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Chapter 1

Introduction

1.1 Rational queueing

Rational queueing pertains to queueing systems with interactions among
agents rationally acting to maximize goals defined by primitive data.
Queueing theory research can be classified as:

� performance analysis,

� optimal design and control,1

� analysis of rational (strategic) behavior.

These categories can also be defined according to the number of decision
makers (DMs): In the first, performance analysis, there are no DMs. In the
second, system optimization, there is a single DM (e.g., a central planner),
whereas in the third there are at least two DMs whose decisions interact
(e.g., profit-maximizing servers and customers, or a service system owner and
a server operating under contract).
In other words, rational queueing deals with games played by agents, or

players, who operate in a queueing system according to an economic choice
model. The solution is, in most cases, an equilibrium, referring to a state where
players cannot improve their payoffs by unilateral changes in behavior. The
only comprehensive reference that pertains to strategic queueing is the book
by Hassin and Haviv [1] (2003).
The fundamental questions asked in this line of research concern the exis-

tence, uniqueness, and characterization of the equilibrium. Another important
research goal is to compare the equilibrium to the best aggregate outcome that
could be expected for the participating agents; that is to say, the socially opti-
mal or system-optimal (SO) solution. In particular, there is interest in whether
the equilibrium solution is SO, and if not, then how can the DM induce the
SO solution, i.e., coordinate or regulate the system.

1According to Stidham [594] (2009) design corresponds to static optimization of pa-
rameters such as arrival and service rates, control corresponds to dynamic optimization in
response to changes in the state of the system. The book [594] provides a comprehensive
treatment of optimal design of queueing systems.

1



2 Rational Queueing

In many cases, rational queueing insights are special cases of general prin-
ciples. For example, the inefficiency of the equilibrium in Naor’s [497] model
follows from negative externalities associated with joining the queue, as in
non-queueing congested systems.2 However, the queue structure, particularly
under Markovian assumptions, often enables explicit solutions and definitive
results. Such outcomes are not possible in a more general model of congested
systems. Moreover, the queue structure often enables unique non-price control
through manipulations of the queue regime. These properties make rational
queueing differ in many respects from more general economic theory.

1.2 Scope

The starting point of this survey is the aforementioned book [1] and we
focus on literature not covered there. With few exceptions, papers treated
there do not appear in the bibliography here and the reader is referred to the
appropriate parts of that book for complementary information.3 The scope
of this survey is somewhat extended relative to [1] and includes models with
implicit strategic behavior and bounded rationality.
Our main focus will be on stochastic queueing models. Deterministic ser-

vice systems are not covered in our survey unless the model strongly relates to
stochastic queues like, for example, when it serves to approximate a stochastic
counterpart.
Our focus is on queueing games, which are games played in queueing sys-

tems. Typically, the players (or agents) are customers, system owners, and
social planners. For the most part, this survey refers to models that start
with primitive data (such as service values and waiting costs) and with the
players’ objective functions. We do include, however, models where players’
behavior is guided by exogenous rules. An example of this would be when
aggregate demand for service is given by a function of the price of service and
the waiting-time distribution. The reason being that such a function can often
be implied by rational behavior (see §1.5).
Other types of models may result from implicit strategic behavior. For

example, models assuming a state-dependent arrival rate resulting from prob-
abilistic joining, where a customer observing a queue of size n joins with
probability p(n), or balks otherwise. The joining probabilities p(n) are usually
exogenous,4 monotone nonincreasing, and induces a state-dependent joining

2See, for example, G. Hardin, “The tragedy of the commons,” Science 162 (1968) 1243-
1248.
3Papers listed in the bibliography already treated in [1] are marked with [∗ ∗ ∗].
4See [397, 188] and [1] §2.5 for models where the joining probability is endogenous.

The model with uniformly distributed waiting cost rates described there has recently been
rediscovered in [268].



Introduction 3

behavior which can be explained by heterogeneity in service valuations or
waiting-costs. The focus of many papers that assume probabilistic joining is
not strategic, and we only include those that have an underlying decision
model, or give a strategic interpretation to probabilistic joining behavior.
A second class of models for which the same arguments apply deals with

reneging from a queue. In many cases reneging is assumed to occur at a
fixed rate. We concentrate on papers that include economic decision making
models that yield the reneging behavior. Similar comments apply with regard
to retrial models.
It is a challenge to impose boundaries on topics included in a survey. In

many cases it is difficult to decide whether a model even deals with a queue-
ing system. For example, systems like M/M/s/s and M/M/∞ are considered
queueing systems though they have no queues and waiting costs may be irrel-
evant. The performance measure in M/M/s/s is typically the blocking prob-
ability rather than the waiting time. We will frequently describe here models
dealing with general non-queueing delay functions, especially when they lead
to interesting queueing insights.
A different approach for classifying strategic queueing models is given in a

short exposition by Altman [42] (2005), who classifies models according to the
question they ask: to queue or not to queue; when to queue; where to queue;
and how much to queue. We also refer the reader to the relevant surveys by
Afèche [10] (2006), in particular §2, and Haviv [320] (2011).

