct.
O(N) time is needed to Ind the median value of N values. Each iteration of the while loop,

decreases the size of T by half and thus it takes O(N + N
2 + N

4 + N
8 + · · ·) = O(N) time to Ind i∗.

Then, another O(N) time is needed to determine the set of tasks to be executed and to schedule
them. Thus, the overall complexity of the algorithm is O(N).

4.6. 1|d; pi�i = r|WET

Assume that the tasks are ordered in a non-decreasing order of their processing times p16 · · ·
6pN . We will show that the set of executed tasks consists of those with the largest processing
times. We deIne the sets B and A, as before. We assign �N�=(�+ �)� tasks to B and �N�=(�+ �)	
tasks to A, in a “V-shape” sequence. If T1 ∈B, its positional weight is �N�=(� + �)��p1 and if
T1 ∈A, its positional weight is (�N�=(� + �)	 − 1)�p1. Thus, it is desirable to not execute T1, if
�1¡max{�N�=(� + �)��p1; (�N�=(� + �)	 − 1)�p1} and then, the process is repeated with the set
{T2; : : : ; TN} of N − 1 remaining tasks. Otherwise, all N tasks are executed.

Property 24. Assume that the tasks are ordered in a non-decreasing order of their processing times,
i.e., p16 · · ·6pN . There exists an optimal solution, which executes the set of tasks {Ti∗+1; : : : ; TN}
and does not execute {T1; : : : ; Ti∗}, where i∗ is the maximal index such that,

�i∗ ¡max
{⌊

(N−i∗+1)�
�+�

⌋
�pi∗ ;

(⌈
(N−i∗+1)�

�+�

⌉
− 1

)
�pi∗

}
.

Proof. Assume to the contrary, that ∃Tk �∈ S and ∃Tj ∈ S such that pk¿pj, where S denotes the
set of executed tasks. Assume that we execute Tk instead of Tj and that Tj (Tk after the change) is
processed as the lth task in B. Thus, its positional weight is l�pj (l�pk). For the executed Tj (Tk
after the change), the non-execution penalty is not smaller than its positional weight, i.e., l�pj6 �j
or l�6 1

r . Thus, the saving . due to the change is: .=l�pj+�k−l�pk−�j=
(
l�− 1

r

)
(pj−pk)¿ 0.

The proof for the case where Tj (Tk after the change) is processed as the lth task in A, is analogous.
The property then follows by induction on the number of interchanges needed, so that the set of
tasks {Ti∗+1; : : : ; TN} is executed.

If i∗ is not the maximal index such that �i∗ is strictly smaller than the maximal positional weights,
i.e., �i∗ ¡max{�(N − i∗ + 1)�=(� + �)��pi∗ ; (�(N − i∗ + 1)�=(� + �)	 − 1)�pi∗}, then either not
executing Ti∗+1 or executing Ti∗ is desirable, which contradicts the assumption that i∗ is the optimal
index.

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 703

Algorithm 25.

1|d; pi�i = r|WET
input A set T̃ = {T1; : : : ; TN} of tasks.
returns A schedule of the executed tasks.
begin
1. Order the tasks in a non-decreasing order of their processing times, i.e., p16 · · ·6pN .
2. A := ∅; B := ∅.
for i = N; : : : ; 1: [Assigning the ordered tasks to sets B and A.]
if �(|B| + 1)¿�|A|
then
A := (Ti; A) [Ti is the current Irst processed task in A.]

else
B := (B; Ti) [Ti is the current last processed task in B.]

end if
end for

3. Schedule set B to complete at a and schedule set A to start at a.
4. i∗ := 1.
5. T := T̃ .
while �i∗ ¡max{�(N − i∗ + 1)�=(�+ �)��pi∗ ; (�(N − i∗ + 1)�=(�+ �)	 − 1)�pi∗} do

1. T := T \ Ti∗ . [Do not execute Ti∗ .]
if Ti∗ ∈B
then
sj := sj + pi∗ ∀Tj ∈B [Shift set B, pi∗ time units later.]

else
sj := sj − pi∗ ∀Tj ∈A [Shift set A, pi∗ time units earlier.]

end if
2. i∗ := i∗ + 1.
end while

return The schedule of T . [The solution.]
end 1|d; pi=�i = r|WET

Ordering the tasks requires O(N logN) time. The for loop requires O(N) time, and O(N) iterations
are needed to determine the value of i∗. Thus, the overall complexity of Algorithm 25 is O(N logN).

References

[1] Garey MR, Tarjan RE, Wilfong GT. One-processor scheduling with symmetric earliness and tardiness penalties.
Mathematics of Operations Research 1988;13(2):330–48.

[2] Gordon V, Proth J-M, Chu C. A survey of the state-of-the-art of common due date assignment and scheduling
research. European Journal of Operational Research 2002;139:1–25.

[3] Baker KR, Scudder GD. Sequencing with earliness and tardiness penalties: a review. Operations Research
1990;38(1):22–36.

704 R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705

[4] Kanet JJ. Minimizing the average deviation of job completion times about a common due date. Naval Research
Logistics Quarterly 1981;28(4):643–51.

[5] Hall NG. Single- and multiple-processor models for minimizing completion time variance. Naval Research Logistics
Quarterly 1986;33(1):49–54.

[6] Bagchi U, Sullivan RS, Chang YL. Minimizing mean absolute deviation of completion times about a common due
date. Naval Research Logistics Quarterly 1986;33(2):227–40.

[7] Bagchi U, Chang Y-L, Sullivan RS. Minimizing absolute and squared deviations of completion times with diPerent
earliness and tardiness penalties and a common due date. Naval Research Logistics 1987;34(5):739–51.

