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MEAN PASSAGE TIMES AND NEARLY UNCOUPLED MARKOV
CHAINS*

REFAEL HASSIN' AND MOSHE HAVIV?

Abstract. Let P(0) € R™*™ be a stochastic matrix representing transition probabilities in a
Markov chain. Also, for a matrix A € R™*™ whose row-sums are zero, let P(e) = P(0) + €A be
stochastic and irreducible for all 0 < ¢ < emax, for some emax. Finally, let M(e) be a matrix whose
(2, ) entry is the mean passage time from state 1 to state j when transitions are governed by P(e).
When the Markov chain associated with P(0) is decomposable into a number of independent chains
plus a set of transient states, some of the entries of M (e) have singularities at zero. The orders of
these poles define timescales associated with the process when ¢ is small. An algorithm is developed
for computing these orders. The only input required is the supports of P(0) and A, making the
problem a combinatorial one. Finally, it is shown how the orders of the poles of M(g) at zero play a
role in developing series expansions for 7(¢), the stationary distribution of P(g).

Key words. Markov chains, mean passage time, nearly uncoupled

AMS(MOS) subject classifications. 60J10, 68C05

1. Introduction. Let P(0) € R™*™ be a stochastic matrix representing transi-
tion probabilities in a Markov chain. Let A € R"*™ have zero row-sums. For all real
g, 0 < € < €max, assume that P(e) = P(0) + €A are stochastic matrices representing
transition probabilities in irreducible Markov chains. (The irreducibility assumption
of P(g) is without loss of generality. However, we still require that the structure of
the chains is the same for all €, 0 < € < gpax. Of course, such an ey, exists.) Note
that we do not assume irreducibility of P(0), and, in fact, we are interested in the
case where the Markov chain associated with it is decomposable into a number of
independent recurrent classes plus a set of transient states. In that case and for small
values of ¢, the matrices P(e) and the associated Markov chains are called nearly
uncoupled or nearly completely decomposable.

For 0 < € < €max, let M(e) € R™*™ be such that M;;(e) is the mean passage time
from state 7 to state j when transitions are governed by P(e). It is clear that, if P(0)
is decomposable, then there exist pairs (3, j) such that lim._,q M;;(e) = co. As M(e)
admits a Laurent series expansion (see §7), this implies that some entries of M ()
have singularities at zero; namely, they have poles there. The orders of these poles
represent various timescales in the nearly uncoupled Markov chain. For example, if
the order of the pole of M;;(e) at zero is two, then, for a process that initiates at 1,
the event of hitting state 7 for the first time occurs after an expected time, which is
of the same order of magnitude as 1/¢2.

The main purpose of this paper is to show that the problem of finding the orders of
the above-mentioned poles is combinatorial and to develop an algorithm for computing
them. Specifically, we suggest an algorithm whose input is the two binary matrices
describing the supports of P(0) and A. The output of the algorithm is the orders of
the poles.

Finally, we discuss an application of the orders of the poles. Let m(e) be the
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NEARLY UNCOUPLED MARKOV CHAINS 387
stationary distribution of P(e). If m(e) = 3 roq m(Ve?, then the series {x(9}2°, solves
xO(I — P(0)) =0,

and for 7 =0,1,...,
U1 - P(0)) = D A.

If P(0) is decomposable, then the first system of above equations does not deter-
mine 7(%) uniquely. We show that the minimal number of consecutive sets of equations
that must be considered to determine 7(®) uniquely is max; ;(ui; — u;;) + 1, where u,;
is the order of the pole of M;;(¢) at zero.

Nearly uncoupled systems were introduced by Simon and Ando [18]. These were
applied to some Markovian models by Courtois [3]. Also, they were considered in
the Russian literature, probably begining with Gaitsgory and Pervozvansky [6]. The
question of first passage times is dealt with in [10] and [11], but only for the case
where P(0) does not possess transient states. For this case, Latouch and Louchard
(see [10] and [11]) show that the orders of the poles of M (e) at zero are zero or one.
The more general case, where two independent recurrent chains at P(0) are coupled
at P(e) through states that are transient at P(0), is considered in Delebecque [4],
Coderch et al. [1], [2], and Rohlicek and Willsky [14], who developed algorithms for
approximating the transient and the long-run behavior of the Markov chains asso-
ciated with P(g) for 0 < € < gmax. The analysis in the above-mentioned papers is
based on Kato’s [8] classical perturbation results. The combinatorial version of the
algorithm in [14] is given in Rohlicek and Willsky [13]. They solved a problem differ-
ent from that addressed here. Specifically, let Ffjw(e) be the probability that a process
governed by P(e) and initiating at state ¢ hits state j for the first time prior to time
T.! Then let

d;; = arg max{d | lir% Ff;/ e (e) > O for some finite T'}.
E—

Next, we present an example showing that u;; and d;; do not necessarily coincide.
This example was communicated to us by a referee.

