
Min Sum Clustering with Penalties

∗Refael Hassin† Einat Or ‡

Abstract

Traditionally, clustering problems are investigated under the assumption that all
objects must be clustered. A shortcoming of this formulation is that a few distant ob-
jects, called outliers, may exert a disproportionately strong influence over the solution.
In this work we investigate the k-min-sum clustering problem while addressing outliers
in a meaningful way.

Given a complete graph G = (V,E), a weight function w : E → IN0 on its edges,
and p → IN0 a penalty function on its vertices, the penalized k-min-sum problem
is the problem of finding a partition of V to k + 1 sets, S1, . . . , Sk+1, minimizing∑k

i=1 w(Si) + p(Sk+1), where for S ⊆ V w(S) =
∑

e={i,j}⊆S we, and p(S) =
∑

i∈S pi.
Our main result is a randomized approximation scheme for the metric version of

the penalized 1-min-sum problem, when the ratio between the minimal and maximal
penalty is bounded. For the metric penalized k-min-sum problem where k is a constant,
we offer a 2-approximation.

Keywords: Min sum clustering; outliers; randomized approximation scheme

1 Introduction

1.1 Clustering with penalties

Clustering problems such as k-median, k-center and k-min-sum are widely studied in
operations research and computer science. Traditionally these problems are investigated
under the assumption that all objects must be clustered. A significant shortcoming of this
formulation is that a few very distant objects, called outliers, may exert a disproportionately
strong influence over the solution. In this work we investigate the k-min-sum clustering
problem while addressing outliers in a meaningful way.

Given a complete graph G = (V, E) with |V | = n, and a weight function w : E → IN0,
on its edges, let w(S) =

∑
e={i,j}⊆S we. The k-min-sum problem is to compute a partition

of V to k sets, {S1, . . . , Sk}, minimizing
∑k

i=1 w(Si). It is NP-hard even for k = 2, and
cannot be approximated up to any constant for k ≥ 3 [21]. An O(log n)-approximation

∗An early version of this paper appeared in Proceedings of ESA 2005, LNCS 3669, 167-178.
†Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel. Tel:

+97236409281 Email: hassin@math.tau.ac.il
‡Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel.

1

algorithm for k = 2 was given by Garg et al [14] . However if w is a metric, then there is
a randomized PTAS for any fixed k by Fernandez de la Vega et al. [8]. In the following
we wish to generalize the k-min-sum problem and allow outliers that are not clustered. Let
p → IN0 denote the penalty function on the vertices of G. For S ⊆ V let p(S) =

∑
i∈S pi.

The penalized k-min-sum problem is the problem of finding a partition of V to k + 1
sets, {S1, . . . , Sk+1} minimizing

∑k
i=1 w(Si) + p(Sk+1). We denote this problem by kPMS,

and use PMS to denote 1PMS. The formulation of kPMS makes no assumptions regarding
the number of outliers, the outliers are determined by the clustering procedure.

PMS is a partition of the vertices to two sets, one constitutes the cluster while the other
contains the non clustered points. max-cut, min-Bisection and 2-min-sum are three
examples of NP-hard problems that require a partition of a set into two sets, optimizing
a function of the weight on the edges. PMS is different since the target to be optimized
includes the weight on the edges in the cluster, and the weight on the vertices left out of
the cluster.

1.2 Related work

PMS is related to the minimum l-dispersion problem, which is the problem of finding
a subset V ′ ⊂ V of predetermined cardinality l that minimizes w(V ′). The maximization
version of this problem has an O(nδ) approximation for some δ < 1

3
by Feige, Kortsarz and

Peleg [9], and the metric case has a 1
2
-approximation [17].

A modeling of outliers for the location problems k-median, and uncapacitated fa-
cility location is presented by Charikar et al [3] . The outliers are integrated into the
objective function by penalizing the clients who are not served. A 4-approximation is pre-
sented for the metric k-median with penalties, and a 3-approximation is obtained for the
uncapacitated facility location problem. For the uncapacitated facility loca-
tion an LP rounding technique with the same bound is presented by G. Xu and J. Xu in
[22]. A constant factor approximation for correlation clustering with penalties is
given by Aboud and Rabani [1].

Chen [4] presents a constant factor approximation for the k-median with outliers
problem, where it is required to remove at most m points (the outliers) from a data set, such
that the cost of the optimal k-median clustering of the remaining data is minimal. Scheduling
problems with outliers are considered by Gupta et al [11] and other papers referenced there.

Our work borrows techniques from several papers: Randomized PTAS for metric max-
cut by Fernandez de la Vega and Kenyon [6], metric min-bisection by Fernandez de la
Vega, Karpinski and Kenyon [7], metric 2-min-sum by Indyk [18, 8], and metric k-min-sum
for fixed k by Fernandez de la Vega et al [8], were presented in recent years. In [8] the
approximation algorithm for 2-min-sum uses the PTAS given in [6] for max-cut when the
clusters are not well separated, i.e the weight of the cut is not much greater than the weight
of the clusters. When the clusters are well separated, it is sufficient to find a representative
from each cluster and use it to estimate the distance between a vertex and each one of
the clusters. The estimate is the distance between the vertex and the representative of the

2

cluster, multiplied by the size of the cluster. Using the separability of the clusters, this
estimation is sufficient to produce a PTAS.

In [7] the min-bisection is addressed. In this case the two sides of the bisection are
not well separated, since the cut is minimized, and the problem of good estimation of the
distance of a vertex to each side of the bisection arises. A natural approach to the problem
is to use a sample from each side of the bisection as the basis of the estimation. It is proved
that a sampling method referred to as metric sampling gives a good estimation.

1.3 Our contribution

We prove that PMS is NP-hard even if w is a metric and all penalties are equal. With
general w and equal penalties, PMS is at least as hard to approximate as vertex cover.

A 2-approximation for PMS follows from the approximation framework presented by
Hochbaum [15]. We observe that a faster 2-approximation algorithm can be obtained by
using the same LP relaxation, but rounding it via a primal-dual algorithm.