[8] Hall NG, Posner ME. Earliness-tardiness scheduling problems, I: weighted deviation of completion times about a
common due date. Operations Research 1991;39(5):836–46.

[9] De P, Ghosh JB, Wells CE. On the minimization of completion time variance with a bi-criteria extension. Operations
Research 1992;40:1148–55.

[10] Jurisch B, Kubiak W, JWozefowska J. Algorithms for minclique scheduling problems. Discrete Applied Mathematics
1997;72:115–39.

[11] Kovalyov MY, Kubiak W. A fully polynomial approximation scheme for the weighted earliness-tardiness problem.
Operations Research 1999;47(5):757–61.

[12] Szwarc W. The weighted common due date single machine scheduling problem revisited. Computers & Operations
Research 1996;23(3):255–62.

[13] Hoogeveen JA, van de Velde SL. Earliness-tardiness scheduling around almost equal due dates. INFORMS Journal
on Computing 1997;9(1):92–9.

[14] James RJW, Buchanan JT. A neighborhood scheme with a compressed solution space for the early/tardy scheduling
problem. European Journal of Operational Research 1997;102(3):513–27.

[15] Davis JS, Kanet JJ. Single-machine scheduling with early and tardy completion costs. Naval Research Logistics
1993;40:85–101.

[16] Szwarc W, Mukhopadhyay SK. Optimal timing schedules in earliness-tardiness single machine sequencing. Naval
Research Logistics 1995;42:1109–14.

[17] Fry TD, Armstrong RD, Blackstone JH. Minimizing weighted absolute deviation in single machine scheduling. IIE
Transactions 1987;19(4):445–50.

[18] Fry TD, Armstrong RD, Rosen LD. Single machine scheduling to minimize mean absolute lateness: a heuristic
solution. Computers & Operations Research 1990;17(1):105–12.

[19] Kim Y-D, Yano CA. Minimizing mean tardiness and earliness in single-machine scheduling problems with unequal
due dates. Naval Research Logistics 1994;41:913–33.

[20] Ow PS, Morton TE. The single machine early/tardy problem. Management Science 1989;35(2):177–91.
[21] Lee CY, Choi JY. A genetic algorithm for job sequencing problems with distinct due dates and general early-tardy

penalty weights. Computers & Operations Research 1995;22(8):857–69.
[22] Verma S, Dessouky M. Single-machine scheduling of unit-time jobs with earliness and tardiness penalties.

Mathematics of Operations Research 1998;23(4):930–43.
[23] Kanet JJ, Sridharan V. Scheduling with inserted idle time: problem taxonomy and literature review. Operations

Research 2000;48(1):99–110.
[24] Sundararaghavan PS, Ahmed MU. Minimizing the sum of absolute lateness in single-machine and multi-machine

scheduling. Naval Research Logistics Quarterly 1984;31(2):325–33.
[25] Emmons H. Scheduling to a common due date on parallel uniform processors. Naval Research Logistics

1987;34(6):803–10.
[26] Kubiak W, Lou S, Sethi S. Equivalence of mean :ow time problems and mean absolute deviation problems.

Operations Research Letters 1990;9(6):371–4.
[27] Webster ST. The complexity of scheduling job families about a common due date. Operations Research Letters

1997;20(2):65–74.
[28] Chen Z-L, Powell WB. A column generation based decomposition algorithm for a parallel machine just-in-time

scheduling problem. European Journal of Operational Research 1999;116(1):220–33.
[29] Lageweg BJ, Lenstra JK, Lawler EL, Rinnooy Kan AHG. Computer-aided complexity classiIcation of combinatorial

problems. Communications of the ACM 1982;25(11):817–22.

R. Hassin, M. Shani / Computers & Operations Research 32 (2005) 683–705 705

[30] Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB. Sequencing and scheduling: algorithms and complexity.
In: Graves SC, Rinnooy Kan AHG, Zipkin PH editors. Logistics of production & inventory; handbooks in operations
research and management science, vol. 4. Amsterdam: North-Holland; 1993. p. 445–522.

[31] Hall NG, Kubiak W, Sethi SP. Earliness-tardiness scheduling problems, II: deviation of completion times about a
restrictive common due date. Operations Research 1991;39(5):847–56.

[32] Raghavachari M. A V-Shape property of optimal schedule of jobs about a common due date. European Journal of
Operational Research 1986;23(3):401–2.

[33] Kubiak W. Completion time variance minimization on a single machine is diMcult. Operations Research Letters
1993;14:49–59.

[34] Szwarc W. Single-machine scheduling to minimize absolute deviation of completion times from a common due date.
Naval Research Logistics 1989;36(5):663–73.

[35] Hoogeveen JA, Oosterhout H, van de Velde SL. New lower and upper bounds for scheduling around a small common
due date. Operations Research 1994;42(1):102–10.

[36] Federgruen A, Mosheiov G. Greedy heuristics for single-machine scheduling problems with general earliness and
tardiness costs. Operations Research Letters 1994;16:199–208.

[37] Cai X, Lum VYS, Chan JMT. Scheduling about a common due date with job-dependent asymmetric earliness and
tardiness penalties. European Journal of Operational Research 1997;98(1):154–68.

	Machine scheduling with earliness, tardiness andnon-execution penalties
	Introduction
	Literature review
	Common due date problems
	Distinct due dates problems
	Parallel machines
	Problem summary

	Generalizations of Algorithm GTW
	Modified Algorithm GTW
	Convex E/T penalties
	Common processing times
	Parallel machines

	Non-execution penalty
	1|di,p,gammai|CONVEX
	1|di,p,gammai|TWET
	1|d,p,gamma|STWET
	1|d,pi,gammai|WET
	1|d,p,gammai|WET
	1|d,pigammai=r|WET

	References

