A FLOW ALGORITHM FOR NETWORK SYNCHRONIZATION

REFAEL HASSIN
Tel Aviv University, Tel Aviv, Israel

(Received November 1992; revisions received October 1993, June 1994; accepted November 1994)

The problem we treat is defined on a graph where each node is associated with a variable and there are loss functions defined on the
arcs, depending on the difference between the corresponding node variables. The objective is to compute values for the node
variables so as to minimize the sum of losses. We exploit the relation between this problem and network flows optimization and use
it in developing an approximation algorithm for the problem. A main application of the problem is the synchronization of fixed cycle

traffic signals.

his paper describes an application of network flow

algorithms to a class of scheduling problems that in-
volve synchronization of node variables. The network syn-
chronization problem is formulated as follows: Let G =
(N, A) be a graph with a node set N and an arc set 4. For
each i € N define a variable (a potential) u,. In some cases
of interest these variables may be constrained to be dis-
crete and in others they may be continuous. For each arc
(i,]) € A aloss function f(4;) is given, where A; = u; —
u; denotes the offset (or, tension) at (i, j). The problem is to
determine a set of values u; i € N minimizing 2 jye4
fi/’(Alj)'

An especially interesting case of this general problem is
when the loss functions are periodic with a common period
(which we denote c). Thus, f;(4; + ¢) = ﬁj(A,-j). Without
loss of generality, it can be assumed in this case that u; is
restricted to [0, ¢) for every i € N and that A;; is defined as
u; — u(mod c) so that it is also in [0, c). Network synchro-
nization with periodic loss functions can model periodic
scheduling problems. Several such problems are discussed
in Serafini and Ukovich (1989a, b) and their references.

In a geometric interpretation, the periodic synchroniza-
tion problem is that of locating points on a circle so as to
minimize the sum of loss functions depending on the dis-
tances between pairs of points along the circle in a given
orientation. A more general problem allows locating the
points on a general graph rather than on a single arc of a
circle. The p-median problem with mutual communication
is obtained when the loss is proportional to the distance
between the points (see Tamir 1993 for recent results).

Several other applications of the network synchroniza-
tion problem are described in Rockafellar’s book (1984,
Chapter 7F). When the loss functions are convex,
Rockafellar, and Karazanov and McKormick (1993) con-
tain solution algorithms. In particular, Karazanov and
McKormick describe a strongly polynomial algorithm
when the functions are convex and piecewise linear. How-
ever, this is often not the case in interesting applications,
and in particular periodic loss functions are not convex.

A main area of application of the problem with periodic
loss functions is that of traffic signal synchronization: traffic
signals are set at the nodes, with a common period of
length c. At each node the cycle is partitioned into subin-
tervals, and each subinterval is characterized by a fixed set
of allowed driving possibilities (straight-through driving or
turns). Our task is to decide how much time after the
beginning of a given green interval at a node should an-
other given green interval at another node start.

To formulate this signal synchronization problem in
terms of our opening paragraph, we associate with each
i € N a reference point of time, such as a beginning of
some green interval at the node. Then, u;, i € N, can be
set to the time difference from ith reference point to the
previous occurrence of node 1’s reference point (thus set-
ting u; = 0). It is often assumed, as we do here, that the
objective function can be well approximated by an arc sep-
arable function (Allsop 1986, Gartner and Little 1975,
Gartner et al. 1975, Importa and Sforza 1982, Hillier
1967). This assumption greatly simplifies the solution ap-
proach, and it is often claimed to be sufficiently accurate
under heavy traffic conditions. (Nonseparable functions
are more realistic but also harder to evaluate and are usu-
ally computed through a simulation subroutine.)

Importa and Sforza and Serafini and Ukovich (1989a, b)
developed branch-and-bound algorithms for network syn-
chronization problems. Such algorithms typically are useful
for solving only small instances. Robertson developed
“TRANSYT,” a program for synchronizing traffic signals,
that applies local search (Foulds 1986, Robertson 1969,
Tsay and Wang 1989). In this local search algorithm, a new
solution differs from the previous one by the offsets of the
arcs incident with a single node.

In this paper we develop a local search heuristic for
network synchronization. Our definition for the neighbor-
hood of a solution allows moves to a much larger set of
new solutions relative to the simple local search adopted
by TRANSYT. Specifically, we allow changes in offsets of
arcs incident with a subset of the node set. Our numerical

Subject classifications: Network flow algorithms: application to synchronization of node variables. Production scheduling: synchronization of cyclic work stations.

Transportation traffic models: traffic signal syncronization.

Area of review: OPTIMIZATION.

Operations Research
Vol. 44, No. 4, July-August 1996

0030-364X/96/4404-0570 $01.25
© 1996 INFORMS

tests indicate that our more sophisticated local search is
superior. We note that we only considered separable loss
functions while the typical application of TRANSYT as-
sumes nonseparable functions. However, the general idea
of extending the neighborhood of the local search applies
in these cases as well. The problem that is left open is that
of selecting the subset of nodes whose variables are
changed. The specific method that we apply relies on the
assumption of separability.

