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Abstract

We consider memoryless two-line system with threshold jockeying. Upon arrival
each customer decides whether to purchase the information about which line is shorter,
or randomly. selects one of the lines. Since the decision of a customer is affected by
the decision of the others, we are interested in Nash-equilibrium policies. Indeed, we
show explicitly how to find these policies. We are also interested in the externalities
imposed by an informed customer on the others. We derive an explicit expression for
these externalities in the case that jockeying takes place as soon as the lines differ by
three. Some of the results may seem to be counterintuitive. For example, when the
threshold is three, the value of information may increase with the portion of informed
customers.

1 INTRODUCTION

Queueing systems with with two waiting lines in parallel have been analyzed
extensively. In one extreme lies the instantaneous jockeying model in which
whenever the difference between the lengths of the two lines becomes greater
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than one, the customer in the back of the longer line jockeys to the back of
the other line. In particular, in this model arrivals always join the shorter
line. As the total number of customers in the system coincides with the
number in the corresponding one-line system, the analysis of this model is
tractable. Apparently the first to consider this model was Koenigsberg [10].
See also Maekawa [11] for the Laplace transform of the waiting time and of
some of its moments and Haviv and Ritov [8] and Zhao and Grassmann [15]
for generalizations of this model.

On the other extreme lies the non-jockeying model where arrivals still
join the shorter line but are do not jockey later to the other line even if it
is much shorter. Contrary to the first model, this model turned out to be
intractable. Starting with Haight [6] and Kingman [9] and up to recently
by Zhao and Grassmann [16] and Adan, Wessels and Zijm [2], expressions
for the stationary distribution were developed. All are relatively hard to
work with as they involve complex variables analysis or infinite summation
of series expansions, calling the practitioner to use truncations and approx-
imations. Also, this problem was reduced by Fayolle and Iasnogorodski [4]
to a Riemann-Hilbert boundary problem. Moreover, finite expressions for
the waiting time moments or for its distribution are not available.

Starting with Gertsbakh [5] attention was directed to an intermediate
model with threshold jockeying. Again, customers join the shorter line,
but jockeying occurs only when the difference between the lengths of the
two lines reaches some threshold value, say V. Note that the two models
described above are the two extreme cases, N = 2 and N = oo, respectively.
For finite values of IV these models are more tractable than the case N = oo
since the stationary distribution follows a matrix geometric pattern where
the size of the rate matrix is at most NV x V. See Zhao and Grassmann [17]
and Adan, Wessels and Zijm [2,3] for details and see Wang and Hlynka [14]
for a special analysis for N = 3. In particular, the latter reference describes
some real life applications, like toll booth queues, where threshold jockeying
takes place. Moreover, as shown by Adan, van Houtum and van der Wal [1],
results from queues with threshold jockeying can serve as bounds on the
corresponding results in systems without jockeying. Once the stationary
distribution is known, it is possible to compute the expected number of
customers in the system and the expected waiting time. To the best of
our knowledge neither the distribution of the waiting time nor its Laplace
transform appear in the literature. !

The question we address is different from the traditional ones of sta-
tionary distributions and waiting times. It is concerned with the issue of
the value of information. Suppose that upon arrival a customer does not

! Although this is not our main purpose, we actually fill this gap here.
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know which queue is shorter and hence he joins each queue with probabil-
ity 0.5. Also, suppose he has the option of acquiring the information on
which queue is shorter and if he exercises this option, he indeed joins the
shorter queue. This option does not come free: we assume that the cost has
some value which for convenience is measured in units of time. Thus, an
arrival who is self-optimization oriented compares the cost associated with
acquiring the information with the expected gain from joining the shorter
line rather than doing so only with probability 0.5. Of course, in the case
of instantaneous jockeying (N = 2) the information has no value. But this
is not the case in general. We point out that in our model, informed and
uninformed customers behave in the same way with respect to jockeying.