1.3 Mode of description

Although there are exceptions to every rule, we generally adopt the fol-
lowing guidelines:

� Emphasis:

– This survey emphasizes qualitative aspects. For each paper we de-
scribe the main assumptions and qualitative results.

– We avoid mentioning common assumptions (such as independence
of stochastic processes, or obvious nonnegativity of parameters)
and technical assumptions made in the interest of facilitating the
presentation.

– We do mention, however, assumptions that restrict generality of
insights obtained.

– We often define constants implicitly. For example, a statement that
the demand function is λ = a− bp where p denotes price implicitly
defines the constants a and b.



4 Rational Queueing

� Classification Most papers in this survey belong to subjects in more
than a single chapter, and we try to place each paper according to its
main theme. However, the assigning of subjects is often nearly arbitrary
due to imprecise definitions or overlapping of topics. For example, supply
chains and networks of complementary services share many features and
in some cases assignment to either of these subjects is reasonable. Sim-
ilarly, models of competition are closely related to those on routing to
parallel servers as in both cases customers select their preferred servers.
In some cases a paper’s description is divided into two parts, each in a
different chapter. In other cases it is placed in one chapter, with a com-
ment in another chapter that mentions its relevance. However, obvious
relations are not mentioned. For example, almost all of the papers con-
tain customer decisions, but the papers placed in the customer decisions
chapter are only those whose focus is on customer decisions.

� Solution: The main solution concept is some type of an equilibrium. In
most cases it is a Nash equilibrium or variation (like Wardrop, subgame
perfect, or Bayesian). We often do not explicitly refer to the type of
equilibrium, simply calling it an equilibrium.

� Applications: Unless the model applies mainly for a certain type
of application we do not describe the application that motivated the
research, but rather emphasize the generic model. Our terminology is
mostly queueing theoretical. Interested readers will be able to find mod-
els closest to their particular subjects of research or application and use
our short summary to decide whether the paper is relevant for their
needs.5 Yet when the model makes little sense outside of its motivating
context, we will use the application’s terms.

� Order: Summaries within a section are arranged chronologically ac-
cording to date of publication.

� Cross references: Many sections start with a list of related papers
described in other parts of this survey. These lists are not comprehensive
and the readers are invited to use the subject index to locate additional
relevant references.

� Notation: There is no standard notation for most parameters and vari-
ables associated with queueing models. With few exceptions, we follow
the notation used in the surveyed paper. However, since there is almost
a universal use of λ for the arrival rate and µ for the service rate, we
use these notations without redefining them. We also often use ρ for the
utilization factor, when it equals λ/µ.

5A similar approach is adopted in [594]. See page x of [594] for justification.
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1.4 Basic models and assumptions

The first mathematical model of a queueing system with rational customers
was formulated by Naor [497] (1969) (see [1] §2). Naor’s queue is observable,
meaning customers know the queue length when deciding whether to join
the queue or to balk. The model assumes an M/M/1 server, homogeneous
customers valuing service at R and incurring waiting costs at rate C per unit
time while waiting and during service.
The first unobservable models, where customers do not know the queue

length when deciding whether to join or balk were formulated by Littlechild
[448] (1974) under the assumption of customer heterogeneity, and by Edelson
and Hildebrand (E&H) [221] (1975) under the assumption of customer homo-
geneity. The E&H model is the unobservable version of Naor’s model (see [1]
§3).6

Generally, it is assumed that the cost associated with joining a queue is a
two-variable function, C(p, w), where p is a monetary fee, and w measures the
sojourn time. A common assumption is that C(p, w) is a function of p+ c(w)
which is the full price (or, full cost) incurred by the customer. A customer
would join the queue if the service value is at least the expected full price.
Similarly, when choosing among different servers offering the same service,
customers prefer servers with a smaller full price (see §1.5).
Naor’s model assumes customers to be risk neutral, and this assumption

is common to most of the literature. We make this assumption everywhere
unless otherwise explicitly stated. Thus, it is understood that customers max-
imize expected net benefit. In Naor’s model, the net benefit is (w.l.o.g.) 0 for
balking, and R − p − Cw for joining, where w is the expected waiting time
conditioned on available information. It follows that in Naor’s observable case
there is a pure equilibrium strategy defined by a threshold or critical value that
distinguishes between queue lengths that prescribe joining and those which
prescribe balking. In the E&H unobservable case, either all customers join in
equilibrium, or none do, or the equilibrium strategy is mixed and the joining
rate is such that customers are indifferent between joining and balking.

The common optimality criterion is the long-run average return for the
server or for the system. In some cases discounted return is optimized, but
the qualitative conclusions are often the same, and unless the difference is
important we will not specify this assumption.