~ We next characterize the locally optimal solutions in our
network synchronization problem. After discussing the
complexity of the problem we observe that a local opti-
mum can be reached by applying certain dual algorithms
for network flow optimization. We also provide some nu-
merical data indicating that our approach can be successful
in obtaining good solutions to medium size (and possibly
also to large size) problems. :

1. A MATHEMATICAL FORMULATION

We now present the problem as a mathematical program:

Minimize . fi,(Ay)
(i.)eA (1)

subject to

Ay =u;—uy,

i,) € A.

Problem 1 can be approximated by replacing f; by an
appropriate piecewise linear function. Such an approxima-
tion requires the use of binary variables.

We note that Problem 1 can also include single variable
functions f,(x,) by introducing a dummy variable u, and
presenting these functions as fg,(¥; — ug). Also, bounds
such asa; < u; < b, ora; < u; — u; < b; can be incorpo-
rated by appropriate convex penalty functions.

We now comment on some aspects of the above formu-
lation in the case of periodic loss functions. In this case,
the node variables, w,, can be restricted to [0, ¢), so that it
is sufficient to define f; on [—c, c] adding constraints 0 <
u;sSc,i EN,or —c s f;sc (i,)) €A

Gartner and Little, Gartner et al., and Importa and
Sforza, formulated the periodic problem with the arc vari-
ables 4, directly defined, not through the node variables
u;. Since the arc variables are not independent the prob-
lem is formulated with additional constraints expressing
this dependence. These constraints state that the sum of
offsets over each cycle, C,, of G (weighted by +1 or —1
according to the arc’s orientation in C,) must be equal to
k; + ¢ - n, where k; i1s a constant and n, is a variable
restricted to be integral. The minimum number of such
constraints is the size, [4] — |N| + 1, of a basic set B of
cycles (Gartner 1972a). This formulation requires |4| —
IN| + 1 integral variables, n,, [€ B. If f; is convex within
some interval of size ¢ then a linear approximation for f;
can be formulated with no additional integer variables.
This 1s done by an appropriate translation of A,.

Our formulation eliminates the integral variables n,.
However, binary variables are needed even in the convex

HassiN / 571

case since A, cannot be constrained to an interval of size ¢
but only to an interval of size 2c, and convexity is lost. The
main advantage of our formulation is in its suitability to
the heuristic approach to be presented below.

2. COMPLEXITY OF THE PROBLEM

Serafini and Ukovich (1989a, b) proved that the problem is
NP-hard, assuming that the node variables are discrete.
Their reduction from the traveling salesman problem is
valid even for binary periodic loss functions that are sym-
metric within each cycle. For completeness we repeat this
reduction in a form that suits our goals.

Suppose we want to find out whether a given undirected
connected graph with node set N and edge set E is Ham-
iltonian. Define a network synchronization problem on the
complete directed graph G = (N, 4), with period ¢ = |N|
and loss functions

fi}(uj _ul)
(0 ifu; —w; modc€[l,c~1]and (i) EE,
=410 ifu; ~u, modc€(2,¢c~1]and(i,)) € E,
1 otherwise.

It is now claimed that the graph is Hamiltonian if and
only if there are values u; € [0, ¢c] i € N such that the total
loss is zero. Such a solution must have |u, — u,| = 1Vi,j €
N i # j, and therefore u; i € N are distinct and obtain all
the values in {1, ..., c}. The difference |u; — u,/ may be 1
only if (i, j) € E. Therefore, the existence of such a solu-
tion is possible only if the graph is Hamiltonian. The “if”
part is also clear now.

It should be noted that the above loss functions can be
replaced by continuous piecewise linear functions that are
zero in the same domains and strictly positive elsewhere.
Thus one can easily verify that the hardness of the prob-
lem holds also for continuous symmetric and periodic
piecewise linear loss functions that have at most two
breakpoints within a period.

Clearly, when the node variables are continuous, ¢ can
be normalized to any value. However, when they are dis-
crete, ¢ represents the number of distinct values that the
node variables may have. We now strengthen the hardness
result for the discrete case by showing that it holds also for
¢ = 2. In this case u; are binary variables. The offsets u; —
u; may obtain values in {0, 1, —1}. We will use, however,
symmetric loss functions so that only the absolute values of
the offsets matter, and they are in {0, 1}.

Our reduction is from the minimum cluster problem (the
minimization version of the max cut problem (Garey and
Johnson 1978)): given an undirected graph with node set N
and edge set E, we want to find a partition (S, N\ §) of
N such that the number of edges with both ends in the
same part is minimized. To reduce this problem to ours we
consider the directed graph G = (N, 4) where 4 is an
arbitrary orientation of E, and the following loss functions:

0 if|u; —u;l=1,

fij(“j‘u,')z{l ifuj—ui=0, (i,j))EA.

572 | HasSIN

Clearly, minimizing the sum of these functions over u; €
{0, 1} is equivalent to solving the minimum cluster prob-
lem on this graph.

It may be interesting to note that for loss functions

c, iffu; —u| =1,

fute, = = {§ fu —u =0 (IEA

the problem turns out to be that of computing a minirmum
(weighted) cut in a graph, so that this case is polynomially
solvable.

