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Abstract

This work presents a variation of Naor’s strategic observable model (1969), by adding a

component of customer heterogeneity induced by the location of customers in relation to the

server. Accordingly, customers incur a “travel cost” which depends linearly on the distance of

the customer from the server. The arrival of customers with distances less than x is assumed to

be a Poisson process with rate λ(x) =
∫ x
0 h(y)dy <∞, where h(y) is a nonnegative “intensity”

function of the distance y. In a loss system M/G/1/1 we define the threshold Nash equilibrium

strategy xe, and the optimal social threshold strategy x∗. We consider the price of anarchy

(PoA) and prove that it converges to 1 when xe → 0. The behaviour of PoA when xe →∞ is

more complex and interesting. We show that if the rate of arriving customers is bounded then

PoA converges to 1, i.e., in the limit there is no difference between the social and equilibrium

optimal benefits (even though the corresponding optimal strategies x∗ and xe do not coincide).

The rest of the paper is dedicated for the case in which the rate of arriving customers is

unbounded. We develop an explicit formula to calculate lim
xe→∞

PoA(h, xe) when it exists. We

present sufficient conditions for the limit to exist and for the existence of a simple formula for
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calculating it. We prove that if the relation between two intensity functions converges to a

positive constant, then the corresponding limits of PoA coincide. If, on the other hand, one

intensity function is larger than the other from some point on, then under certain conditions

the limit of PoA (if exists) will be larger for the larger intensity function. For all intensity

functions h, we prove that if h converges to a constant then PoA converges to 2, and that if

from some point on h decreases (increases) monotonically then the limit of PoA, if exists, is

smaller (larger) than 2. In a system with a queue we prove that the price of anarchy may be

unbounded already in the simple case of uniform arrival, namely h ≡ c, where c > 0.

Keywords: profit maximization; price of anarchy, travel costs, observable queue.

1 Introduction

The performance and optimization of service systems has attracted much attention in recent

years (see [6], [7]). Naor [12] was the first to introduce a queueing model that describes

customer rational decisions. The model considers an FCFS M/M/1 system and defines social

and individual welfare. The assumptions in Naor’s model are:

1. A stationary Poisson stream of customers with parameter λ.

2. Service times are independent and exponentially distributed with parameter µ.

3. There is a cost of C per unit time spent while waiting or in service.

4. The benefit from a completed service is R.

The model’s parameters can be normalized so that there are only two relevant parameters:

• The utilization factor ρ = λ
µ .

• The reward in terms of the expected waiting cost during a service Rµ
C .

The Nash equilibrium solution in this model is very simple since there exists a dominant

pure threshold strategy ne, such that an arriving customer joins the queue if and only if the
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observed queue upon arrival is shorter than ne. This strategy maximizes the individual’s ex-

pected welfare regardless of the strategies adopted by the others. Similarly, the optimal behav-

ior, namely the strategy that maximizes social welfare (i.e., the sum of gains) is characterized

by a pure threshold strategy n∗.

Naor observed that the socially optimal threshold is bounded by the Nash equilibrium

strategy. Namely,

n∗ ≤ ne.

The “Price of Anarchy” PoA, measures the inefficiency of selfish behaviour. It is defined

as the ratio of the social welfare under optimum to the social welfare under equilibrium.

Naor assumes that customers are homogeneous with respect to service valuation. Most of

the more recent works on observable queues (i.e., assuming customers know the queue length

before deciding to join it) follow this assumption. Some exceptions are described in section

2.5 of [6]. For example, Larsen [10] assumes that the service value is a continuous random

variable and proves that the profits and social welfare are unimodal functions of the price. For

the case of a loss system (where customers join iff the server is idle) Larsen proves that the

profit-maximizing fee exceeds the socially optimal fee. Miller and Buckman [11] consider an

M/M/s/s loss system with heterogeneous service values and characterize the socially optimal

fee.

Gilboa-Freedman, Hassin and Kerner [4] discuss the PoA in Naor’s model. They find that

it has an odd behavior in two aspects: First, it increases sharply (from 1.5 to 2) as the arrival

rate comes close to the service rate; Secondly, it becomes unbounded exactly when the arrival

rate is greater than the service rate, which is odd since the system is always stable.

In this paper we introduce heterogeneity in service valuation through a Hotelling-type model

where customers reside in a “linear city” and incur “transportation costs” from their locations

to the location of the server. Similar models have been investigated (e.g. [1, 2, 3, 8, 13, 14])

but they all assume a constant density (possibly restricted to an interval).

Kwasnica and Stavrulaki [9] (2008) assume that the customers are homogeneous with re-

spect to price and the shipping delay for a customer at distance s from the server is a linear
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function g(s) = G0 + G · s where G0 ≥ 0 and G > 0. They obtain a solution for the optimal

capacities and service semirange in the monopolistic case.

Gallay and Hongler [5](2008) assume two observable queues with general service rates.

Servers are located at points xi ∈ [−∆,+∆], i = 1, 2. Customers arrive at rate Λ from locations

uniformly distributed over [−∆,+∆]. An arriving customer located at x chooses which server

to join by comparing the expected utilities Ui(x) from joining the ith queue, i = 1, 2:

Ui(x) = a− pi − ct|x− xi| − cwE(Wi|Ni),

where a is service value, pi is service fee at server i, ct is transportation cost per unit distance

(though travel is instantaneous), cw is waiting-cost rate, Ni is queue length and E(Wi|Ni) is

conditional expected sojourn time at i. They restrict the analysis to heavy traffic.

In contrast we allow more general intensity functions. Namely, the arrival of customers

with distances less than x is assumed to be a Poisson process with rate λ(x) =
∫ x
0 h(y)dy <∞,

where h(y) is a nonnegative “intensity” function of the distance y. The intensity function and

(w.l.o.g linear) travel costs jointly generate the distribution of customer service valuations. A

simple example is a two-dimensional city, in which the arrival of customers is uniform. In this

case the intensity function can be defined as h(x) = 2πx, and so the arrival of customers with

distances less than x is assumed to be a Poisson process with rate λ(x) =
∫ x
0 2πydy = πx2.

