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Abstract

An important research direction in the control of queueing systems has been to establish
structural properties. In particular, there has been an intensive effort to obtain conditions in
which threshold policies are optimal for socially and individually optimality. The goal of our
paper is to provide a counter-example for the optimality (or even e-optimality) of any threshold
type policy in an admission control problem to a queue for an individually optimal criterion. We
consider a situation where customers that arrive according to a Poisson process have to decide
individually whether or not to join a queue with general service time. The available information
is whether or not a customer is served, as well as the number of customers at the queue. The
problem is modeled as a non-cooperative game. We argue that the non-optimality of a threshold
policy is due to the fact that the queue length provides a signal to the arriving customers on the
unknown residual service time. Instead of a threshold policy, we obtain an alternative e-optimal
policy with a different structure, using some fluid limit model that approximates our system.
A correlated equilibrium for the limiting fluid model is identified and used to establish the €
(non-correlated) equilibrium Nash equilibrium for our original model.

1 Introduction

An important research direction in the control of queueing systems has been to establish structural
properties [1, 2, 6, 9, 10, 12, 14, 16]. In particular, there has been an intensive effort to obtain con-
ditions in which threshold policies are optimal for social and individual optimality. Little is known
on cases where optimal policies do not have such a structure. In the case of social optimality some
results on optimality of non-threshold policies are available when extra constraints are imposed, see
[8]. The goal of our paper is to provide a counter-example for the optimality (or even e-optimality)
of any threshold type policy in an admission control problem to a queue for an individually opti-
mal criterion. Some other interesting counter examples (related to structures other than threshold
policies) can be found in [7] and [15].

We consider a service facility in which an arriving customer can observe the length of the queue
upon arrival. Customers are identical. The value of service is r and the cost of spending time in
queue (or in service) is ¢ per time unit. An arriving customer can either join the queue or balk
(leave without being served). The decision is made upon arrival. It is well known that in a G/M/s
system, the optimal customers’ strategy is to join the queue if and only if its length is at most
some ‘threshold value’ (see Naor [12] for M/M/1, Yechiali [16] for G/M /s and [2, 6, 9] for surveys).



Moreover, this type of behavior corresponds to a Nash equilibrium in the sense that it is optimal given
that others follow it (for example, by never reneging after joining the queue). Below, we show that
this property doesn’t hold in general when the service distribution is not exponential. In particular
we discuss the M/G/1 case. We show by an example that customer’s affect each other not only
by directly increasing the length of the queue but also by transmitting relevant information on the
residual service time. This type of ‘positive externalities’ may lead to more complicated equilibrium
behavior.

We assume throughout that an arriving customer does not have the possibility of reneging. For
other models in queues that include reneging, we refer the reader to [6].
Consider an M/G/1 queue and denote by E(R|j) the expected residual service time of the

customer in service given that there are j customers in the system. Mandelbaum and Yechiali [11]
and Fakinos [4] have shown that
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where 7, is the probability that there are k customers in the system.

Suppose (as in Whitt’s model [15]) that the service time is 0 with an extremely high probability
and 1 with the complement extremely small probability. Under these assumptions 7 is approximately
1 and almost all customers are served without delay. If an arrival sees any queue it means that a
customer with unit time service is being served. Consider an interval of unit length in which a 1-
customer is served. The expected number of arrivals during the interval is A\. Suppose that customers
enter the queue if the number of customers in the queue (not including in service) is strictly less
than a threshold L. We assume that )\ is large enough so that in a randomly chosen instant in this
unit interval the probability that we see ¢ (i < L) customers in the queue is approximately 1/, for
all 7 < A,

Substituting in (1) we get
E(R|i) — E(R|i +1) =
(_22-—1 T, Yt Wj) 1—p _

~

Uy Tit1 A
i/ (i—f—l)/A)l—p_l—p
( ST U W

We conclude that the expected residual service decreases as the queue size increases in the above
range. This is so since any queue indicates that the rare event of an arrival of a customer with a
unit time service has occurred. A longer queue indicates that more time elapsed since this service
started. Therefore a longer queue makes it more attractive for a customer to join, as long as the
probability that the queue contains a 1-customer is small.

