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Hoffman’s Existence Theorem for circulations gives a necessary and sufficient condi- 
tion for the existence of a feasible circulation in a directed network with upper and 
lower bounds on the flow along each of the arcs. This paper presents new existence 
theorems for more general types of flows in directed networks: flows with gains, two- 
commodity flows, and flows with set constraints. 

I .  INTRODUCTION 

The classic network circulation model deals with the flow of a single kind of com- 
modity through a network in which the flow in every arc is conserved and its value is 
restricted by lower and upper bounds. Numerous applications of this model exist in 
the literature; here we-mention only the models of production systems developed by 
Dorsey, Hodgson, and Ratliff [l] , and Zangwill [14, 151. Many authors have recog- 
nized that the classic model is often inadequate in practical situations and have ex- 
tended it to  include more general cases, three of which will be considered here: 

(1) Models offrow with gains, where the commodity shipped along an arc undergoes 
transformation (see [8], [ 1 11, [ 131 and their references). 

(2) Multicommodity models, in which several kinds of commodities are shipped 
simultaneously through the same arc. ([ 101 contains a survey of such models.) 

(3) Models with (disjoint) set constraints, where bounds are imposed on the sum of 
flows traversing (disjoint) sets of arcs. 

Each of these extensions apply to common situations in production systems, arising 
from deterioration of stock, the production of several products simultaneously at the 
same facility, constraints on total production in different production periods and so 
forth. 

Hoffman’s classic existence theorem for feasible circulations states a necessary and 
sufficient condition for the existence of a single commodity circulation which satisfies 
both the flow conservation conditions in the nodes and arcs of the network and the 
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bounds imposed on the flow through the arcs [7]. Hoffman also extended his theorem 
to the case where bounds are imposed on the net flow through the nodes. 

Existence theorems for circulations are of interest for a variety of reasons. First, 
they are useful tools in discovering and proving other theorems [2-4, 111. Second, 
their proofs suggest algorithms for feasible (or minimum cost) circulations [ 1 1, 121. 
The theorems themselves supply optimality conditions and convergence proofs for 
such algorithms [6]. Finally, in special cases, a feasibility theorem may serve to prove 
that no feasible circulation exists. This is demonstrated by the examples which follow 
the theorems of this paper. 

In the next section I present notation and definitions. In Secs. 111, IV, and V I state 
and prove generalizations of Hoffman’s theorem for directed networks with gains, 
two-commodities, and disjoint set constraints, respectively. 

II. NOTATION AND TERMINOLOGY 

A directed network (N, A )  consists of a finite set of nodes N and a set of arcs 
A E N X N .  A circulation is an assignment of flow values xi! to the arcs (i ,  j )  E A such 
that the following condition holds: 

Let dii and kii be given sets of lower and upper bounds, respectively, imposed on the 
flow through the arcs (i, j )  E A.  A circulation is feasible if 

dij < xi,- < kii (i, j )  E A .  (2) 

Hoffman’s existence theorem for circulations [7,12] states that: A necessary and suf- 
ficient condition for a feasible solution to (1) and (2) to exist is that for every set 
SCN 

j E N - S  ] E N - S  

A path in (N,  A )  is a sequence (a1, . . . , an) of n(n > 1) distinct arcs having, for 
rn = 1, .  . . , n ,  arc a, € A  and either a, =(imr im+l) or a, = ( i m + l ,  i,). This path 
is a cycle if i l  = in+ 
and negative orientation if a,,, = (im+l, im). In a directed cycle all the arcs have 
common orientation. A subgmph (M, B) of (N, A) has t$ Z M  E N, B C M X M, 
and B C A .  A subgraph (M, B) of (N, A) is connected if (M, B )  contains a path from 
each i E M  to each j E M  having j # i .  A subgraph is called a free if it is connected 
and has no cycles. A set of node-disjoint trees is called a forest, and each of these 
trees is a component of the forest. A tree (M, B) having M = N is called a spanning 
tree. 