Let
0 € 1—¢
Pe)=| 0 1—-¢2 &2
0 0 1

Here u13 = 1: although Pj3(e) = ©(1), the transition probability e from state 1 into
state 2, and then the additional expected time of 1/¢? until hitting state 3, leads to
this value of u;3. On the other hand, di3 = 0 as for any T > 1, Fi5(e) > 1 — .2

The question of series expansions for nearly uncoupled Markov chains is analyzed
by Schweitzer [15]-[17] and Haviv and Ritov [7]. Schweitzer showed that the deviation
matrix of P(e) has a Laurent series expansion around zero, and he gave some implicit
forms for it. He also solved for the series expansion of 7(¢) and related it to the

1 In order to ease the exposition, here we allow T to be any nonnegative number and not necessarily

an integer.
2 Note that P(g) here was not defined by a linear perturbation. However, the same phenomenon
can be seen with a corresponding linear perturbation, but in a Markov chain, where state 2, above,

is replaced with three other states.
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expansion for the deviation matrix. His method, or, alternatively, the method given
in [7], can be used to obtain the order of the poles as a by-product. Since these
methods are based on solving n?, equations they have a larger complexity O(nS), and
they do not explore the combinatorial aspects of the problem. Finally, Langenhop [9)
suggested a general method for inverting near singular matrices. As M(e) uniquely
solves a system of equations, this method can be utilized for the problem discussed
here, and then the orders of the poles are obtained as a by-product. However, for
computing the orders of the poles, our direct approach is much simpler.

After introducing some terminology in §2, we present the algorithm in §3. Section
4 is devoted to proving the correctness of the algorithm. In §5 we mention a possi-
ble generalization of our algorithm to nonlinear perturbations. In §6 we state some
background on Markov chains, and we use it in §7 for developing a series expansion
for m(e) around € = 0. Section 8 concludes the paper with a numerical example.

2. Terminology. A function f : R, — R, is called ©(e*) for some integer k
(positive, zero, or negative) if there exist two positive real numbers M; and M3 such
that, for all ¢ > 0 small enough,

Mie® < f(e) < Mye®.

If f(e) = ©(e7%), then we say that f(e) is of order of magnitude k.
The following are immediate:

O(eF) + B(e*) = @(gmintkikaly, O(e™) x O(e*2) = O(ehr+h),

Consider G = (V, E., E,.), a finite directed graph with a vertex set V, an edge set
E = E. U E, that may contain loops, and a distinguished vertex s € V. G is strongly
connected; that is, it contains, for every ,7 € V a directed 7 — j path. We call edges
of E, “e-edges” (epsilon edges) and those of E, “r-edges” (regular edges). These sets
are disjoint. A path in G is called an “r-path” if it consists of r-edges only (similarly
for an “r-cycle’). An “r-component” is defined to be a maximal strongly connected
subgraph of (V, E,). Note that an r-component may also be a single vertex. For a
subset C C V, we let §(C) = {(¢,j) € El|i € C,j ¢ C} be the set of its (outward-
oriented) boundary edges.

In terms of P(e), which was defined in the Introduction, we define the following
graph G. Each vertex of V corresponds to a state. Each edge (i, j) € E is associated
with a transition probability p;;(e). If p;;(e) = ©(1), then (4, j) € E,, while, if p;;(e) =
O(e), then (i,j) € E.. If P;;(e) = 0, then (3,j) ¢ E. Obviously, every i € V satisfies
> ilGer Pii(e) = 1.

Fix a state s € S. Let m;(e) denote the expected time until s is first reached
when the initial state is ¢ (ms(¢) is the expected return time to s, given that it is also
the initial state). It is shown that m;(e) = ©(¢ () for some integer u(i) that is zero
or positive. Our problem is to compute u(z) for all ¢ € V.