Our main result is a randomized approximation scheme for the metric PMS where the
ratio between the minimal and the maximal penalty is bounded, for example if all penalties
are equal or there is a constant number of different penalties. The algorithm is based on
methods used to approximate min-bisection and 2-min-sum [7, 8]. While the approach
in [8] is a PTAS for metric PMS when the cluster includes most of the vertices, it gives
poor results if the cluster is smaller. The approach in [7] is the basis for a PTAS for metric
PMS where the cluster and the set of non-clustered points are both large, but it gives poor
approximation if one of the parts is small. Therefore we present a combination of the two
approaches. For the metric kPMS where k is a constant, we offer a 2-approximation by
generalizing an algorithm of Guttmann-Beck and Hassin [12] for min-sum p-clustering.

The paper is organized as follows. In Section 2 we present hardness results and lower
bounds. In Section 3 we give approximation algorithms for PMS. In Section 4 we give a
PTAS for metric PMS with uniform penalties. In Section 4.1 we describe a 2-approximation
for metric kPMS with fixed k.

2 Hardness results and lower bounds

Theorem 2.1 PMS is NP-hard even if w is a metric and pv = p for every v ∈ V .

Proof: Reduction from l-clique: Given a graph G = (V, E) and a number l, is there a
clique of size l in the graph? We construct the following instance of PMS. We complete G
and set we = 1 for every e ∈ E and we = 2 for every e /∈ E. Let pi = l− 0.5 for every i ∈ V .
Let opt denote the optimal solution value of PMS.

The optimal cluster has at most l vertices, because in a cluster greater than l, each vertex
increases the value of the solution by at least l by paying for its edges in the cluster, instead
of paying l − 1

2
by taking it out of the cluster.

3

We will show that if there is a clique of size l then opt ≤ 1
2
l(l−1)+(n− l)(l− 1

2
) whereas

if such a clique does not exist in G, opt > 1
2
l(l − 1) + (n− l)(l − 1

2
).

Denote by c∗ the value of a solution whose cluster is an l-clique of G, if one exists. Then,
c∗ = 1

2
l(l − 1) + (n− l)(l − 1

2
), and the first part of the claim is proved.

Let C be a solution with |C| = m ≤ l and value c. Then,

c− c∗ ≥
[(

m

2

)
+ (n−m)

(
l − 1

2

)]
−
[(

l

2

)
+ (n− l)

(
l − 1

2

)]
=

1

2
(m− l)2 ≥ 0.

If there is no l-clique in G then either m < l and the second inequality is strict, or m = l
and the cluster contains at least one edge of weight 2, so that the first inequality is strict.
In both cases, c > c∗.

Theorem 2.2 PMS is at least as hard to approximate as vertex cover (VC).

Proof: Given a graph G = (V, E), instance of vertex cover, we construct an instance
of PMS such that after excluding clusters with very high cost, the feasible sets for VC and
PMS coincide. We complete G and set we = |V | for every e ∈ E and we = 0 for every
e /∈ E, and set pi = 1 for every i ∈ V . Clearly, PMS chooses an independent set C of G
to avoid paying |V | for an edge, and its cost is therefore the size of the vertex cover V \ C.
Therefore, after excluding the clusters which contain expensive edges, the feasible solutions
for the PMS instance are exactly the complements of a vertex cover, and their cost is the
size of the vertex cover.

We note that Dinur and Safra [5] proved that it is NP-hard to approximate minimum
vertex cover within any factor smaller than 10

√
5−21 ≈ 1.3606. Khot and Regev [19] proved

that vertex cover is hard to approximate within any constant factor smaller than 2, assuming
the unique games conjecture.

3 2-approximation for PMS

Let xe = 1 (xe = 0) if the edge e is (is not) in the cluster, and yi = 1 (yi = 0) if the vertex
i is not in (is in) the cluster. PMS is

Minimize
∑

e∈E wexe +
∑

i∈V piyi

yi + yj + xe ≥ 1 ∀e = {i, j} ∈ E,
xe ∈ {0, 1} ∀e = {i, j} ∈ E,
yi ∈ {0, 1} ∀i ∈ V.

We note that this problem, after changing the objective from minimizing the cost, to
maximizing the profit, is the prize collecting vertex cover problem introduced in

4

[16]. The linear programming relaxation, denoted LP -primal, is:

Minimize
∑

e∈E wexe +
∑

i∈V piyi

yi + yj + xe ≥ 1 ∀e = {i, j} ∈ E,
xe ≥ 0 ∀e = {i, j} ∈ E,
yi ≥ 0 ∀i ∈ V.

LP -primal has only half integral basic solutions [15], and a 2-approximation algorithm
is presented in [15] for a family of problems with the same type of constraints with time
complexity O(mn log(n2

m
)) where m = |E|. We present a 2-approximation algorithm, denoted

by PD, with time complexity O(m).

Let δ(i) = {e ∈ E|e = {i, j} ∈ E, j ∈ V }. The dual of the relaxation, LP -dual, is:

Maximize
∑

e∈E ze

ze ≤ we ∀e ∈ E,∑
e∈δ(i) ze ≤ pi ∀i ∈ V,

ze ≥ 0 ∀e ∈ E.

A maximal solution to LP -dual is a feasible solution for which any increase in a variable ze,
e ∈ E, results in a non feasible solution. Algorithm PD given in Figure 3 has time complexity
O(m) since a maximal solution to LP -dual can be found by setting initially bounds ui = pi,
and then scanning V in an arbitrary order, setting for e = {i, j} ze := min{ui, uj, we} and
updating ui := ui − ze and uj := uj − ze.

PD
input
1. A complete graph G = (V, E).
2. A function w : E → IN .
3. A function p : V → IN .
output
A cluster C.
begin
Find a maximal solution, R̂, to the dual problem.

C := V \ {i ∈ V |
∑

e∈δ(i) R̂e = pi}.
return C
end PD

Figure 1: Algorithm PD

Claim 3.1 Algorithm PD returns a 2-approximation to PMS.