We find that this model of heterogeneity is preferred to an exogenous distribution of val-

uations as we can use natural assumptions on density for generating the distribution rather

than assuming it is exogenous.

We first consider an M/G/1/1 loss system and define xe as the threshold Nash equilibrium

strategy, namely the maximal distance from which customers will join the queue under indi-

vidual optimality, and x∗ as the threshold value that attains optimal social welfare. We show

how xe is determined by the parameters R,µ, ct and cw, of the model.

For any nonnegative intensity function h, we consider the price of anarchy (PoA) and prove

that PoA → 1 when xe → 0. The behaviour of PoA when xe → ∞ is more complex and in-

teresting. We show that this limit does not always exist, and that it may be infinite. We

show that if the amount of customers arriving from far is small (i.e.,
∫∞
0 h(y)dy < ∞), then
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in the limit there is no difference between the social and equilibrium optimal benefits, namely

lim
xe→∞

PoA(h, xe) = 1, (even though the corresponding optimal strategies x∗ and xe do not

coincide). The rest of the paper is dedicated for the case in which
∫∞
0 h(y)dy =∞. We develop

an explicit formula to calculate lim
xe→∞

PoA(h, xe) when it exists and show that if h, h′ are mono-

tonic then this limit exists and we arrive at a very simple formula to calculate it. We show that

if h converges to a constant then lim
xe→∞

PoA(h, xe) = 2. We prove that if h decreases (increases)

monotonically and lim
xe→∞

PoA(h, xe) exists, then lim
xe→∞

PoA(h, xe) ≤ 2 (≥ 2). In addition, for

any two nonnegative intensity functions h1, h2 s.t. h1/h2 → c > 0, we prove that if the cor-

responding lim
xe→∞

PoA(hi, xe), i = 1, 2, exist, then lim
xe→∞

PoA(h1, xe) = lim
xe→∞

PoA(h2, xe).

Finally, if h1, h2, h
′
1, h
′
2, are all monotonic and from some point on h1 ≤ h2, then the corre-

sponding lim
xe→∞

PoA(hi, xe), i = 1, 2, exist, and: lim
xe→∞

PoA(h1, xe) ≤ lim
xe→∞

PoA(h2, xe).

In a system with a queue we prove that the price of anarchy may be unbounded already in

the simple case of uniform arrival, namely h ≡ c, where c > 0.

2 Model description

Consider an M/M/1 queue, with a server located at the origin. The model makes the following

assumptions:

1. For all x ≥ 0, customers with distances less than x, arrive to the system according to a

Poisson process with rate λ(x) =
x∫
0

h(y)dy, where h(y) is an “intensity” function defined

for all y ≥ 0.

2. An “intensity” function h may be any nonnegative function for which λ(x) =
x∫
0

h(y)dy

is finite for all x ≥ 0.

3. Each customer knows his distance from the server.

4. The queue length is observable.

5. Customers are risk neutral, maximizing expected net benefit.

6. The service distribution is general with average rate µ.
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7. The benefit from a completed service is R.

8. The waiting cost is cw per unit time (while in the system).

9. The traveling cost is ct per unit distance and traveling is instantaneous. (If ct = 0, we

obtain the original Naor’s model with rate λ =
∞∫
0

h(y)dy.)

10. ν = Rµ
cw

> 1.

11. The decision of the customer is whether to join the queue or balk.

Remark 2.1 Although this model is described as a model with locations and travel costs, it

may alternatively describe a model with heterogenous services values. In this interpretation,

the value of service, to a customer of “type x” is: R− ctx.

3 A loss system

First, we consider an M/M/1/1 loss system i.e., if the server is busy, customers will balk. The

optimal strategy of a customer located at a distance x from the origin, is to arrive if the server

is idle and R ≥ cw
µ + ctx. Equivalently, x ≤ Rµ−cw

ctµ
=

Rµ
cw
−1

ctµ
cw

= ν−1
κ , where ν = Rµ

cw
, and κ = ctµ

cw
.

Consequently, the threshold strategy

xe =
Rµ− cw
ctµ

=
ν − 1

κ
(1)

is the unique Nash equilibrium strategy. Under this individual strategy, a customer located

at a distance x, enters service iff the server is idle and x ≤ xe. If the server is idle then the

utility of the arriving customer located at point x, is:

R− cw
µ
− ctx = ct(xe − x). (2)

Define ρ(x) as:

ρ(x) =
λ(x)

µ
=

1

µ

x∫
0

h(y)dy.

Then the probability of an idle server is:

π0(x) =
1

1 + ρ(x)
=

1

1 + 1
µ

x∫
0

h(y)dy

.
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Thus by (2), the expected social benefit per unit of time associated with threshold x satisfies

the following equation:

S(x) = ct

∫ x

0
(xe − y)h(y)π0(x)dy =

ct
∫ x
0 (xe − y)h(y)dy

1 + 1
µ

∫ x
0 h(y)dy

. (3)

Let x∗ be the threshold value that attains optimal social welfare.

Note that between xe and x∗, xe is the more basic feature of the model in the sense that

it is determined by the parameters of the model such that xe = Rµ−cw
ctµ

(see (1)). Hence we

relate to x∗ as a function of xe.

Denote:

f(x) =
1

µ

∫ x

0
(x− y)h(y)dy + x.

Proposition 3.1 For every xe ≥ 0 the optimal threshold strategy x∗ is unique and satisfies:

• x∗ = f−1(xe),

• x∗ ≥ 0,

• lim
xe→∞

f−1(xe) =∞.

Proof: In order to find x∗ we compute:

S′(x) =
ct

(
(xe − x)h(x)[1 + 1

µ

∫ x
0 h(y)dy]

)
− ct

(∫ x
0 (xe − y)h(y)dy

)
[ 1µh(x)]

[1 + 1
µ

∫ x
0 h(y)dy]2

= 0.