3. The algorithm. The algorithm computes u(i) for i # s by first assigning
and revising temporary values and, finally, changing them to permanent. The set of
vertices with temporary values is denoted by T'. In a final step, u(s) is computed from
the other values. In the course of the algorithm, a multigraph G’ = (V',E/, E.) is
maintained. Then sets C' C V' are condensed into a single vertex c¢ as follows: Edges
(,7) € 6(C) are replaced by (possibly parallel) edges (¢, ), and, similarly, edges in
8(V'\ C) are replaced by (possibly parallel) edges (,c). Edges (i, ) such that :,5 € C
are simply deleted. The correspondence of each edge in G’ to the original edge in G is
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maintained. The algorithm is stated next. A numerical example is given in §8. The
reader may wish to consider this example prior to reading the rest of the paper.
Input: G =(V,E., E,).
Output: u(i), i€V.
Step 1 (Initialization).
Construct a graph G’ = (V/,E. E]) from G by first setting G’ «— G, and
then deleting all loops (4,%) € E. and all edges going out of s. Set u(i) «— 0
and S(i) « {i} for alli € V.
Step 2 (Elimination of loops).?
If G’ contains no loops, go to Step 3. Otherwise, let (i,i1) € E.. Set E. «
EL\{(G,0)}. I 8({i}) N E. = @, set E. — E. US({3}), B, — E.\ 8({i}) and
u(i) — 1. Repeat Step 2.
Step 3 (Condensation of cycles).
If G’ contains no directed r-cycles, go to Step 4.
Let C be (the vertex set in V’ of) such a cycle.* Condense C into a single
vertex c.
Case (i). 6(C)NE] # ¢.
Set u(c) «— max{u(i)|i € C}.
Case (ii). 6(C) C E..
Set u(c) — 1+ max{u(i)|i € C}.
Set E! — E!L U§(C), EL — E.\ 6(C).
Set S(c) — U;ecS(i).
Repeat Step 3.
Step 4 (Solution of the problem for r-acyclic graphs).
Set T — V'. Let u(j) = max{u(i)|i € T}. (Break ties arbitrarily.) Delete j
from T (thus turning u(j) into permanent for j). For r-edges (i,7) where i €
T, set u(i) « u(j). For e-edges (%, j) where i € T, set u(i) — max{u(), u(s)—
1}. If T = ¢, go to Step 5. Else, repeat Step 4.
Step 5 (Computation of u(i) i € V' \ {s}).
{S(v")|v' € V'} is a partition of V. For each v € V find v' € V' such that
v € S(v') and set u(v) — u(v').
Step 6 (Computation of u(s)).
Set u(s) «— max{max{u(i)|(s,?) € E,}, max{u(i) — 1|(s,7) € E.}}.

4. Validation of the algorithm. In this section, we use the following notation;
we distinguish between states, which correspond to the initial Markov process, and
vertices v € V', which correspond to the sets of states S(v); we also distinguish
between transitions, which correspond to the initial Markov process, and edges (i, 5) €
E] U E}, which correspond to moves of the process between vertices. It should be
emphasized that each edge (3,j) € E’ is associated with a transition from a state in
S() to a state in S(j). It is possible, however, that an r-edge in V"’ is associated with
a transition of a ©(e) probability, since such changes are performed at Step 3, Case
(ii) in the above algorithm.

Let C denote an r-cycle (or an r-component) of G’; We say for a state j that
j € C whenever j € S(v) for some v € C. Also, let P(e) = Ejl(z',j)e&(C) pi;(€) be the
probability of an immediate exit from C, given that the current state ¢ is in C. For

3 This step can be deleted; instead, loops will be considered as directed cycles in Step 3. It is
included here only to simplify the proofs below and, in particular, to guarantee that the inductive
assumption in Theorem 4.5 (i), below, holds.

4 Instead of r-cycles, we may choose r-components.
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a vertex v € V' and for states ¢ and j in S(v), let Q;;(e) be the expected number of
visits in state j € S(v) before first exiting S(v), given the current state is ¢ € S(v).
A similar notation is used for cycles instead of vertices. Note that, for simplicity, we
omit from the notation the cycle or the vertex. However, from the context, it is clear
which is the cycle or the vertex under consideration.

The following two lemmas give the orders of magnitude of the expected number
of visits in a state prior to an exit from a cycle. Their proofs are similar, and thus we
supply a detailed proof only to one of them.

LEMMA 4.1. Let C be an r-cycle in the original graph G. Suppose that 6(C)NE, #
¢. Then Q;i(e) = ©(1) for alli,j € C.

LEMMA 4.2. Let C be an r-cycle in the original graph G. Suppose that 6(C) C E..
Then Q;;(e) = ©(e™?) for alli,j € C.