Proof: Denote the value of the approximation by apx =
∑

e={i,j}∈C we+
∑

i∈V \C pi, the value

of the dual relaxation by dual =
∑

e∈E ze, and the optimal solution value by opt. Note that
apx is the sum of pi values over i ∈ V satisfying equality in the constraint

∑
e∈δ(i) ze ≤ pi,

5

and weights we of edges e whose both ends satisfy strict inequality in the above constraint.
Consider an edge e = {i, j} ∈ E. If i and j are in V \ C, then

∑
e∈δ(i) ze = pi, and∑

e∈δ(j) ze = pj, and hence ze is charged in apx twice, once in pi and once in pj. If i ∈ V \C
and j ∈ C then ze is charged in apx only once in pi. If i ∈ C and j ∈ C then by the
maximality of the solution ze = we, and thus Re is charged in apx only once. We get:
apx ≤ 2

∑
e∈E ze = 2dual ≤ 2opt.

4 PTAS for metric w and uniform penalties

In this section we assume that w is a metric and pi = p for every i ∈ V .

We consider an optimal solution (C∗, P ∗) and use the following notation:
opt - the value of the optimal solution.
apx - the value of the approximation.
C∗ - the cluster in the optimal solution, and P ∗ = V \ C∗.
For A, B ⊂ V and u ∈ V :
w(A, B) =

∑
a∈A

∑
b∈B w(a, b), w(u, B) = w({u}, B),

w(A) = 1
2
w(A, A),

du = w(u, V), and DA = w(A, V).
Note that DA = w(A, V \ A) + w(A, A) =

∑
u∈A w(u, V).

Definition 4.1 [7] A metric sample of U of size t is a random sample {u1, . . . , ut} of U
with replacement, where each ui is obtained by picking a point u ∈ U with probability du

DU
.

Note that for any metric, the probability of selecting any given vertex is at least 1
2(n−1)

.
Consequently, it can be shown that with high probability, the number of distinct vertices in
a metric sample of size t = o(n) is at least t

2
. Following [7] we simplify the presentation and

consider the metric sample as a set and not a multiset.

For |C∗| ≤ 1
ε2

or |P ∗| ≤ 1
ε2

, the problem can be solved by exhaustive search in polynomial
time, hence in the following we assume

|P ∗|, |C∗| > 1

ε2
. (1)

An intuitive approach to the problem would be to take a random sample of C∗ , use it
to estimate the distance of each vertex from C∗, and then form a cluster from the vertices
closest to the sample. This approach fails, in general, because the distance between the
points inserted to the cluster is not estimated and it is part of the weight of the cluster.

In several steps of our proposed algorithm, we assume that a certain unknown value can
be used in the computations, assuming that an exhaustive search is applied to a polynomial
number of possible values. For example, to compute a value j such that (1 + ε)j ≤ DC∗ <
(1 + ε)j+1, we use the fact that DC∗ ≤ w(V) and search over O(log1+ε w(V)) values.

6

Algorithm Al is presented in Figure 2. It calls the two algorithms UC and BC presented
in Figures 3 and 4, respectively. The input to each of these algorithms consists of the
complete graph G = (V, E) with |V | = n, a metric w = w(i, j) defined on (i, j) ∈ E, the
penalty p for not including a vertex in the cluster, and a positive constant ε. Algorithm Al
produces three solutions which guarantee good approximation in each of the following three
cases.

If |C∗| ≤ εn then C = ∅ is a (1 + 2ε)− approximation, as proved in Theorem 4.2 below.

For the case |P ∗| ≤ εn we can use a method presented in [18, 8] for the metric 2-min
sum problem. In general, the method in [8] is to find a representing vertex of the cluster,
use it to estimate the distance between every vertex and the cluster, and add the close
vertices to the cluster. This approach works because the number of vertices misplaced in
the cluster is bounded by |P ∗| ≤ εn. This method is used in [8] for metric 2-min sum
problem for the case where one of the clusters is much greater than the other and the
clusters are well separated, that is, the maximum cut is much greater than the weight of
the clusters. In PMS, C∗ and P ∗ are not necessarily well separated, but as will be proved
in Theorem 4.4 below, an algorithm based on this method is a PTAS when |P ∗| ≤ εn. We
denote this part of our algorithm by UC.

If |C∗| > εn and |P ∗| > εn we encounter the following difficulties: Even a large random
sample of C∗ does not estimate, with sufficient accuracy, the distance w(v, C∗). This problem
was addressed and solved in [7] by taking a metric sample which enables to estimate w(v, C∗)
accurately. But good estimation of w(v, C∗) is not enough. Consider the following instance
of PMS: V = A ∪ B where |A| = |B| = n, all distances in A and between A and B are 1,
the distances between points of B are 2, and p = n− 1. The optimal solutions are C∗ = A,
and C∗ = (A \ {v}) ∪ {u} for every v ∈ A and u ∈ B. Note that for every sample T
of A, w(v, T) = w(u, T) where v ∈ A and u ∈ B. Adding to the cluster points closer to
the sample may lead to adding only points of B, resulting in a poor approximation. The
distance between the points added to the sample should also be considered. We consider
the distances between the added points using the hybrid partition method presented in [10]
and used in [7]. The use in [7] is for the creation of a cut, whereas we create a cluster and
hence the analysis is different.

Our algorithm for the case where C∗ > εn and P ∗ > εn is denoted as BC. It BC begins
by taking a metric sample T of size O(ln n

ε4
) from V , by exhaustive search finding T ∗ = C∗∩T ,

and using it to estimate w(v, C∗) for every v ∈ V . Let êv denote the estimate of w(v, C∗),
and let C denote the cluster returned by Algorithm BC. We consider only the vertices with
êv ≤ (1 + ε)p as candidates for C. We partition these vertices into the following two sets,
C−ε = {v ∈ V | êv ≤ p(1 − ε)} and C±ε = {v ∈ V | p(1 − ε) < êv ≤ p(1 + ε)}. We assume
C−ε ⊂ C∗ and hence add it to C. We then use the hybrid partition method on the set C±ε,
meaning that we randomly partition C±ε to r = 1

ε
sets of equal size V1, . . . , Vr. Assume we

know lj = |Vj ∩ C∗| for j = 1, . . . , r (these are found by exhaustive search). The algorithm
begins with C = T ∗ ∪ C−ε, and then goes over Vj, j = 1, . . . , r and adds to C the set Cj of

the lj vertices with smallest values of c̄(v) =
∑

k<j w(v, Ck) + r−(j−1)
r

(êv − w(v, C−ε)) from
Vj. This step considers the distances between part of the vertices added to C and ensures
good approximation.