A crucial observation for this model is that the value of the information
for an individual, and therefore also his decision of whether to acquire it,
depend on what is done by the others. Thus, the relevant solution concept
is that of a Nash-equilibrium strategy. By limiting ourselves to symmetric
strategies, a Nash-equilibrium strategy will be characterized by a parameter
p, 0 < p < 1, where p is the probability of purchasing the information. Of
course, p = 0 (p = 1, resp.), namely nobody (everybody, resp.) acquires
the information is possible. If p = 0 or if p = 1 the strategy is called pure.
Otherwise, it is called mized.

In order to find a Nash-equilibrium strategy we first have to derive the
value of information for an individual arrival, namely his expected reduction
in expected waiting time due to information acquiring, when the rest of
the customers are using strategy p. Call this value g(p). The value of
information has to be compared with the cost of information (measured
in units of time) which is denoted here by C. A probability p strictly
between zero and one specifies a Nash-equilibrium strategy if and only if
g(p) = C. Also, if g(0) < C then p = 0 is a Nash-equilibrium strategy
and if g(1) > C than p =1 is a Nash-equilibrium strategy. It may happen
that more then one Nash-equilibrium strategy exists. For example, in a
numerical example we report later, when N = 3, ¢(0) < g(p) < g(1) for all
p, 0 < p < 1. Thus, even if g(p) = C for some p, 0 < p < 1, resulting in a
mixed Nash-equilibrium strategy, the pure strategies p = 0 and p = 1 are
also Nash-equilibria.

We will claim that the actual information value for a customer depends
only on the state of the system upon arrival. If the customers to arrive later
on are informed or not is not of relevance to him. Hence, all that matters for
the information value for an individual customer are the probabilities that
he sees states where the information is useful and the gains corresponding
to these states (which are not functions of p). For example, in the case
where V = 3 these are the states in which the difference between the two
queue lengths is exactly one.
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One could argue intuitively that the value of information is a decreasing
function of p as follows. The larger the portion of informed customers, the
better the utilization of the two servers: a server is less likely to be idle while
customers are waiting. Customers clear the system faster, the expected
waiting time is smaller, and hence the expected difference in waiting time
due to information acquiring is also smaller. Moreover, when the portion of
informed customers is larger, then, for a fixed number of customers in the
system, the lengths of the two lines tend to be more even, so that the value
of information is smaller.

We claim that the above intuitive argument maybe true but it is not com-
plete. Actually, there need not be any direct relation between the expected
waiting time and the reduction in expected waiting time gained when pur-
chasing information. As a matter of fact, we will show numerically that the
opposite is true for N = 3 where actually the value of information increases
with p. In particular, for this model the information for an individual cus-
tomer is more valuable when all the others acquire it than when none of
them does. However, when N > 4, we show numerically that the value of
information decreases with p as expected by our original intuition.

We explain now, through an example, why when N = 3 it makes sense
that the value of information increases with p. Suppose an arrival faces
state (0, 1), namely he comes to a system in which there is one customer in
service and where one server is idle. If he is informed, the next state will
be (1,1). Otherwise, it might be (0,2). This implies that if this customer
is informed, then the next to arrive is more likely to arrive to state (0, 1).
2 This is a state in which information is valuable. Hence, the fact that a
customier is informed tends, in this case, to increase the value of information
for others.

Another question which we address here is the question of the exter-
nalities associated with purchasing the information. Clearly, the larger the
portion of arrivals who acquire the information the less is the overall waiting
time. This is so since the probability that a server is idle while a customer is
waiting for service decreases. However, when C' > 0, we cannot say without
further examination that customers must be encouraged to purchase more
information. The reason is that the reduction in waiting time of those who
buy information may be on account of others who will have to wait more.
Hence, an interesting qualitative question is whether the effect (externality)
of one’s action due to the acquisition of information on others is positive or
negative. If it is negative, then for some possible values of C self optimiz-
ing individuals (who behave as prescribe by the equilibrium strategy) will
buy more information than it is socially desired. (See, Hassin [7]) for an