We obtain:

(xe − x)

[
1 +

1

µ

∫ x

0
h(y)dy

]
=

1

µ

∫ x

0
(xe − y)h(y)dy,

hence:

(xe − x) +
1

µ
(xe − x)

∫ x

0
h(y)dy =

1

µ

∫ x

0
(xe − y)h(y)dy,

and so:

(xe − x) =
1

µ

∫ x

0
(x− y)h(y)dy,

which gives:

xe =
1

µ

∫ x

0
(x− y)h(y)dy + x. (4)
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Thus x∗ is a solution to (4), and so: x∗ = f−1(xe). It is easy to verify that x∗ is indeed a

maximum point.

Now, f is strictly increasing since for all s > t :

f(s)− f(t) ≥ 1

µ

∫ s

t
(s− y)h(y)dy + s− t ≥ s− t > 0,

and since f(x) ≥ x, ∀x, then limx→∞ f(x) =∞. Since f(0) = 0, then for every xe > 0, x∗ > 0.

In addition, because h is locally integrable then by the fundamental theorem of calculus for

Lebesgue integrals [16] f is continuous. It follows that for every xe ≥ 0, x∗ is unique and we

have lim
xe→∞

f−1(xe) =∞.

2

In the sequel we will not refer to f, f ′, hence we summarize the above results in terms of

xe, x
∗ as follows:

lim
xe→∞

x∗ =∞. (5)

x∗strictly increasing in xe. (6)

xe =
1

µ

∫ x∗

0
(x∗ − y)h(y)dy + x∗. (7)

Note that (7) implies:

xe ≥ x∗. (8)

Note that the “selfish” optimal strategy xe, does not depend on the function h. This is not

surprising as the selfish customer enters the empty system whenever the benefit exceeds the

costs, and this does not depend on the arrival of other customers. In contrast, x∗, which is the

optimal social strategy depends both on xe and on h, as can be seen in (7). It increases in xe,

and decreases in h, namely, if h1(x) ≤ h2(x), ∀x ≥ 0, then for any given xe, the x∗ obtained

in (7) for h1 is larger than the x∗ obtained in (7) for h2. To understand this intuitively, note

that a larger xe reflects higher utility of service, which makes x∗ larger as well. Larger h means

that there are more potential customers (for any given threshold x), and therefore to gain a

specific social benefit one needs a smaller x∗.
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Define the price of anarchy PoA(h, xe) as:

PoA(h, xe) =
S(x∗)

S(xe)
.

Since x∗ is the maximum point of S(x) then PoA(h, xe) ≥ 1.

Now:

PoA(h, xe) =

ct
(∫ x∗

0 (xe−y)h(y)dy
)

1+ 1
µ

∫ x∗
0 h(y)dy

ct(
∫ xe
0 (xe−y)h(y)dy)

1+ 1
µ

∫ xe
0 h(y)dy

=

(∫ x∗
0 (xe − y)h(y)dy∫ xe
0 (xe − y)h(y)dy

)(
1 + 1

µ

∫ xe
0 h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

)
. (9)

Recall that xe is determined by the parameters of the model. In particular, since xe =

Rµ−cw
ctµ

, then if R→∞, or ct → 0, we get xe →∞, and if Rµ→ cw, or ct →∞, then xe → 0.

We wish to analyse the behaviour of the price of anarchy when xe → 0, and when xe → ∞.

The first case is simple and is considered in the following proposition. The rest of the paper

analyses the behaviour of PoA(h, xe) when xe →∞.

Proposition 3.2 For all intensity functions h, the price of anarchy PoA(h, xe) satisfies :

lim
xe→0

PoA(h, xe) = 1.

Proof:

Note that the first factor appearing in the right-hand side of (9) is always smaller than 1

(as xe ≥ x∗), and the second factor converges to 1 when xe → 0, (since by (7), x∗ → 0 when

xe → 0). Since we always have PoA(h, xe) ≥ 1, then lim
xe→0

PoA(h, xe) = 1.

2

We turn now to analyse the limit of the price of anarchy when xe →∞.

Recall that our process is defined such that for all x ≥ 0, customers with distances less

than x, arrive to the system according to a Poisson process with rate λ(x) =
x∫
0

h(y)dy. We
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now show that there is a clear difference between cases in which lim
x→∞

λ(x) =
∞∫
0

h(y)dy is finite

and cases in which it is infinite.

Proposition 3.3

• If
∫∞
0 h(y)dy =∞ then lim

xe→∞
x∗

xe
= 0,

• If
∫∞
0 h(y)dy = a <∞ then x∗

xe
≥ µ

a+µ , for all xe.

Proof: By (7):

x∗

xe
=

x∗

1
µ

∫ x∗
0 (x∗ − y)h(y)dy + x∗

=
1

1
µ

∫ x∗
0 (1− y

x∗ )h(y)dy + 1
. (10)

Consider first the case in which
∫∞
0 h(y)dy =∞. Note that:∫ x∗

0
(1− y

x∗
)h(y)dy ≥

∫ x∗
2

0
(1− y

x∗
)h(y)dy ≥ 1

2

∫ x∗
2

0
h(y)dy.

Recall that lim
xe→∞

x∗ = ∞, hence when xe → ∞, the limit of the right hand side of this

inequality is infinite. Thus the limit of the left hand side is infinite as well, and so returning

to (10) we get in this case: x∗

xe
→ 0.

If on the other hand,
∫∞
0 h(y)dy = a <∞ then:∫ x∗

0
(1− y

x∗
)h(y)dy ≤

∫ x∗

0
h(y)dy ≤ a,

and so by (10), for any given xe : x∗

xe
≥ 1

a
µ
+1 = µ

a+µ .

2

The following theorem is interesting, as it suggests that according to the anarchy function,

if the amount of customers arriving from far is “small”, in the sense that the rate of arrival is

bounded, then in the limit there is no difference between the social and equilibrium optimal

benefits even though the corresponding optimal strategies x∗ and xe do not coincide.
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Theorem 3.4 For all intensity functions h, if
∫∞
0 h(y)dy = a <∞, then:

lim
xe→∞

PoA(h, xe) = 1.

Proof: From (9) we have:

PoA(h, xe) =

(∫ x∗
0 (xe − y)h(y)dy∫ xe
0 (xe − y)h(y)dy

)(
1 + 1

µ

∫ xe
0 h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

)
. (11)

As explained earlier x∗ →∞ as xe →∞, hence the second factor in the right hand side of

the equation above converges to 1.