3. OPTIMALITY CONDITIONS

The NP-hardness of the network synchronization justifies
the development of heuristic approaches. The approach
we suggest is that of local search. It requires a method for
producing initial solutions, and a definition of a neighbor-
hood for each feasible solution. At each iteration, the
neighborhood of the current solution is scanned for a so-
lution with a better objective value, and if none exists the
algorithm is stopped and the last solution is declared as
local optimum. Since in general a local optimum may not
be optimal, the procedure is repeated from different initial
solutions, and finally the best local optimum is selected.
Various techniques have been suggested, that extend and
sometimes improve this simple scheme. The main differ-
ence is that they also allow moving to solutions with worse
objective value or infeasible solutions (for example, simu-
lated annealing or tabu search).

In our case, the feasibility issue doesn’t appear because
any vector u € R is feasible. Therefore, a simple method
for selecting initial solutions is that of randomly generating
such vectors. In the periodic case, each component, u;, can
be uniformly selected from [0, c).

In this section we characterize a most natural choice of a
neighborhood, namely, the geometric neighborhood of the
solution vector. Thus, a solution is locally optimal if there
is no direction in R™ in which the objective function im-
proves when moving from the current solution. We note
that similar results are implicit in Rockafellar’'s work
(mainly Chapter 8).

Let B” be the set of n dimensional binary vectors with at
least one positive coordinate. For x, d € R" we denote by
f'(x, d) the directional derivative of f at x along the direc-
tion d.

Theorem 1. Let g,;:R — R be given functions having right
and left derivatives everywhere. Let f:R" — R be of the form

fox) = 2 g4(x = x)
)

Let x € R". If f'(x,b) = 0 forallb € B, then, f'(x,d) =
0 for all d € R". (Similarly, if f'(x,b) < 0 forall b € B",
then, f'(x,d) <0 foralld € R".)

Proof. Since f is a function of the differences x; — x;, it is
clearly sufficient to consider vectors d such that min{d,}i =
1,...,n} =0

It is sufficient to prove that if f'(x, d) < 0 for a vector d
with more than two distinct coordinate values then there
must exist b € B" such that f'(x, b) < 0.

Let d be a direction such that

fiix, d) <0, (2)

and d has a minimal number of distinct coordinate values
among all directions with negative directional derivatives
at x. We want to prove that 4 has at most two distinct
coordinate values. Assume on the contrary that it has at
least three distinct coordinate values.

Letd,,, = max{dji = 1,...,n}, S = {ild; = dpux}, S
the complement of S. Let dp, = max{d,|d; < d,...} be
the largest coordinate value which is smaller than .. Let
b € B” be the direction defined by S, thatis, b, = 1 ifi €
S and b, = 0 if i € 5. Since b has only two distinct
coordinate values, it follows from our assumption on the
minimality of d that

f'(x,b)=0. (3)
Define a direction d' as follows:
, _ [di i €S,

d"‘{dw, €S

Since d' has less distinct coordinate values than d, it
follows from our minimality assumption on d that

fiix,d')=0. (4)

From the structure of f,
fix,d) =2 g\ (x; —x)(d; —d)*
i
- '2}: gfj—)(xj - X(’)(di - d/)+)

where g{*) and g{™ are the one-sided derivatives of g,
and for a given a a® = max(a, 0).
Let 8 =d -d

max'*

2 2_ gfﬁ)(x/ - x;)

ES je s
- 2‘ 2 gl(j-)(x/ - xt)(s
€S JES

8 (x, b) =0,

where the inequality follows from (3). Therefore, f'(x, d)
= f'(x,d") = 0, where the second inequality is (4). This is
in contrast to (2).

As a corollary of Theorem 1 we obtain the following
theorem: ’

max

fix,d) = f(x,d")

Theorem 2. Let f:R" — R be of the form
f(xli RN xn) = 2 gu(xx —Xj>,
i

where g,:R — R are convex functions. A necessary and
sufficient condition for a vector x € R" to be a global mini-
mum of f over R* is that for all b € B", f'(x, b) = 0.
(Similarly, for concave functions, the condition for a global
maximum is f'(x, b) < 0.)

Proof. Since {g;} are convex, f is also convex, and the
necessary and sufficient condition that x is a global mini-
mum is that the directional derivatives f'(x, d) are non-
negative in every direction d € R". The claim now follows
from Theorem 1. '

4. NETWORK FLOW

Let G = (N, A) be a directed graph. The minimum cost
circulation problem 1s to '

Minimize 2, CifXy

(i,))eA
subject to
> x;- 2 x;=0, iEN, (5)
MNied MNjiea

(i,j) € A.

In (5), x; is the flow along arc (i, j), c; is the unit cost of
this flow, and /;; and u,; are lower and upper bounds on this
flow satisfying /; < u,. The dual problem can be written as
follows:

Ly S xy<uy,

Maximize 2 g,(v,), _
(,/)EA (6)

subject to
vy =p; —p:tCy
where g;(v;) = [ymax{v;, 0} + w;min{y;, 0}.

Consider a given vector p € R™. Define modified
bounds as follows:

(i,)) €A,

(18, uf) =y, ly), ifcy—p;+p; >0,
(L, uy), ifcy—pi+p; =0,
(wij, uy), ifcy —pi+p;<0.

Aset SCN,S#¢,S5 # 1_/ 1s called a cut. The set of
arcs {(i, j) € Ali € S, j € 5} is denoted (S, 5). With
respect to a given vector p we define

1= 2 - X u. (7)
) WLNES, S

Note that I(S) is the derivative of the dual objective in the

direction b € B defined by S. A cut S is positive if

I(§) > 0.

