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Abstract. We study a model of a queueing system with two complementary products/services. In our model,
there is one M/M/1 system and another facility that provides instantaneous service. The two services are
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Keywords: game theory, queueing theory, complementary products, Nash equilibrium
AMS subject classification: 90B22, 91A10

1. Introduction

Competition among owners of service facilities has been the subject of several research
papers, see Hassin and Haviv [3] for a survey. A typical model describes the situation as
a game with two stages. For any set of prices set by the servers, customers select servers
according to a (Nash) equilibrium strategy. Given this information, servers select their
prices and again an equilibrium is attained.

The models of competition in queueing systems deal with almost no exception
with servers who provide substitutable service. Thus, a customer may obtain the service
at any one of the competing servers. However, it is very common that customers need
complementary service provided by several entrepreneurs; a customer benefits from the
service given by one server only if he also obtains service from the other entrepreneurs.
Consider for example a medical facility, where a customer has to stand in line to be
admitted, then for a blood check and then in order to consult a physician.

*The authors are equal in their contribution to this paper. This paper is submitted by the first author to
the Tokyo Institute of Technology as partial fulfillment of the requirements for the Ph.D. program in
the Department of Value and Decision Sciences, and the order of names was chosen in compliance with
program conditions. This research was supported by the Israel Science Foundation (grant No. 237/02).
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In a common situation, which is the subject of our paper, one has to purchase a
product in addition to a service in order to enjoy a benefit, and the seller of the good and
the server are independent profit maximizing agents. We view the seller of the product
as a facility with instantaneous service and therefore there is no queue in front of this
server. The length of the other queue is unbounded. As the motivating example for our
model we consider a parking service; a customer parks his car in order to spend the
time at another service facility. Following this example, we call the server who provides
instantaneous service the “parking provider” and the other server will be the “service
provider”. As another example, consider a customer who needs to buy a new pair of
glasses; he also has to stand in line to be serviced by an optometrist.

We analyze two pricing models. In both models, the service provider charges a
flat price. In the first, the parking provider charges a price that is proportional to the
duration the facility is in use by the customer. The parking provider under this pricing
structure may be viewed as any agent who rents a good and charges a price proportional
to the time of use. In the second model, we assume that the parking provider charges a
fixed sum. The parking provider under this price structure may be viewed as a seller of
a product. Finally, we compare the two models, and conclude that the parking provider
is better off if he charges a flat rate.

In this paper we investigate the equilibrium solutions of this model. We also com-
pare the outcome with the socially optimal solution.

The basic model is formally defined in Section 2. In Section 3 we study this model,
find the strategies of the suppliers and customers in equilibrium, show that the service-
provider’s profits are higher than the parking-provider’s, and prove that the prices are
non-increasing with the potential rate of arrival (which might be interpreted as customers’
demand). We give graphical interpretation to the main model, to support intuition. In
Section 4, we present the equilibria reached when a social-planner or a monopolist
provides both services. We show that the prices set by a monopolist are also socially
optimal. We show that the equilibrium rate of arrival under competition is lower than the
socially optimal one, as the chosen prices are too high. We show how a social-planner
will act if he controls one of the two services. In Section 5, we study the variation in
which the parking-provider charges a fixed rate and show that he will prefer this option.
We use the graphical interpretation to show convergence to equilibrium in Section 6.
We conclude briefly in Section 7.

2. The model

We focus our discussion on profit-maximizing service-provider and parking-provider.
When a customer arrives to receive service he needs to use a “parking facility” for the
duration of his stay in the system.

For comparison, we also check the optimal pricing-policy of a monopolist (owning
both the service and the parking facilities), and of a social planner (maximizing the
collective social utility).
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We analyze a specific model under the following assumptions (following Naor[5]

except for the 8th assumption which follows Edelson and Hildebrand[2]):

1.

A stationary Poisson stream of customers—with parameter A——arrives at a single-
server station. Customers are identical except for their arrival times. A is the rate at
which the need for the service arises, and not necessarily the actual rate of customers
who join the queue to be served (which we refer to as A).

Service times are independently, identically, and exponentially distributed with in-
tensity parameter \.

On successful completion of service, each customer receives a reward of R (express-
ible in monetary units).

The cost to a customer for staying in the system (either waiting or being served) is C
monetary units per time unit.