Now, the first factor equals: ∫ x∗
0 (1− y

xe
)h(y)dy∫ xe

0 (1− y
xe

)h(y)dy
. (12)

Let I[0,x∗] be the indicator function of [0, x∗]. Then for every fixed y,

I[0,x∗](1−
y

xe
)h(y)

is increasing in xe and converges to h(y) when xe →∞. (Recall that x∗ is an increasing function

of xe).

Hence, by the monotone convergence theorem:

lim
xe→∞

∫ x∗

0
(1− y

xe
)h(y)dy = lim

xe→∞

∫ ∞
0

I[0,x∗](1−
y

xe
)h(y)dy =

∫ ∞
0

h(y)dy = a.

Similarly for the denominator in (12) (with xe instead of x∗), and so the first factor in (11)

converges to 1 as well. 2

Corollary 3.5 If h(y) = βyα, α < −1, β > 0 then:

lim
xe→∞

PoA(h, xe) = 1.

Theorem 3.4 completes our analysis of the case in which
∫∞
0 h(y)dy is finite.

From now on, we always assume that
∫∞
0 h(y)dy =∞.
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In the following theorem and corollary we present two formulas to calculate the limit of

PoA (if exists).

Theorem 3.6 If
∫∞
0 h(y)dy =∞ then:

lim
xe→∞

PoA(h, xe) = lim
xe→∞

∫ xe
0 h(y)dy∫ xe

0 (1− y
xe

)h(y)dy
,

by which we mean that the first limit exists iff the second limit exists and in that case they are

equal.

Proof: From (9) we have:

PoA(h, xe) =

(∫ x∗
0 (1− y

xe
)h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

)(
1 + 1

µ

∫ xe
0 h(y)dy∫ xe

0 (1− y
xe

)h(y)dy

)
. (13)

Now, since for all 0 ≤ y ≤ x∗ :

1− x∗

xe
≤ 1− y

xe
≤ 1,

then:

(1− x∗

xe
)

∫ x∗

0
h(y)dy ≤

∫ x∗

0
(1− y

xe
)h(y)dy ≤

∫ x∗

0
h(y)dy.

So:
(1− x∗

xe
)
∫ x∗
0 h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

≤
∫ x∗
0 (1− y

xe
)h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

≤
∫ x∗
0 h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

. (14)

Now, since lim
xe→∞

∫ x∗
0 h(y)dy =∞ (because lim

xe→∞
x∗ =∞) then by Proposition 3.3 lim

xe→∞
x∗

xe
= 0.

It follows that the expressions appearing on the left- and on the right-hand sides of (14) both

converge to µ. Thus also the expression in the middle converges to µ, namely:

lim
xe→∞

∫ x∗
0 (1− y

xe
)h(y)dy

1 + 1
µ

∫ x∗
0 h(y)dy

= µ. (15)

Returning to Equation (13) we get:

lim
xe→∞

PoA(h, xe) = lim
xe→∞

µ
(

1 + 1
µ

∫ xe
0 h(y)dy

)
∫ xe
0 (1− y

xe
)h(y)dy

. (16)
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Now:

lim
xe→∞

∫ xe

0
(1− y

xe
)h(y)dy ≥ lim

xe→∞

∫ xe
2

0
(1− y

xe
)h(y)dy ≥ lim

xe→∞

1

2

∫ xe
2

0
h(y)dy =∞. (17)

By this we get from (16):

lim
xe→∞

PoA(h, xe) = lim
xe→∞

∫ xe
0 h(y)dy∫ xe

0 (1− y
xe

)h(y)dy
, (18)

by which we mean that the first limit exists iff the second limit exists and in that case they

are equal.

2

The following corollary gives another presentation for limxe→∞ PoA(h, xe).

Corollary 3.7 If
∫∞
0 h(y)dy =∞ then:

lim
xe→∞

PoA(h, xe) = lim
xe→∞

∫ 1
0 h(xet)dt∫ 1

0 (1− t)h(xet)dt
,

by which we mean that the first limit exists iff the second one exists and in that case they are

equal.

Proof: Substituting y = xet, dy = xedt in Theorem 3.6 we get the required statement. 2

Note that in Theorem 3.6 and Corollary 3.7 the limit of the anarchy function when xe →∞

is expressed without x∗. In what follows, we always use the formula appearing in Theorem 3.6,

except for Example 3.16, in which we use the formula introduced in Corollary 3.7.

Proposition 3.8 For all intensity functions h, and for all b > 0 :

lim
xe→∞

PoA(bh, xe) = lim
xe→∞

PoA(h, xe),

by which we mean that the first limit exists iff the second limit exists and in that case they are

equal.
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Proof: If
∫∞
0 h(y)dy =∞ then By Corollary 3.7:

lim
xe→∞

PoA(bh, xe) = lim
xe→∞

∫ 1
0 bh(xet)dt∫ 1

0 (1− t)bh(xet)dt
= lim

xe→∞

∫ 1
0 h(xet)dt∫ 1

0 (1− t)h(xet)dt
= lim

xe→∞
PoA(h, xe).

If however
∫∞
0 h(y)dy is finite then also:

∫∞
0 bh(y)dy is finite hence by Theorem 3.4:

lim
xe→∞

PoA(bh, xe) = lim
xe→∞

PoA(h, xe) = 1.

2

Corollary 3.9 If h(y) = βyα, α > −1, β > 0 then:

lim
xe→∞

PoA(h, xe) = α+ 2.

In particular: If h is constant, namely: h ≡ c, c > 0, then:

lim
xe→∞

PoA(h, xe) = 2.