An increase of p; by € > 0 increases all v, values by €
and decreases all v; values by e. Therefore, an increase of
allp,, i € S, by € > 0 small enough adds el(S) to the dual
objective function. Noting that the functions g, are con-
cave, the following theorem (Hassin 1983) can be obtained
as a corollary of Theorem 2:

Theorem 3. A vector p is optimal for Problem 6 if and only
if G contains no positive cuts with respect to the modified
bounds (P, u”).

Note that each g, (i, j) € A, is piecewise linear and

concave. Its single breakpoint is at p, — p; = c;.. By replac-
ing an arc (i, j) € A by several arcs (i, j)y, . .., (i, j), in
parallel, with bounds /4, ..., Ly and wy;, ..., u;, and

costs ¢;; < - -+ < ¢y, the dual program is changed so that

Hassin /573

g, is replaced by a2 piecewise concave function with break-
points at p; —p; = ¢;y, .- -, C; and slopes 2., [;, + 2,
ug, p = 1,..., k + 1. Indeed, any piecewise concave
function can be obtained this way (see Rockafellar, sec-
tions 8C, 8E and 8F), and this construction could be used
to prove Theorem 2 from Theorem 3.

Theorem 3 suggests a general approach for solving the
dual problem. At each iteration a positive cut § is com-
puted and each p,, 1 € S, is increased by the same amount
until some modified bound changes.

Some strategies for computing positive cuts have been
shown to yield polynomial time algorithms for the mini-
mum cost flow problem and its dual (see the next section).
These algorithms can be used to minimize piecewise linear
functions of the type considered in Theorem 2 in polyno-
mial time (where the input contains explicit descriptions of
the g functions by their slopes and breakpoints).

5. THE ALGORITHM -

We observe that Theorem 2 justifies the correctness of a

class of “dual” network flow algorithms. This class of algo-
rithms is quite broad as shown by Hassin (1983) (see also
Sandi (1986), Lovetskii and Melamed (1987)). On similar
grounds, Theorem 1 can be used to prove that these algo-
rithms terminate in a local optimum for any loss function.
Below, we describe the general procedure as well as a
detailed description of one variation.

We assume that the loss functions f,, e € A, are piece-
wise linear. For a given vector of offsets A, let z;” (z;) be
the right (left) derivative of f,(4,). '

Let ¢ (t;) be the size of the interval in the positive
(negative) direction within which the derivative is fixed.

Let

M= 2

eE(M,M)

2 (A) - 2 zo(A). (8)

eE(M,M)
In the network flow model z; (A) = £ and z, (A) = uf.
Hence, Equation (7) is a special case of Equation (8). Let

T(M) = min{min, e (5, s {t." }, min, e ar.a){t."}} .

Note that an increase in u; reduces 4, if e = (i, j) for
some j, and increases A, if e = (j, i) for some j. There-
fore, for e =< T(M), an increase of all u,, i € M, by € adds
el(M) to the objective function 2,c, f.(4,). It comes out
that by Theorem 1, a necessary and sufficient condition for
local optimality is I(M) = 0 for all M C N.

The algorithm, that we propose starts with an arbitrary
set u;, i € N. At each iteration a negative cut, that is, a set
M with I(M) < 0, is found and w,, i € M, are increased by
T(M). The algorithm stops when no negative cut exists.
Since the resulting solution is only a local optimum, the
process repeats with different starting solutions u,, : € N,
and the best local optimum is finally chosen. In our numer-
ical study we have selected the starting solutions randomly,
but there may be better selection rules such as those sug-
gested by Wong and Morris (1989).

574 / HASSIN

A crucial part of the algorithm is the computation of a
negative cut or determination that none exists. Several
methods have been developed for the network flow
problem, and they can be applied to the synchroniza-
tion problem; see for example Ervolina and McCormick
(1993), Hassin (1983, 1992), McCormick and Ervolina
(1994). The methods differ both by the type of a positive
(for the network flow problem) cut they search for, and the
way the search is conducted. Hassin (1983) developed a
tree-search algorithm for computing a most positive cut.
McCormick and Ervolina compute such a cut by applying a
maximum flow algorithm. Alternatives discussed in the
above papers are the cut whose mean (node-wise or arc-
wise) value is maximum, and they require computing a
maximum cut as a subproblem. The complexity of finding
the first (or most) positive cut by the tree-search algorithm
is linear in the number of arcs. The other methods that use
a maximum flow algorithm require greater effort per iter-
ation but may require less iterations. In particular, some of
the resulting algorithms have been shown to have a poly-
nomially bounded number of iterations while the others do
not have this property: However, a comparison of all of
these approaches based on computational experience is
not available. For completeness, we now describe in detail
one such algorithm. It performs the same sequence of
steps as the tree-search algorithm but stops when the first
(rather than the most) negative cut is found. We have
selected this version because it i1s simpler to describe.

