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Approximation Algorithms for Minimum K-Cut
N. Guttmann-Beck' and R. Hassin'

Abstract. Let G = (V, E) be a complete undirected graph, with node set V = {vy, ..., v, } and edge set
E. The edges (v;, v;) € E have nonnegative weights that satisfy the triangle inequality. Given a set of integers
K = {k}_; (P, ki < V), the minimum K-cut problem is to compute disjoint subsets with sizes {k;}7_;,
minimizing the total weight of edges whose two ends are in different subsets. We demonstrate that for any
fixed p it is possible to obtain in polynomial time an approximation of at most three times the optimal value.
We also prove bounds on the ratio between the weights of maximum and minimum cuts.
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1. Introduction. Let G = (V, E) be a complete undirected graph with nonnega-
tive edge weights /(e), e € E, and let K be a set of p positive integers {k;}/_; such
that "7 k; < |V|. A K-cut is a collection of disjoint node sets {P;}/_, such that
Vi € {I,..., p} |P;/| = ki. The minimum K-cut problem is to find a K-cut such that

f:_ll f:i+1 [(P;, P;) (where [(P;, P}) = Zuel’,' Zuepj [(v, u) ) is minimized.

The version of this problem in which Zle k; = |V and the sizes of the sets are not
given but their number is required to be p, and p is fixed, is polynomially solvable {2].
When p is part of the input, this version is NP-hard [1] and Saran and Vazirani [3] gave
a2 — 2/ p approximation algorithm. If, in addition, the sets in the partition are restricted
to be of equal size, the problem is only known to be approximable within |V |(p — 1)/p
by Saran and Vazirani [3].

We consider the minimum K-cut problem under the assumption that the weights
satisfy the triangle inequality. The problem is still NP-hard under this assumption because
each graph can be made to satisfy the triangle inequality while not changing the problem
by adding a high enough constant (for example, ),z [(e)) to all the edge lengths.

We demonstrate that for any fixed p it is possible to obtain in polynomial time an
approximation of at most three times the optimal value.

Suppose now Zle k; = V| (partitioning all the nodes in the graph). Let /i« min
be the weights of the maximum and minimum cuts in the graph, respectively, and let
7 = Imax/ Imin. We prove bounds on r for several interesting cases, assuming the triangle
inequality. For example, for the special case of partitioning the graph into two equal-sized
sets we prove that » < 2. Therefore, in this case, every cut can serve as an approximation,
with weight at most twice the optimal. When the graph must be partitioned into two
unequal-sized sets r can be arbitrarily large and we prove a bound which depends on the
sizes of the two sides of the cut.
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2. The Approximation Algorithm. We will use the following definitions:

For a set of edges E,[(E) =, g l(e).
For a set of nodes U, and a node v, [(v, U) = }_
Denote by opt the value of a minimum K-cut.

(v, u).

uel

We start by defining a new problem, the min-star problem, which we solve optimally
for a constant p. We then use its solution to approximate the minimum K-cut problem.

The min-star problem is to find vertices vy, ..., v, and a K-cut such that v; € P;,i =
—1 . .

Loo,poand 307 kil(u, U £7) + P f=i+1 kik;l(vi, :Uj) is mlnlmlzeq. The

problem is called min-star because for fixed vy, ..., v, the contribution to the objective

function which is associated with v; 1s proportional to the sum of edge weights of a star
subgraph whose center is v;.

THEOREM 2.1. Algorithm Find_Partition (see Figure 1) solves the min-star problem. It
can be executed in time O (nPT1)y,

Find_Partition
input
1. A graph G = (V, E), |V| = n, with weighls [(e)e € E |
P

2. Constants ki,. .., k, such that Y k; <n.
i=1
returns

1 {v,...,u.}C V.
2. A partition Py,..., Py of V, such thatv; € P, |P:l =kt =1,...,p.
begin
for every subset {vy,...,v} CV :
{a1,. ., 8n-p} = V\{v1,...,v,.}.
Compule T, an optimal solution to the following transportation problem:

p n-p p
minimize Z Z (Z kl(vn, aj))’h‘j
izl j=1 r=i

T

subject to

P
Zm;jgl, i=1...,n—p,

i=1
n—p
Zmﬁ:ki_lx z:l,...,p,
i=1

:l?.‘jQ{O,l}, i=1..,p3=1...,m—p.