Consider a fixed value of 0.5 < r < 1, say r = 0.75, and let ¢ = 1.

e A threshold L = 0 (which means that no one ever joins) does not define an equilibrium since
if everybody adopts this strategy then an arrival who sees one customer in service and none
waiting faces an expected residual service of 0.5 and will certainly join.

e Consider a pure threshold L > 0, or more generally, any strategy that prescribes joining with
probability 1 when there is a customer in service and nobody in queue. Then this strategy



does not define an equilibrium since if everybody adopts this strategy then an arrival who sees
one customer in service and none waiting sees an expected residual service of approximately 1
and will certainly not join.

e We thus propose the following candidate for an equilibrium: In the case of a customer in service
and none waiting, the arrival enters with probability p(r). Otherwise it enters with certainty
as long as the queue is not greater than a (large) threshold L (so that the probability of a
1-customer in the queue (in addition to the one in service) becomes significant). We call such
policies ”delayed threshold policies”. The value p(r) is such that the residual service when an
arrival sees a customer in service and none waiting is exactly r so that the arriving customer
is indifferent between joining or balking. When it sees also a waiting customer the residual
service is smaller (as we have seen) and in particular it is less than 7 so that it is worth joining.
When the queue is very large, the probability that it contains a 1-customer becomes significant
and at a certain point the sum of the (small) residual service time and (larger) expected wait
for service of the customers in queue exceeds r and balking is preferred.

The above explanation for our candidate equilibrium is quite heuristic. The goal of the following
sections of the paper is to study in a rigorous way whether there are indeed Nash equilibria among
delayed threshold policies, and to further study the performance obtained with such policies. It will
turn out that the analysis of the above model is quite complex. Although we are able to give some
characterization of the performance of delayed threshold policies, it is not possible to obtain closed
form formulae for the performance, nor to conclude that an equilibrium exists among these policies.

We therefore turn to analyze the limiting case where the arrival rate is very large, using a fluid
approach. After formulating the problem for this limiting regime, we are able to obtain a correlated
equilibrium with a public signal for that regime with a similar delayed threshold structure. This
then allows us to obtain delayed threshold policies for our original problem that are e-equilibria for
all positive € and for all arrival rates sufficiently large.

The structure of the paper is as follows. In the next section we introduce the original discrete
model. The fluid approximation is introduced in Section 3. The relation between the original model
and the fluid model is described in Section 4. Conditions for the existence of equilibria among delayed
threshold policies for the fluid model are then given in Section 5, and numerical examples are given
in Section 6. Then we show in Section 7 that e-equilibria are obtained among delayed threshold
policies for our initial discrete problem for large input rates.

2 The discrete model

Customers arrive according to a Poisson process with rate A. An arrival is a massive customer that
requires one unit of service time with probability ¢ and with probability 1 — ¢ it requires zero service
time; we then call it a ”tiny” customer.

Each customer can decide to enter the queue and wait for service or to renege. Getting served has
a value of r units per customer. On the other hand, we assume that waiting is costly so that there
is a cost proportional to the expected waiting time till service of the customer begins, E[W]. The
decision of joining or not is made individually by each customer. A customer would join the queue
if cE[W] —r < 0, will renege if cE[W] —r > 0, and will be indifferent if cE[W] —r = 0. Without
loss of generality we can take ¢ = 1 (by a proper change of units of the constant r). Obviously E[W]
is nonzero only if upon arrival there is a massive customer in service. The available information to
the customer is whether or not there is a customer in service, as well as the queue length.



RAFI: T Added The following The time at which the first customer joins the queue will
denote in the sequal the first time that a customer arriving at the queue actually decided to join it
(as opposed to the time at which the first customer arrives at the queue; that one need not actually
join the queue).

Note that the decision of a customer n depends on the strategies of previous arrivals through
E[Wn].

To deal with our transient setting we need the following assumption which we shall often make.

Assumption 2.1 The system is initially empty and at time zero a massive customer starts service.
We restrict our study of equilibrium to the policy of customers that arrive during time [0,1]. A
customer that arrives at time t during that period does not know t (i.e. how much service has already
been given to the customer in service). We assume, however, that he knows that t € [0,1]. This
assumption is common knowledge.