Customers are risk neutral. That is, they maximize the expected value of a linear
utility function.

. From the public (social) point of view, utilities of individuals (customers and servers)

are identical and additive.

. For the model to make sense, it is assumed that any customer will choose to join the

queue if nobody else joins (when he only incurs the costs of his own service-time),

. [
thus: R > "

. At the time a customer’s need for service arises, he does not know the queue size.

The decision to join or balk is irrevocable.

Thus we are dealing with a queueing system of the type M/M/1 with infinite population,
infinite queueing positions and a First-Come-First-Served discipline.

We use the following notation:

w = w(A) Expected time spent in the system by a joining customer given the

Py
Py
U
TTs
TN

™

Tw

joining rate A. w = “—l—;

Price charged by the service provider.

Price per time unit charged by the parking provider.
Expected utility of a joining customer.
U=R- P, — Pyw—Cuw.

Expected profit per time unit for the service provider.
s = AP,

Expected profit per time unit for the parking provider.
Ty = APyw.

Expected profit per time unit of a monopoly that provides both parking
and service. my = A[P; + Pyw].

Expected social welfare per time unit in the system.
tw=A-[R—C- w]
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Customers’ equilibrium

Following Assumption 1, there is a potential stream A of customers in need of service.
Each of these customers decides for himself whether it is worthwhile for him to join the
system or not, considering the known statistical properties of the system.

We have two kinds of possible equilibrium: in the first, A = A, so that all the
customers in need of service join the system. In this case, the expected utility for the
customers is clearly non-negative. However, if the expected utility is strictly positive
then the suppliers have an incentive to increase the prices (without causing the stream
of customers to lessen) until the expected utility for the customers is zero again.

In the second, customers follow a mixed strategy where they join the queue with
some probability 0 < p < 1, such that an arriving stream A = pA is realized, for which
the expected utility of the customers is zero, and there is no incentive for any of the
customers to change their behavior.

In the following, we divide our analysis into two cases: (1) when the natural
unlimited equilibrium (call it A*) is such that A* < A, and (2) when the natural unlimited
equilibrium is not reached because it is bigger than A.

3. Competition

3/ C-u?
Letk*:u—,/T“.

Theorem 1.

(1) Suppose that A* < A. Then there exists a unique equilibrium where A = A*,

w= 2L Py=JuC’R-C,Ps=R-) E#E- 7y = (JCR2u? — /C)? and
s = (VR — JRC2u)?.

(2) Suppose that A* > A. Then in equilibrium A = A and w = ﬁ There ex-
ists a continuum of equilibria where for x € [#C_"A - C, Q%A)ﬁ —C] Py = x,
Py =R — 2L 7y = “Aox and 5 = A(R — 2£5).

Proof. We start our discussion assuming that A is very large. In the customers’ equi-
librium: R = P;+ Pyw+ Cw,or R = P;+ (Py + C)ﬁ. Hence, given a set of prices,
we get a joining rate:

Py+C

A= .
KR =P

)]

Notice that in order to have A > 0, the condition: Py + uP; < uR — C has to be
satisfied, and it is easy to check that for the equilibrium prices we find in (4) and (5),
this condition is equivalent to assumption 7.
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Using (1) and the equations for 75 and 7y,

Py +C
=P '_P y 2
T SU SR = P ()
and
R—Pg)—(Py+C
= PNIJ«( s) — (Py + C) 3)

Py+C

Maximizing sr; with respectto P; and ity withrespectto Py, yields the response-function

strategies
Py 4+ O)R
Ps=R—f———("’+ ) @
7
and
Py = Cu(R — Ps) - C, &)
which give
CR?
Ps=R-J— ©)
7
and

Py = vVuC?R —C. @)

It can be easily shown that 7r; and 7y are concave in P; and Py respectively.
Substituting (6) and (7) in equations (1)—(3) we obtain

C 2
A=p— == )

, R
w= roITh &)
ms = (v Ru — v RC?p)?, (10)
ny = (JCR*u? — VC)2. (1)

Consider next the case where A poses an effective limitation, namely A* > A.In
this case, the providers may increase their prices relative to those in (6) and (7) without
affecting the joining rate to the system, up to the point where

_Py+C

R— P
mw—A

(12)
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(by substituting A = A in (1)). Any solution satisfying this relation and the bounds
Ps>R—/ (—EN-';—CM and Py > /Cu(R — Ps)— C (following (4) and (5) respectively)
will form an equilibrium. These solutions are therefore all those satisfying:
Py = x,
x+C
uw—A

P,=R-

for all values of x € [‘—15_’% -C, (—“—‘%ZR ~Cl.

