The following errors appear in the printed version of the book and are already corrected in the on-line version.

page 16 last line: $p = \frac{3}{5} \rightarrow p = \frac{3}{5}\lambda$.

page 24 first line of section 2, Hassin [65].

page 28 line 1: increasing \rightarrow decreasing.

page 29 line 6: $g(n^* - 1) \le \frac{R\mu}{C} < g(n^*) \to g(n^*) \le \frac{R\mu}{C} < g(n^* + 1)$.

page 29 line 10-12: Also,

$$g(\nu) - \nu = \frac{\rho}{(1-\rho)^2} \left[\nu (1-\rho) - (1-\rho^{\nu}) \right].$$

It is easy to see that this function is decreasing for $\rho < 1$, increasing for $\rho > 1$, and has a minimum value of 0 at $\rho = 1$.

page 31: line 9: change 0 to 1; equation (2.12) should be $Z_O = \lambda \frac{1-\rho^{n_m}}{1-\rho^{n_{m+1}}} \left(R - \frac{n_m C}{\mu}\right)$.

page 48 line -6: $\lambda_e(0) \le \lambda^* \to \lambda_e(0) \ge \lambda^*$.

page 51 remark 3.4 assumes FCFS.

page 56 line -8 and page 57 line 8: Balachandran and Schaefer [20-22].

page 57 line 18: $\sqrt{R_j\mu} - \sqrt{C_j} \rightarrow \left(\sqrt{R_j\mu} - \sqrt{C_j}\right)^2$.

page 64 line 13: $\frac{\sum_{j=1}^{i} \sqrt{\mu_j}}{(\sum_{j=1}^{i} \mu_j - \Lambda)\sqrt{\mu_i}} \rightarrow \frac{\left(\sum_{j=1}^{i} \sqrt{\mu_i}\right)^2}{\left(\sum_{j=1}^{i} \mu_j - \Lambda\right)^2}.$

page 69 lines 7,8, and 12: Change λ_k to λ^k to avoid confusion with λ_j .

page 79 Figure 4.2: Replace θ by $\frac{\theta}{C}$ (twice).

page 81 lines -5 and -3: add "ordinary" before "customers".

page 83: delete lines 3-5. Alperstein's model allows balking and the profit maximizing solution is also socially optimal, though this fact is not mentioned in the paper.

page 84: delete the second expression for f(p) or replace in its denominator λ by ρ .

page 93 Eq. (4.14): $\partial \lambda_j$ should be $\partial \lambda_i$.

page 103 add to the numerator in (4.25) x, so it becomes $2\rho W_0 x$, and in the first equation in the proof, W'(y(C)) should be $W'_q(y(C))$.

page 102 line -2: Kleinrock [89] p. 124.

page 104 line -6: change looses to loses.

page 114 line 6: $\lambda pCT \rightarrow \lambda qCT$.

page 116 line 12: $\gamma = \frac{R}{C} \rightarrow \gamma = \frac{C}{R}$.

page 117 line -10: remove "an."

page 133 first line, change Kulkarni [95] to Kulkarni [96].

page 153 footnote 10: This statement is not correct, the existence of a threshold equilibrium for all possible parameters is still an open question. See the published version in $Stochastic\ Models\ 20\ (2004)\ 149-171.$

page 174 line 13, change "left-hand side" to "right-hand side."