For sets B C N X N ,  S C N and T C N, a function hi (i, j )  E A and a scalar x ,  we 

Arc a,,, in this path has positive orientation if a, = (im , im + 
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adopt the following abbreviations: 

f ( ~ )  = C f i j ,  
( i , / ) E s n A  

(S, T )  = {( i ,  j )  E A :  i E S, j E 2') 

N - S = { i E N : i @ S } ,  and 

(x)' = max (0, x} . 
For example, the condition of Hoffman's theorem can be expressed as 

k(S, N -  S )  > d ( N -  S, S )  for every S C N  

111. FLOW WITH GAINS 

In this model a nonzero multiplier Mi/ a lower bound dij and an upper bound kq are 
associated with each arc. A feasible circulation is a circulation which satisfies the fol- 
lowing conditions: 

Theorem 1. A necessary and sufficient condition for a feasible solution to (3), (4) to 
exist, is that for every tree (T, B) E (N, A) and any set of real numbers ti i E N ,  such 
that ti = 0 for i E N - T, and ti = tiMi/ for (i, j )  E B the following condition holds: 

C (ti - Mi/tj)+kij 2 C (Mijt/ - ti)' di/- ( 5 )  
( i , / ) E A  ( i , i ) E A  

Jewell provides an inclusive description of the patterns of flow changes which pre- 
serve feasibility in networks with gains [8]. It is essential to realize that, in contrast 
with flow changes in networks without gains, it is possible to change x,, and preserve 
a feasible circulation by changing flows in arcs that do not necessarily include a cycle 
containing (m, n). 

Proofi (a) Necessity. Suppose xi units of flow enter the tree at node i ,  travel along 
the unique path of arcs of the tree (T, B) to node j ,  and then leave the tree. When 
traversing arc (m, n )  from m to n, the flow is multiplied by M,, and when traversing 
it in the opposite direction, it is multiplied by -l/M,, so that (3) holds. By the 
definition of ti, the amount of flow leaving the tree is xi =xiti l t]  (i.e., xiti = xiti) .  
Suppose that the flow into node i E T is x i ;  then 

c x i t i = o .  
i E T  
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Let xij be a circulation, then 

This equality becomes clear from the following five cases: 

Case 1. If (i, j )  E (T,  N - T ) ,  then tj = 0 and -xij is the flow into T through (i, j ) .  

Case 2. If (i, j )  E (N - t ,  T), then ti = 0 andMItxij is the flow into T through (i, j ) .  

Case 3. If (i, j )  E A - B and i E T, j E T, then Mfjxfj  units of flow enter T from (i, j )  
through node j and -xij  units through node i. 

Case 4. If (i, j )  E (N - T,  N - T) then ti = ti = 0 and no flow enters (or leaves) T 

Case 5. If ( i , j )  E B thenMijtj - ti = 0. No flow enters T through (i, j ) .  

through (i, j). 

Replacing flows with a positive coefficient by their lower bounds and flows with a 
negative coefficient by their upper bound yields eq. (5 ) .  Therefore, the condition is 
necessary. 

(b) Sufficiency. Start with xij = 0 for all (i, j) E A. Choose any arc with infeasible 
flow and change this flow to a feasible one so that no new infeasibilities are created 
and circulation is maintained. If no feasible circulation exists, this process will stop 
with an infeasible flow value y,,, which cannot be made feasible without creating 
other infeasibilities. Assume ymn < d,, (a similar proof holds for ymn > limn). Then 
the solution to the following auxiliary problem is bounded (in fact, zero): 

Maximize xmn 

subject to 

Therefore, the following dual system of equations has a feasible solution: 

wij 2 0 ,  U i j >  0 ( i , j )  E A ,  

where ail [bij] equals one if yij > kij [ yij Q dij] and zero otherwise. 
Let 5' = {(i, j )  E A :  dij < yii < k i j } ;  then for every (i, j )  E S, aii = bij = 0 and thus 
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ui = M i p i .  Suppose that S contains a cycle. If this is a directed cycle then the prod- 
uct of the multipliers of its arcs is equal to one. Else, the product of the multipliers 
of its positively oriented arcs is equal to the product of the multipliers of its negatively 
oriented arcs. For example, in a cycle with arcs (1, 2), (2, 3),  (1, 3), u1 = M I 2 u 2  = 
MI2M23u3  = ( M 1 2 M 2 3 / M 1 3 ) u l ,  and thus M12M23 = M I 3 .  We can change the flow, yii ,  
along this cycle until some arc leaves S, i.e., the flow through this arc becomes equal 
to one of its bounds, and repeat this procedure until ( N ,  S) is a forest. 

Note that 

Summation yields: 

As we have shown in part (a) of this proof, the left hand side of the inequality equals 
zero, hence we have proved that eq. ( 5 )  does not hold for the forest (N, S) with ti = ui. 