7

Al
input G, w, p, ε.
output A cluster C, and its value apx.
begin
(UCmin, apxUC) := UC(G, w, p, ε).
(BCmin, apxBC) := BC(G, w, p, ε).
if np ≤ min{apxUC , apxBC}

then
return (∅, np).

elseif (apxUC ≤ apxBC)
then

return (UCmin, apxUC).
else

return (BCmin, apxBC).
end if

end Al

Figure 2: Algorithm Al

UC
input G, w, p, ε.
output A cluster UCmin and its value, apxUC.
begin
C := ∅.
apxUC := np.
l := |C∗|. [Exhaustive search.]
for every v ∈ V . [v is the vertex defining the cluster]

Cv := l vertices u ∈ V with the smallest values of w(u, v).
end for
v∗ := arg min w(Cv).
return (Cv∗ , w(Cv∗) + (n− l)p.)
end UC

Figure 3: Algorithm UC

8

BC
input G, w, p, ε.
output A cluster BCmin and its value apxBC.
begin
D̂C∗ := {(1 + ε)j| (1 + ε)j ≤ DC∗ < (1 + ε)j+1}. [Exhaustive search.]
r := 1

ε
. [w.l.o.g r is an integer.]

Take a metric sample T of V , |T | = 8 ln(4n)
ε4

.
l := |C∗|. [Exhaustive search.]
T ∗ := C∗ ∩ T . [Exhaustive search.].

∀v ∈ V , êv := D̂C∗
|T ∗|

∑
u∈T ∗

w(v,u)
du

.

C−ε := {v ∈ V | êv ≤ p(1− ε)}.
if |C−ε| ≥ l

then
BCmin := l vertices of C−ε with the smallest value of êv.
apxBC := w(BCmin) + (n− |BCmin)p.
return (BCmin, apxBC).

end if
C0 := T ∗ ∪ C−ε.
C±ε := {v ∈ V | p(1− ε) < êv ≤ p(1 + ε)}.
Randomly partition C±ε into r sets V1, . . . , Vr of equal size (as possible).
lj := |Vj ∩ C∗|, j = 1, . . . , r. [Exhaustive search.]
for j = 1, . . . , r

∀v ∈ Vj, c̄(v) :=
∑j−1

k=0 w(v, Ck) + r−(j−1)
r

(êv − w(v, C−ε)).
Cj := lj vertices v ∈ Vj with smallest values of c̄(v).

end for
BCmin := ∪jCj, apxBC := w(BCmin) + (n− l)p.
return (BCmin, apxBC).
end BC

Figure 4: Algorithm BC

9

Let C denote the cluster returned by Algorithm Al. Let P = V \C. We will analyze the
following three cases separately:
Case 1: |C∗| < εn.
Case 2: |P ∗| < εn.
Case 3: |C∗| ≥ εn and |P ∗| ≥ εn.

In our analysis we often assume that ε is smaller than some constant, without being
specific.

Theorem 4.2 If |C∗| < εn then apx ≤ (1 + 2ε)opt.

Proof: In this case opt ≥ (n− |C∗|)p ≥ n(1− ε)p, and apx ≤ np, which yields apx
opt

≤ 1
1−ε

≤
1 + 2ε.

For Case 2, |P ∗| < εn, we use the following lemma proved in [8] under the assumption

w(C) + w(P) ≤ ε2w(V). Here we do not make this assumption. Note that 2w(C∗)
|C∗| is the

average value of w(v, C∗) for v ∈ C∗, and hence there is a vertex z ∈ C∗ for which w(z, C∗) ≤
2w(C∗)

|C∗| .

Lemma 4.3 Assume |P ∗| < εn. Let z ∈ C∗ such that w(z, C∗) ≤ 2w(C∗)
|C∗| . Let C consist of

the |C∗| vertices v ∈ V with the smallest values of w(v, z). Then,

max{w(C \ C∗, C∗)− w(C∗ \ C, C∗), w(C∗ \ C), w(C \ C∗)} < 5εw(C∗).

Proof: Note that |P ∗| < εn is equivalent to |P ∗| < ε
1−ε

|C∗|.

Let C \ C∗ = {y1, y2, . . . , ym} be the set of vertices put by mistake in C, and C∗ \ C =
{x1, x2, . . . , xm} be the set of vertices put by mistake in P . By the triangle inequality for
any sets X, Y, Z ⊂ V ,

|Z|w(X,Y) ≤ |X|w(Y, Z) + |Y |w(X, Z). (2)

Using (2) with X = {x}, Y = C∗ and Z = {z} and with X = {x}, Y = {z} and Z = C∗,

and since w(z, C∗) ≤ 2w(C∗)
|C∗| we get for every i = 1, . . . ,m,

w(yi, C
∗)− |C∗| · w(yi, z) ≤ 2w(C∗)

|C∗|
, (3)

and

|C∗| · w(xi, z)− w(xi, C
∗) ≤ 2w(C∗)

|C∗|
. (4)

Note that
m ≤ |P ∗| ≤ ε

1− ε
|C∗|. (5)

By assumption w(yi, z) ≤ w(xi, z) for every i = 1, . . . ,m. Summing (3) and (4) over
i = 1, . . . ,m, and by (5),

10

w(C \ C∗, C∗)− w(C∗ \ C, C∗) =
m∑

i=1

[w(yi, C
∗)− w(xi, C

∗)] ≤

m∑
i=1

[(
w(yi, C

∗)− |C∗| · w(yi, z)
)

+
(
|C∗| · w(xi, z)− w(xi, C

∗)
)]

≤

4
mw(C∗)

|C∗|
≤ 4

|P ∗| · w(C∗)

|C∗|
≤ 4ε

1− ε
w(C∗) ≤ 5εw(C∗). (6)