Proof. Let T'(e) be the submatrix of P(¢) representing transition probabilities in
an r-cycle C. It is well known that Q(¢) = (I — T(¢))"!. Hence, Q;;(¢) is a ratio
between two polynomials in € and therefore it has an integer order of magnitude. Since
for all 7, 7 € C there exists an ¢ — j r-path, the orders of magnitude of all the entries of
Q(e) are identical. Consequently, it is sufficient to prove that 3. - Qi;(e) = O(e71).
Indeed, since the exit probabilities from all states are at most ©(¢), the time to the
first exit from C (regardless of the current state) is stochastically dominated by a
geometric random variable whose expectation is ©(¢™!). Hence, > ..~ Qi;(€) is at
least ©(¢~'). On the other hand, in order for 3. Qi;(€) to be ©(¢~*) for k > 2
there should be at least one j € C with this property. An r-path from j to an exit
state e € C' exists, however, and hence the number of visits to state e is also of the
order of magnitude k. This contradicts the fact that the number of visits to state e
is at most 1/P*(e) = ©(e71). 0

The following two lemmas correspond to exit probabilities from a cycle C in the
original graph GG. Basically, they show that the order of exit probabilities from various
states ¢ € C and via various pairs (7, j) € §(C) does not depend on the entering state.

LEMMA 4.3. For an r-cycle C in the original graph G, suppose that 6(C)NE, # ¢.
Then, for every current state in C, an exit from C occurs with probability ©(1) for
every (i,7) € 6(C) N E, and with probability ©(e) for every (i,7) € 6(C) N E..

Proof. For a current state i, with (¢,5) € 6(C) N E,, the exit probability is,
of course, ©(1). For all other states k in C, there exists an r-path from k to 1,
making the probability of an exit through (7, j) also ©(1) for any current state k. For
(,7) € 6(C) N E,, pick an arbitrary (g, h) € §(C) N E,. As there is an r-path from g
to 1, it is easy to see that, conditional on an exit from (i, 7) or (g, h), the exit is from
(i,7) with probability O(e). Extending that to conditioning on an exit completes the
proof. O

LEMMA 4.4. For a cycle C in the original graph G, suppose that §(C) C E,. Let
(i,5) € 6(C). Then, regardless of the current state in C, exit occurs via (i,5) with
probability ©(1).

Proof. We prove that 7 is the exit state with probability ©(1). The claim then
follows immediately by considering conditional probabilities. For i,j € C, let G;;(e)
be the probability of exiting through j, given that ¢ is the entering (or current) state.
If i # j, then

Gij (5) = Z Tik(g)ij(g)a

keC
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and otherwise

Gi(e) = ) Tul€)Grile) + P (e).
keC

Hence G(e) = Q(e)diag(P*(¢)) where diag(P*(¢)) is a diagonal matrix whose ith
diagonal entry equals P} (). Solving for G(¢), we obtain that Gy;(e) = Qi;(e) Pr(¢),
which is ©(e71)O(e) = ©(1) in the case where j is an exit state. o

THEOREM 4.5. After each execution of Step 3,

(i) u(c) is the order of the expected sojourn time at S(c), regardless of the
current state in S{c);

(i) if 8(C)NEL # ¢ (case (i), then the conditional exit probability from S(c) is
©(1) for each transition associated with r-edges in §(C), and O(e) for those associated
with e-edges of 6(C), regardless of the current state in S(c);

(iii) f 6(C) C E. (case (ii)), then the conditional exit probability from S(c) is
©(1) for each transition associated with edges in 6(C), regardless of the current state
in S(c).

Proof. The proof is by induction on the number of executions of Step 3. Lemmas
4.1-4.4 establish the claims of the theorem for the first execution. Next, we consider
an arbitrary execution assuming the theorem holds for the previous executions.

1. Let v € C be a vertex and let i € S(v) be a state. Also, let u;(v) be the order
of the expected sojourn time at S(v) given ¢ as the current state. By the induction
assumption, u;(v) = u(v) is independent of i for every i € S(v). We wish to next show
that u;(c) is independent of ¢ for all 7 € C and that u;(c) = u(c) (the value generated
by the algorithm). Suppose that this is not the case. Following the r-edges defining
C, at least one corresponds to v,w € C, with ug(c) < un(c), where g € S(v) and
h € S(w). Two possibilities exist.

(a) We have that Pyp(e) = ©O(1). Considering this transition probability, we
obtain that ©(e~%s(9)) > ©(1) x ©(e~*»(9)) 50 uy(c) > un(c), a contradiction.