For a given vector of offsets A let B(A) C A be the set of
arcs such that A, is a breakpoint of f,. This set plays a role
similar to that of a “basis” in linear programming. As will
be shown, the step where a negative cut is computed can
be executed very efficiently when B(A) does not contain a
cycle. This is always the case if the breakpoints are “inde-
pendent” in the following sense: for any solution u, the
arcs that attain breakpoints of their respective loss func-
tions induce no cycle. This nondegeneracy property cannot
be assumed in practice. However, cycles can be avoided by
applying any of the well-known rules used to eliminate
cycling in linear programming, such as perturbation of the
data or lexicographic ordering (see, for example, Schrijver
(1986). We will describe the algorithm with a lowest-index
rule. The arcs are assumed to be arbitrarily indexed. Then,
whenever the offsets of several arcs reach a breakpoint
simultaneously, only the one with the lowest index actually
joins B. This guarantees that B(A) never contains a cycle
since only the A values in (M X M) U (M X M) were
changed, and exactly one of these arcs will be in the new
set B(A).

We are now ready to describe the tree-search algorithm
for computing a locally optimal solution. For more details
see Hassin (1983).

Negative Cut Algorithm

Input: A set, u, of node variables, with the corresponding
set of offsets, A.
Output: A locally optimal solution w.

B := a maximal subset of {e¢ € A|A, is a breakpoint of f.},
containing no cycles;
while (a local optimum has not been found)

{S:=N;

for (i € N)
{ d(i) := the number of arcs of B incident with ¢;
P@) = {i};
}

while (a negative cut has not been found)
{if (§ = ¢) return u [u is a local optimum];
find i € S such that d(i) < 1;
S =85\ {i}
if {(P()) = 0andd() =1)
{ e := the unique arc of B incident with i;
j := the other end of ¢;
() :=d() - 1;
if ([(P(i)) + z; — z; < 0) P(j) := P(j) U P(i);

if (J(P(i)) < 0)
{ M := P(i) [M is a negative cut];
for i € M) u, := u; + T(M);
Cfor ((i,)) EA) Ay = uw — u;
B := B(A);
}

}

Comments

S is the set of nodes that were not scanned yet.

P(i) is a set defined for each i € §, with the following
properties: i € P(i); P(i) N S = {i}; for every j € P(i)
there exists a negative cut containing j if and only if there
exists such a cut containing P(i).

The revision of the sets P(i) is the crucial step. Suppose,
for example, that e = (i, j). An increase in ; results in a
similar increase in A,, and consequently the objective func-
tion also increases in rate z.". If, however, P(i) is appended
to P(j) and thus u; is increased together with all u;, I €
P(i), this rate changes to I(P(i)) + z.. Therefore, we ap-
pend P(i) to P(j) if and only if J(P(i)) + z7 — z7 < 0.

When revising the set B, if several arcs formerly not in B
are supposed to join it, join only the one of lowest index
among them. The other ones retain their z~ = z* value
and stay out of B (with 1] = 0 if A, was increased to its
breakpoint, or ¢, = 0 if A, was decreased to that point).
This way we preserve the property that B does not contain
cycles, and consequently, as long as the set S is not empty
it must contain- a node i such that d(i) = 1.

Note that T(M) = 0 is possible, and then A is not
changed, only B.

6. COMPUTATIONAL EXPERIENCE

We applied the algorithm of Section 5 to an example used
by Gartner (1972b) and Importa and Sforza. In this exam-
ple, ¢ is evenly divided to eight, and losses are defined by
discrete functions on the eight possible offset values. This

etting is particularly convenient for implementation of
our algorithm. We normalized ¢ to 8 so that the step size is
always either zero or one. The slopes of the functions are
defined by the differences of the loss function in the rele-
vant directions. The typical situation is very degenerate in
the sense that all the functions are always at a breakpoint.
Initially integer values u; € {0, ..., 7}, i € N are sampled,
the initial offsets are computed, and a random tree is se-
lected as the initial basis. The nontree arcs are initially
assumed to be slightly above the breakpoint. At each iter-
ation the right and left slopes of the tree arcs differ, while
for the nontree edges they are equal and their size de-
pends on whether the offset was reached from above or
from below.

The network, illustrated in Figure 5 of Importa and
Sforza’s paper, has 8 nodes and 13 arcs. We used a
SPARC 2 computer (SunOS Release 4.1) to run two
FORTRAN 77 versions of our algorithm. In one we com-
puted a most negative cut in each iteration, in the other we
stopped at the first negative cut. We found no difference in
the quality of solutions produced by the two versions, and
Table I describes the results of the total 200 runs. It shows
that the optimal value (as found by Importa and Sforza) of
1,720 was reached in more than a quarter of the runs. The
total cpu time for 100 runs of the most negative cut version
was 2.8 seconds (the same order of time was required in to
optimally solve this small problem by a branch-and-bound
algorithm), with average of 22.7 iterations per run, while
for the first negative cut it was 3.0 seconds with average of
47.7 iterations.