6The SO arrival rate in this model has already been computed by Hillier [341] (1964),
see [594] §1.2.1.
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1.5 Demand

Waiting is the main feature of a queueing system, and in most cases waiting
is costly. Most models assume waiting cost to be borne by the customers. In
other models the firm bears the waiting costs, known as holding costs. Common
performance measures that affect customer welfare are: service value – utility
obtained upon service completion; waiting time – time a customer spends in
the system from arrival to service completion; cost – nominal payments asso-
ciated with service; loss probability – the probability a customer request is not
fulfilled (either being rejected or following the customer’s reneging decision);
throughput – average rate of served requests; and fill rate – the probability
of immediately obtaining service without queueing. Customer net utility can
be a function of several of these performance measures. It is common to dis-
tinguish relevant measures by saying that a customer is price sensitive, delay
sensitive, etc.7

A commonly used approach is the Littlechild-Mendelson demand model
(see [1] §3.3, §4.4.3, and §8.1). Suppose that the potential arrival rate to the
system is Λ, and customers have heterogeneous service valuations. The value
function V (λ) is the total value generated when the fraction λ/Λ of the cus-
tomers with the highest service values is served. This function is increasing
and concave. Alternatively, suppose that customers are homogeneous but the
quality of service deteriorates as more customers are served. Then V (λ) is the
system value rate of serving λ customers per unit time.8 Given the expected
cost x associated with joining the system and waiting to be served, customers
who value service above x will join. Hence a demand function λ(x) can be
derived from the relation V ′(λ) = x. For example, V (λ) = aλ − bλ2 with
a, b > 0 yields the linear demand function λ(x) = (a− x)/2b. In many cases,
x is the full price composed of a nominal fee and waiting costs.

1.5.1 Substitution effects

An important part of the strategic queueing literature deals with non-
monopolistic markets (see [1] §7). Consider a market with two firms providing
the same service (or, substitutable services) at prices p1 < p2 and delays W1 >
W2. Suppose that the waiting-cost rate C is distributed within the population
according to a cdf F , and the service value R is the same at both service

7It is common to assume that customers are sensitive to quality of service, but the
meaning of this term is not unique and it may refer to expected sojourn time, rate of
service, or value of service.
8This interpretation applies to [420], where the value from serving demand Γj =

∑
i
λij

depends on the aggregate demand Γj , but not on its components (λij) that belong to
different users.
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providers. Then, the customers choosing firm 1 are those with C value such
that p1+CW1 < min{R, p2+CW2}, those with p2+CW2 < min{R, p1+CW1}
will choose firm 2, and the rest will balk. Let Λ be the market size, i.e., the
potential demand rate, then the demand functions are:

λ1 = ΛF
(
min

(
p2 − p1
W1 −W2

,
R− p1
W1

))
(1.1)

λ2 = ΛF
(
R− p2
W2

)
− ΛF

(
p2 − p1
W1 −W2

)
.

The effects that competitors’ prices and delays have on a firm’s demand are
commonly referred to as substitution effects, and reflects situations where an
increase in price or delay might lead users to instead use a substitute.
A commonly used alternative is the linear demand function which also

incorporates substitution effects:

λi = ai − bipi + βipj − ciWi + γiWj j = 3− i i = 1, 2. (1.2)

The β constants are the substitutability coefficients.
Note that the demand function (1.2) allows customers to choose firm 2

even when firm 1 dominates in both dimensions of price and delay, that is,
p1 < p2 andW1 < W2. Justification for this would be explained through other
variables that are not explicit in the model, such as location and quality, and
the market structure is one of monopolistic competition. In contrast, under
the full-price approach only firms with the minimum full price receive positive
demand.

1.5.2 Attraction models

In most strategic queueing models each customer chooses the option that
maximizes his utility. A different approach is represented by attraction demand
models. Here, there is a function that determines the probability of choosing an
option, with better options being chosen more often. In general, if the attrac-
tiveness of option i is vi, then the probability it is chosen is ai(vi)/

∑
aj(vj).

For example, vi can be the value of obtaining service at firm i and it can
depend on such parameters as the price and quality (often measured in terms
of delay) of this firm. Some common attractiveness functions are (see [243]):

� Multinomial logit (MNL): ai(v) = exp(−αiv), with αi > 0.

� Cobb-Douglas: ai(v) = v−αi , with αi > 1.

� Linear: ai(v) = αi − βiv with αi, βi > 0.
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The attraction model is supported by a derivation corresponding to a set
of axioms about the market behavior.9 An alternative approach leading to an
attraction model10 derives the logit choice by assuming players make errors in
choosing their strategy. The resulting equilibrium is called Quantal Response
Equilibrium (QRE), and with the logit function it becomes a logit quantal
response equilibrium (LQRE). It is common to apply QRE when analyzing
laboratory experiments. Some authors (e.g., [332, 351, 442]), explicitly refer
to logit choice as irrational and incorporate a parameter that expresses the
degree of irrationality.

1.5.3 Hotelling-type models

Hotelling-type models assume customers reside in a linear city. Each cus-
tomer considers the distance between his location and the server’s location
and the congestion at the server while deciding whether to join a queue. The
location of the server is often a decision variable. In a more general context,
the server’s location may indicate the relative positioning of a product on
a one-dimensional parameter space, and customers express preference for a
product positioned closer to their ideal types.

