The following errors appear in the printed version of the book and are already corrected in the on-line version.
page 16 last line: $p=\frac{3}{5} \rightarrow p=\frac{3}{5} \lambda$.
page 24 first line of section 2, Hassin [65].
page 28 line 1: increasing \rightarrow decreasing.
page 29 line 6: $g\left(n^{*}-1\right) \leq \frac{R \mu}{C}<g\left(n^{*}\right) \rightarrow g\left(n^{*}\right) \leq \frac{R \mu}{C}<g\left(n^{*}+1\right)$.
page 29 line 10-12: Also,

$$
g(\nu)-\nu=\frac{\rho}{(1-\rho)^{2}}\left[\nu(1-\rho)-\left(1-\rho^{\nu}\right)\right] .
$$

It is easy to see that this function is decreasing for $\rho<1$, increasing for $\rho>1$, and has a minimum value of 0 at $\rho=1$.
page 31: line 9: change 0 to 1 ; equation (2.12) should be $Z_{O}=\lambda \frac{1-\rho^{n} m}{1-\rho^{n} m+1}\left(R-\frac{n_{m} C}{\mu}\right)$.
page 48 line $-6: \lambda_{e}(0) \leq \lambda^{*} \rightarrow \lambda_{e}(0) \geq \lambda^{*}$.
page 51 remark 3.4 assumes FCFS.
page 56 line -8 and page 57 line 8: Balachandran and Schaefer [20-22].
page 57 line 18: $\sqrt{R_{j} \mu}-\sqrt{C_{j}} \rightarrow\left(\sqrt{R_{j} \mu}-\sqrt{C_{j}}\right)^{2}$.
page 64 line 13: $\frac{\sum_{j=1}^{i} \sqrt{\mu_{j}}}{\left(\sum_{j=1}^{i} \mu_{j}-\Lambda\right) \sqrt{\mu_{i}}} \rightarrow \frac{\left(\sum_{j=1}^{i} \sqrt{\mu_{i}}\right)^{2}}{\left(\sum_{j=1}^{i} \mu_{j}-\Lambda\right)^{2}}$.
page 69 lines 7,8 , and 12: Change λ_{k} to λ^{k} to avoid confusion with λ_{j}.
page 79 Figure 4.2: Replace θ by $\frac{\theta}{C}$ (twice).
page 81 lines -5 and -3 : add "ordinary" before "customers".
page 83: delete lines 3-5. Alperstein's model allows balking and the profit maximizing solution is also socially optimal, though this fact is not mentioned in the paper.
page 84: delete the second expression for $f(p)$ or replace in its denominator λ by ρ.
page 93 Eq. (4.14): $\partial \lambda_{j}$ should be $\partial \lambda_{i}$.
page 103 add to the numerator in (4.25) x, so it becomes $2 \rho W_{0} x$, and in the first equation in the proof, $W^{\prime}(y(C))$ should be $W_{q}^{\prime}(y(C)$.
page 102 line -2: Kleinrock [89] p. 124.
page 104 line -6: change looses to loses.
page 114 line 6: $\lambda p C T \rightarrow \lambda q C T$.
page 116 line 12: $\gamma=\frac{R}{C} \rightarrow \gamma=\frac{C}{R}$.
page 117 line -10: remove "an."
page 133 first line, change Kulkarni [95] to Kulkarni [96].
page 153 footnote 10: This statement is not correct, the existence of a threshold equilibrium for all possible parameters is still an open question. See the published version in Stochastic Models 20 (2004) 149-171.
page 174 line 13, change "left-hand side" to "right-hand side."