P‘{uh“"up} = {y} U {ajll <j<n~p&y=1}i=1,...,p

end for
Pind {v},...,v3} C V for which dt* %} is minimal.
return (vL o .‘U;’ P1 v;.m.v,}) o val...x,up}).

end Find_Partition

Fig. 1. Algorithm Find_Partition.
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PrOOF. Let vy, ..., Up, Vi, 17,, be an optimal solution for the min-star problem.
Since the algorithm checks all the subsets of V of size p it also checks the subset
{01, ..., vp}. For this subset the sum Z{:ll Z +iq1 kikil(0;, ¥;) is constant, so we need
to find a partition (Py, ..., P,) which minimizes Z,: kil(v;, U#i P;), this is achieved
by finding an optimal solution to the transportation problem (where x;; = 1 if and only
if vertex a; is assigned to the subset P;).

For a fixed value of p we can solve the transportation problem in time O (x), using the
algorithms given by Tokuyama and Nakano [4] . There are O (n?) subsets {vy, ..., v,} C
V, so altogether the time complexity is O (nP+!). O

We now show that the weight of the partition found as an optimal solution for the
min-star problem is no more than 3opt.

THEOREM 2.2, Let (v, ..., vp, Py, ..., Pp) be the output of Find.Fartition. Let Oy,
, Op be a minimum K-cut. Then

apx =Y I(Pi, P;) <3 1(0;, 0;) = 3opt.

i<j i<j

PrOOF. Denote by §* the optimal solution value for the min-star problem. By the
triangle inequality

apx = Y 1P, P = Y I, uy)

i<j i<j :{Zﬁi_
<D0 U ) + L, v) + 1, u)))
i<j weh

uj€Py

= Y kil vy, P) + kikjl(vi, v)) + kil vy, P)))

i<j

= Zkl(v,,U#,P)%—Zkk I(v;, vj) = S*.

i<j

On the other hand, according to Theorem 2.1 Find_Partition solves the min-star problem
so that, for every u; € Oy, ...,u, € O,

Zkl <v,, UP)+Zkk L(vr, vy) < Zkl <u,, o )+Zkk Hui, uy).

J#i i<j J# i<j
Summing over all (uy, ..., u,) suchthatu; € Oy,...,u, € O, we get that
P P
MIUEDY ]—[k, o, Jo ) +> Hk,)l(o,,O)
=1 i=1 \Il=1 J#i i<j

(qu) < 1(0i, 0))+ Y 10, Oj))
i#]

=1 i<j
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= <[Ij kl> <3 > uo;, oj)) =3 <Il_jk,> opt .

i<j

Hence S* < 3 opt, giving that apx < S* <3opt. O

We now show that the bound of Theorem 2.2 is the best possible. Consider the graph
shown in Figure 2. It has 21 + n? + 2 nodes classified into sets A and B each containing
n nodes, a set C containing n° nodes, and two distinguished nodes x and y. The edge
weights are set according to the following rules:

An edge connecting two nodes inside each set is of weight 1.
Yae A,be B,l(a,b)=2.

Yaec A,ceC,l(a,c)=1.

Vbe B,ce C,l(b,c)=3.

Yac A, l(a,x) =I(a,y) =1.

Vb e B,l(b,x)=2,l(b,y) = 1.

YeeC,l(e,x) =1,l(c,y) = 2.

l(x,y)=1.

Fig. 2. An example where apx ~ 3 opt.
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We wish to partition this graph into two sets, one containing n + 1 nodes and the other
containing n> 4+ n + 1 nodes. When we choose the nodes x, y, as centers of stars, then
the partition {x} U B, {y} U A U C defines an optimal solution for the minimum star
problem since the stars only use edges of weight 1. Hence Find_Partition may output
the cut {x} U B, {y} U A U C. The weight of this cut is dominated by {(B, C) = 3n’.
On the other hand, the partition {x} U A, {y} U B U C gives a cut whose value is
dominated by I(A, C) = n3. So in this case (when n goes to infinity) apx = 3 opt.

3. Bounds on [y, /{nin. In this section we assume Zi":l k; = {V{ and show that we
can bound the ratio between the maximum and minimum cuts of a graph. For example,
we show that the triangle inequality assumption implies that any cut can be used as an
approximation in the case of two equal-sized sets, with weight at most 2opz.