1.6 Information

The information of decision makers when making strategic decisions is a
crucial part of the model and the effect of improved information is a major
subject of research. Some popular information levels are:

� Observable workload: Customer service durations are known upon
arrival and decision makers know the system workload, which is the total
remaining service time for all customers in the system. When customers
are risk neutral, the outcome is similar when queue length and expected
residual (or outstanding) service time is observable (for example [520]).

� Observable queue: Full real-time information on the system state of
the system is available. It is assumed, however, that the system workload
is not observable, unless otherwise stated.

9Mainly, if the attraction of a brand changes by a given amount, the market share of the
other brands is affected equally. See D.E. Bell, R.L. Keeney, and J.D.C. Little, ‘A market
share theorem,” Journal of Marketing Research 12(2) (1975) 136-141, and P.S.H. Leeflang,
D.R. Wittink, M. Wedel, and P.A. Naert, Building Models for Marketing Decisions Kluwer
(2000) §9.4.
10See, R.D. McKelvey and T.R. Palfrey, “Quantal response equilibria for normal form
game,” Games and Economic Behavior 10(1) (1995) 6-38.
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� Unobservable queue: Real-time information on the state is not avail-
able.

� Almost unobservable queue: Decision makers have information on
the state of the server, such as being repaired, idle, etc., but not on
queue length.

� Almost-observable queue: Decision makers know the queue length
but not the state of the server.

The almost-observable and almost-unobservable terms were coined in [115]
and can be classified as partially observable. There are many other models
of partial information. For example: (i) customers know whether they are in
service but cannot observe the queue length; (ii) queue length is observable
but no information is available on residual service time of the current service
(when service is not exponential) or arrival history (when the arrival process
is not Poisson), or queue composition (for example, in a priority queue); (iii)
there are two (or more) queues but only one is observable [50, 242, 304], or
only the total number of customers is observable [182]; (iv) customers know
whether the server is busy and whether the queue is empty [324, 573]; (v)
the number of customers joining the queue since the arrival of the currently
served customer is known, but customers also renege from the queue and this
process is not observable [671, 414]; (vi) in a multi-queue system, customers
observe their own queue but not the other queues [74]. Fung [239] (2001)
describes other interesting settings of partial information related to multi-step
service processes. For example, a potential customer may see the occupancy
of a restaurant or the number of people waiting to be seated, but not their
orders nor the queues at the kitchen. Similarly, in a queueing network one may
observe the total number of customers in the network but not their locations.
It is common to emphasize the extreme cases of information by referring

to the observable and unobservable models as fully observable and full unob-
servable.
Limited communication constraints may also result in partial infor-

mation. In [640] it is assumed that reports on the realization of a random
parameter on some interval are subject to a limit on the size of the message
space. Consequently the interval is partitioned and only the subinterval con-
taining the realized value is announced. The compartmental model of [218]
can also be interpreted as an example of limited communication.
Environmental uncertainty arises when decision makers lack informa-

tion concerning system parameters like service rate, waiting costs, or quality
of service.

� Terminology regarding queue information is inconsistent, and terms like
“full information” or “partial information” have different meanings in
different papers. For example, in [284], the term no information is used
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to describe the unobservable case, partial information when queue length
is observable, and full information for an observable workload.11

� Since most of the literature is on unobservable models we present most
of the summaries of observable models in a single chapter. Unobservable
models are classified according to secondary features, and we often do
not explicitly state that the models pertain to unobservable queues.

� In some papers, the delay costs are charged to the server and customers
are assumed to be price sensitive but not delay sensitive. In such cases
it is unimportant whether the queue observable because customers are
indifferent to queue-length information.

� Dynamic, state-dependent control provides queue-length information.
In particular, if different prices are charged at different states a rational
customer can deduce the state from the price, thereby indirectly making
the queue length observable. In other cases, there is one price when con-
gestion is low and another price when congestion is high which provides
customers with partial information on the system state.

1.7 Social optimality

In equilibrium, every agent applies an individually optimal (IO) strategy
given the strategies of the other agents (i.e., the strategy profile). It is com-
mon, therefore, to refer to the equilibrium as the solution obtained under IO
behavior.
The socially optimal (SO) solution itself is not of central interest in this

survey, and our interest in it primarily is as a benchmark for comparison
with the equilibrium solution. For example, we are interested in whether it
is possible to apply incentive mechanisms that induce an equilibrium that is
also SO. In such a case it is common to say the mechanism coordinates the
system.
Often the SO solution is denoted as centralized, meaning it is obtained

when everybody obeys a central planner whose goal is to maximize the sys-
tem’s benefit. This is in contrast to decentralized equilibrium.
A recent surge of research quantifies system inefficiency (or suboptimality)

with the main focus being on worst case analysis. This type of research has
been applied in the context of queueing systems as early as 1985 [592]. The
term Price of Anarchy (PoA) has been popularized by this research and