Using the definitions for w, 7y and x we obtain the desired results. a

Remark. Notice from the second case that 7y + 7y = A(R — “_LA). This result empha-
sizes the fact that the customers’ utility is zero, as the entrepreneurs’ utilities add up to
the collective social utility.

We stop here to show the graphical interpretation of the situation. This should help to
increase the intuition about the proof, and of the kind of equilibrium involved.

Stidham [6] relates to “demand” and “supply” curves in analyzing the dynamics
in his model and the resulting equilibrium. Our model is different from that of Stidham,
and so, we refer to curves of benefit and expenditure for the customers, rather than pure
demand and supply.

Customers

We use the function D(X) for the net benefit to the customers, and S(A) for the expenditure
(which is what they will be asked to pay). We draw the curves as functions of A, and
expect an equilibrium in the intersection of the curves, because as long as the benefit
exceeds the expenditure, A will be increased. Similarly, we will draw the same curves
multiplied by A: this will represent total benefit D D(A) vs. total expenditure SS()A) with
the same intersection. With a rate of arrival A, each arriving customer will get from the
service

C
D) =R - —— (13a)
n—A
and pay for it
Py
S\ = P+ . (14a)
mw—A
Alternatively, we have
A
DD(A) = AR — A (13b)

mw—A
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1 S

ss()

Sl

DD(2,)

total price
total revenue \ soclal utitity

1 1 DD()
1 D) 1

(a) (®)

Figure 1.
and
APy

SS(A) = AP + . (14b)
u—A

SS()) represents the total revenue for both entrepreneurs together, whereas DD(X)
equals the collective utility in our model.

We draw (13a) and (14a) in figure 1(a). In order to have a positive solution (equilib-
rium point) we need S(0) not to exceed D(0). When the equilibrium prices are considered,
this condition reduces to our basic requirement in Assumption 7.

It is interesting to observe figure 1(b). DD(A) represents the total benefit of the
system which correlates with the usual interpretation of social welfare (Assumption 6).

DD(X) has a peak when R = (#—C_%T, Ordy = p— QR#, where A, is the socially optimal
solution for A. We show this result later in Theorem 6.

The value at this (socially optimal) peak equals DD(A,) = (/1 - R — VO (as
in 13a).

The intersection of S(A) and D(A) (and similarly for SS(A) and D D(A)) occurs
at A satisfying (1), and for the competitive-equilibrium set of prices as in (8). We have
already showed in the previous section that the intersection point (8) is smaller than
the peak of DD(A) as in figure 1(b). Since SS()) increases with the chosen prices, this
means that the equilibrium set of prices under competition is too high from a social point
of view. (See also Theorem 7)

Entrepreneurs

We consider next the price decisions of the service and parking providers about the set
of prices. Each of the two “players” has an optimal price for each “state of nature”,
composed of the customers’ known preferences and the specific behavior of the other
“player”. These strategies can be drawn in this plane as the functions P;(Py) for the
service-provider’s strategy, and Py (P;) for the parking-provider’s strategy. See figure 2.
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P,
£(P)

£(B)

Py

Figure 2.

We already have these functions in (4) and (5). For the service provider Py(Py) =
R— JABEER = f,(Py)and for the parking provider Px(P;) = /C - - (R — Ps)—C,

or P, = R — Bt = fy(py).

Using Assumption 7 again, we can compare the intersection points with the hori-
zontal and vertical axis of both functions to find that f,(Py) begins below f>(Py) and
ends above. Since f] is convex and f; is concave, there is a single intersection in this
(positive) range.

Bounded case

First consider figures 1(b) and 3: adding a limitation of A to the left of our optimal A will
result in a situation where the actual rate of arrival will be A, and for the “optimal” set
of prices, the expenditure curve will be lower than the benefit curve at the point. Since
the benefit curve is given and unchangeable, we expect the entrepreneurs (either one or
both) to raise the prices, so that the expenditure curve will rise until the curves intersect
at . = A. See figure 3.