2Note that transition from state (1,1) to state (0, 1) takes place as soon as one of the two busy server
completes service. For transition form state (0, 2) into state (0, 1) it is required that the single busy server
completes his service.
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analysis for a similar question for a single server model. There, it is shown
that under suitable conditions, social welfare will be increased if informa-
tion about the queue length will be suppressed from the customers.) For
N = 3, we derive closed form expressions for the positive and the negative
parts of the externality. We show numerically that the total externality is a
monotone increasing function of p. For small values of the traffic intensity
the externality as function of p is positive. For large values, the externality
is negative for small values of p and positive for large values of p. Thus,
depending on C, the externality at a Nash equilibrium strategy may be pos-
itive or negative. Treating the issue of externalities for an arbitrary value
of N seems to be a much harder task.

The paper is organized as follows. In Section 2 we show how to compute
the stationary distribution of the system for any value of IV and for any value
of p. In Section 3 we derive the expected sojourn times for customers in
various positions in the queue. In Section 4, the results of the previous two
sections are combined and the value of information is derived. This leads
to the Nash-equilibrium strategies. Section 5 is devoted to the computation
of the externality for V = 3. We conclude in Section 6 with some remarks.

2 THE STATIONARY DISTRIBUTION

In this section we show how to compute the stationary distribution for
the memoryless two parallel line model when jockeying occurs as soon as
the difference between the two queues reaches the value of N for some NV,
3 < N < oo. In order to simplify notation, we omit the parameter NV
from now on in this section. We use matrix-geometric computation (see
Neuts, 1981). The technique requires a decomposition of the state space.
The decomposition is not unique and the one we have selected is the most
convenient for our purpose.

Let X be the rate of arrival and let 1/u be the expected service require-
ment. Scale A and p such that A + 2y = 1. Let w;; be the stationary
probability that ¢ customers are in one line (no matter which) and j cus-
tomers are in the other line. These numbers include customers in service.
Without loss of generality, assume that ¢ < j For ¢« > 0, let L(¢) be the
set of IV states (¢,5) for ¢ < j < ¢ + N — 1. Order these N states by
(1,7), (4,i4+1),---, (4, + N — 1). Let m; be the row-vector of the stationary
probabilities of the states in L(%) ordered as above. For ¢ > 1, transition
from a state in L(%) can take place only to states in L{i —1), L(¢) or L(z+1).
Thus, for some easy to find matrices Q(,Q; and Q, in R¥V*VN for i > 1,

TiQo+ miy1Qh + T 2Q2 =0 . (1)
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Specifically, let A} = A(1 + p)/2 and let Ay = A(1 — p)/2. Then,

A i=2,...,N=-1, j=i—1
Qolij)={ A i=N , j=N-1

0 otherwise

or

0O 0 0 0 O - 0 0O
A 0 0O 0 0 - 0 00
0O X 0 0 O - 0 0O
0 0 A 0 O - 0 0O
Q=10 0 0 A 0 - 0 00
0 0 0 0 0 - 0 0O
0O 0 0 0 0 - A 00
0O 0 0 0 0 - 0 2O
-1 9=¢,12=1,...,N
A i=1,5=2
e i=2,...,N-1,j=i-1
@i(i7) = Ay 1=2,...,N=1,j=i+1
20 t=N, j=N-~-1
0 otherwise

or

(=1 A 0 0 0 0 0 0

g =1 A 0 0 0 0 0

0 p =1 X 0 0 0 0

0 0 pu -1 X 0 0 0

Q= 0 0 0 p -1 0 0 0
0 0 0 0 0 ~1 X O

0O 0 0 0 0 po—=1 X\

0 0 0 0 0 0 2u -1

and

2p1=1,7=2
Qi) ={p i=2,.. ,N=1,j=i+1,
0 otherwise
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or