In the local search algorithm used in TRANSYT only
cuts consisting of a single node are considered. We call
this algorithm restricted local search and denote it RLS. In
contrast, we call our algorithm, that considers all the pos-
sible cuts, extended local search and denote it ELS. As
expected, RLS reaches a local optimum faster (on the av-
erage) than ELS. Therefore, to allow a fair comparison we
executed RLS for the same length of time as required by
the ELS to compute the 200 solutions of Table 1. RLS
completed within this time 2400 iterations (each iteration
computes a local optimum, starting from a random initial

Table I
Distribution of Results for Importa and
Sforza’s Example

Cost Frequency Cost Frequency Cost Frequency
1,720 SS 1,911 4 2,022 2
1,775 19 1,912 1 2,025 2
1,782 26 1,937 S 2,052 1
1,793 4 1,947 12 2,074 2
1,799 3 1,987 1 2,078 1
1,827 8 1,989 3 2,115 2
1,840 2 1,993 S 2,117 1
1,860 9 2,008 1 2,150 1
1,883 1 2,009 1 2,168 1
1,907 20 2,013 2 2,202 1
1,909 2 2,021 1 2,227 1

HassiIN /575

solution). The best solutions were obtained as follows:
1720 (34 times), 1731 (15), 1744 (21), 1752 (18), 1764 (18),
1769 (6), 1775 (25). We see that the optimal solution was
obtained less times, but more solutions that are close to it
were obtained than by ELS.

To learn about the relative performance of the algo-

rithms on larger problems we used the network of 34
nodes and 71 arcs described in Figure 1. This network
represents a section of the road network of the center of
Tel Aviv, in which all traffic signals have a common cycle
time. For each arc we randomly sampled one of the 13 loss
functions provided in Gartner’s example. Again, there was
no significant difference in the quality of the solutions pro-
duced by the first negative cut and the most negative cut
versions. However, the most negative cut version required
altogether about half the time required by the first nega-
tive cut, and therefore we applied it in the rest of our
study.
* While there is no guarantee to the quality of the solu-
tion obtained by the local search approach relative to the
optimal one, some indication to the probability of improv-
ing it by continuing the search can be obtained by consid-
ering the number of times that the best solution value has
been obtained. This parameter seemed to be correlated
with the dispersion of the random minima obtained, which
varied considerably among the problems considered (with’
different loss functions selected for each arc from the 13
possibilities on the same network). For example, in some
situations the best solution appeared more than 100 times
during 2,000 iterations, while in several others 20,000 iter-
ations were required until for the first time the frequency
of the best solution was at least 6 or 8.

We concluded that the following rule gives very good
results for ELS: compute locally optimal solutions until the
best solution value has been obtained 10 times. We
checked this rule by running ELS for many more iterations
(up to 100,000) but never found a better solution than the
one attained by this criterion.

We randomly generated ten problems on the network of
Figure 1, differing by the loss functions assigned to the
edges. The details are given in the appendix. Each of these
problems was solved by both RLS and ELS. We used the
stopping rule of 10 appearances of the best solution with a
limit of 100,000 iterations (from random initial solutions).

One could suggest a naive algorithm that just randomly
samples solutions and finally selects the best. We checked
the quality of this approach by examining the numerous
initial solutions that we sampled during the execution of
RLS. The best value, denoted Init* is given in Table II.

The average number of solution improvements until a
locally optimal solution is obtained was about the same for
all of the ten problems. It was 45 improvements for RLS
and 115 improvements for ELS. The average time per
iteration (obtaining a local optimum) was roughly 0.35 sec-
onds for RLS and about 0.72 seconds for ELS. Thus, the

576 / HassiN

ml

4 /{C‘h-,‘lx ‘Ha !
da NN s .

Figure 1. The Tel Aviv network.

running times can be computed from Table II by multiply- Table 1I contains for each of the 10 test problems and
ing these figures by the number of iterations. The number each of RLS and ELS, the number of iterations, the aver-
of iterations are denoted ItRLS and ItELS. age value of a local optimum (denoted by RLS and ELS)

HassIN / 577

Table 11
Comparison of RLS and ELS
Init* ItRLS RIS RLS* NRLS LUtELS ELS ELS* NELS
1 11,708 100,000 11,363 9,793 1 570 10,201 9,580 10
2 10,435 100,000 10,705 9,311 5 2,246 9,527 8,970 10
3 11,121 100,000 11,726 10,291 2 2,812 10,663 10,001 10
4 11,172 100,000 11,061 9,893 3 1,497 9,879 9,506 10
5 11,289 100,000 11,009 9,782 5 7,722 10,165 9,495 10
6 11,939 90,063 11,016 9,932 10 60,517 10,272 9,649 10
7 11,827 100,000 11,050 9,929 3 11,019 10,284 9,722 10
8 10,765 49,144 10,246 9,117 10 4,059 9,416 8,846 10
9 12,040 100,000 10,666 9,179 6 121 9,449 9,000 10
10 12,023 100,000 10,771 9,464 6 380 9,615 9,213 10

and the best solution value (denoted by RLS* and ETS*).
The number of appearances of the best solution (denoted
NRLS and NELS) is also given. We see that in these test
problems, quality of the solutions produced by ELS is su-
perior to those produced by RLS, and in particular, the
best RLS solution was never as good as the best ELS
solution. '

It is very interesting to note the differences among the
10 instances that we considered, as reflected in Table II.
For example, in the ninth instance the best solution ap-
peared in about 8% of the iterations (this figure was fur-

" ther verified by executing 100,000 iterations). In contrast,
in the sixth instance, the best solution value, 9,649, ap-
peared in only 10 out of 60,517 iterations! The second best
solution value of 9,662 appeared 74 times. If we accept
these proportions as estimates for the probability of ob-
taining these solutions, then there is a chance of about 0.24
that 9,662 will appear 10 times before the first appearance
of 9,649.