This limitation, seen in figure 3 (for 1), defines a straight line in the P; — Py plane:

Py+C
— < A
H=R_p, =
Py+C
P> R— Nt (see (12)).
u—A

Notice that if A > u, there will be no points of this kind in figure 2.

We can add this line to figure 2 (we do it in figure 4).

Each of the two entrepreneurs will now choose a strategy which is a combination of
the higher between his former strategy (reaction curve) and the lower bound. Figures 4(a)
and b show the resulting reaction curves of the service-provider (figure 4(a)), and the
parking-provider (figure 4(b)). In figure 4(c), the combination of the two integrated
curves is shown, to point out the range of possible Nash-equilibria.
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-
) 4
A A
Figure 3.

Corollary 2. When: A > A*:

The parking provider’s price is a unimodal function of C with a maximumat C = %,uR.

The parking provider’s profit is a unimodal function of C with a maximum at
C = +uR.
77

Proof. The result for the parking provider’s price is reached by setting its derivative:
iy =%-ﬁ— 1 to zero.

The derivative of my is: %’%‘L = Z(W —4/c)- (%\6/5_3;‘——2 - %\/—é——)

Under Assumption 7 (uR > C), we know that \VC—R—ZME —JC >0, sowe only
have to set %\‘/T—ér"_z — %\/g to zero, and find the above result for the profit. O

We next consider the relation between the profits of the two entrepreneurs.

Theorem 3. If A > A*, the service provider is better off than the parking provider:
s 2 TTN.

Proof. From Assumption 7, uR > C. Therefore, by (10) and (11):

s = VRu - VRu2C
= VRu(/Ru — v/C)
> JCW/Ru —VC)
= JRRC? - T = 7.
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Figure 4.

When A < A*, the relation between the revenues of the service-provider and the
parking-provider depends on the specific values of the parameters, and the parking-
provider’s profit may be greater, equal to, or less than that of the service-provider.

Note that the lower bound for the range of possible equilibria in the second part of
Theorem 1, established by (12), is a monotone decreasing function of A. Since in the
unbounded case, the response-functions are not influenced by A, we have the following:

Corollary 4. For a given price by one of the providers, the price of the other one is
monotone non-increasing as a function of the potential rate of arrival (A).
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4. The monopolist and the social planner

In this section we consider a profit maximizing monopolist who owns both service and
parking facilities.

Theorem 5. The Nash-equilibrium in the case of a monopolist is socially optimal.
Specifically, the possible sets of prices chosen by the monopolist are either the same
as those chosen by a social planner or serve as an upper bound of those set by a social
planner.

Proof. We first show that the objectives coincide. The objective functions of the mo-
nopolist and of the social planner are 7y (Ps, Py) = APs + A Pyw and m,(Ps, Py) =
A(R — Cw), respectively.

We recall that the customers’ total expected utility is: AU = A(R— Ps— Pyw—Cuw).
When the arrival rate is not constrained, this expected utility is set equal to zero in the
customers’ equilibrium, which implies that

ny(Ps, Py) = APs + APyw = MR — Cw) = my(Ps, Py),

so that the two objectives coincide.

When this optimal A cannot be reached because the solution is bounded by A,
the optimal solution for both the social planner and the monopolist is A = A. In this
case, there may be price policies which are optimal for the social planner but not for the
monopolist. The monopolist will raise his prices as long as the rate of arrival does not
drop below A, and make sure the utility for the customers is zero. The social planner is
indifferent about the distribution of the utility between the facility and the customers,
so that the optimal prices for the monopolist serve as an upper bound for his optimal
prices. |

Let)»sz,—,lgRﬁ.