(b) We have that Py(e) = ©(¢). Since now the transition g — h is associated
with an r-edge, g belonged to some cycle C’ that was condensed at some earlier
execution of Step 3, Case (ii). By the induction hypothesis on part (iii) of Theorem
4.5, the probability of an exit from C’ by an g — h conditional on an exit from C’, is
©(1). Again, it follows that 8{e=%s(9)) is at least ©(1) x O(e~¥»(9)) = @(e~*»(9)), s0
that ug(c) > up(c), a contradiction.

2. Suppose that the Markov process initiates at C, and consider the clock that
runs only while transitions between vertices in C' or outward of C' occur (and thus
transitions between states belonging to the same vertex do not progress the clock).
This is not a Markov process, as the transition out of a vertex may depend on the
entering state. However, by the induction assumptions on parts (i) and (iii) of the
theorem, the orders of these transition probabilities are independent of the entering
state. Thus, if C satisfies the condition of Case (i) (respectively, Case (ii)) in Step 3,
then, as in Lemma 4.1 (respectively, Lemma 4.2), the expected number of visits at
each of the vertices of C (in the new clock) until an exit from C is ©(1) (respectively,
©(e™1)). Thus, returning to the original clock, the expected time until an exit from C
(regardless of the current state in C) is ©(1)*© (e~ ™a*vec “v)) (respectively, O (1) *
(e~ maxvec u(v))) | which is of the order of magnitude max,cc u(v) (respectively, 1+
max,ecc 4(v)). Indeed, this is the value computed by algorithm.

3. Parts (ii) and (iii) of the theorem are the counterparts of Lemmas 4.3 and 4.4.,
respectively, when considering the above-mentioned new clock. For a formal proof, the
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argument of these lemmas may be repeated, in addition to the need to condition on
the initial state in C. However, by the induction hypothesis, the orders of magnitude
are not a function of the entering state and hence the result follows. O

LEMMA 4.6. Step 4 of the algorithm determines the order of magnitude of the
time until absorption at s for all vertices in the final graph.

Proof. Step 4 of the algorithm is reached when G’ contains no r-cycles. Also, note
that s can be reached from all vertices via an r-path. Since G’ has no r-cycles, then
regardless of the initial state, the expected number of moves between vertices until
the process reaches s is ©(1). To see this, note that the vertices can be numbered in
such a way that an r-edge from vertex ¢ to vertex j exists only if 7 < j. In particular,
s obtains the maximum index. Hence the probability of moving backward is either
zero or O(g).

Let m = max{u(:)]i € V'}. Starting at a vertex j with u(j) = m, each move to a
new vertex contributes expected time until absorption of the order of magnitude of at
most m, with this value being achieved at least once. Since, in expectation, there are
©(1) such moves, we conclude by a simple renewal argument that the expected time
until absorption in state s is ©(¢~™). Hence the algorithm determines the correct
values for those vertices that were first to be deleted from 7. To see that, the order m
applies for those vertices from which j can be reached by an r-edge is now immediate.

Consider the case when an e-edge exists from vertex 7 to j (but no r-path from 7 to
Jj exists). There is an ©(e) probability to enter 7, and this contributes to the expected
time until absorption at state s, while initiating at state ¢ a value of ©(g) * O(e™™) =
O(e~(m=1). As a larger order cannot be achieved, this is the order of time until
absorption at s that such a vertex has. These arguments extend inductively to other
vertices to prove the lemma. O

COROLLARY 4.7. Steps 5 and 6 correctly determine u(i) for all states i € V.

Proof. The proof for i # s is immediate from Lemma 4.6 and part (i) of Theorem
4.5. Then the claim follows for i = s by a simple expectation argument. 0

Complezity of the algorithm. The complexity of the algorithm is dominated by
Step 3. This step can be executed in O(n?) time (cf. Fox and Landi [5]), so that
an O(n®)-time complexity obtains for a fixed target state and O(n*) when all target
states are required. We suspect, however, that sophisticated dynamic data structures
can be used to reduce this bound.

5. Generalization to a nonlinear perturbation. The algorithm can be ex-
tended to solve a more general problem. Let P(0) € R"*™ be a stochastic matrix
representing transition probabilities in a Markov chain. Let A(z) € R™*™ have zero
row-sums for x € X. X is a set of positive real numbers that are not necessarily
integers. For all real €, 0 < & < €max, assume that P(e) = P(0) + )_ . x € A(z) are
stochastic matrices representing transition probabilities in irreducible Markov chains.
As before, we are interested in computing u(7), the order of magnitude of the expected
time to reach a given state s given an initial state 1.