Ben-Zvi (1991) studied traffic light synchronization un-
der a novel loss function. The traffic through each node
i € N was labeled according to its incoming and outgoing
arcs, or in other words, by the green light at the node that
permits this traffic to cross it. The flow through any given
arc (i, j) € A was classified then by its labels at the nodes i
and j.

For each class associated with the arc (i, j) € A a loss
function was defined as follows. First a loss function asso-
ciated with each fixed travel velocity along (i, j) was as-
sumed to be given. Then, for each possible time that a car
from a given class could enter (i, j) at i a minimum cost
velocity was determined such that the car would reach j
during the green interval relevant to its type. Finally, the
loss function at the arc was determined as the maximum
(weighted) loss of any of its classes. The resulting loss
functions in the study have two possible forms depending
on whether the green interval at i is longer or shorter than
that at j. In one case the function is convex on part of the
cycle and flat on its complement. In the other case it has
two convex parts and two flat parts. The loss functions
were approximated by piecewise linear functions with
three or four breakpoints.

Our algorithm was applied to the subnetwork of Figure
1 induced by nodes 20-25. Thus it has six nodes and eight
arcs (37, 38, 42, 42, 60, 61, 66, 67). The results are given in
Table III where the objective values were normalized so
that the optimal solution is 100. As we see, the optimal
solution (as verified by solving an integer program) was
reached 8 times out of 30 iterations, and nearly optimal
solutions were reached 17 times. The algorithm was also
applied to the whole network of Figure 1. The time needed
for generating 50 locally optimal solution was 51 seconds
on IBM 3090.

7. SUMMARY

We stated and proved a characterization of the locally
optimal solutions in the network synchronization problem.
It says that a solution is locally optimal if and only if it
cannot be improved along binary directions. This charac-
terization can be naturally used to produce a family of
algorithms since it can be tested efficiently, and in the case
of a negative outcome an improving binary direction can
be found. :

While this extension to network flow algorithm may be
natural, none of the existing algorithms for network syn-
chronization, motivated by applications from scheduling
and traffic light synchronization, is based on a similar ap-
proach. In particular, the problem has been traditionally
formulated in a different way, and only solutions of very
small problems have been reported. We believe that our
approach can extend substantially the size of network syn-
chronization problems that can be successfully solved.

The success of our proposed method strongly depends
on the type of loss functions under considerations. For
example, the traveling salesman problem can be modeled as
a network synchronization problem with period |N], a large
penalty on zero offsets, a loss equal to the arc length for a
unit offset, and zero loss otherwise. We experimented with

Table III
Ben-Zvi’s Results

Objective 100 112 114 117 119 172 191 220 298 345
Frequency 8 4 2 8 3 1 1 1 1 1

578 / HassiN

this problem and obtained discouraging results since the
high penaity creates numerous locally optimal solutions.
We believe, however, that for many real life instances that
are naturally formulated as network synchronization prob-
lems our approach is capable of providing good solutions.

ACKNOWLEDGMENT

The author is grateful to the referees for their comments
and suggestions of various improvements to the paper.

APPENDIX
Table Al
The Loss Function Attached to Each of the 71 Arcs
d= 0 1 2 3 4 5 6 7
1 250 196 120 54 50 100 160 211 ’
2 150 160 290 398 350 295 244 194
3 120 168 214 260 306 350 320 173
4 131 141 272 379 331 276 225 175
5 136 188 240 291 282 168 49 82
6 295 266 225 180 133 88 100 209
7 100 224 298 250 230 212 185 146
8 180 233 334 441 387 359 358 230
9 138 170 217 267 260 187 120 100
10 100 224 208 250 230 212 185 146
11 176 223 273 328 384 345 207 137
12 252 144 79 114 161 207 250 290
13 105 54 116 240 298 262 210 156
REFERENCES

ALLsoP, R. E. 1986. Selection of Offsets to Minimize Delay to
Traffic in a Network Controlled by Fixed-time Signals.
Trans. Sci. 2, 1-13.

Ben-Zvi, R. 1991. Optimization of Traffic Signals Control.
M.Sc. Thesis, Statistics Department, Tel Aviv University,
Israel.)

BurkaRD, R. E. 1986. Optimal Schedules for Periodically Re-
curring Events. Discr. Appl. Math. 15, 167-180.

ErvoLina, T. R. AND T. McCormick. 1993. Cancelling Most
Helpful Cuts for Minimum Cost Network Flow. Networks
23, 41-52.

Fourps, L. R. 1986. TRANSYT Traffic Engineering Program
Efficiency Improvement via Fibonacci Search. Trans. Res.
204, 331-335. '

Garey, M. R., anp D. S. Jounson. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
Freeman & Company, San Francisco.

GARTNER, N. H. 1972a. Constraining Relations Among Off-
sets in Synchronized Signal Networks. Transp. Sci. 6,
88-93.

GARTNER, N. H. 1972b. Algorithms for dynamic road-traffic
control. Proc. 5th IFAC World Cong., Paris. 1-6.

GARTNER, N. H. anp J. D. C. LiTTLE. 1975. Generalized Com-
bination Method for Area Traffic Control. Trans. Res.
Record 531, 58-69.