020000 ---00 0
00 0O --000
00 0ppoO0--000
00 00 --000
Q=00 000--000
00000 --04x0
00000 --00 p
00000 --000

Consequently, there exists a rate matrix (which is a function of p) R €
RN*N such that for i > 0, m;;; = m;R. See Neuts [13, pp. 80-83]. Actually
R is the minimal matrix which satisfies the matrix equation X2Q, + X (I +
Q1)+ Qo = X. Moreover, R = limy_,o, X (k) where X (0) is the zero N x N
matrix and where for £ > 0, X (k+1) = X (k)2Q2+ X (k)(I+Q1)+Qo. Zhao
and Grassmann [17] proved that for p = 1 the expression for the stationary
distribution simplifies even further as the rate matrix can be replaced by
a rate scalar, p?. Specifically, for ; > 1 each entry in m;,; equals p? times
the corresponding entry in 7;. Unfortunately, this is not necessarily true
for any value of p. However, by utilizing the spectral representation of the
rate matrix R, an alternative expression for the stationary probabilities is
available. Specifically, let wi,ws,...,wy be the eigenvalues of R. Some of
them may coincide but we assume that the matrix is not defective, namely a
basis for RV formed by eigenvectors of R exists. Hence, there exist /N rank-
one (projection) matrices Fy, By, ..., Ey with the properties that E;E; = 0
if i # j and E;E; = E; for 1 <1,5 < N. Moreover,

R = EiNzlwiEi
1s the spectral representation of R. Hence,
Rt =N W¥E; | k> 1.

It is routine to find the spectral representation of R as many numerical
packages contain codes for executing the required computation. It was
shown by Neuts [13] that when the stationary distribution exists then all
eigenvalues of R are in the unit disk. Moreover, since one row of @ is
zero, the same is the case with the matrix R and hence at least one of the
eigenvalues of R, say wi, is zero. Finally, the spectral radius of R is p?. We
omit the proof for this observation.
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The above indicates how to compute ; for + > 1 once 7y is known. Thus,
we turn our attention now to the computation of 7. Note that in Equation
(1) we state the balance equations for all the states in L(%) for ¢ > 1. There
are IV balance equations corresponding to the NV states in L(0). One of this
equations is redundant. One can write down the other /N — 1 equations.
Specifically, whenever an entry from =, is needed, the corresponding entry
from myR can be taken and by treating mpo as constant and solving for
0.1, 70 2, - - - » T0,N—~1, On€e can get all entries in 7y expressed in terms of .
In particular, one gets a row vector v € RN with ¢; = 1, such that
Ty = moou. Finally, using the fact that the sum of the probabilities is one,
one can solve for mg . Specifically, mgo = [v(I — R)711]~! where 1 € RV*!is
a vector all its entries are one. Thus, we got a complete explicit expression
for the stationary distribution.

3 THE EXPECTED SOJOURN TIME

The following observation, that holds for any value N as the jockeying
threshold, is fundamental for our analysis.

At any instance, the (future) sojourn time of a customer depends on the
total number of customers in the system and how many of them are in front
of him in his own line. However, given these two numbers, the sojourn time
does not depend on the split of the customers between the two lines.

In accordance with the above observation, for £k > 0 and for ¢ > 0, let M ;
be the expected (future) sojourn time of a customer who sees k customers
in front of him (in his line) and a total of ¢ customers behind him in his
line and from position max{k — IV + 3,0} and up in the other line. Note
that under the model’s assumption if a customer sees k customers in front
of him in his line for some k with k£ > IV — 2, then all positions in the other
line from position one and up to position kK — N + 2 are occupied. Clearly,
My;=(k+1)/pfor0<k<N-—2andi>0.

Before solving for M} ; we point out that our interest is in computing the
expected value of the information as a function of p:

o N=2 Miyin—ico+ M n_oyi
g(p) = :z:,o ; Tk k4i At 22 N2 M N-2+i| - (2)

Here we show how to compute the conditional expected values and their
generating functions. The function g(p) itself is given in the next section.