Theorem 6. In the case of a monopolist, an equilibrium always exists. Specifically:

(1) Suppose that Ay < A. Then in equilibrium A = Ay, w = /%, Ty = (VIR —
V/C)?. There exists a continuum of equilibria where for x € %, Py = x and

_ R(X+C)?
Ps=R -,/ e

(2) Suppose that Ay > A. Then in equilibrium A = A, w = T—IA"”M = AR — ﬁ%
C

There exists a continuum of equilibria where forx € R, Py = xand P, = R— ;‘f—A

Notice, that the profit here is the same as the case when there is no parking facility at all.
Indeed, the result for the profit can be found in Edelson and Hildebrand [2] and Table 3.2
in Hassin and Haviv [3].
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Proof.
Casel. Ay <A

We know that the social planner (and by Theorem 5 this applies to the monopolist
as well), wants to maximize 7, = AR — ‘% Differentiating and equating to 0 we

obtain & = R — S =0,

—X)
This leads to the optimal result for the social planner and the monopolist:

C
A==y = (15)

We can calculate the profit to be:

mu = (VUR — V)2 (152)

Of course, from the customers’ point of view, (1) still holds, so that:
_ PN +C _ _ glﬁ
H=R-p, H VR

R(P, C)?
Ps=R— R(Py + C)° (16)
uC

and we have:

Casell. Ay > A

Setting the customers’ expected utility to zero, the monopolist will make sure the
customers’ equilibrium joining rate is A. Hence

Pv+C

= A,
R — Ps
which gives:
PM 4+ C
PSM=R——_N+ : a7
nw—A
By Theorem 5, (17) gives the upper bound for the prices set by the social planner:
PM
PY <R- P t+C (18)
u—A

0
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It is reasonable to require nonnegative prices. In this case (16)-(18) become

0< P¥ < /uRC -,

0< Py <Ru—-A)-C,
0<Py <R(u—A)-C, and
Py +C

0<PY <R- -
M_

Theorem 7. In the case of a competition between revenue maximizing service and
parking providers, the arrival rate is lower than the socially optimal one. The set of
prices set in equilibrium is socially too high.

Proof. We need to show that the expression for A in (8) is less than or equal to the
expression for A in (15).

This can be concluded from Assumption 7 (wR > C).

Since X is a decreasing function of both prices, this means that the set of prices in
competition is socially too high. a

Partial Intervention of the Social Planner
Consider the case when one of the two separate entities (the service provider and the

parking provider) is public (maximizes social utility) whereas the other one is private
(maximizes revenues).

We denote:
s A-C : L .
m°=A-R-— Y the social (governmental) objective function,
M —
n'f = A - Pg a private service provider’s objective function,
P A PN . . . , . . .
Ty = Y a private parking provider’s objective function.

We use our result (1) for A, to get:

PyR+C-R uC-R—uC. Ps

JTS=MR
R — Ps Py +C

C.

We already have the formulas (2) and (3) for the private entrepreneurs’ objective func-
tions from the basic model.

Case I. Governmental service provider vs. private parking provider:
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Ky P
We set 52 =Oandg%’z-=0toget:

Pv=vR-C-u-C
=0

Ps =
Cu
A=p—4f—.
# R

Case II. Governmental parking provider vs. private service provider:

WesetE—Oanda—"ﬁ—Oto et:
Py 3Ps — get

Py=0
CR
Ps=R—- [—
uw
Cu
A=p— ) =Z.
H R

In both cases, we find that the government will choose to “give way” by setting zero-
prices, and allow the private entrepreneur to act as a monopoly, achieving the socially
optimal result (in the basic model we showed that a monopoly will achieve the socially
desired result for A (15), which is the same result we got here).

5. Fixed parking price

We now assume that both the service-provider and parking-provider charge a fixed sum.
We focus on the differences between this case and the basic model with time based park-
ing price and consider only the unlimited demand case. We avoid giving complete proofs
whenever they resemble the ones given for the basic model. The resulting equilibrium
prices are as follows:

R C+./C*+8uCR

s = Py > 8 (19)
This price is nonnegative by the assumption uR > C.
For the monopolist:
CR
Py=R—- |—. (20)
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We also have

4uC

A=p— , @1
C++C?+8uRC
2uR +C 12uRC
= T i i € (S, N) 22)

4 4C+4/C2+8uRC

The monopolist still takes all the customers’ utility, and reaches as before the socially
optimal solution.
We note that Assumption 7, i.e. R > C, implies that

4y/uR > v/C +/C + 8uR.

Therefore,
Py =R — —?V}LR
C
<R- z‘/l-:—(«/E+\/C+8uR)
=2P = Ps + Py.

We conclude that the competition set of prices is higher than that of the monopolist and
the social planner (and the rate of arrival will be smaller). Thus, Theorem 7 holds also
in this case.