GaRrTNER, N. H,, J. D. C. LitTLE, aND H. GaBBAY. 1975. Op-
timization of Traffic Signal Settings by Mixed-Integer
Linear Programming. Trans. Sci. 9, 321-363.

HassiN, R. 1983. The Minimum Cost Flow Problem: A Unify-
ing Approach to Dual Algorithms and a New Tree-search
Algorithm. Math. Prog. 28, 228-239.

Hassin, R. 1992. Algorithms for the Minimum Cost Circula-
tion Problem Based on Maximizing the Mean Improve-
ment. Opns. Res. Lett. 12, 227-233.

HILLIER, J. A. 1967. The Synchronization of Traffic Signals for
Minimum Delay. Trans. Sci. 1, 81-94.

IMPORTA, G., AND A. SFORZA. 1982. Optimal Offsets for Traffic
Signal System in Urban Networks. Trans. Res. 16B,
143-161.

KarazaNov, A. V., anD S. T. McKorwuick. 1993. Polynomial
Methods for Separable Convex Optimization Linear
Spaces with Applications to Circulations and Co-
circulations in Networks. To appear in SIAM J. Comput-
ing, extended abstract in Proc. Sixth SODA 1995, 78-87.

Lovetski, S. E., anp 1. I. MELAMED. 1987. Static Flows in
Networks. Aut Remot R 48, 1269-1291. Translated from
Avtomatika i Telemekhanika 10, 2-29, October 1987.

McCorwmick, T., anp T. R. ErvoLINA. 1994, Computing Max-
imum Mean Cuts. Discrete Appl. Math. 52, 53-70.

RoBerTsON, D. 1..1969. TRANSYT: A Traffic Network Study
Tool. Road Research Laboratory Report LR 253,
Crowthorne, Berkshire, England.

RockareLLAR, R. T. 1984. Network Flows and Monotropic
Optimization. John Wiley & Sons, New York.

Sanp1 C. 1986. On a Nonbasic Dual Method for the Transpor-
tation Problem. Math. Prog. Study 26, 65-82.

SCHRUVER, A. 1986. Theory of Linear and Integer Program-
ming. John Wiley & Sons, New York.

SERAFINL, P., AND W. UkovicH. 1989a. A Mathematical Model
for the Fixed-time Traffic Control Problem. European J.
Opnl. Res. 42, 152-165.

SERAFINI, P. AND W. Ukovich. 1989b. A Mathematical Model
for Periodic Scheduling Problems. SIAM J. Discrete Math.
2, 550-581.

TAMIR, A. 1993. Complexity Results for the p-median Prob-
lem with Mutual Communication. Opns. Res. Lett. 14,
79-84.

Tsay, H-S., aND K-T. WaNG. 1989. Use of Three-Dimensional
Conjugate " Directions Search Method to Improve
TRANSYT-7F Computational Efficiency. Trans. Res.
Record 1225, 116-129.

WonG, W. S., anp R. J. T. MorRis. 1989. A New Approach to
Choosing Initial Points in Local Search. Info. Processing
Lert. 30, 67-72.

Table All
Details of the Ten Test Problems

Hassin / 579

Problem number 1

12 4 7
7 11 2
13 7 6
7 7 3
Problem number 2
8 1 12
S 1 9
2 4 4
11 1 13
Problem number 3
11 5 11
3 10 8
13 3 9
10 11 2
Problem number 4
2 7 11
13 3 10
10 13 11
4 4 12
Problem number §
5 2 11
7 7 6
7 10 8
1 10 3
Problem number 6
4 13 2
3 1 12
4 5 11
5 6 1
Problem number 7
9 5 3
6 7 4
9 3 13
11 10 12
Problem number 8
5 13 2
7 2 12
13 1 13
13 8 5
Problem number 9
4 1 12
11 3 2
1 12 12
8 6 12
Problem number 10
2 10 9
3 12 9
3 9 6
1 2 10

W = b0

12
11

13

12

O & oW

[sJANo 3 S JEON]

10
10
1
5

00 W W KN

Ll SIS RN |

10

12

—_
[« Vo REN RN 8

—
W I—=Ww

—
O bhAAW LWWLWA S

NAD

—

Co 0o W O

NSV, IRVe I -8

W WwWww

OO A=

— 00 LW i

—
O WN

10
10
10

3

OWWW

W 00 W 0o

11
12

VS ¥ “Ss

[y
— N W

O\ 00 Lh a

(oo N« N,

13

12
11

W hrooN (Yo) N =AW

— 00 O\ W

11

13

A~ W e

OO OO

11
13

13
10

12

£ OO o

—
w00 N O

A=

O N

12
11

—

N Ao

~N 0o

NSRS N

W W=

NN

11
13

—
O\ W (W0 S e

wn O s

S)

12

13

—_ W

12

10

& 00 oo

11

—_—) s

B S]

13
12

S W

10
11

O AN

12
11

oo ON —

13

13

—
O B

co 00 2

1SS IV,

W W

WO W

10

10

11
12

W o0 N~

—

13

12

13
11

o O\ W

~ W

VSV, }

[\]

10
12

11

10

w

W W WL N Co N

N 00 O

LW H O - —

AW