If one assumes that M_;; = 0 then the following partial difference equa-
tion is satisfied by the M ; (assuming A + 2u = 1),
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Mei=14+AMiip+pMeig+pMe1i.0 , k>0, i>1 (3)

3 Also, if one assumes that for k < N — 2, My_y412v-3 = (k+ 1)/, then
the boundary conditions are

Mo =14+ AM )+ pMi_1) + pMi_ny128-3 , k20, (4)
k
Mk,,-:%l L 0<k<N—2,i>0 (5)
4 and finally, L
lim M, < SEL k>0 (6)
1—00 /_‘

Note that equations (3)-(6) and hence their solution(s) are independent
of p. However, the stationary probabilities, and thus also the unconditional
expected sojourn time and the value of information, are functions of p.
Also, note that the difference Equation (3) but with different boundary
conditions appears in Maekawa [11, Equation (23)].

We are now ready to solve (3)-(6). Actually, we next find the generating
function of the solution. First, for ¢ > 0, and for a complex number ¢ with
lt| < 1, let Gi(t) = SR (M, t*. Second, fix a value of 7 with ¢ > 1. Then,
by multiplying the k — th equation in (3) with t*, summing them up and
remembering that M_;; = 0, one gets that

A+ t)Gin() - Gi() + uGin(t) = 7— , i21 . (7)

Note that for a given value of ¢, the difference Equation (7) is ordinary

and of the second order. A particular (formal) solution is:

1
()= ——, i>0 .
Gi(t) L 120
Looking at the homogeneous part we see that both sequences (f_(t))’ and
(f+(1)', 0 <1 < oo, with

— 1 —4u(X + pt)
2(A + pt)

) =1

and with

1+ /1 —4p(X + pt)
2(A + pt)

f+(t) =

solve it. Hence,

3Note that Mo,; = 1/, hence Equation (3) holds also for k = 0 only if one assigns M_, o to have a value
of zero.

4The boundary condition (4) is straightforward for the case that k= N +1>0. For 0 < k < N -2
(and hence M; o = (k + 1)/u) only the abovementioned definition of My_n112n5-3 as (k + 1)/u validates
(4) also for case that 0 < k < N — 2. Finally, note that the fact that above we assigned My -1 = 0 should
not disturb us as long as we temember the different values when we treat the equations.
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Gi(t) = == + C-0(F-(0))' + ClO(F(0)

for some functions C_(t) and C.(t). Since we assumed A + 2u = 1 then
p < .5 and hence [f(t)] > 1 for any ¢ with |t] < 1 (with equality if and
only if t = 1). This coupled with (2) implies that C,(t) = 0. Likewise,
|f-(t)] < 1 for any t with |[t| < 1 (with equality if and only if t = 1).
Hence, all that is left is to find the value of C_(t). This will be done by
utilizing (4). Specifically, multiplying each of the equations in (4) by t* and
summing up from k = 0 to infinity, leads to an identity (with respect to
the variable t) which involves Go(t), Gi(t) and Gay—_3(t). Using the form
“(1 iy + C-(O)(f- (t))! for Gi(t) when ¢ gets the values 0, 1 and 2N — 3 in
the identity, leads to an equation for the single unknown C_(t) whose value
in turn is found to be

(N = 1!
= O (@) + O+ w) (@) — 1]

C_(t) =

4 THE VALUE OF INFORMATION AND NASH
EQUILIBRIUM STRATEGIES

In order to compute the value of the information (see the definition of
g(p) in Equation (2)), there is a need to compute first the value of some
of the transforms G;(t) when ¢ runs over. the non-zero eigenvalues of R.
Specifically, the value of information is one half of