This assumption implies that customers during the transient period [0, 1] have some notion that we
are in a particular transient state.

Let x(t) be the queue size at time ¢ (not including the customer in service).

We consider the following candidate for a Nash equilibrium. A customer joins if there is no
customer in service. Moreover,

e As long as there is no queue and there is a massive customer in service, an arriving customer
joins the queue with probability p.

e There is an integer L, such that a customer arriving at time ¢ joins the queue if 0 < x(t) < L
and balks if z(t) > L.

We call this type of policy a delayed threshold policy with parameters (p, L) and denote it by N(p, L).

We have not been able to prove that there exists a Nash equilibrium of this form, but we shall
present conditions in Section 7 under which for any positive e there exists some A(e) such that for
any A > \(e), there exists an e-Nash equilibrium® with this structure .

Remark 2.1 Assume now that a delayed threshold policy with parameters (p, L) is used by all
customers. Consider the time 7 from the instant that there is a massive customer in service (with
one unit service required) till either the first customer joins the queue, or the service of the customer
ends (whichever occurs first) and assume that the queue is initially empty. Then 7 is distributed
according to the exponential distribution with rate § = pA, truncated at 1, since it is the minimum
between 1 and between a sum of a geometrically distributed number of elements (with parameter p)
where the elements are exponential i.i.d. RVs with parameter . Since the effect of the parameter p
is to delay the instant at which customers start joining the queue, we shall use N (0, L), with some
abuse of notation, to denote the policy N(p, L) for which p = 6/A.

To proceed, we first introduce the random variable 7[t] which denotes the first time that an arrival
joined the system given that it occurred during the interval [0,¢], ¢ < 1. Then its probability density
is given by

1

frig(s) = Tp(—es)e exp(—6t).

! A multi-strategy is called e-Nash equilibrium if no player can benefit by more than an amount of ¢ by deviating
from his strategy.



In particular,
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We now focus on some arbitrary arrival during the interval [0,1]. We make the following obser-
vations:

e The probability that the arrival finds the system empty upon arrival (conditioned on 7[1] and
on the fact an arrival during the interval [0,1] occurred) is equal to 7[1];

e Let ¢ be the arrival time of a customer that finds the system empty. Then E((|7[1]) = 7[1]/2.

Combining the two observations we get that

B — exp(—0)
“2BE(L)) 2 exp(-O) (/8 + D) +1/0] "6 (4)

E[¢]

Note that the left hand equality in (4) is the standard expected recurrence time of the variable 7[1].

Some extra notation:

e R;:=the residual time till the end of the service of the served customer under the following
assumption: there are i customers in the queue, and before the first one arrived the buffer
was empty. This means in particular that when the current customer in service has begun its
service, then the system was empty. It is thus defined under the transient assumption 2.1.

e W;:= the time till all the customers present at the queue are served, given that their number
now is ¢ under the assumption that before the first one arrived the buffer was empty. It is thus
defined under the transient assumption 2.1. W, is the waiting time of a customer that arrives
during the time interval [0, 1] and that finds ¢ others at the queue.

o 7, =7+Y1+Ys+---+Y; where 7 is an exponentially distributed random variable with parameter
# and where Y;, j = 1,...,4 are exponentially distributed random variables with parameter A,
and where all random variables are independent. Note that the probability distribution of Z;
is the convolution of the distribution of an exponential R.V. with parameter § and an Erlang-
R.V. with parameter \. Z; is distributed like the time from arrival of a massive customer to
an empty system till the ¢-th arrival, assuming an N (6, L) strategy with L > i.

For the delayed threshold policy (6, L) to be a Nash equilibrium, we first need that p (or equiva-
lently 6) be chosen such that E[Wy] = r. In view of (4) this condition becomes

ElRo] = E[Wol =1- B[] =1+~ exp(—f;})(?l(/_@e—)l- D+1/0] % : (5)

Central equations for our analysis are

E(R;))=1-E[Z|Z; <1], E(W,;) = E(R;)+iq, te€(0,1), i>0. (6)



To understand the above equations, we first note that all customers found at the queue by the
customer whose expected residual time we compute (and who arrived, say, at time t), have arrived
during the service time of the currently served massive customer. This is due to the definition of
R. Thus t has to be smaller than one. On the other hand, it is easily seen that ¢ is distributed
like Z;. This explains the first relation. To get the second relation, we note that in addition to the
residual time, our customer has to wait also for the service time of all massive customers present at
the queue. The expectation of this time is clearly iq.