Next, we use (2) with X = C∗ \ C, Y = C∗ \ C and Z = C∗, and (5), to obtain

w(C∗ \ C) =
1

2
w(C∗ \ C, C∗ \ C) ≤ w(C∗ \ C, C∗)

|C∗ \ C|
|C∗|

≤ 2w(C∗)
|P ∗|
|C∗|

≤ 5εw(C∗). (7)

Finally, we use (2) with X = xi, Y = yi and Z = C∗, sum over i = 1, . . . ,m, and then
use (6), giving

|C∗|
m∑

i=1

w(xi, yi) ≤ w(C∗ \ C, C∗) + w(C \ C∗, C∗)

= w(C \ C∗, C∗)− w(C∗ \ C, C∗) + 2w(C∗ \ C, C∗)

≤
(

4ε

1− ε
+ 2

)
w(C∗). (8)

By the triangle inequality w(yi, yj) ≤ w(yi, xi) + w(xi, xj) + w(xj, yj). Summing over i =
1, . . . ,m and j = 1, . . . ,m, and using (7), (8) and (5)

w(C \ C∗) ≤ m
m∑

i=1

w(xi, yi) + w(C∗ \ C)

≤ m

|C∗|

(
4ε

1− ε
+ 2

)
w(C∗) +

2ε

1− ε
w(C∗)

≤ 4ε

1− ε

(
ε

1− ε
+ 1

)
w(C∗) < 5εw(C∗).

Theorem 4.4 If |P ∗| < εn then apxUC ≤ (1 + 20ε)opt.

Proof: It is sufficient to prove the bound for the solution value generated when Algorithm
AC considers a vertex z ∈ C∗ for which w(z, C∗) ≤ 2w(C∗)

|C∗| and l = |C∗|. Therefore, we can
use the bound given in Lemma 4.3.

11

Let X = C∗ \ C and Y = C \ C∗, then

apx− opt = [w(Y, C∗ ∩ C)− w(X, C∗ ∩ C)] + [w(Y)− w(X)]

= [w(Y,C∗)− w(Y,X)]− [w(X, C∗)− w(X, X)] + [w(Y)− w(X)]

= [w(Y,C∗)− w(X, C∗)] + 2w(X) + w(Y)− w(Y,X)− w(X) ≤ 20εw(C∗),

where the inequality holds by Lemma 4.3.

For Case 3, |C∗| ≥ εn and |P ∗| ≥ εn, we use the following lemmas:

Lemma 4.5 Let Y1, . . . , Yn be independent random variables such that 0 ≤ Yi ≤ bi for every
i. Let Z =

∑n
i=1 Yi. Then,

E
[
|Z − E[Z]|

]
≤
√∑

i b
2
i

4
.

Proof: This inequality follows directly from Lemma 2.4 in [7] since σ2(Yi) ≤ b2i
4
.

Consider a given value t, and a set U ⊂ V . Let T = {u1, . . . , ut} be a metric sample of
U of size t. For every vertex v ∈ V define

ev =
DU

t

∑
u∈T

w(v, u)

du

.

Lemma 4.6 [7]

Pr
[
|w(v, U)− ev| ≤ εw(v, U)

]
≥ 1− 2e−tε2/8,

and

E
[
|w(v, U)− ev|

]
≤ 2√

t
w(v, U).

Lemma 4.7 Let T = {u1, . . . , ut} be a metric sample of V where t ≥ 2
ε4

, and let C ⊂ V
where |C| ≥ εn. Then T ∩ C is a metric sample of C, and Pr

[
|T ∩ C| ≥ tε2

]
≥ 1− ε.

Proof: Clearly C ∩ T is a metric sample of size |T ∩ C| of C. It is sufficient to prove the
inequality for the boundary case |C| = εn and |P | = |V \ C| = (1 − ε)n. By (2) with
X = Y = P and Z = C, εn · w(P, P) ≤ 2(1− ε)n · w(P, C). Therefore,

DP = w(P, P) + w(P, C) ≤ w(P, C)

(
1 +

2(1− ε)

ε

)
.

Also, DC ≥ w(C, P), and by the metric sample definition, for i = 1, . . . , t

Pr[ui ∈ C] ≥ DC

DC + DP

≥ ε

ε + ε + 2(1− ε)
=

ε

2
.

12

The random variable |C ∩ T | stochastically dominates the binomial random variable
X ∼ B(t, ε

2
), and by the Central Limit Theorem, for t ≥ 1

ε4
and ε ≤ 1

5
,

Pr[X ≥ 2εE[X]] = 1− Pr[X < 2εE[X]]

≥ 1− Φ

(
(2ε− 1) ε

2
t√

(1− ε
2
) ε

2
t)

)

≥ 1− Φ

(
−ε

√
ε

2
t

)
≥ 1− Φ

(
−
√

1

ε

)
≥ 1− ε.

Recall the definitions of C−ε and C±ε in Algorithm BC. We also define C+ε := {v ∈
V |êv ≤ p(1 + ε)}. Note that C−ε, C±ε and C+ε are random variables defined by the metric
sample T .

Remark 4.8 To simplify the presentation, we assume in the following that DC∗ = D̂C∗ ,
implying ev = êv for every v ∈ V . Since DC∗

D̂C∗
< 1 + ε, then also ev = DC∗

D̂C∗
êv < (1 + ε)êv,

and the real value of the solution is at most 1 + ε times the value of the solution under this
assumption.

Lemma 4.9 Consider Algorithm BC.

1. Pr
[(
|T ∩ C∗| ≥ 8 ln(4n)

ε2

)
∧ (w(v, C∗) ≤ 2p ∀v ∈ C+ε)

]
≥ 3

4
(1− ε).

2. E
[
|P ∗ ∩ C−ε|

]
≤ 1 and E[w(C, P ∗ ∩ C−ε)] ≤ 4εopt.

3. E
[
|C∗ \ C+ε|

]
≤ 1 and E[w(C∗ \ C+ε, C

∗)] ≤ εopt.