Zﬂ'kk+1(Mk+1N 35— Min-1)+ Zﬂ'kk+2(Mk+2N a— M n)+
k=0 k=0

Y Thpen-2(Miin—20 — Mian_4) (8)
k=0

Let I be the set of non-zero eigenvalues of R and let (x); be the i-th
entry of the vector . Then the value of the above sum equals

mo (M1 N—3 — Mon-1) + EI(WOE )2 Z wi (Mg no3 — My y_1)+
i€ k=1

Too(Man_a — Mon) + S(m0E:)3 Y. wf(Miyon_a — My y)+
el k=1

ToN-2(MN_20 — Myan—4)+
Y (moFEi)N-1 Z S(Miyn_20 — Mian_4)

€]
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which equals

o1 1 1 2w 1
— 4+ Y (mEi)o{ —[Gn-3(wi) — — — — |[Gn=1(wi) — —|}+
p zEZ;( 0Bl -G r-s(wi) p u] [Gr—1(w:) u]}
0,2 1 1 2w 3wi2
p T2 ol —5[Gn—a(wi) ~ ~ Ui
T LB GG a(w) = 24 ==+ =]

N S VP
(G (wi) ﬂ]}+ + (N =-2) P

Z(%Ei)fv_l{%[go(wi) I A ot S, P
i€l w; H

»WWAwo—g}

We evaluated the function g(p) for selected values of N and p = \/2u. °
To put all values in the same time scale we fixed 4 = 0.5. From the graphs
one can see that g(p) is monotone increasing when N = 3 and monotone de-
creasing for larger values of N. Thus, in order to analyze the corresponding
Nash equilibria we split the discussion into the two different cases. We start
with the case IV = 3. Here, the more acquire the information, the higher is
the value of information for an individual. Hence, if C' > ¢(1) then nobody
will acquire the information and this is the unique Nash-equilibrium strat-
egy. If g(p*) = C for some 0 < p* < 1, then p* prescribes a Nash-equilibrium
strategy. However, it is easy to see that in this case p = 1 and p = 0 are also
Nash-equilibrium strategies. We point out that p = 0 and p = 1 are also
evolutionarily stable strategies (ESS). ® Finally, if C < g(0) then everybody
will acquire the information. This is a strategy which dominates all the
other strategies. In particular, it is the unique Nash-quilibrium strategy. It
is interesting to observe from Figure 1 that for a fixed p, g(p) is monotone
with respect to p where p = \/2pu.

Suppose now that N > 4. If g(0) < C (resp, g(1) > C), then there
is a unique Nash equilibrium at p = 0 (resp., p = 1), it is an ESS and
it is an optimal strategy for each of the customers regardless what the
others do. If g(p*) = C for some p* € (0,1) then p* prescribes the unique
Nash equilibrium which is also an ESS. However, it is not a strategy which
dominates all the other strategies.
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5 THE EXTERNALITIES OF BUYING INFORMA-
TION WHEN N = 3.

The action of purchasing information by an individual on which line is
shorter, has an effect on the waiting times of others. This effect is the
externality associated with the action. In this section we analyze the ex-
ternalities of purchasing information for V = 3. In particular, we derive
a closed form expression for these externalities. Note that it is not at all
clear whether the externalities are positive or negative. On one hand, the
information may help an individual in overtaking others and hence causing
them an additional delay (i.e., negative externalities) but on the other hand,
it may lead to a better utilization of the two servers and thus customers
which otherwise might have waited for this individual, would not have to
do so (i.e., positive externalities). Note that we define the externality of
one’s action on the rest of the society as the expected difference between
the expected costs to the rest of the society when this action is not taken
and when it is taken. The effect on the individual whose action is under
consideration is not considered as part of the externality.

We start with an observation (which holds for N = 3):

Unless the state is (1,0), the action of acquiring the information by an
arrival either affects nobody else or it only affects the next arrival.