Example 3.10

Consider first the one-dimensional city. Assume that the arrival rate is uniform, s.t.,

h(y) = λ > 0, for all y ≥ 0. By Corollary 3.9, the price of anarchy in this case converges to 2,

as xe →∞. In the case of two-dimensional city, with a uniform arrival: h(y) = 2λπy, ∀y ≥ 0,

by Corollary 3.9, the price of anarchy converges to 3. Intuitively, the difference between the an-

archy in the uniform 1- and 2-dimensional cases, is due to the fact that on the two-dimensional

city there exist relatively more customers with high distances that enter the system. We argue

that because of this difference, the anarchy is larger in the case of 2-dimensional city than in the

1-dimensional city. This intuitive argument can be generalised for all uniform n-dimensional

city, to explain why we get lim
xe→∞

PoA(xn, xe) = n + 2, which increases in n. Thus the higher

the dimension, the higher the price of anarchy. Later on we generalize this argument in The-

orem 3.19 to h1, h2, which satisfy h1(x) ≤ h2(x) from some point on. We prove that under

certain conditions: lim
xe→∞

PoA(h1, xe) ≤ lim
xe→∞

PoA(h2, xe) (see Theorem 3.19).

Theorem 3.11 Given two intensity functions h1, h2 s.t.
∫∞
0 h1(y)dy =

∫∞
0 h2(y)dy =∞, if

lim
x→∞

h1(x)

h2(x)
= c > 0,
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then:

lim
xe→∞

PoA(h1, xe) = lim
xe→∞

PoA(h2, xe),

namely, if one of the limits exists then so does the other, and in this case they are equal.

Proof: Because of Proposition 3.8 we can replace h2 by ch2 and have: lim
x→∞

h1(x)
h2(x)

= 1.

Define u = h1 − h2. Then:

lim
x→∞

u(x)

h2(x)
= lim

x→∞

h1(x)− h2(x)

h2(x)
= lim

x→∞

h1(x)

h2(x)
− 1 = 0.

Now:∫ x
0 h1(y)dy∫ x

0 (1− y
x)h1(y)dy

=

∫ x
0 (h2(y) + u(y)) dy∫ x

0 (1− y
x) (h2(y) + u(y)) dy

=

∫ x
0 h2(y)dy +

∫ x
0 u(y)dy∫ x

0 (1− y
x)h2(y) +

∫ x
0 (1− y

x)u(y)dy

dividing the numerator and the denominator by
∫ x
0 h2(y)dy to get:

1 +
∫ x
0 u(y)dy∫ x
0 h2(y)dy∫ x

0 (1− y
x
)h2(y)dy∫ x

0 h2(y)dy
+
∫ x
0 (1− y

x
)u(y)dy∫ x

0 h2(y)dy

. (19)

Now,
∫ x
0 h2(y)dy → ∞ and so we can use L’Hopital’s rule [15] and get that:

∫ x
0 u(y)dy∫ x
0 h2(y)dy

appearing in the numerator of (19) converges to: lim
x→∞

u(x)
h2(x)

= 0, so the numerator converges

to 1.

In addition:
∫ x
0 (1− y

x
)u(y)dy∫ x

0 h2(y)dy
appearing in the denominator of (19) satisfies:

0 ≤
∫ x
0 (1− y

x)u(y)dy∫ x
0 h2(y)dy

≤
∫ x
0 u(y)dy∫ x
0 h2(y)dy

→ 0,

and so it too converges to 0. Note that the limit of
∫ x
0 (1− y

x
)h2(y)dy∫ x

0 h2(y)dy
appearing in the denominator

of (19) is 1
lim

xe→∞
PoA(h2,xe)

. Taken together, we have:

lim
xe→∞

PoA(h1, xe) = lim
xe→∞

PoA(h2, xe).

2

Proposition 3.12 If lim
x→∞

h(x) = c > 0, then:

lim
xe→∞

PoA(h, xe) = 2.

15



Proof: First, lim
x→∞

h(x) = c, implies
∫∞
0 h(y)dy = ∞. By Corollary 3.9 lim

xe→∞
PoA(1̄, xe) =

2, where 1̄ is the constant function 1. Substituting h2(x) = 1̄, in Theorem 3.11 proves the

proposition.

2

Corollary 3.13 If two intensity functions h1, h2, coincide from some point on, then:

lim
xe→∞

PoA(h1, xe) = lim
xe→∞

PoA(h2, xe),

by which we mean that the first limit exists iff the second limit exists and in that case they are

equal.

Proof: The proof follows immediately from Theorem 3.11.

Theorem 3.14 If
∫∞
0 h(y)dy =∞ and if lim

xe→∞
PoA(h, xe) exists then:

1. If h increases monotonically from some point on then: lim
xe→∞

PoA(h, xe) ≥ 2.

2. If h decreases monotonically from some point on then: lim
xe→∞

PoA(h, xe) ≤ 2.

Proof:

Note first that it is sufficient to prove the theorem for monotonic functions, and then by

Corollary 3.13 the theorem is proved also for functions that are monotonic only from some

point on.

Assume that h is monotonically increasing then we will show that for all x > 0 :∫ x
0 h(y)dy∫ x

0 (1− y
x)h(y)dy

≥ 2,

and then by Theorem 3.6 this will prove 1.

For each x > 0 define:

cx =

∫ x

0
h(y)dy.

Note that: h(0) ≤ cx
x and also h(x) ≥ cx

x . This is true since if h(0) > cx
x , then since h

is increasing then cx =
∫ x
0 h(y)dy >

∫ x
0
cx
x dy = cx, which is a contradiction. Similarly, if
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h(x) < cx
x then cx =

∫ x
0 h(y)dy <

∫ x
0
cx
x = cx, a contradiction. Since h is increasing this implies

that there exists 0 ≤ θ ≤ x, s.t:

• h(y) ≤ cx
x , ∀y ≤ θ

• h(y) ≥ cx
x , ∀y ≥ θ.

Now:(
1− θ

x

)∫ x

0

(
h(y)− cx

x

)
dy =

(
1− θ

x

)[∫ x

0
h(y)dy − 1

x

∫ x

0
cxdy

]
=

(
1− θ

x

)
[cx − cx] = 0.