A sufficient condition for (p, L) to be a Nash equilibrium is that for all i greater than L, E[R;] > r
and for all i < L, E[R;] < r. A sufficient condition for (p, L) to be an e-Nash equilibrium is that
for all i greater than L, E[R;] > r — € and for all i < L, E[R;] < r —e. This could be obtained if
E[ﬁl] < r for all ¢ smaller than some 7y, and then it increases to a value greater than r for 7 > 4.

These conditions could be checked numerically, since we know the distribution of Z; in (6).
Instead, we shall show that the condition holds in an approximating fluid model obtained as a weak
limit when the arrival rate becomes large. We shall investigate another equilibrium concept that
applies to the limit problem and that is much easier to compute. We will then be able to construct
an e-equilibrium policy for our original discrete model for any positive € and for any sufficiently large
arrival rates.

3 The fluid model

We consider again the transient setting. We thus assume that at time zero a massive customer starts
to be served and that the queue size just prior to the beginning of the service is zero. We note that
the larger the arrival rate is, the more precision we shall have on the time elapsed since the beginning
of the service time. We therefore analyze a fluid model, which can be viewed (as will be explained
below) as the weak limit of the system (scaled in a proper way) as the arrival rate goes to infinity.
We shall begin by describing the fluid model and then show that it is the limit of the original one.

3.1 The arrival model and service process

Customers arrive at a queue according to the superposition of two processes.

e The first is a fluid with rate A. The fluid can be viewed as water that arrives to a dam. Thus
during a time interval [s,t], the amount of customers that arrive is A(¢ — s) (for ¢ > s). In this
process, one unit of customer brings 7 unit of workloads. We shall take as in the initial discrete
model n = 0.

e The second process is Poisson with rate \'. At each arrival of that process a so called " massive”
customer arrives with one unit of workload. Thus during a time interval [s, ], the expected
amount of workload brought by the second process is X' (¢t — s) (for ¢ > s), which is also the
expected number of customers that arrive during that interval.

For the service process, we assume that there is a server that serves workload at a rate of one
workload unit per time unit according to the FIFO discipline. An arriving customer observes the
amount of fluid in the system and then decides whether or not to join.

Equivalently this state may be understood a measure of the time since the first customer joined
the system (after the massive customer started being served); having At customers in queue is thus
equivalent to saying that this time equals t. Then each arriving customer has the information on



the value of that time. We shall later allow the joining decision to depend yet on another external
signal.

3.2 A correlated equilibrium with public signals

We consider the game where the set of players is the (continuum) set of arriving customers. The
set of players is a combination of atomless players (those corresponding to the fluid arrival, in which
a single individual has a mass of zero in terms of its impact on the performance of other future
individuals) together with other atomic players (as an example for such games, in which atomless
and atomic players are combined, see [5]). The decision of each player is to either join the queue
and wait for his turn to be served, or not to join it. The available information is the total amount of
customers in the queue. The actual workload in the queue, and in particular, the number of massive
customers in the queue, is not known to an arrival; it cannot distinguish between the two types of
customers in the queue.

As in the original model, in this fluid model we do not have equilibrium threshold policies neither.
The precise example with 7 = 0.75 (and A = 1) can be used again to convince ourselves.

The delayed threshold Nash equilibrium proposed for the original model cannot be implemented
directly for the fluid model. Indeed, a process in which a continuum of players randomize inde-
pendently cannot be defined mathematically. Now even if we could: if arrivals randomize with
probability p > 0 when finding the queue empty with a customer in service, then after a time whose
expectation is zero, the first customer will eventually join the queue. So such a policy would lead to
the same type of evolution of the queue as a threshold policy with threshold zero, which we know is
not an equilibrium.