The edge-set of the graph G is now associated with the number k;; denoting
the order of the transition probability from i to j. The value of k;; is set to zero if
P;;(0) > 0, and in this case where (4,5) € E,. Else, k;; is set to the lowest index z
for which A;;(z) > 0, if such an index exists. Since the sum of the probabilities on
the outgoing transitions from a state is 1, there is at least one r-edge (i, ) for every
i € V. After deleting the edges, leaving s, it is true, as was obvious in the special case
above, that if G’ contains no r-cycle then there is an r-path from every i # s to s.

The following modifications are needed in the algorithm.



NEARLY UNCOUPLED MARKOV CHAINS 393

Replace cases (i) and (ii) of Step 3 by the following lines. Set k « min{k;;|(¢,7) €
6(C)}. Set u(c) « k+max{u(i)|i € C}. Set k;j « k;j —k for all (3, j) € 6(C). Modify
E, by adding to it edges (4, 7) € 6(C) that now have k;; = 0.

Replace Step 4. Let u(j) = max{u(i)|¢ € T}. Delete j from T (thus turning u(j)
into permanent for j). For edges (i,j) where i € T, set u(s) « max{u(%), u(j) — ks;}.
If T = ¢, go to Step 5. Else, repeat Step 4.

Replace Step 6. Set u(s) « max{u(i) — ksl(s,%) € E}.

It is obvious that the generalization of the problem is a natural one and that
it leads to a simpler presentation of the algorithm. We have chosen to present the
special case of linear perturbation because of its more obvious applicability and also
because the proofs are somewhat simpler.

Another obvious extension of the problem is that in which the time from entrance
to a state to the next transition is state-dependent. In this case, numbers t(z) i € V
are given, representing the order of the expected time from entrance to ¢ till the next
transition. Hardly any modification is needed in the algorithm to account for this
case. The only change is at the initialization step, where, instead of starting with
u(i) « O for all + € V, we start with u(i) « t(7) for all i € V.

6. Background on Markov chains. Next, we briefly introduce some prelim-
inaries concerning Markov chains (see Meyer [12]). Let P € R™*™ be a stochastic
matrix representing transition probabilities in the Markov chain. If P is irreducible
(or ergodic), then a unique positive probability vector m with m = 7P exists. It is
called the stationary distribution associated with P. The stochastic matrix P is also
associated a matrix M, which is the matrix of mean passage times; namely, M;; is the
expected time until the process first hits state j when it initiates at ¢. In particular,
M;; = 1/m;. Denote by Y the deviation matriz of P. This is the unique matrix Y
satisfying the following three requirements:

(I-P)YY(I-P)=I-P,
Y(I-P)Y =Y,

Y(I - P)= (I - P)Y.
Furthermore, for each pair of states 7 and j,

M;;
(6.1) ﬁj’f=5ij+ij—Yn,

where 6;; =1 if ¢ = j and 6;; = 0 otherwise. This relation between the matrices M
and Y implies also that Y;; > Y;; for all ¢ and j. If P is aperiodic (or regular), then

N

Y PP —(N+1)E|,

t=0

Y = lim
N—oco

where F is matrix whose rows coincide with w. This representation of the deviation
matrix gives its probabilistic interpretation. Also, Y = [I — (P — E)]~! — E. Finally,
zero is an eigenvalue of Y with 7Y = 0 and with Y1 = 0, where 0 (respectively, 1) is
a vector all its entries are 0 (respectively, 1).
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7. Series expansion for the stationary distribution. We now return to
nearly uncoupled stochastic matrices with linear perturbation as defined in §§1-4.
Let n(e) be the stationary distribution of P(g). Schweitzer [16] showed that, for all

€ > 0 small enough,
oo
m(e) = Zw(i)ei
i=0

for some sequence {T¥}22,. Also, 1) = 7OU* for some matrix U. Hence finding
7 is a key for a complete description of the series expansion of 7 (e).

To determine the terms of such a series expansion and, in particular, to find the
leading term, consider the identity n(e) = m(¢)(P(0) + €A). It is clear then that
{W(i)}fio solves the following systems of difference equations:

(I - P(0) =0,
and, for j =0,1,...
7U+TD(1 — P(0)) — WA = 0.