To complete the proof, we show that it is possible to formulate the auxiliary prob- 
lem so that u j = O  for all nodes except for one component, which is incident with 

Consider any component of (N, S) not incident with (m, n), and check whether the 
deletion of the flow conservation equations of its nodes changes the solution of the 
auxiliary problem. If it does, there must exist an arc (i ,  j )  E A - S between the com- 
ponent and its complement, such that the deletion of its constraint from the auxiliary 
problem does not affect the solution. In this case we can change aij and bii to zero 
and assume ( i ,  j )  E A. (Note that (N, S) remains a forest.) Otherwise the flow con- 
servation equations for the nodes of the component may be deleted, and u1 for these 
nodes can be restricted to  zero. 

Repeating this procedure results in a forest with either one or two components with 
ui # 0 incident with (m, n). If two components remain, the flow conservation equa- 
tions of only one component are needed to block the increase iny,,, and the dual 
variables ui of the nodes of the second component may be restricted to zero. 

(m, n). 

Example. Consider a network with three nodes and the following capacities: k l z  = 1, 
d l  = 0; kZ3 = 1, d23 = 1 ; k31 = 1, d3 = 0, Let MI = 2 and M23 = M3 = 1. Clearly 
no feasible circulation exists. The condition of the theorem does not hold for the tree 
which consists of the arcs (1,2), ( 3 , l )  and for tl = t 3  = 1, t ,  = 1/2: 
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IV. TWO-COMMODITY CIRCULATIONS 

In this model, a circulation consists of two kinds of flows, namely xii and xb,  
(i, j )  E A. A feasible circulation satisfies the following conditions: 

We assume without any loss of generality that for each arc ( i ,  j )  E A ; 

k t k ' > k " >  k t d ' ,  k' t d Z d "  > d  t d ' .  (1 1) 

Let S and S' be two sets such that ti(t;) elements of S(S') correspond to node i. 
Define the following sets: 

B" = {t!' elements correspond to any arc (i, j )  E A such that 

B' = {tii elements correspond to any arc (i, j )  E A such that 

B = {tij elements correspond to any arc (i, j )  E A such that 

C", C', and Care defined as B", B', and B, respectively, for ( j ,  i) E A .  

l ,ri  tij=min[t,- t / , t i -  tj] >o}, 

tii = ti - ti - max[o, ti - ti] > O}, 

t i j  = ti - ti - max[O, ti - tj] > 0}, 

This is illustrated by the network in Figure 1, based on an example of Jewel1 IS]. 
The values ( t ,  t') for every node of the network are given in the figure. Note that the 
nodes denoted by w are the same and the same holds for PI .  The relevant sets are: 

B" = {(ai, pi) 
B' = {M - 1 times (w, u)},  

B = @ ,  

i = 1, . . . , m}, 

c" = ((01 , %l)}, 

C' = M - 1 times (pl, a,),M - i times (p i ,  W), and i times (u,  ai) i = 1, . . . , m} 
and C= 

Theorem 2. A necessary and sufficient condition for a feasible solution to exist for 
(6)-(10) is that for any two sets of nodes S, S', the corresponding sets of arcs B",B', 
B ,  c", c', c satisfy 

(1 21 

q) i = 1, . . . , M - 1 and (w, u)}. 

k"(B"\+ k'(B') + k(B\ > d"(C") + d'(C'\ + d ( C l  
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FIG. 1 

BOOR (a) Let Tq = {i E N :  tf 2 4) C N and T i  = {i E N :  t,! 3 4} C N .  Then for a 
feasible circulation 

, k"(B") + k'(B') + k(B) >x(B") t x'(B'') + x'(B') t x(B) 

= c [x(Tq,N-  T , ) + x ' ( T b , N -  T i ) ]  

= c [x(N- T q , T q ) + x ' ( N -  Tb,Tb)l 

= X(C") t x'("') t X'(C') + x(C) 

q-1, z,... 

q=1,2,.., 

2 d"(c") t d'(C') t d(C). 

Therefore (12) is a necessary condition. 
(b) To prove sufficiency, start with x = x' = 0 .  Choose arcs with an infeasible (two 

commodity) flow and make this flow feasible while maintaining circulation and with- 
out creating new infeasibilities. 

If no feasible circulation exists, the process will terminate with some circulation 
y ,  y' and at least one arc, say (m, n), with an infeasible flow. 

Let K", K ' ,  K, D", D', and D be the sets of arcs with 

Yij +Yij z k t ,  Yij 2 k;j,Yij 2 kij, Yij +Yi j  <d$,  Yij  <dij andYij Gdij,  

respectively. We shall now consider the different kinds of infeasibilities that may 
exist in the flow through (m, n) and show that each implies that (1 2) does not hold. 