3.1. Partitioning into Two Equal-Sized Sets. Given a graph G = (V, E) with edge
weights satisfying the triangle inequality, suppose we wish to partition the graph into
two equal-sized sets. Let (P, P;) be a minimum cut, and let (R, R;) be a maximum
cut. Denote A= PINR;,B=PNR,C=P NRy,and D = P, N R, (see Figure 3).
For these definitions Ly, = [(Py, P») and [, = [(Ry, Ry). Then

ey lmin = 1(Py, P) =1(A, B) + (B, C) + (A, D) + I(C, D),
while
2) Imax = L(Ry, Rp) = I(A, C) + (B, C) + I(A, D) + (B, D).

LEMMA 3.1. If V|, V5, V5 C V are disjoint, then

[V3ll(Vy, V2) < [Wall(Vy, Va) + | Vi ]I(Vs, Vo).

R, R,
A C
p nodes g nodes

P, /
/

B D
P, g nodes p nodes

Fig. 3. Thesets A, B, C, and D.
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PROOF. By the triangle inequality, for every w € Vj,

IV, Vo) = D% ) < 5y (v, w) + L(w, 1))

veV| ueV, veV) ueV)

[Vall(w, V1) + [Vi[l(w, V2).

I

The claimed inequality is obtained by summation over all w € Vj. O

We denote {A| = |D| = pand |B| = |C| = gq.

LEMMA 3.2.

. {2q 2p
min { —I(A, D), ==I(B, C)} < (A, D) + (B, C).
p q

PROOF.  Suppose otherwise, then

2
“1(A, D) > I(A, D) +1(B, C),
p

and

2p

“E1(B,C) > I(A, D)+ (B, C).

q
This gives

2 —
1" P1a,D)> (B, C)
and
2 —
P—4,B,C)> 1A, D),
so that
2 — i
97 P1A,D)> ———I(A, D).
Cp—9)/q
Since [(A, D) > 0 this implies
29—-p2p—gq
—_ > 1,
V4 q
or
—2(p — q)2 > 0.

A contradiction. O
THEOREM 3.3.

lmax b 2lmin-
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PrOOF.  The following inequalities can be concluded from Lemma 3.1:

I(A,C)

IA

Lia, Dy +1(C, D),
p

4q

(B, D) —=Il(A, D)+ (A, B),
D

IA

p

(A, C) ;l(B,C)—}—l(A,B),

IA

p

(B, D) =Il(B,Cy+1(C, Dy.
q

A

Hence
. |29 2p
(A, CY+1(B, D) <I(C,D)+1(A, By+ min{ —I(A, D), —I(B,C)}.
p q

Using Lemma 3.2 and (1),
(A, CY+ (B, D) < lyi.

By (1) also
l(Ba C) + l(A, D) < lmin,

and we get from (2) that [, < 2lmin, as claimed. O

To see that the bound of Theorem 3.3 is tight consider a graph with 4n nodes:
U1y ...y Vons U1, - ., Ugy. The weights are set according to the following rules:

e Vi, j, (v, v;) =0.
® Vi, j, l(u,', Llj) = 0.
e Vi, j,l(vi,u;) =1
We wish to partition this graph into two equal-sized sets each containing 2n nodes.
The cut {vy,..., v}, {u1, ..., u,} has weight 4n>. On the other hand, the cut
Wi, v U, oo undy {Mng, ooy 420} U {vngts . . ., 02, ) has weight of 212, So in
this case lyax = 2lmin.

3.2, Fartitioning into k Equal-Sized Sets

LEMMA 3.4. If(A, B)isa partition of V into two equal-sized sets, then [(A) +[(B) <
2l(A, B).

PROOF. By the triangle inequality, for every four nodes a;, a; € A, by, b; € B,

l(ay, @) < lay, by) + laz, by),
la, @) < lay, b2) + laz, br),
b1, b)) < la, by) + Uay, by),
[(by, b)) = U@, by) + lay, o).
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Summing these four inequalities and dividing by 2 we get
lai, a2) + (b1, b2) < l(ar, by) + (az, &) + lar, ba) + L(az, by).
Summing this over all ay, a, by, by we get
2IVIPU(A) +1(B) < 4|VIL(A, B),
hence

I(A) +1(B) < 2I(A, B). O

LEMMA 3.5. Let G = (V, E) be a graph with |V| = kn. If [P,'}f":1 is a partitioning of
V into k equal-sized sets then the value of the cut, lc, satisfies ¢ = ij (P, P) =
((k = 1)/ k+ I)IE).