We refer to the above as the systems of fundamental equations. If P(0) is irre-
ducible, then the first set of equations 7(%(I — P(0) = 0 (plus the needed normal-
ization) is sufficient to determine 7(*) uniquely. However, if P(0) is decomposable,
then a larger number of sets of fundamental equations is needed to determine 7(%
uniquely, and the question of how many sets are needed to determine 7(*) uniquely
arises. By having this value in advance, we can improve the naive approach of adding
a set of fundamental equations one at a time and solving the resulting system until a
unique (up to a normalization constant) 70 emerges.

We argue that, for a decomposable P(0), the above question is related to the
question of mean passage times at P(eg) for small values of ¢ and their orders of
magnitude. Recall that M(e) and Y (¢) are the mean passage time matrix and the
deviation matrix, respectively, of P(g). The following result is taken from Schweitzer
[16].

LEMMA 7.1. M(e) and Y (¢) admit Laurent series expansion.

Proof. It is well known (see, e.g., Meyer [12]) that M(e) is the unique matrix in
R™*™ satisfying (I — P(e))M(e) = J — P(e)Mg4(¢), where J is a matrix, all its entries
are one, and Mgy(e) is a diagonal matrix whose diagonal coincides with the diagonal
of M(e). Solving for M(e), say by Cramer’s rule, then, for each 1,7, M;;(e) is the
ratio between two polynomials in € and hence it admits a Laurent expansion.® This
completes the proof for M(g). For the matrix Y(g) the result follows from the above
proof coupled with (6.1). 0

It is clear that M;;(e) = ©(e~"¥) where wu;; is the order of the pole of M;;(e).
Thus this order can be computed via the algorithm presented in §3.

THEOREM 7.2. Let u;; be the order of the pole of M;;(e) at zero. Similarly, let
v;; be the corresponding order of Y;;(€).% Then,

max(ugj — 1) = maxvi;.

5 Moreover, the order of the pole is bounded by n since the polynomial in the numerator cannot
have a larger degree.
8 Note that, in the case of an analytic function, the order is zero.
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Proof. As for any irreducible P, the corresponding 7 and Y satisfy 7Y = 0,
and, as Y;; > Y;;, the maximal order of the poles over Yj;(e) — ¥;;(e) coincides with
the corresponding maximization over Y;;(¢). The proof is now completed by relation
(6.1). O

It was shown in Haviv and Ritov [7] that the maximal value over the order of the
poles of the entries of Y'(¢) at zero equals the minimal number of sets of fundamental
equations needed to determine 7(®) uniquely, minus one.” By Theorem 7.2, this value
can be computed from the orders of the poles at zero of the entries of M (g). Thus we
have the following theorem.

THEOREM 7.3. The minimal number of sets of fundamental equations needed to
construct a system of equations whose corresponding solution to 7(9 is unique (up to
a normalizing constant) is maxg;(us; — u;;) + 1.

8. An example. Let

010 0 0 -1 0 1
010 0 1 10 0
Pe)=PO)+ed=1 ¢ g ¢ 1 [Tl 0 1 0 -1
000 1 0 0 1 -1

Recall that
E. ={(1,7)|P;;(0) > 0}, and E.={(i,5)|A:; > 0}.

This information is summarized by the following graph where r-edges are repre-
sented by bold arrows and e-edges by dashed arrows. See Fig. 1.

Fic. 1

The Markov chain associated with P(0) is has two independent chains (states 2
and 4, which are absorbing states) and two transient states (states 1 and 3). We pro-
ceed through the steps of the algorithm with the target state s = 4. Edges emanating
form vertex 4 are ignored by the first part of the algorithm, so that we consider Fig. 2,
below.

The algorithm initiates with the values u(1) = u(2) = u(3) = 0. There is only one
r-cycle: (2). All edges emanating from it are e-edges, so that Case (ii) occurs in Step
3. Hence u(2) is set to 1, and the next multigraph to be considered is Fig. 3.

Now there is an r-cycle (2,1). It is condensed to a vertex c. As all edges emanating
from it are e-edges, Case (ii) of Step 3 occurs again, and u(c)2 is set to 2. See Fig. 4.

7 In Schweitzer [17] it is stated that the maximal order of the poles is an upper bound for the
number of fundamental equations needed to determine 7(0).
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Fig. 2

Fic. 3

At this stage, no more r-cycles exist, and the algorithm moves to Step 4. Then
the algorithm seeks the set of vertices currently having the largest value and makes
this order permanent. Thus u(c) = 2 and T" = {3,4}. Next, the algorithm seeks
vertices in T' from which vertex ¢ can be reached via paths that are constructed only
of r-edges. There are no such vertices in our example. Then it seeks those vertices
from which ¢ can be reached in one step via an e-edge. Vertex 3 is such a vertex.
It gives it the value of 1, which becomes permanent in the next execution of Step 4.
Then T = ¢, and the algorithm moves to Step 5. There, it sets u(1) = u(2) = 2 and
u(3) = 1. Finally, in Step 6, Fig. 5, below, is considered.