Siinnnw v--.. + vk- <d". Then the solution to the followinc! auxiliarv problem 
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is bounded (in fact, zero): 

Maximize xmn + x k H  

subject to 

x i j -  x j i=O i E N ,  

c x;- c x j i = O  i E N ,  

0.i )E A ( i , i ) E A  

i ) € A  ( j , i ) E A  

x i j  t xij Q 0 (i, j )  E K ” ,  

~ ; j  < 0 ( i , j ) E  K’, 
x i j < O  (i ,j)E K, 

-xij - xij < 0 
-xii < 0 
-xii < 0 

(i, j )  E D”, 

(i, j )  E D‘, 

(i, j )  E D .  

Therefore, the following dual system of equations has a feasible solution: 

I 1  I 
wij, wij, wij, v i ,  v b ,  vij 2 0 (i, j )  E A ,  

where a!, ak, aij ,  b i ,  b&, bij equals one if ( i , j )  E K ” ,  K ’ ,  K ,  D”, D’, D ,  respectively, and 
zero otherwise. Since only the differences (ui - ui) and (u; - u;) matter, we can assume 
u; 2 0, ui 2 0 for each i E N. By multiplying these numbers by a sufficiently large 
integer, we obtain an integral solution. 

Let S = {ui times node i}, S’ = {u; times node i}. 
Suppose (i, j )  E B”, then ui > u; and ui > ui. Hence, both a; t aij and a; t uii are 

positive, i.e., (i, j )  E K” U (K  n K ’ ) .  Since, by (1 1) K ”  2 (K  n K ’ ) ,  then (i, j )  E K ” .  
Suppose (i, j )  € B‘,then u; > ui andu; - uj > ui - uj,  i.e., a! + ujj 2 1 andajj t bi.  2 1. 
The first condition implies ( i ,  j )  E K” U K’ and the second implies (i, j )  E K  U D. 
Hence (i, j )  E K’ U (K” no). By (11) K” fl D c K‘, thus (i, j )  E K ’ .  Similarily, if 
( i ,  j )  E B,  then (i, j )  E K and if (i, j )  E C”, C’, C then (i, j )  E D”, D‘,  D ,  respectively. 
Therefore, 

f 

k”(B”) t k’(B’) t k(B) G y‘(”’) + y(B”) + y‘(B’) + y (B) 

= y‘(C”) t y(C”) + y’(C‘) + y(C) 

< d”(Cr’) t d’(C’) t d(C). (13) 
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1 .  Assume y,, +yh: < d;?, ymn < k,, and yh, < kh, . By (1 1) also ymn + 
yh, < k:,, hence, urn, = a,, = urn, = 0, so that u, < u, and uh < u;,  i.e., 
(m, n) E C”. With ymn tyh, <dk,, this implies that the last inequality in (13) is 
strict and that (12) does not hold. 

2. Suppose y,, +yLn < d i n  but yh, 2 kh,. Then by (1 1) also ymn <d,,, so 
that uk, = urn, = 0. This implies u, < u, , and therefore if u h  < u;, then (m, n) E C” 
and if u& > uk then (u, - u,) < (& = u i )  and (m, n) E C. In both cases the last 
inequality in (13) is strict and (12) does not hold. 

3. Suppose kk, > y,, t y h ,  >dk,, and ymn <d,,. By (1 l ) ,  yh, >dk,, and 
the auxiliary problem with the modified primal objective, max(x,,), is bounded. 
Hence the dual constraint for xh, equals zero and the dual system is feasible. Since 
uh, = urn, = 0, then u, < u, ; and since b;, = 0, (u, - u,) < (uh - u;). Therefore, 
(m, n) € C. Together withy,, < dmn, this implies that (12) does not hold. 

By (1 l), yh, > kh,, and the 
auxiliary problem with the objective modified to max(-xh,) is bounded. Hence, the 
dual constraint for xhn equals -1, and the dual system is feasible. Since b k ,  = bh, = 0, 
then u L  >uA; and since urn, = 0, (uL - uA)> (u, - u,) and (m, n) EB’.  Hence, 
yL, >kL,  implies that the first inequality in (13) is strict and that (12) does not 
hold. 

We conclude that ymn tyk, < dk ,  implies that (12) does not hold. Proofs for the 
other possible infeasibilities in the flow through (m, n) are obtained by interchanging 
the roles of the primed and unprimed flows and/or the roles of upper and lower 
bounds. Thus, we conclude that (12) is a sufficient condition for the existence of a 
two-commodity circulation. 