Hence:∫ x

0

(
1− y

x

)(
h(y)− cx

x

)
dy =

∫ x

0

[(
1− y

x

)
−
(

1− θ

x

)](
h(y)− cx

x

)
dy =

∫ x

0

θ − y
x

(
h(y)− cx

x

)
dy =

∫ θ

0

θ − y
x

(
h(y)− cx

x

)
dy +

∫ x

θ

θ − y
x

(
h(y)− cx

x

)
dy. (20)

The integrand in the first integral is negative, being a product of a function which is positive

and a function that is negative, in the given domain. The integrand of the second integral is

similarly negative. Thus: ∫ x

0

(
1− y

x

)(
h(y)− cx

x

)
dy ≤ 0, (21)

and so: ∫ x

0

(
1− y

x

)
h(y)dy ≤

∫ x

0

(
1− y

x

) cx
x
dy =

cx
x

(
x− x

2

)
=
cx
2

=

∫ x
0 h(y)dy

2
, (22)

hence: ∫ x
0 h(y)dy∫ x

0 (1− y
x)h(y)dy

≥ 2.

This proves 1. The proof of 2 is similar. 2

Note that the limit of PoA(h, xe) does not always exist. In particular, this implies that

PoA is not always monotone in xe. The following two examples show two cases in which

lim
xe→∞

PoA(h, xe) does not exist. In the first example h is monotonic and in the second example,

h is bounded between two strictly positive constants.
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Example 3.15

We define h as a piecewise linear function (see Figure 1) as follows: Divide the domain R+

into intervals [ai, bi], and [bi, ai+1], i = 1, 2, . . . Define:

h(x) = ci, ∀ai ≤ x ≤ bi,

and

h(x) = (ci − bi) + x, ∀bi ≤ x ≤ ai+1.

Define ci+1 = ci − bi + ai+1. It is easy to verify that h is continuous.

We now need to specify ai, bi. Recall that when h(x) = ci for all x large enough, then

lim
xe→∞

PoA(h, xe) = 2, (Proposition 3.12) and when h is linear from some point on, then

lim
xe→∞

PoA(h, xe) = 3, (Example 3.10 and Corollary 3.13). Define a1 = 0. On [0, b1] : h(x) =

c1, ∀x. Define: h1(x) as the function that equals c1 for all x ≥ 0, namely h1 = c̄1.

By Corollary 3.9 lim
x→∞

PoA(c̄1, x) = 2, hence there exists b1 s.t for all x ≥ b1, PoA(c̄1, x) ≤

2.3. Now, in [b1, a2] h is linear. Define: h2(x) as the function that equals c1 on [0, b1] and

from that point on equals (c2 − b2) + x. By Corollary 3.13 lim
x→∞

PoA(h2, x) = 3, hence there

exists a2 ≥ b1 s.t for x ≥ a2, PoA(h2, x) ≥ 2.7, and so on we continue defining ai, bi in the

same way such that h = hi for all x between 0 and the end of the ith interval. Thus we get

that PoA(h, x) ≤ 2.3 and then PoA(h, x) ≥ 2.7 alternately, and so PoA(h, xe) does not have

a limit.
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x

h(x)

a1 = 0 b1 a2 b2

c1

c2

c3

Figure 1: An illustration of h for Example 3.15.

Example 3.16

Divide the domain R+ into intervals: [0, 1), [1, 10), [10, 100), [100, 1000), . . .

Define h as the function that attains the constant functions 1̄ and 2̄ alternately on these

intervals starting with 1̄ at the first interval [0, 1).

One can verify easily that for x = 2, 200, 20000 · · · :∫ 1
0 h(xt)dt∫ 1

0 (1− t)h(xt)dt
≤

3
2

7
8 −

1
20

=
20

11
,

and for x = 20, 2000, 200000 · · · :∫ 1
0 h(xt)dt∫ 1

0 (1− t)h(xt)dt
≥

3
2

5
8 + 1

20

=
20

9
.

Thus according to Corollary 3.7 PoA(h, xe) does not have a limit. Note that h defined in

this example can be smoothed out to give a continuous function with similar properties.

The following theorem shows that in many cases the limit of the price of anarchy does exist

and has a simple presentation.
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Theorem 3.17 If
∫∞
0 h(y)dy =∞ and lim

x→∞
xh′(x)
h(x) exists then lim

xe→∞
PoA(h, xe) exists and:

lim
xe→∞

PoA(h, xe) = 2 + lim
x→∞

xh′(x)

h(x)
.

Proof: From (17) we have that if
∫∞
0 h(y)dy = ∞, then also: lim

xe→∞

∫ xe
0 (1 − y

xe
)h(y)dy = ∞,

and so we can use L’Hopital’s rule to get:

lim
x→∞

∫ x
0 h(y)dy∫ x

0 (1− y
x)h(y)dy

= lim
x→∞

h(x)∫ x
0

y
x2
h(y)dy

= lim
x→∞

x2h(x)∫ x
0 yh(y)dy

.

(the contribution of the derivative with respect to the upper limit of the integral appearing

in the denominator on the left-hand side of the equation above is 0, since
(
1− y

x

)
h(y) is 0 for

y = x).

Using L’Hopital’s rule again we get that this equals:

lim
x→∞

=
2xh(x) + x2h′(x)

xh(x)
= 2 + lim

x→∞

xh′(x)

h(x)
.

2

Note that the number 2 plays a central role in our work (see Theorems 3.14 and 3.17,

Corrolary 3.9 and Proposition 3.12). This is interesting since as mentioned earlier, Gilboa-

Freedman, Hassin and Kerner [4] showed that if λ = µ in Naor’s model, then the price of

anarchy equals 2 as well.

Examples 3.18

• h(x) = ex.

Then h′(x) = ex as well, and so:

lim
x→∞

xh′(x)

h(x)
= lim

x→∞
x =∞,

hence by Theorem 3.17:

lim
xe→∞

PoA(ex, xe) = 2 +∞ =∞.
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• h(x) = ln (x+ 1).

Then h′(x) = 1
x+1 , and so:

lim
x→∞

xh′(x)

h(x)
= lim

x→∞

(
x

x+ 1

)(
1

ln (x+ 1)

)
= 0,

hence by Theorem 3.17:

lim
xe→∞

PoA(ln (x+ 1), xe) = 2 + 0 = 2.

• h(x) = 1
x+1 .