11Some authors refer to visible and invisible queues. However, the term “invisible queue”
forms the impression customers are not aware of the existence of a queue, like for example
when the queue is part of a multi-step service process [239]. In contrast, “unobservable”
clearly indicates customers cannot observe the queue though they are aware of its existence.
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has been extensively used in routing models with various latency functions.
See, for example, Part III of the book of Nisan, Roughgarden, Tardos, and
Vazirani [503] (2007), and in particular the survey included by Vöcking. Our
interest here is mainly in results that explicitly use latency functions related
to queueing systems.
The Price of Anarchy is the ratio of the SO value of a performance measure

to the worst case value of this measure under equilibrium.12 The price of
stability is similarly defined, except it considers the best rather than the worst
equilibrium, and is more appropriate when the preferred equilibrium can be
induced (see, for example, [229]).
A more conservative measure than PoA is the coincident cost degradation

[381, 382], which measures the degree of Pareto inferiority and provides a
ratio such that the equilibrium payoffs of each customer can be increased
by at least this value. These measures are also used to compare equilibrium
solutions in two systems (see §8.6). This is appropriate when the interest is
in the frontier of individual welfare values. When all customers have the same
expected utility under the equilibrium and optimal solutions, the coincident
cost degradation value is identical to the PoA.13

The definition of the SO strategy may differ according to context, and that
choice will affect the way equilibrium inefficiency is measured. We mention two
examples:

� In §4.1.1 we describe models where customers independently decide
when to arrive to the system. A strategy is a density function over
an interval. The SO strategy computed in [310] gives the social-welfare
maximizing density function. Another possible definition would be the
optimal appointment system in which customers are given deterministic
arrival times [327].

� Suppose homogeneous customers choose from (or are routed to) a finite
set of unobservable queues. Symmetric equilibrium defines the probabil-
ity of a customer selecting each queue. The SO solution may also define
such routing probabilities ([85],[1] §3.7, [594] §1.5), but a better solution
is presented in [61] where routing is controlled by a broker with memory
in a round-robin strategy alternating equally among the servers (§5.4).

12When costs are considered, PoA is the ratio between the worst equilibrium value and
the SO value so that always PoA­ 1.
13These theoretical worst-case measures do not necessarily reflect real-life practice. For
example, Qiu, Yang, Zhang, and Shenker [538] (2006) demonstrate through simu-
lations that in a realistic Internet-like environment and under various queueing latency
functions the equilibrium routing latency is close to optimal.
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1.8 Useful concepts

1.8.1 Externalities

Externalities in a queueing system are naturally generated when a cus-
tomer joins the queue, and are generally expected to be negative. However,
joining may also be associated with positive externalities, like for example
when long queues induce faster service, or in models with (positive) network
effects (see §5.2).
Other actions by customers can also generate positive externalities. For

example, when some of the customers of a multi-queue system inspect sev-
eral queues before joining the shortest one the variation in the queue lengths
decreases, which may increase the expected utility for other customers.
Interesting aspects of negative externalities in simple queueing systems are

discussed by Haviv and Ritov [329] (1998). In these systems, the externality
is the difference between the actual total waiting time of the others when a
given customer is present and when he is not. It can be computed as the differ-
ence between the expected waiting time of a customer who attains the lowest
possible preemptive priority and the expected waiting time in the system. For
example, in an M/M/1 queue this gives 1

µ(1−ρ)2 −
1
µ−λ =

ρ
µ(1−ρ)2 .

14 A disad-
vantage of this measure is that the externalities exceed the total waiting time.
The authors overcome this drawback by defining an alternative measure, the
(expected) tangible externality, defined as the (expected) total queueing time
added to the others while the customer is in service.

1.8.2 Avoid the crowd or follow the crowd

A central distinction in queues with a single decision type is whether cus-
tomers are more encouraged to follow a given type of action when others do
it with increasing tendency.
The importance of this distinction and its consequences on symmetric equi-

librium solutions in queueing systems with homogeneous customers was rec-
ognized by Hassin and Haviv [307] (1997), where the following terms were
coined. When an individual best response to a threshold strategy adopted by
the rest of the population is a nondecreasing function of the threshold, this be-
havior is called follow the crowd, or FTC; the opposite behavior is called avoid
the crowd, or ATC.15 One may think that ATC is a natural characteristic of
queueing models, thus it would come as a surprise that a large number of nat-

14See also [322].
15ATC and FTC are closely related to the game theoretical concepts strategic substitutes
and strategic complements. These terms are usually used in contexts of two-player games.
When studying rational queueing, we often consider many players, assume that all but one
use the same strategy, and observe its effect on the particular player. Technically, however,
the situations are similar.
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ural queueing models exhibit FTC behavior. Several of these are mentioned
in [1].
Queueing systems often enjoy scale economics, i.e., the system’s cost per

unit of served demand decreases with served demand. This expresses the ad-
vantage provided by increased demand to the overall performance of the sys-
tem. In contrast, FTC expresses advantages to an individual’s welfare brought
about when others join him in the same behavior.
A simple example of ATC is the unobservable E&H queue. A strategy is