We next argue that this is indeed the case. First, it is easy to see that
those who are already in the system are not affected by the possibility that
a new to arrive acquires the information on the queue size. Second, suppose
that upon arrival the state is (7,7 + 1) for some ¢ > 1. Note that this is the
only case where information has any value. If the next event is a departure,
then the next state and the relative positions of the customers are the same
regardless of whether the current arrival joins the shorter or the longer
queue. If the next event is an arrival, then no matter if the new to arrive
acquires the information or not, state (i + 1,7+ 2) will be reached. The only
possible difference may be that the new arrival and the current arrival will
interchange places depending if the current arrival joins the shorter or the
longer queue. Those who arrive afterwards will not be affected. O

Consider again some state (¢,7 + 1) for ¢ > 0. If the current arrival
joins the shorter line and if the next event is an arrival (the latter is with
probability A), then the new to come will have an expected waiting time of
M;y11 while if the current arrival joins the longer queue, the corresponding
value is M;3. Thus, the negative externality that an informed arrival to
state (7,7 + 1) imposes on the next arrival (if the next event is indeed an
arriva.l) is (0.5]\/.[,',3 + 0-5Mi+1,1) — Mi+1,1 = OS(M):; — Mi+171). ThllS, the
portion of the externality due to information acquiring and consequently
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the possibility of changing positions between an informed customer and the
one arriving next to him is

EX1= Z 0.5/‘\(Mi,3 - M,’+1,1)(1T_,')2
=0
Hence,
EX1= O.SA’R’O'I(MO’;; - Ml,l)

+0.5A kE: (Mk’3 — Mk+1,1) Z ’U)ik('ﬂ'oE,')Q
=1 €]

= —0.5Am1/p + 0.5X Z}(WOE:‘)?(GL%(W) —1/p)-

0.5\ %:I(WOE,-)Qi—i(GI(wi) 1/~ 2wifp)

The better utilization of the two servers due to the use of information
is a source of positive externalities. As remarked above, these effects can
be seen only when the arrival faces state (0,1). In other states, acquiring
information may affect the relative position of the customers but has no
affect on the servers utilization. Thus, we turn our attention to state (0,1).
Here, many future arrivals may be affected by waiting less because the
server is utilized better when the arrival is informed. We now investigate
the difference of expected future total waiting time when the arrival joins
the longer line to reach state (0, 2), or the shorter line to reach state (1,1).
This difference comes since it is possible that the same random process of
events in the system under the latter case will cause a transition from state
(1,1) into state (0,1) while under the former case state (0,2) will stay as
is. (In particular, the idle server at (0,2) will be looked at as he serves
a fictitious customer.) This will happen with probability . In this case
there will be one customer more in the system which initiates with (0,2) in
comparison with the system which initiates with (0, 1) and this will be the
case as long as the states in the two systems differ. Thus, we have interest in
computing the expected time until the states in the two systems coincide (or
coupled) as this is the social gain from the information acquiring. However,
from this value we have to subtract M; o = 2/u which is the expected gain
of the customer in question. This customer, if he selects the longer line,
is placed second in the line at the initial moment (and then state (0,2) is
reached), and we do not want to incorporate his gain while computing the
externalities. To see why 2/u is the right value to subtract from the total
gain, consider an arrival to state (0,1). Of course, the next state is (1,1) or
(0,2) depending if he joins the shorter or the longer line. Note that in the
former case he commences service by one of the servers immediately upon
arrival. Suppose the next event (for both cases) is service completion at
this server (a probability u event). Up to that point, the last arrival has
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spent the same time in both systems. However, had he joined the longer
queue, he would have to stay in the system for an additional time whose
expected value is 2/pu.