PROOF. By Lemma 3.4, fori s j,
L(P) + 1(Py) < 2U(P;, Py).
Summing over j = 1,...,k, j# i, we get

k k
(k= DUPY+ Y LR —L(P) <2 1P, P).
i=1 =1

J J#i

Summing overi = 1, ..., k we get
k k k
(k=D UPY+kD UPY) =D I(P) <2 U(P;, P,
i=1 =1 i=1 oy
or
k
20k — 1) Zl(Pi) < 4.
i=1
Since Zle 1(P;) = I(E) — lc we get
(k— DUE) —lc) < 2c,
giving the required result:
e > k- ll(E) O
c > P .

REMARK 3.6. This bound is tight. For example, let G = (Vy U V,, E) where |Vy| =
V2] = n. Let all the edges connecting nodes inside Vi or V; have a weight of two units
and all the edges connecting one node from V; and one node from V, have a unit weight.
For the cut which separates V; from V», [(V}, V5) = n?. Since [(V}) = (V) = n(n—1)
we get that [(E) = 3n® — 2n, giving that asymptotically [(V, V») = L(E)/3.
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THEOREM 3.7, Let I« and Iy denote the weight of maximum and minimum (respec-
tively) cuts of a given graph into k equal-sized sets. Then

(k - 1)lmax < (k + 1)lmin'

PROOF.  Since the edges in /[, are a subset of E then by Lemma 3.5

k+1
lmax < l(E) < 'k—+"flmin- O

3.3. Partitioning into Two Unequal-Sized Sets. First we show that when partitioning
the graph into two unequal-sized sets, the weight of the maximum cut may be much
bigger than the weight of the minimum cut. Then we show that we can still bound the
maximum cut, but the bound depends on of the sizes of the two node sets.

LetV = {ur,...,up-1} U {v}. Foreachi, j € {1,...,n — 1} set [(u;, u;) to 0. For
eachi e {1,...,n — 1} set {(v, u;) to 1. Suppose we wish to partition this graph into
two sets, one containing » — 1 nodes, and the other containing 1 node. In this case, a
best partition would be {u,}, {uz, ..., u,—1) U{v} giving a cut of weight 1. However, the
partition {v}, {uy, ..., u,_1} gives a cut of weight n — 1.

LEMMA 3.8. Let A = {a1,....a}, B = (b1,...,bs}, s < t, be a partitioning of V.
Then [(E) < (24 (r — 2)/s)I(A, B).

PROOF. By the triangle inequality, for every i, j, k,
la;, a;) < l(a;, br) + Ua;, by).
Summing this inequality over j € (1, ..., t}\{¢} (for a fixed k) we get

> Uai, ) < (t — Dltai, be) +

i

t
Haj, by) — l(a;, by).
Jj=1

Summing over i € {1, ..., t} we get that, forevery k € {1, ..., s},
t 1 t
2) Uai,a) < (= 1)) las, b +1 ) lay, b — Y Lai, by)
i<j i=1 j=1 i=1

=20~ 1)) lai by)
i=1
= 2(t — DI(A, by).

Summing over k = 1, ..., s and dividing by 2s we get

I(A) = lai, aj) < %Z(A, B).

i<j
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Similarly,

I(B) = b, by) < S—:—II(A, B).

i<j

By the last two inequalities and the assumption s < ¢,

5 (Zz(ai,aj) + Y 1, bn)

i<j i<j
t—1 —1
<s 4ol )Z(A,B)
K t

<(t—1+s—DIA B)=(s+1t—2)I(A, B).

Il

s(l(A) +1(B))

IA

Since [(A) + I[(B) = I(E) — I(A, B),
s(I(E) — (A, B)) < (s +t — 2)I(A, B),

proving
t—12
IE) < <2+ —)Z(A, B). O
s

REMARK 3.9. This bound is tight. Suppose that s = t = n. Substituting in the lemma’s
bound we get [(E) < (3 —2/n)I(A, B). The example in Remark 3.6 has s = ¢t = n and
[(E) = 3n? — 2n. It presents a cut with [(A, B) = n? so that the bound is achieved.

THEOREM 3.10.  Let oy and Ly, denote the weight of maximum and minimum cuts,
respectively, of a given graph into two sets S,T with |S|/|T| = s/t (s < t), then
lmax =< (2 + (t - 2)/S)lminA

PROOE.  Since the edges in the maximum cut are a subset of E it follows from Lemma 3.8
that

t—2
lmax =< I(E) =< (2 + T) lmin~ 0
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