We thus propose an alternative definition for an equilibrium policy which would turn out to be
very similar to the original proposed Nash equilibrium. We shall show how we can translate it back
to the original discrete model.

e Whenever the service of a massive customer begins when the queue is empty, then a timer is
set with an exponential duration with parameter 6. As long as this timer counts, a red signal
is displayed to advise arrivals not to join the queue. Once the timer expires, a green light is
displayed to advise arrivals to join the queue. If the service of the massive customer ends before
the timer expired then the light is not needed anymore, since there are no waiting customers at
the queue and no customer in service (light is only needed when the queue is empty but there
is a customer in service). So we may assume that it is simply turned off. Thus, if a customer
arrives and the light is off, he will join the system and receive service immediately with no
waiting.

e Once customers start joining the queue, they will continue to join it until it reaches a threshold
AL.

We call this policy a (correlated) delayed threshold policy and use the notation T'(f, L) to characterize
it. (Note that the candidate Nash equilibrium in the discrete setting used also a threshold L, but
the first argument was a probability.) The above policy is known to be a correlated policy with public
signal see e.g. [13] and references therein. We shall show that it constitutes a correlated equilibrium,
i.e. that no customer has an incentive to deviate unilaterally from it (nor to ignore the advice given
by the signal). (A correlated equilibrium is a Nash equilibrium where the strategies of users are
allowed to depend on a correlating external signal. Thus a multistrategy for all users is a correlated



equilibrium if no user has an incentive to deviate from its strategy, where a strategy of each user
may depend both on the state of the queue as well as on the signal).

Below we do not consider the steady state operation of the system, we restrict to ¢ that is smaller
than the first time a massive customer ends its service (and we assume that the queue is initially

empty.)

4 Relation between the fluid and the original model

We show here how a sequence of discrete models M,,, n = 1,2,3, ..., can be constructed that converge
to the fluid model. More precisely, we show how to scale the parameters in the discrete model so
that it defines the fluid limiting model.

4.1 The arrivals

Customers arrive at the model M,, according to a Poisson process with rate nA. An arrival is a
massive customer that requires one unit of service time with probability

)\I
qn = aa

and with probability 1 — ¢, it requires zero service time; and is a tiny customer. We conclude that
the arrival of massive customers at the nth model is according to a Poisson process with rate \'.

We have the following relation between the fluid limit and the original one. Let AM(s,t) and
AT (s,t) be the number of massive arrivals and the amount of tiny arrivals in the fluid model during
time interval (s,t). With an extra subscript n, these quantities will correspond to the model M,,.

Then the arrival process of massive customers AM(s,¢) has the same distribution as the arrival
process of massive customers in each one of the models M,: AM(s,t) =; AM(s,t). The arrival of
tiny customers is given as the limit

AT (s,t) = lim Anls,t) _ At — s).

n—00 n

4.2 The timer

In view of Remark 2.1 we could use, with some abuse of notation, (6,,L,) to denote a delayed
threshold policy in model M,,, which then defines p, = 0,/ \,.

Note that if we take

then 6,, = 0 for all n.

More generally, we may conclude that if 6,, converges to 6, then the delay period before customers
start joining the queue in model M,, converges in distribution to the delay period in the fluid model.

Note that both in the M, as well as in the fluid model, the delay period cannot exceed 1
(Assumption 2.1).



4.3 The queue length process

Assume now that the delayed policy N(6,,,nL) is used in model M,, and the delayed policy T'(6, L)
is used in the fluid model. Let X,,(¢) denote the number of queued customers in M,, at time ¢. Then
one can show that if 6,, converges to 6, then the process X,,(¢)/n converges to the fluid queue length
process x(t) in some sense (we delay this to the section 7 and to the Appendix).

Recall that we restrict here to ¢ that is smaller than the first time a massive customer ends its
service and that we assume that in all models, the queue is initially empty.

5 Delayed threshold equilibrium for the fluid model

We show in this section how one can obtain # and L such that the delayed threshold policy (6, L)
constitutes a correlated equilibrium in the fluid model. Similarly to the discrete model, we define
here

e R;:=the residual time under the following assumption: ¢ time units ago, the buffer was empty
and since then arrivals joined it (at rate A). This means in particular that when the current
customer in service has begun its service, then the system was empty. It is thus defined under
the transient assumption 2.1.

e W= the time till all the customers present at the queue are served, given that there are At
customers at the queue, under the assumption that before the first one arrived the buffer was
empty. It is thus defined under the transient assumption 2.1. W, equals the waiting time of
the Atth customer that arrives during the interval [0, 1].