Then u(4) = 0 is computed. Thus u14 = 2, ugq = 2, uz4 =1 and ugq = 0.

For state 3 as the target state, the algorithm obtains that ui3 = 2, usg =2, ugs =
1, and ug3 = 1. The other values can be found by symmetry. Hence max;; (u;; —u;;) =
2, and three sets of fundamental equations, 7(% (I — P(0)) = 0, #(0(I = P(0)) = #(© 4,
and 73 (I — P(0)) = (1 A, are required to obtain a system of equations in which the
7(®) component of a solution (7(®, 7™ 7(2)} is unique (up to a normalizing constant).
As is solved in Haviv and Ritov [7], #(®) = (0,1/2,0,1/2).

Acknowledgments. The authors thank Y. Ritov and P. J. Schweitzer for their
helpful observations.

REFERENCES

[1] M. CopercH, A. 5. WILLSKY, S. S. SASsTRY, AND D.A. CASTANON, Hierarchical aggregation
of singularity perturbed finite state Markov processes, Stochastics, & (1983), pp. 259-289.

[2] , Hierarchical aggregation of linear systems with multiple time scales, IEEE Trans. Au-
tomat. Control, AC-28 (1983), pp. 1017-1030.

[3] P. J. Courrois, Decomposability: Queueing and Computing Systems, Academic Press, New
York, 1977.




NEARLY UNCOUPLED MARKOV CHAINS 397

Fic. 4

© O

[4] F. DELEBECQUE, A reduction process for perturbed Markov chains, SIAM J. Appl. Math., 43
(1983), pp. 325-350.
[5] B. L. Fox AND D. M. LANDI, An algorithm for identifying the ergodic subchains and transient
states for stochastic matrices, Comm. Assoc. Comput. Mach., 11 (1968), pp. 619-621
[6] V. G. GAITSGORY AND A. A. PERVOZVANSKY, Aggregation of systems in Markov chains with
weak interactions, Kibernetika, 11 (1975), pp. 91-98. (In Russian.) (pp. 441450 in the
English translation.)
[71 M. Haviv AND J. RITOV, Series expansion for stochastic matrices, unpublished.
[8] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, New York, 1966.
[9] C. E. LANGENHOP, The Laurent expansion for a nearly singular matriz, Linear Algebra Appl.,
4 (1971), pp. 329-340.
[10] G. LaToucH AND G. LOUCHARD, Return times in nearly decomposable stochastic processes,
J. Appl. Prob., 15 (1978), pp. 251-267.
[11) G. LoUucHARD AND G. LATOUCH, Random times in nearly completely decomposable transient
Markov chains, Cahiers du C.E.R.D., 24 (1982), pp. 321-352.
[12] C. D. MEYER, The role of the group generalized inverse in the theory of finite Markov chains,
SIAM Rev., 17 (1975), pp. 443-464.
(13] J. R. ROHLICEK AND A. 8. WILLSKY, Structural decomposition of multiple time scale Markov
processes, in Proc. of the 25th Allerton Conference on Communications, Control and Com-
puting, pp. 674—683, University of Illinois, Urbanna, IL, pp. 674-683.
, The reduction of Markov generators: An algorithm exposing the role of transient states,
J. Assoc. Comput. Mach., 35 (1988), pp. 675-696.
[15] P. J. SCHWEITZER, Perturbation theory and finite Markov chains, J. Appl. Probab., 5 (1968),
pp. 401-413.

[14]

[16] , Perturbation series expansions of nearly completely decomposable Markov chains, Work-
ing Papers Series No. 8122, The Graduate School of Management, The University of
Rochester, Rochester, NY, 1981.

[17)] , Perturbation series expansions of nearly completely decomposable Markov chains, in

Teletraffic Analysis and Computer Performance Evaluation, O. J. Boxma, J. W. Cohen
and H. C. Tijm, eds., Elsevier, North—Holland, Amsterdam, 1986.

[18] H. A. SiMON AND A. ANDO, Aggregation of variables in dynamic systems, Econometrica,
29 (1961), pp. 111-138.