4. Suppose ymn +yL,  >kk, and y,, <d,,. 

Example. Consider again Figure 1 with the following bounds: 

All other lower bounds equal zero and upper bounds equal one. For the pairs ( t ,  t’) 
given in the figure 

k”(B”) t k’(B’) + k(B) = M  t 0 + 0 < 1 + (M - 1) + 1 = d”(C”)  d‘(C) t d(C). 

Therefore no feasible circulation exists. 

V. FLOW WITH SET CONSTRAINTS 

In the general network model with set constraints, upper bounds ks  and lower 
bounds ds < ks are defined for every S 5 A .  A feasible circulation satisfies the fol- 
lowing conditions: 



A special case of (1 5 )  has constraints only on the flow leaving (entering) the nodes, 
i.e., 

where F(i)  = { j E N : ( i ,  j )  E A}. A simple existence theorem holds when for each 
i E N and S ,  T C F(i)  the following conditions hold: 

d(i,S)t d ( i , T ) < d ( i , S U  T ) + d ( i , S  n T) (i.e.,d(n;)issupemodular) (17) 

k(i, S )  t k(i ,  T) 2 k(i ,  S U T )  t k( i ,S  n T) (18) (i.e., k(i, .) is submodular), 

k ( i , S ) -  k ( i , S -  T ) > d ( i , T ) - d ( i , T -  S ) .  (1 9) 

As the meaning of these conditions and a proof of this theorem are given in [ 5 ] ,  
here we only state the theroem: 

Theorem 3. A necessary and sufficient condition for the existence of a feasible solu- 
tion to (14) and (16) when for each i € N  and S ,  T c F ( i ) ,  conditions (17)-(19) 
hold, is that for every M E N, 

Let S* = {S E A :(ds, ks) # (--, m)}. Another important special case of (1 5 )  is 
the one in which the sets S C S* are disjoint, hence we have: 

Theorem 4. The following condition is necessary and sufficient for the existence of a 
feasible solution to (14)-(15) when the sets S € S *  are disjoint: For any set ofnodes 
in which node i is included ti times, and f f  - ti equals a common value t (S )  for every 
( i ,  i )  E S, 

Proof: (a) Let Tq = {i  E N :  ti 2 q } ,  then for a feasible circulation x, 

c (ts)+ks 2 c x(Tq , N  - Tq) 

= c x ( N -  Tq,  Tq)  

2 c (-ts)+ds. 

SfS* Q 

4 

SES'  

Hence (20) is necessary. 
(b) Suppose that no feasible circulation exists. Then there is a circulation 

yii ( i , j )  € A  and a set Q €S* such that y (Q)  is infeasible, (for exampley(Q)<dn), 
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and the solution to the problem stated below is bounded. (A similar proof holds when 
Y (Q>> kp.1 

Maximize x(Q)  

subject to 

x ( S )  G 0 S E S* :y (S )  Z ks, 
-X(S)GO S E S * : y ( S ) < d s .  

Therefore the following dual system has a feasible solution: 

U ~ > O , W ~ > O  SES*,  

where aijs(bijs) is equal to one if ( i ,  j )  E S and y (S) 2 ks(y (S) < ds),  and zero other- 
wise. An integral solution of ui, i € N, is obtained by multiplying the dual constraints 
by a sufficiently large integer. 

Non-negativity can be assumed since only the differences (ui - u]) matter. 
Suppose (i, j )  E S € S*. Then u s  = ui - uj > 0 implies y(S) 2 ks, and us = ut - 

uj < 0 impliesy(S) 2 ds.  Let ti = ui,  Tq = { i :  ti 2 4). Then 

c W + k s  c A T ,  J - Tq) 

=c m- Tqr Tq) 

c (-td+ds. 

SES* 4 

4 

S€S* 

Since y (Q) < dp < k p  , then aijp = 0 for all (i, j )  E A ,  and U Q  < 0. Thus the second 
inequality is strict and (20) does not hold. Therefore (20) is a sufficient condition. 

Example. Consider the triangle with ~ 3 1  G 1, x l Z  t ~ 2 3  Z 3. Let t = (0, 1 , 2), then 
Z S E S ~  (-ts)+ ds = 1 * 3 > 2 1 = ZCSESL (ts)+ks and no feasible circulation exists. 

Necessary and sufficient conditions for the existence of a feasible solution when the 
constrained sets are not disjoint may be easily obtained by a simple transformation: 
change any arc which is included in n > 1 constrained sets into n arcs in series, and 
ascribe each to a different set. 

My deepest gratitude to Professor A. J. Hoffman, for his support and guidance. 
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