Proof: By Lemma 4.7, T ∩ C∗ is a metric sample of C∗ and

Pr
[
|T ∩ C∗| ≥ ε2|T |

]
= Pr

[
|T ∩ C∗| ≥ 8 ln(4n)

ε2

]
≥ 1− ε. (9)

Assume |T ∩ C∗| ≥ 8 ln(4n)
ε2

, v1, . . . , vq. Note that q and v1, . . . , vq are random variables
resulting from the choice of the metric sample. Then, for i = 1, . . . , q

Pr[w(vi, C
∗) ≥ 2p] ≤ Pr

[
w(vi, C

∗) ≥ 1 + ε

1− ε
p

]
= Pr

[
(1− ε)w(vi, C

∗) ≥ (1 + ε)p
]

≤ Pr
[
(1− ε)w(vi, C

∗) ≥ ev

]
≤ 2e−ε2|T∩C∗|/8

≤ 2e− ln(4n) =
1

2n
,

13

where the second inequality holds since, under the assumption êv = ev, for v ∈ C+ε, ev ≤
(1 + ε)p, and the third inequality holds due to Lemma 4.6. Hence for large n,

Pr[w(v, C∗) ≤ 2p ∀v ∈ C+ε] ≥
(

1− 1

2n

)n

≥ 3

4
.

This inequality with (9) concludes the proof of part 1.

Suppose that P ∗ = {u1, . . . , ur. Then for v = ui, i = 1, . . . , r, w(v, C∗) ≥ p since
otherwise a better solution is created by adding v to C∗. By Lemma 4.7 T ∩ C∗ is a metric

sample of C∗ and Pr
[
|T ∩ C∗| ≥ ε2|T |

]
= Pr

[
|T ∩ C∗| ≥ 8 ln(4n)

ε2

]
≥ 1 − ε, and hence by

Lemma 4.6,

Pr[ev ≤ (1− ε)p] ≤ Pr[ev ≤ (1− ε)w(v, C∗)]

= Pr[w(v, C∗)− ev ≥ εw(v, C∗)]

≤ 2e−ε2|T∩C∗|/8 ≤ 1

2n
,

and therefore

E
[
|P ∗ ∩ C−ε|

]
≤ 1

2n
n ≤ 1. (10)

Consider y ∈ C and v ∈ P ∗ ∩ C−ε. Using (2) with X = {y}, Y = {v} and Z = C∗, and
using the first part of the lemma, then with probability 3

4
(1− ε),

w(v, y) ≤ w(v, C∗) + w(y, C∗)

|C∗|
≤ 4p

|C∗|
. (11)

The proof of part 2 is concluded by

E[w(C, P ∗ ∩ C−ε)] ≤ E
[
|C|
]
E
[
|P ∗ ∩ C−ε|

] 4p

|C∗|
≤ 4p ≤ 4

1
ε2

opt ≤ 4ε2opt, (12)

where the first inequality follows from (11) and |C| = |C∗|, the second from (10), and the
third from (1) and opt ≥ p|P ∗|. This concludes the proof of part 2.

Since obviously, w(v, C∗) ≤ p for v ∈ C∗, and by Lemma 4.6

Pr[ev ≥ (1 + ε)p] ≤ Pr[ev ≥ (1 + ε)w(v, C∗)]

= Pr[ev − w(v, C∗) ≥ εw(v, C∗)]

≤ 2e−tε2/8 ≤ 1

2n
,

where t = |T |, and

E
[
|C∗ \ C+ε|

]
≤ 1

2n
n ≤ 1.

Finally, from w(v, C∗) ≤ p for v ∈ C∗, and |P ∗| ≥ 1
ε2

, it follows that E[w(C∗ \ C+ε, C
∗)] ≤

p ≤ ε2opt.

14

In the following we assume that C−ε ⊆ C∗ and that C∗ ⊆ C+ε. It follows from the third
part of Lemma 4.9 that with probability 3

4
(1 − ε) the expected weight of the errors due to

this assumption is O(εopt).

The following lemma is based on the deterministic analysis in [7]. For j = 1, . . . , r, let
C∗

j = C∗ ∩ Vj, and let Ij denote the following left part of the hybrid partitioning:

Ij = (

j⋃
k=0

Ck) ∪ (
r⋃

k=j+1

C∗
k).

Under the assumptions C−ε ⊆ C∗ and C∗ ⊆ C+ε, I0 = C∗ and Ir = C. For j = 1, . . . , r,
consider the points that are classified differently in Ij and Ij−1. Let Xj := C∗

j \ Cj =
{x1, . . . , xm} and Yj := Cj \ C∗

j = {y1, . . . , ym}.

Lemma 4.10 For j = 1, . . . , r

E
[
w(Ij)− w(Ij−1)

]
≤ sumu∈Xj∪YjE

[∣∣∣w(u,
r⋃

k=j

C∗
k)− r − j + 1

r
w(u, C∗ ∩ C±ε)

∣∣∣
+|w(u, C∗)− eu|

]
+ E[w(Yj , Xj)].

Proof:

w(Ij)− w(Ij−1) = w(Yj , Ij−1 \Xj) + w(Yj)− [w(Xj , Ij−1 \Xj) + w(Xj)]
= w(Yj , Ij−1)− w(Yj , Xj) + w(Yj)− [w(Xj , Ij−1)− w(Xj , Xj) + w(Xj)]
= w(Yj , Ij−1)− w(Xj , Ij−1) + w(Yj) + w(Xj)− w(Yj , Xj)

≤
|Yj |∑
i=1

[w(yi, Ij−1)− w(xi, Ij−1)] + w(Yj , Xj)

≤
|Yj |∑
i=1

[w(yi, Ij−1)− c̄(yi) + c̄(xi)− w(xi, Ij−1)] + w(Yj , Xj)

≤
∑

u∈Xj

|w(u, Ij−1)− c̄(u)|+
∑
u∈Yj

|w(u, Ij−1)− c̄(u)|+ w(Yj , Xj)

=
∑

u∈Xj∪Yj

|w(u, Ij−1)− c̄(u)|+ w(Yj , Xj). (13)

The first inequality is due to (2) with X = Y = Yj, Z = Xj and |Xj| = |Yj|, giving w(Yj) ≤
w(Xj, Yj). Similarly, w(Xj) ≤ w(Xj, Yj). The second inequality holds since c̄(yi) ≤ c̄(xi).