Since the price structure is of no consequence for the social planner, the socially
optimal A and the socially optimal collective utility (which equals the monopolist’s
maximal revenue) are the same as before.

For the monopolist/social planner, the results in Theorems 5 and 6 hold for A, 7.

Theorem 8. If the parking provider can choose a pricing system (between a fixed price
and a time-based price), he will prefer the fixed price system. This is also socially
preferred.

Proof. 'We begin by proving that the value Af**d of A under competition in the fixed
price system is bigger than its value A** in the variable (time based) price system.
Denote « = Ru/C, then by (8) and (21)

4 1
= l- and A" = 1—3—).
“( 1+~/1+8a) u( o

One can verify in a straightforward way that for every a > 1, Afixed > jvar,
We have already seen that the social utility function is unimodal concave in A, and
that under competition the joining rate is less than or equal to the socially desired value

kﬁxed
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(See figure 1(b) in Section 5.1). This is true both when the parking price is fixed and
when it is variable. This means that between the two options, the one with the higher
result for A is socially preferred (the socially optimal A is the same in both cases). In
other words, the social utility gained under fixed pricing is higher than the social utility
gained under variable time-based pricing.

Now consider the profits of the two entrepreneurs. Since they share all of the social
utility (the customers get zero utility), we just proved that the total profit (zs + 7N) is
bigger under a fixed parking price.

We also know that under the fixed price system we get a symmetrical equilibrium
(s = 7yN), whereas under the variable pricing system the service provider is better off
than the parking provider (;rs > my).

H . o fixed var
Obviously: y* > my¥. a

6. Convergence and stability

We follow Stidham [6] in analyzing the dynamics of the model using cobweb diagrams.
Convergence analysis can be also found in Yao [7].

Consider figure 1(b). One can see that whenever the market is to the left of the
intersection point, there is an incentive for the customers to increase their rate of arrival,
as they will encounter on average positive net utilities. Whenever the market is to the
right of the intersection point, there is an incentive for the customers to decrease their
rate of arrival, since they will encounter on average negative net utilities.

Consider figure 5. Broken lines denote the dynamics of the reactions of the two
entrepreneurs to each other from a starting state, until equilibrium is reached. It can be
seen in figures 5(a) and (b) that the system will always converge to equilibrium in both
the limited and unlimited cases.

A A
ALY

5H(B)

(a) ®

Figure 5.
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7. Concluding remarks

In this paper we studied a model of queue-oriented competition between providers of
totally complementary products. A customer has to pay both suppliers, and stand in line
(once) to enjoy the benefits of the service. We considered the possibility that one of the
providers asks for a price that depends on the time the customer spends in the system.

Some of the results might seem counter-intuitive at first, and are related to the fact
that we are dealing with complementary products. First, consider the pricing sensitivity
to the demand - A. Intuition suggests that when demand increases, so will the prices.
However, in our model, when A increases the entrepreneurs (be it a monopolist or two
separate competing entities) respond by lowering the prices. A similar result was reached
by Chen and Frank [1]. The explanation is in the fact that an increase in the joining rate
increases the expected waiting time, and this can be viewed as deterioration in the quality
of service.

Second, as opposed to common competitive-oriented intuition, we found that two
separate entities that are engaged in price competition reach a higher set of prices than
that reached by a monopolist. Again, the reason for this lies in the fact that this is a
competition between suppliers of completely complementary products.

We showed that a monopolist will set prices to reach the social optimum. This is a
result that was dealt with in previous work (see Edelson and Hildebrand [2]). The reason
for this phenomenon lies in the fact that it is possible for the monopolist to gain all the
utility (zero customer surplus) under the structure of the model.

We found that if the “parking provider” had a choice, he would prefer to charge
a fixed price like his counterpart. It turns out that within the specific structure of this
model, there would probably not be such a pricing system.

One might consider the long-run case, where the service-provider is able to choose
the rate of service. This point was investigated by Chen and Frank [1], who found that
a monopolist in a similar model will either choose not to produce at all (4 = 0) or set
the rate of arrival as to accommodate all the population (and if the potential demand is
infinite, may choose an infinite rate of service). However, the rationale behind the result
of Chen and Frank does not apply in the case of complementary products (basically,
when the service-provider pays to increase the rate of service, the parking-provider will
exploit it for his own good and raise his price).
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