As in the discrete model, for the delayed threshold policy T'(6, L) to be a correlated equilibrium
in the fluid model we first need that 6 be chosen such that E[Rg] = r. In view of (4) this condition
becomes (o) .

— — exp(—
E[Ro] = E[Wo] =1 _l_ .
[Ro] = E[Wo] =1+ d[—exp(—0)(1/0+1)+1/6] 0 Q
Secondly, we should have E[W;] < r for all ¢ sufficiently small. We shall show through numerical
examples that E[W,] often has the following desirable behavior:

Property 5.1 E[W,] is convez, it increases “sufficiently” so that for all t greater than some L €
[0,1], E]W,] > 7 and for all 0 <t < L, E[W,] <.

Examples that satisfy this property are given in Figs. 1 and 2.

The key equations for our analysis are:
ER)=1-E[rlr<1—t]—-t=1-E(r[1 —t])—t, EW,) =ER;)+\Nt, te(0,1). (8)

We shall now explain the equations:

When the current customer started service, the system was empty. Then 7 (exponentially dis-
tributed truncated at one) time passed till the queue started to build up. Thus when the queue starts
building up then the residual service time is 1 — 7. Now ¢ time units later, the residual service time
has decreased by t. During that time, the expected number of massive customers that have arrived
is 't (the massive customers have Poisson distribution with rate A’ both in the discrete as well as in



the fluid model). Note however, that we gained new information about 7. Since we consider the case
in which after time ¢ the service time has not expired, (assumption 2.1 which holds by definition for
the transient variables R and W) this excludes the possibility that 7 were larger than 1—¢. Therefore
we should take the expectation of 7 with respect to the exponential distribution truncated at 1 — t.

Remark 5.1 Note that by comparing (7) to (8) (with t — 0) we see that indeed, E[W;] < r for t
sufficiently small (which should hold for Property 5.1 to be valid).

Substituting (2) into (8) we obtain:

EW, = —% + 1= expl(__;(l —y FAt (9)

Note that as t — 1 we have, as expected, E[W;] = )': indeed, if ¢ is close to 1 then it means that 7
was close to zero, and the service time of the current customer is about to end. Therefore a customer
that arrives at this time will have to wait 1 unit for each massive customer who arrived during 1
unit, which is in expectation \'.

As t — 0 we have for 6 very large E[W;] =1 — 1/ = 1 — E[r]. Indeed this is what we expect
since for large 0, E[r] equals approximately E[r|r < 1].

We conclude the following:

Theorem 5.1 Consider the transient framework of Assumption 2.1. Assume that Property 5.1
holds. Then a delayed threshold policy T(0, L) is a correlated equilibrium with  given by the solution
of (7) and L is given by the solution of E(W ) = r where E(W}) is given by eq. (9) and L € [0,1].

6 Numerical examples

Having shown that a simple threshold policy is in general not a Nash equilibrium, the goal of
this section is to illustrate that there are cases in which a delayed threshold policy is a correlated
equilibrium for the fluid model. For such cases, we show in the next section how to construct an
e-Nash equilibrium for the original discrete model provided that the arrival rate is sufficiently large.

Consider r = 0.9377 (and ¢ = 1). Then eq. (7) yields § = 8. Now let X' = 0.95. Using Eq. (9),
we obtain in Figure 1 the expression for E[W,]. (Clearly, the value of E[W,] is independent of )).
We see that it indeed satisfies Property 5.1, and that it first decreases and then increases in ¢ within
the interval [0,1). The threshold value is L = 0.9713, which yields indeed E[W}] = r.

We now make only one change, )’ is chosen to be 1 instead of 0.95. Now E[W,] is increasing all
along the interval [0,1), as can see in Fig. 2. The equilibrium threshold is L = 0.947 yielding indeed
EW,] =r.