Under the assumption êv = ev, for u ∈ Vj,

c̄(u) =

j−1∑
k=0

w(u, Ck) +
r − (j − 1)

r
[eu − w(u, C−ε)],

15

and therefore,

|w(u, Ij−1)− c̄(u)| =
∣∣∣w(u,

r⋃
k=j

C∗
k)− r − j + 1

r
[eu − w(u, C−ε)]

∣∣∣
=

∣∣∣w(u,
r⋃

k=j

C∗
k)− r − j + 1

r

[
eu + w(u, C∗ ∩ C±ε)− w(u, C∗)

]∣∣∣
≤

∣∣∣w(u,

r⋃
k=j

C∗
k)− r − j + 1

r
w(u, C∗ ∩ C±ε)

∣∣∣+ |w(u, C∗)− eu|. (14)

Substituting (14) into (13) and taking the expectation on both sides completes the proof of
the lemma.

Theorem 4.11 If |C∗| ≥ εn and |P ∗| ≥ εn, then with probability of at least 9
16

(1 − ε),
apxBC ≤ (1 + 32ε)opt.

Proof: In the following we assume for every v ∈ C+ε

w(v, C∗) ≤ 2p, (15)

and |T ∩ C∗| ≥ 8 ln(4n)
ε2

. By the first part of Lemma 4.9, these assumptions hold with
probability of at least 1

2
(1− ε).

Fix j ∈ {1, . . . , r} and u ∈ Xj ∪ Yj and let Zu = w(u,
⋃r

k=j C∗
k) =

∑r
k=j w(u, C∗

k).

Since C±ε is randomly partitioned into V1, . . . , Vr, E[Zu] = r−j+1
r

w(u, C∗ ∩ C±ε) and Zu =∑
s∈C∗∩C±ε

w(u, s)As, where {As} are 0/1 i.i.d. random variables with Pr[As = 1] = r−j+1
r

.

We use (2) with X = {u}, Y = {s} and Z = C∗, (15), and the fact that w(s, C∗) ≤ p for
s ∈ C∗, to obtain for every u ∈ C±ε and s ∈ C∗

w(u, s) ≤ w(u, C∗) + w(s, C∗)

|C∗|
≤ 3p

|C∗|
. (16)

We use Lemma 4.5 for Zu =
∑

s∈C∗∩C±ε
w(u, s)As :=

∑
s∈C∗∩C±ε

Qs, where Qs, for every

s ∈ C∗ ∩ C±ε, is nonnegative and bounded by bs = 3p
|C∗| , to obtain

E
[
|Zu − E[Zu]|

]
≤

√∑
s∈C∗∩C±ε

9p2

4|C∗|2
≤ 3p

2
√
|C∗|

,

and therefore, for every u ∈ Xj ∪ Yj,

E
[∣∣w(u,

r⋃
k=j

C∗
k)− r − j + 1

r
w(u, C∗ ∩ C±ε)

∣∣] = E
[
|Zu − E[Zu]|

]
≤ 3p

2
√
|C∗|

. (17)

16

By the second part of Lemma 4.6, (15), and the assumption |T ∩ C∗| ≥ 8 ln(4n)
ε2

, for every
u ∈ Xj ∪ Yj,

E
[
|w(u, C∗)− eu|

]
≤ 2w(u, C∗)√

|T ∩ C∗|
≤ εw(u, C∗)√

2 ln(4n)
≤

√
2εp√

ln(4n)
. (18)

Substituting (17) and (18) in Lemma 4.10,

E[w(Ij)− w(Ij−1)] ≤ E

w(Yj, Xj) +
∑

u∈Xj∪Yj

(
3p

2
√
|C∗|

+
εp√

ln(4n)

)
= E(w(Yj, Xj)) + 2E|Yj|

[
3p

2
√
|C∗|

+
εp√

ln(4n)

]
≤ E(w(Yj, Xj)) + 4ε2|P ∗|p. (19)

The second inequality holds since by (1) |C∗| ≥ 1
ε2

and |P ∗| ≥ 1
ε2

, and by assumption
E
[
|Yj|
]
≤ ε|P ∗|. Let x ∈ Xj and y ∈ Yj.

Recall that we randomly partitioned P ∗ into r = 1
ε

subsets V1 . . . , Vr giving each vertex
an equal probability to be in any of the subsets. Therefore, E[|Vj|] = ε|P ∗|, and since Yj ⊆ Vj

E[|Yj|2] ≤ E[|Vj|2] = (1− 2ε)ε|P ∗|. Summing (16) over all x ∈ Xj and y ∈ Yj gives

E[w(Xj, Yj)] ≤
E
[
|Yj| · |Xj|

]
3p

|C∗|
=

E
[
|Yj|2

]
3p

|C∗|
≤ 3ε|P ∗|p ≤ 3ε2opt. (20)

Substituting (20) into (19) and noting that opt ≥ |P ∗|p,

E[w(Ij)− w(Ij−1)] ≤ 8ε2opt. (21)

Summing (21) over j = 1, . . . , r = 1
ε

gives,

E[w(C)− w(C∗)] = E[w(Ir)− w(I0)] ≤ 8εopt. (22)

By Markov’s inequality with probability 3
4
(1− ε),

Pr [w(C)− w(C∗) ≤ 32εopt)] ≥ 1− E[w(C)− w(C∗)]

32εopt
≥ 1− 8

32
=

3

4
.

Theorem 4.12 There is a polynomial time approximation algorithm for PMS.

Proof: By running Algorithm Al O
(
log 1

1−ε

)
times, we obtain the approximation ratio as

follows from Theorems 4.2, 4.4 and 4.11.

17

Remark 4.13 Algorithm Al can be generalized to give a randomized approximation scheme
for metric w with non-uniform penalties, assuming a constant bound on the maximal to
minimal penalty ratio. For simplicity, assume that the penalties pv are integers in {1, . . . , p},
where p is a given constant. The running time of the algorithm depends on p and ε. We
briefly outline the changes needed to accommodate this generalization.