Then h′(x) = − 1
(x+1)2

, and so:

lim
x→∞

xh′(x)

h(x)
= lim

x→∞
−
(

x

x+ 1

)
= −1,

hence by to Theorem 3.17:

lim
xe→∞

PoA

(
1

x+ 1
, xe

)
= 2 + (−1) = 1.

The following example shows a case in which we cannot use Theorem 3.17 since lim
x→∞

xh′(x)
h(x)

does not exist. In such a case lim
xe→∞

PoA(h, xe) should be computed directly from Theo-

rem 3.6 or Corollary 3.7.

• h(x) = 2 + sinx.

Then h′(x) = cosx, and so:
xh′(x)

h(x)
=

x cosx

2 + sinx
.

To see that this expression does not have a limit (and therefore we cannot use The-

orem 3.17), denote: u(x) = x cosx
2+sinx . Then: u(2kπ) = kπ, whereas u((2k + 1)π) =

−
(
k + 1

2

)
π, and so xh′(x)

h(x) does not have a limit. However according to Theorem 3.6:

lim
xe→∞

PoA(2 + sinx, xe) = lim
xe→∞

∫ xe
0 (2 + sin y)dy∫ xe

0 (1− y
xe

)(2 + sin y)dy
= lim

xe→∞

2xe − cosxe + 1

xe + 1− 1
xe

sinxe

= lim
xe→∞

2− 1
xe

cosxe + 1
xe

1 + 1
xe
− 1

x2e
sinxe

= 2.
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The following theorem generalizes our observation regarding hn(y) = yn (see Example 3.10),

that the more customers arriving from far, the higher the limit of the price of anarchy.

Theorem 3.19 Given two intensity functions h1, h2 with infinite integrals and for which the

limits of
xh′i(x)
hi(x)

exist (i = 1, 2) then if there exists M > 0, s.t for all x ≥ M : h1, h2 are

monotonic and h1(x) ≤ h2(x), then:

lim
xe→∞

PoA(h1, xe) ≤ lim
xe→∞

PoA(h2, xe).

Proof: If h1 is decreasing and h2 is increasing then by Theorem 3.14

lim
xe→∞

PoA(h1, xe) ≤ 2 ≤ lim
xe→∞

PoA(h2, xe).

If h1 is increasing and h2 is decreasing then both must converge to a positive constant and so

by Proposition 3.12 lim
xe→∞

PoA(h1, xe) = 2 = lim
xe→∞

PoA(h2, xe).

Hence we need to prove the theorem for the case that the functions are either both increasing

monotonically or both decreasing monotonically. If both are increasing and h2 converges to a

positive constant then so does h1 and in that case by Proposition 3.12 lim
xe→∞

PoA(hi, xe) = 2,

for both i = 1, 2. If only h1 converges to a positive constant then since h2 is increasing then

according to Proposition 3.12 and Theorem 3.14: lim
xe→∞

PoA(h1, xe) = 2 ≤ lim
xe→∞

PoA(h2, xe).

Hence if both are increasing we only need to prove the theorem for the case in which both

functions are increasing monotonically to infinity. Similarly, if both are decreasing we need to

prove the theorem only for the case in which they both converge to zero.

Assume that h1, h2 both decrease monotonically to 0. Then h′1, h
′
2 ≤ 0, and so there exist

a, b s.t:

lim
x→∞

xh′1(x)

h1(x)
= a ≤ 0, and lim

x→∞

xh′2(x)

h2(x)
= b ≤ 0.

Assume contrary to our statement, that lim
xe→∞

PoA(h1, xe) > lim
xe→∞

PoA(h2, xe). Then by

Theorem 3.17 b < a ≤ 0, and so: 0 ≤ a
b < 1, (since b is negative).

Hence:

lim
x→∞

h′1(x)
h1(x)

h′2(x)
h2(x)

= lim
x→∞

xh′1(x)
h1(x)

xh′2(x)
h2(x)

=
a

b
< 1.
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In other words:

lim
x→∞

(lnh1)
′

(lnh2)′
=
a

b
< 1. (23)

Now, since h2 → 0, then lnh2 → −∞, so we can use L’Hopital’s rule in (23) to get:

lim
x→∞

lnh1
lnh2

=
a

b
< 1.

Thus there exists A > 0, s.t. for all x ≥ A : lnh1
lnh2

< 1. Since lnh2(x) < 0 for x large enough,

then we get: lnh1(x) > lnh2(x), implying: h1(x) > h2(x), for all x ≥ A, contradicting the

assumption of the theorem, that there exists M > 0, s.t for all x ≥M : h1(x) ≤ h2(x).

The proof for the case in which h1 and h2 are both increasing monotonically to infinity is

similar.

2

Example 3.20 Return to h(x) = ex in Example 3.18 and hn(x) = xn discussed earlier in

Example 3.10. Since for all n xn < ex from some point on, then according to Theorem 3.19:

lim
xe→∞

PoA(xn, xe) ≤ lim
xe→∞

PoA(ex, xe), ∀n.

Indeed, as shown earlier: lim
xe→∞

PoA(xn, xe) = n+ 2, and lim
xe→∞

PoA(ex, xe) =∞.

4 A system with a queue

In this section, we analyse a system with a queue, with a uniform intensity function, s.t.,

h(y) ≡ λ,∀y > 0. The optimal strategy of a customer located near the server (namely x = 0)

is to enter the system iff the queue length n satisfies: R ≥ cw(n+1)
µ , and so: n + 1 ≤ Rµ

cw
,

equivalently n < ne = bRµcw c like in [12]. A customer located at a distance x from the server

and observing a queue length i, 0 ≤ i ≤ ne − 1 joins the system iff R − cw(i+1)
µ − ctx ≥ 0.

Define xei as the Nash equilibrium threshold when the queue length is i. Hence the equilibrium

strategy is characterized by a vector of thresholds (xe0, x
e
1, . . . , x

e
ne−1) where:

xe0 =
Rµ− cw
ctµ

=
ν − 1

κ
, for queue length 0,
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xe1 =
Rµ− 2cw

ctµ
=
ν − 2

κ
, for queue length 1,

...

xene−2 =
Rµ− (ne − 1)cw

ctµ
=
ν − (ne − 1)

κ
, for queue length ne − 2,

xene−1 =
Rµ− necw

ctµ
=
ν − ne
κ

, for queue length ne − 1. (24)

Thus when a customer observes a queue length i, he joins the system if x ≤ xei and balks

otherwise.