On the other hand, taking \' = 0.8, we still have a curve of E[W] similar to that in Fig. 1, but
it does not intersect 7 in the interval [0,1). Thus for the transience analysis that we did, we can only
conclude that the equilibrium is such that after the random delay of 8, all customers should enter.
Further decreasing ) to e.g. 0.5, E[W,] becomes monotone decreasing all over the interval [0, 1).

7 Back to the discrete model

We show in this section how the Nash equilibrium in the fluid model can be used to construct an
(almost) equilibrium in the original model for all large enough arrival rates, i.e. for model M,

10
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Figure 1: E[W}] as a function of ¢, \' = 0.95. Figure 2: E[W,] as a function of t, X = 1.

(defined in Section 4) for all n sufficiently large. We shall add a superscript n to the residual and
waiting times corresponding to model M,.

We need the following Key Lemma whose proof is given in the appendix.

Lemma 7.1

lim E[W |\, = E[W4]

n—oo
uniformly over t € [0,1].

(In the above Lemma, |x| means the largest integer smaller than z.)

We now present the following main result:

Proposition 7.1 Assume that R satisfies property 5.1 for the limit fluid model, so that a policy of
the type T(0, L) is a correlated equilibrium in the fluid model for some 6 and L. Then for any e > 0
there exists some N such that for all n > N, the policy N(0,n\L) is an e-equilibrium for the nth
discrete model.

Proof. Choose some ¢ > 0. Due to Lemma 7.1, there exists some A/, such that
|E[W xn)] — EIW4)| < e

for all ¢ € [0,1] and n > A.

Due to property 5.1, for any s < L, we have E[W,] < r. Combining this with the previous
equation, we obtain
E[WTLL)\MJ] <nLA+e, forall n > N

Similarly, for all s > L and n > N, we have E[W[LAM 1] > nLA — e. This establishes the proof. I
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8 Appendix

Proof of Lemma 7.1. Note that E(R;) in (8) can be rewritten as
E(Ry)=1-E[r +tr+t<1].
We shall now construct a simple common probability space on which all models M,, are defined.

e First, let 7 be an exponential random variable with parameter §. This will be the random
delay till the first customer enters the queue; it can be taken to be the same for all models M,,.

e Let Y, bei.i.d. exponentially distributed random variables with parameter A\, and independent
of 7. Denote .
Y'=Yy+Yi+..+Y 4,

where Yy := 0. The ith arrival ; > 1 at model M, is set to occur at time Z" := 6 + Y /n.

It is easily checked that after the delay 7, the arrival process in model M,, is indeed Poisson with
parameter nA.

To obtain convergence of the discrete models to the fluid one, we extend the definition of the
discrete models to functions of ¢ as well; we define for ¢ > 0:

y(t,n) = YAl z(t,n) =71+ y(t,n)/n.
Note that by the Strong Law of Large numbers, we have for each ¢t > 0 P-a.s.:
t

n—00 n

=1.

Moreover, the convergence is uniform overt € [0,1]. Indeed, for each n, y(¢,n) is increasing in ¢ and
the uniform convergence follows from e.g. [3, Lemma 4.1].

It then follows that P-a.s.,
lim z(t,n)=7+1 (10)

n—0oo
uniformly over ¢ € [0, 1].
This implies, in particular, that for any bounded function f on R,
sup lim |f(z(n,t)) — f(r +t)| = 0. (11)
te[0,1] ™

Hence, by the bounded convergence theorem, and by Jensen’s inequality,

lim sup E[|f(z(n,1)) = f(T +1)]] < nlLHéoE[tzEpl] |f (2(n,8)) = f(r +8)[] = 0 (12)

N0 el0,1

In particular, we get
Jim E(Z[\tn) K Z\tn) < s}) = E[(r + )1{r +t < s}].
uniformly in ¢ € [0, 1].
We conclude from the above equations together with relations (6) and (8) that
lim B[R]\ ] = E[R]

n—oo

uniformly over ¢ € [0,1]. Again due to relations (6) and (8) used for the waiting times, one can then
easily shows that this implies
lim E[W |\ ] = E[W]

n—oo

uniformly over ¢t € [0, 1] which establishes the Lemma. 1
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