A similar proof as in Theorem 4.2 shows that if |C∗| < εn, then the solution C = ∅
is a good approximation. In this case, opt ≥ n(1 − ε) whereas apx ≤ opt + εnp, so that
apx
opt

≤ 1 + ε(1 + ε)p.

Define Di = {v ∈ V |pv = i}. The adaptation of Algorithm UC is based on finding by
exhaustive search the values li = |C∗∩Di|, so that C includes the optimal number of vertices
from each penalty value. This property allows us to assume that for every vertex of penalty
i put by mistake in C, there is a vertex of penalty value i put by mistake in P , i.e. the
sets X and Y can be paired in such a way that the penalty of the vertices within each pair
is identical. The metric sample from C∗ taken in BC to estimate the distance to C∗ is as
efficient in this case as it was in the uniform case. However, we do require that the values
lij = |C∗ ∩Di ∩Vj| will be found by exhaustive search, so that we may assume that for every
vertex of penalty i put by mistake in Cj, there is a vertex of penalty value i put by mistake
in Pj, i.e., the sets of errors Xj and Yj can be paired so the penalty of the vertices within
each pair is identical.

4.1 2-approximation for metric kPMS

In this section we generalize [12], which offers a 2-approximation for the metric k-min-sum
problem for a fixed k. We suggest the following algorithm:

• Let G′ = (V ′, E ′) where V ′ = V ∪ {z}, E ′ = E ∪ {(v, z)|v ∈ V }, and w(v, z) = pv for
every v ∈ V .

• For every set of sizes l1, . . . , lk+1 satisfying
∑k+1

i=1 li = n, and k distinct vertices {vi}k
i=1 ⊂

V , compute a partition of V into k+1 disjoint sets {S1, . . . , Sk, Sk+1} of sizes l1, . . . , lk+1,
such that the cost

∑k
i=1 liw(vi, Si) +

∑
v∈Sk+1

w(z, v) is minimized.

• Return the partition of minimum cost {S∗
1 , . . . , S

∗
k+1}, where S∗

1 , . . . , S
∗
k are the clusters,

and S∗
k+1 is the set of unclustered vertices.

Let apx =
∑k

i=1 w(S∗
i) +

∑
v∈S∗k+1

pv. Denote the cost of the optimal solution by opt.

Claim 4.14 apx ≤ 2opt.

Proof: The proof is identical to that of Theorem 3.1 in [12], the only change is that the
sum of penalties over S∗

k+1 is added to apx and the corresponding sum is added to opt.

18

References

[1] A. Aboud and Y. Rabani, “Correlation clustering with penalties,” manuscript,
2006.

[2] R.O. Anstee, “A polynomial algorithm for b-matchings: an alternative approach,”
Information Processing Letters 24 (1987), 153-157.

[3] M. Charikar, S. Khuller, D.M. Mount, and G. Narasimhan, “Algorithms for facility
location problems with outliers,” SODA (2001), 642-651.

[4] K. Chen, “A constant factor approximation algorithm for k-median clustering with
outliers,” Proceedings of SODA’08 (2008), 826-835.

[5] I. Dinur and S. Safra, “On the hardness of approximating minimum vertex-cover,”
Annals of Mathematics 162 (2005), 439-485.

[6] W. Fernandez de la Vega, and C. Kenyon, “A randomized approximation scheme
for metric MAX-CUT,” J. Comput. Science 63 (2001), 531-541.

[7] W. Fernandez de la Vega, M. Karpinski and C. Kenyon, “Approximation schemes
for metric bisection and partitioning,” SODA’04: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, (2004) 506-511.

[8] W. Fernandez de la Vega, M. Karpinski, C. Kenyon and Y. Rabani, “Approximation
schemes for clustering problems,” Proceedings of the 35th ACM STOC (2003) 50-58.

[9] U. Feige, G. Kortsarz and D. Peleg, “The dense k-subgraph problem,” Algorithmica
29 (2001), 410-421.

[10] O. Goldreich, S. Goldwasser and D. Ron, “Property testing and its connection to
learning and approximation,” Journal of the ACM 45 (1998), 653-750.

[11] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Segev, “Scheduling with outliers,”
manuscript, 2008.

[12] N. Guttmann-Beck and R. Hassin, “Approximation algorithms for min-sum p-
clustering,” Discrete Applied Mathematics 89 (1998), 125-142.

[13] M.R. Garey and D.S. Johnson “Computers and Intractability,” Freeman (1979).

[14] N. Garg, V. V. Vazirani, and M. Yannakakis, “Multiway cuts in directed and
node weighted graphs,” Proc. 21st Int. Colloquium on Automata, Languages and
Programming, Lecture Notes in Comput. Sci. 820, Springer-Verlag, (1994),487-498.

[15] D. S. Hochbaum, “Solving integer programs over monotone inequalities in three
variables: a framework for half integrality and good approximation,” European
Journal of Operational Research 140 (2002), 291-321.

19

[16] R. Hassin and A. Levin, “The minimum generalized vertex cover problem,” ACM
Transactions on Algorithms 2 (2006), 66-78.

[17] R. Hassin, S. Rubinstein and A. Tamir, “Approximation algorithm for maximum
dispersion,” Operations Research Letters 21 (1997),133-137.

[18] P. Indyk, “A sublinear time approximation scheme for clustering in metric spaces,”
Proceedings of the 40th Symposium on Foundations of Computer Science (1999),
154-159.

[19] S. Khot and O. Regev, “Vertex Cover Might be Hard to Approximate to within
2− ε,” IEEE Transactions on Information Theory 50 (2004), 2031-2037.

[20] E. Lawler, Combinatorial Optimization, Networks and Matroids, Dover publica-
tions, (1976).

[21] S. Sahni, T. Gonzalez “P-complete approximation problems,” Journal of the ACM
23 (1976), 555-566.

[22] G. Xu, J. Xu, “An LP rounding algorithm for approximating uncapacitated facility
location problem with penalties [rapid communication],” Information Processing
Letters 94 (2005), 119-123.

20