defined by a joining probability p. The expected queue length increases in p
and therefore motivation to join decreases with p. Therefore, this is an ATC
situation. Similarly simple is the example analyzed by Hassin and Haviv in [1]
§4.2. An M/M/1 queue has two absolute priority classes. Buying high priority
comes at a fixed cost and the strategy is defined by the probability of buying
priority. The authors prove that customer motivation to buy priority increases
with this probability and therefore this is an FTC case.
ATC leads to a unique symmetric equilibrium whereas FTC typically leads

to multiple symmetric equilibria. This difference is also explained in the in-
troduction of [1].
ATC and FTC are defined for situations with a one-dimensional state

variable. In many interesting models the system state is two dimensional,
say (i, j), and customer strategy is characterized by a switching curve. Thus
for every given i the values of j for which a certain action is prescribed are
those below a threshold ni. Typically these thresholds are monotone in i.
Here we can often observe ATC or FTC behavior. There are such ATC models
([306, 389], for example) that exhibit uniqueness of the symmetric equilibrium,
but no general theory is known.
ATC and FTC behaviors can also be observed when the decisions being

made are multidimensional. For instance, when a customer chooses from three
options and ATC is observed for any two of them when the probability of
selecting the third is fixed. This is a pairwise-ATC situation [313].
Though a rigorous proof that a model is ATC or FTC may turn out to

be quite involved, these properties can often be intuitively expected. Our
approach will be to supply this intuition and refer the reader to the original
paper for the analytical proof.
One would be wrong in thinking that ATC is associated with negative ex-

ternalities while FTC is associated with positive externalities. ATC and FTC
refer to effects on behavior, whereas externalities refer to effects on welfare.
For example, joining a priority queue is associated with negative externalities
but the behavior is FTC (see [1] §4.1-2).16

When we deal with asymmetric equilibria, ATC behavior does not guaran-
tee uniqueness of the solution. Suppose for instance that there are two players
and each selects a number in [0, 1]. If the best response to a choice x by one

16Joining in Naor’s model is associated with negative externalities, but the model is
neither ATC nor FTC since a customer decision to join or balk is independent of the
strategies adopted by the others.
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of them is 1 − x, then this is an ATC situation where every x ∈ [0, 1] is an
equilibrium. The best response to x is 1− x and the best response to 1− x is
indeed x. However, there is just one symmetric equilibrium, at 1/2. A similar
situation is described in [446], see §5.4.

1.8.3 The cµ- and Gcµ-rules

Optimal priority strategies in unobservable queues with convex delay costs
were considered by Haji and Newell [296] (1971) and generalized by Van
Mieghem (see [1] §4.6) and Mandelbaum and Stolyar [466] (2004). The gener-
alizations show that a variation of the well-known cµ-rule is close to optimal:
the priority index at any give time is proportional to the product of service
rate times marginal cost of delay.

1.8.4 Asymmetric information

In a model with heterogeneous customers there is natural interest in seg-
menting the market and exploiting customer attributes to increase social wel-
fare or profits. For example, customers can be discriminated by price or by
priority. The only restriction is that customers’ expected utility must be non-
negative so customers agree to participate in the game. Such restrictions are
referred to as individual rationality (IR) constraints (or participation con-
straints). Often, however, when dealing with strategic customers the model
assumes asymmetric information, i.e., each customer has private information
that is not available to the queue manager, like service valuation, time cost,
or service requirement. In equilibrium, each customer selects at most one con-
tract offered by the server such that the expected utility associated with this
contract satisfies two types of constraints: The IR constraints which assure
that the utility is nonnegative, and incentive-compatibility (IC) constraints
which assure that it is not less than any of the expected utilities from the
alternative options. When the contract satisfies these requirements, discrim-
ination by customer types is not necessary and customers voluntarily choose
the option intended for them to use.
The revelation principle is very useful in solving models such as these.

Suppose there are n customer types. The revelation principle states that if
there exists a menu of contract options that induces an equilibrium with a
certain payoff, then a payoff at least as good can always be induced by a
menu of k ¬ n options and an equilibrium in which all customers of a given
type select the same option.
Supply-chain literature often considers long-term contracts which motivate

agents to behave according to the contract designer’s goal. In some cases the
models assume symmetric information (e.g., [120, 657]) but contracts are tied
to output rather than to an observable effort. Other models assume that effort
is not directly observable and only output is contractible. We note however
that asymmetric information is not typical in a long-term relation. The fol-
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lowing quotation from [533] describes in a setting where the supplier’s service
rate is not directly observable by the retailer, “By observing the timing of the
agent’s output (jumps in the inventory level), the principal can draw inference
about his choice of production rate.” Thus meaning that in the long run the
service rate, even the complete service distribution, can be inferred and be-
comes contractible. However, the authors prefer to link payments to directly
observed variables: “by making payments to the agent contingent on the in-
ventory process, the principal can create incentives for the agent to control
the production rate in the manner she desires.”