Recall that xe was defined earlier as the equilibrium strategy in the loss system and note

that xe0 equals xe, as both equal ν−1
κ .

Let S(x0, x1, . . . , xne−1) be the expected social benefit per unit of time when the thresh-

old strategy is (x0, x1, . . . , xne−1). We consider the case of one-dimensional uniform arrival.

Namely, the arrival rates are λx0, λx1, . . . , λxne−1 (depending on the queue length) and the

probability vector of observing n customers in the system (n = 0, 1, ..., ne) is (π0, π1, . . . , πne).

Therefore, (π0, π1, . . . , πne) is a solution to the balance equations system:

−λx0π0 + µπ1 = 0,

λx0π0 − (λx1 + µ)π1 + µπ2 = 0,

λx1π1 − (λx2 + µ)π2 + µπ3 = 0,

...

λxne−1πne−1 − µπne = 0.

The solution of the equations system is πi = ρix0 · · ·xi−1π0, 1 ≤ i ≤ ne where ρ = λ
µ , and:

π0 =
1

1 + ρx0 + · · ·+ ρnex0 · · ·xne−1
.

The expected social benefit satisfies the following equations,

S(x0, x1, . . . , xne−1) =

ne∑
n=1

∫ xn−1

0

(
R− cwn

µ
− cty

)
λπn−1(x0, x1, . . . , xne−1)dy
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=

ne∑
n=1

(
R− cwn

µ
− ctxn−1

2

)
xn−1λπn−1(x0, x1, . . . , xne−1)

=

ne∑
n=1

(
xen−1 −

xn−1
2

)
ctxn−1λπn−1(x0, x1, . . . , xne−1)

=

ne∑
n=1

(
xen−1 −

xn−1

2

)
λctxn−1ρ

n−1x0 · · ·xn−2

1 + ρx0 + · · ·+ ρnex0 · · ·xne−1

=

ne∑
n=1

(
xen−1 −

xn−1

2

)
λctρ

n−1x0 · · ·xn−1

1 +
ne∑
n=1

ρnx0 · · ·xn−1
.

In the loss system we proved that the price of anarchy is always bounded. The following

theorem shows that this does not hold in the case of a system with a queue.

Theorem 4.1 The price of anarchy, PoA(ρ, xe0, x
e
1, . . . , x

e
ne−1), is unbounded.

Proof: Recall that x∗ denotes the optimal solution for the loss system, and recall that: xe0 = xe.

Then:

S(x∗0, x
∗
1, . . . , x

∗
ne−1) ≥ S(x∗, 0, 0, . . . , 0) =

ctx
∗

1 + ρx∗

(
xe0 −

x∗

2

)
.

The above is true since the right-hand side is the optimal social benefit S(x∗) for the loss-

system when h(y) ≡ λ (see (3)), and is not necessarily optimal for a system with a queue.

Thus:

PoA(ρ, xe0, x
e
1, . . . , x

e
ne−1) =

S(x∗0, x
∗
1, . . . , x

∗
ne−1)

S(xe0, x
e
1, . . . , x

e
ne−1)

≥
ctx∗

1+ρx∗

(
xe − x∗

2

)
ne∑
k=1

(
xek−1−

xe
k−1
2

)
ctρk−1xe0···xek−1

1+ρxe0+···+ρnexe0···xene−1

=

x∗

1+ρx∗

(
xe0 − x∗

2

)
1
2

ne∑
k=1

(xek−1)ρk−1xe0···xek−1

1+ρxe0+···+ρnexe0···xene−1

= 2 ·
x∗

1+ρx∗

(
xe0 − x∗

2

)
ne∑
k=1

ρk−1xe0···(xek−1)
2

1+ρxe0+···+ρnexe0···xene−1

= 2 · x∗

(1 + ρx∗)
·
xe0 − x∗

2

xe0
·

xe0(1 + ρxe0 + · · ·+ ρnexe0 · · ·xene−1)
(xe0)

2 + ρxe0(x
e
1)

2 + ρ2xe0x
e
1(x

e
2)

2+, . . . ,+ρne−1xe0 · · ·xene−2(x
e
ne−1)

2
.
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= 2 ·

(
1

1
x∗ + ρ

)(
1− 1

2

(x∗
xe

))( 1 + ρxe0 + · · ·+ ρnexe0 · · ·xene−1
xe0 + ρ(xe1)

2 + ρ2xe1(x
e
2)

2+, . . . ,+ρne−1 · · ·xene−2(x
e
ne−1)

2

)
(25)

Denote
√

cw
µ as s. Given s, choose the parameters R, and ct, such that: ct = 1, and

R = (2s−1)s2
s−1 . Substituting these choices in (24), yields:

xe0 = R− cw/µ =
s

s− 1
· s2,

xe1 = R− 2cw/µ =
1

s− 1
· s2.

which implies:
xe0
xe1

=
R− cw/µ
R− 2cw/µ

= s.

Recall that ne = bRµcw c = b2s−1s−1 c = 2. Therefore (25) becomes:

PoA(ρ, xe0, x
e
1) ≥ 2 ·

(
1

1
x∗ + ρ

)(
1− 1

2

(x∗
xe

))(1 + ρxe0 + ρ2xe0x
e
1

xe0 + ρ(xe1)
2

)
. (26)

Now, x∗ and xe, both relate to the loss system, and we have already shown that (7) implies

that xe ≥ x∗, and: x∗ → ∞ and x∗

xe
→ 0, when xe → ∞. Note that when s → ∞, then

xe0 ∼ s2 →∞. Hence when s goes to infinity, the first two factors in (26) converge to 1
ρ and 1,

respectively, and so:

lim
s→∞

PoA(ρ, xe0, x
e
1) ≥ lim

s→∞

1 + ρxe0 + ρ2xe0x
e
1

ρ(xe0 + ρ(xe1)
2)

= lim
s→∞

s3

s2
=∞,

which completes the proof. 2
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