In order to find the expected time until coupling, we have to embed
the problem in a more general one: given two systems which differ by
one customer, what is the expected time until coupling given that the two
systems are subject to the same random events (arrivals, departures and
information acquiring). For j > 3, let f; be the expected time until coupling,
when the initial total number in one system is 73 while in the second it is
j+1. It is not hard to see that for j > 3 the expected time until coupling is
invariant with respect to how these customers split between the two parallel
queues in the two systems (as long as the queueing discipline is maintained).
Thus, For 5 > 4,

fi=1+ A +2ufia . (9)

For three customers or less in total in the less congested system, we need
to elaborate. Thus, denote its state by a superscript, while a subscript will
refer to the more congested system. For example, f§{’ is the expected time
until coupling when the initial state of one system is (2,0) while the initial
state of the other is (2,1). Note that our ultimate interest is in f?i’g . We
next write six equations which are satisfied by these values.

fa=14 Mo+ pufod+ pfor
Y =14 s+ pfif
le,’ll =1+ Af3+ ﬂfll,’lo + ule,’g

Y =14+ Mt + Mfil + uh

’

(1= fas =14 Mfot + Xofal + ufi

(1—p)fi =1+ fi1+ /\Qf%,’g

where f; = 8"? .

Next we outline how to solve the above equations coupled with the dif-
ference Equation (9). It is easy to see that the difference equation defined
in Equation (9) is solved by
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+hitkhp? , >3

J
2 — A
for some constants k; and ky. Clearly, k; = 0 as otherwise the expected
value will be (asymptotically) geometric with a factor larger than 1. This,
of course, is not the case since, up to the boundary conditions, the fJ’-s are
like the time until first hit of zero while starting at j in a random walk with
a nonzero drift toward zero. Thus, for 7 > 3,
__J
2 — A
for some constant k. Insert these expressions for f3 and for f; in the six
equations defined above and get a system of six linear equations with the
six variables k, f%’, {)11 , 21.’(?, 3? and f2111 . This system can be solved. In
particular, the value of f211’8 we look for will be found.

fi +k

We can conclude here that the contribution to value of the externalities
due to acquiring the information when the state is (0,1) is

2
EX2= 71'0710.5[1[ 21,’8 - }—;
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As said above EX?2 is positive. 7 Also note that 0.5uf21,’g7ro,1 is the expected
gain to the entire society when an arrival acquires the information (when
the individual acquiring the information is counted as part of the society).

Finally, the externality is EX1+ EX?2 and it is not a priori clear whether
this value should be positive or negative. Indeed, consider Figures 5, 6 and
7. Figure 5 contains plots for EX1 for various values of p. As said above it
is negative while in this example its absolute value decreases with p. Plots
for £EX?2 are given in Figure 6. It is positive and monotone increasing in
p- Finally, in Figure 7 we plot EX. For the values of p showed there, £X
is monotone increasing in p with negative values for small values of p and
with positive values for large values of p. For smaller values of p EX is
monotone increasingwith p and is positive for all values of p.

6 CONCLUDING REMARKS

We introduced the concept of the value of information in a two parallel line
system and showed that it leads to Nash-equilibrium strategies in which a
portion of the customers purchase the information. We have shown that
by the aid of the matrix geometric technique that the value of information
and the Nash-equilibrium strategies can be computed for memoryless two
parallel line system with a threshold jockeying scheme for any threshold.

We demonstrated numerically that when the threshold value NV is three,
the value of information for an arrival may be monotone increasing with
the portion of the population who acquire it. It particular, it is possible
that one will be willing to pay more in order to know which line is shorter
when all the others are known to be informed than when they are not
informed. This result may seem counterintuitive and we provided therefore
also intuitive reasoning for it. As a result, at least one of the pure strategies
in always a Nash equilibrium which is also an ESS. It is possible to have
an Nash equilibrium based on a mixed strategy but it is never an ESS.
However, in this case both pure strategies are ESS. When N > 4 we have
shown numerically that the value of information decreases with the portion
of customers who purchase it, a result which conforms with one’s intuition.
As a result, there is always a unique Nash equilibrium strategy which can
be pure or mixed. Moreover, it is an ESS.

We also computed the externalities associated with information acquiring
for a threshold value of three. In particular, we were able to decompose
the externalities into two sources: The one due to the possibility that an

"It can be argued independently that f;,'g > 2/u. We omit the details.
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informed customer overtakes another customer. The other due to the better
utilization of the server when more customers use the information.
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