1.8.5 Heavy traffic

Halfin and Whitt [297] (1981) consider a sequence of M/M/s queues and
show that as demand rate Λ grows, the probability of positive queueing delay
converges to a number in (0,1) iff s grows with Λ according to a square-root
staffing rule s = R + β

√
R + o(

√
R), where R = Λ/β and β is a positive

constant.
The following classification is defined by Borst, Mandelbaum, and Reiman

[99] (2004), depending on how monopolistic firms respond to an increase in
market size: (i) efficiency-driven (ED ) where almost all customers experi-
ence some delay before starting service; (ii) quality-driven (QD) where almost
all customers start service immediately; (iii) quality- and efficiency-driven
(QED) where a nontrivial fraction of customers receive service immediately.
The last is also known as the Halfin-Whitt regime.
In some models, heavy traffic is induced by the optimal solution rather

than being an assumption of the model. See [65, 66, 422, 528, 531, 532].

1.8.6 Achievable region

In many multiclass queueing systems the steady-state performance mea-
sures, in particular the expected system time, satisfy conservation laws such
that total performance over all classes is invariant under work-conserving
queue regimes. The performance space, or achievable region, is then a poly-
hedron that can be characterized by its extreme points. A class of scheduling
policies is complete if any point in the achievable region can be realized with
a policy from this class. Relevant results relating to this subject are surveyed
in [312] and Appendix A of [594].
Coffman and Mitrani [170] (1980) characterize the achievable region of

M/M/1 queues with n classes and preemption allowed. The extreme points
of the achievable region correspond to the preemptive priority disciplines as-
sociated with the n! permutations of the classes. Every other point in the
achievable region can be obtained by randomizing over absolute priority disci-
plines. Similar results have been shown for more general models, for example,
in Federgruen and Groenevelt [233] (1988), and Shanthikumar and Yao [568]
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(1992). This characterization enables us to compute optimal service schedules
(priority disciplines) which maximize system-wide performance objectives.
A drawback of this approach, especially when customers act strategically,

is that it requires randomization among absolute-priority regimes in a way
that will not affect customer behavior. The straightforward way would be
to randomly choose (with the appropriate probabilities) an absolute-priority
regime yet conceal it from the customers. Another idea, offered by Coffman
and Mitrani, is to randomize at the beginning of every busy period and adopt
the resulting discipline to the end of the busy period. Hassin, Puerto, and
Fernández [312] (2009) use discriminatory processor sharing (DPS). Under
this regime there exist weights xi ∈ (0, 1),

∑
xi = 1, representing relative pri-

orities;17 if ni i-customers are present in the system, a j-customer receives a
fraction pj = xj/

∑
nixi of the service capacity. If service is exponential, this

is equivalent to having a lottery upon service completion giving this service to
any given j-customer with probability pj .18 Every point in the relative interior
of the performance space is achievable by a suitable choice of relative prior-
ities, and therefore system optimization may be achieved without the need
to conceal the details of the priority rule. Sinha, Rangaraj, and Hemachan-
dra [580] (2010) optimize over the achievable region through delay-dependent
dynamic priorities. See §6.6.2.

1.8.7 Double-ended queues and MTS servers

When firms hold an inventory of finished goods it is common to say they
make to stock (MTS). Otherwise, if customers must wait for their requests to
be processed, the firms make to order (MTO). The latter terminology does not
imply that the firm produces customized products but simply that it holds no
stock. An MTO firm can be modeled as a queueing system where customers
wait for their orders to be completed. In some cases the firm maintains a queue
at no-stock periods and makes to stock when the queue is empty. This situation
can be described by a double-ended queue where positive queue lengths refer
to customers, as under MTO, and negative queue lengths refer to the number
of units held in stock. A common policy in MTS systems is to produce as long
as the queue length is below a base-stock level b. When stock level reaches
b, production stops until a new customer arrives. When the queue length is
negative an arriving customer immediately obtains a unit and the queue length
increases by one.19

17When these weights are equal for all customer classes we get the egalitarian processor
sharing (EPS) regime.
18See Remark 1.1 in [309].
19The MTO policy is simply the case where b = 0.
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1.8.8 Bounded rationality

We focus on models that assume rational decisions. Often rational decisions
require simple calculations, for example estimating the expected waiting costs
in a first-come first-served observable Markovian queue. However, in other
cases the rational decision model assumes the individual can solve compli-
cated problems, like estimating the equilibrium solution when customers use
private signals about the quality of service at different servers.20 It is quite un-
likely that customers can make such calculations in practice and many papers
assume, explicitly or implicitly, that customers follow simpler guidelines.21

We include these models and point out where the model deviates from the
rationality assumption. Some of these cases can be explained by a bounded
rationality assumption – individuals are unable to perform the necessary cal-
culations.
The following example illustrates this point. Reneging from an unobserv-

able queue means that each customer is associated with a reneging time, and
a customer will abandon the queue if service does not start (or end) within
this time. It is commonplace to assume that the reneging time is an exponen-
tial random variable. Whitt [660] explains the assumptions that support such
behavior as follows:

We assume that each customer is willing to wait a fixed time before
beginning service, called the delay threshold. However, different
customers may have different delay thresholds ... so that we assume
that successive customers are willing to wait random times that
are independent and identically distributed ... With probability β,
a customer is unwilling to wait any amount of time, and so will
balk.

This description relates to customer heterogeneity, but ignores customer’s
strategic considerations. Rational behavior can lead to reneging for several
reasons, for example, a service distribution with decreasing failure rate, de-
creasing value of service, increasing waiting-cost rates, and improved estimates
of system parameters obtained by observing the queue.
A rational customer is expected to use his knowledge on system parameters

and customer strategies when deciding on his own strategy.

20 In another example, Zohar, Mandelbaum, and Shimkin [719] remark that rational
customers are expected to base their reneging decision on the entire delay distribution,
however, “a typical customer can hardly be expected to form a clear estimate of the entire
waiting-time distribution based on limited experience.”
21Lu, Musalem, Olivares, and Schilkrut [459] (2013) describe an empirical study
on the effect of queue length and number of servers on queue joining behavior in a deli
section of a supermarket. While the required calculation here is quite simple, customers
adopted a very simple approximation and primarily relied on the queue length as a measure
of congestion, ignoring the number of servers. Therefore, pooling queues may encourage
balking. Conte, Scarsini, and Sürücü [173] (2016) conduct a laboratory experiment
where individuals select among servers with different price, service rate, and queue length.
They find that the higher the time pressure the greater the observed deviation from rational
behavior.
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General literature on bounded rationality is surveyed in [351].

1.8.9 Delay guarantees and quote sensitivity

It is common to identify quality of service with a delay-related measure.
Service obtained through queueing is related to the class of experience goods –
products which must be used for their quality to be observed. In an observable
queue a customer knows queue length, whereas waiting time remains a random
variable. In unobservable queues even queue length is a random variable.
In the presence of asymmetric information the firm may have better ability

to estimate the delay measure than do its customers. The firm usually has more
accurate knowledge than its customers on the system state and parameters.
The firm may find that revealing such information to customers serves its
goals, or it may prefer to conceal this information.
Firms often exploit customer naivety by strategically choosing a policy of

lead-time guarantees to maximize profits. In particular, the joining strategy
of naive customers may depend on promised delivery time (PDT) rather than
on the actual waiting-time distribution. Rational customers may suspect that
the announced delay is biased due to the firm’s desire to attract potential
customers.
We reserve the term PDT to delay announcements made when there are

penalties imposed on the firm for late and, possibly also early, delivery. These
penalties motivate the firm to quote true values and increase its credibility.
A different approach assumes the firm compensates its customers, fully or
partially, for lateness, and this will affect their strategy. The compensation
mechanism serves as a signal of the firm’s desire and ability to fulfill its com-
mitments. Still, the PDT is a consequence of the firm’s optimization and it
need not be a reliable measure.
Rational customers use the quoted information to form their own estimates

on the statistical properties of the delay distribution.22 Many models assume,
however, that customers take delay announcements at face value even when
there is no guarantee of reliability.23 This behavior can be interpreted as a
form of bounded rationality.
When capacity is a decision variable, the firm sets the smallest capacity

that fulfills the commitment. This means that capacity and lead time are
interchangeable decision variables.
Delay guarantees can take various forms, the most common are (i) a defi-

nite reliable guarantee accompanied with the option of the server outsourcing
(or “expediting”) the work or purchasing the demanded item at a price that

22See [31] for a model of customers using the server’s announcements in a rational way.
23Keskinocak and Tayur [399] (2004) describe over 100 papers on due-date manage-
ment (DDM) in service systems. They comment that “Most of the research on DDM ignores
the impact of the quoted due dates on the customers’ decision to place an order.” The only
exceptions are six papers (described there in §6.1) which allow due date dependent customer
decisions, and nine papers (in §6.2) which allow due date and price-dependent decisions.
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exceeds its own production cost, (ii) a guarantee on expected lead time, (iii) a
delay standard (or, delay guarantee) D and a reliability level α such that the
delivery time reliability constraint Pr(W < D) ­ α, is satisfied. The reliability
level α is also referred to as lead-time reliability guarantee, or service level.
Distinction between the last two forms is often not essential. For example,

the sojourn time of an M/M/1 queue is distributed exp(µ − λ), and the α-
fractile of the distribution is Wα =

− ln(1−α)
µ−λ , which is a scaled version of

the expected sojourn time 1
µ−λ . Therefore, the particular choice of α by the

firm should not affect customer behavior, but when it does have an effect we
attribute it to bounded rationality (see §11.3.3).
Information supplied by a server may either be static like for example the

expected sojourn time, or may be dynamically updated according to the cur-
rent state of the system. When the PDT is state-dependent rational customers
can deduce the state of the system from the quoted delay guarantee, but under
a bounded rationality assumption they ignore this information.
Kopalle and Lehmann [408] (2006). investigate a multi-period non-

queueing model of experience goods. Similar ideas could be used to study
the dynamics of expectations and endogenize the penalties associated with
inaccurate PDTs in strategic queueing models.

1.9 Terminology conventions

Indices and summation: When dealing with a finite number of agents
or agent types, they are often indexed. We refer to “server i,” or to an “i-
customer,” or to demand rate λi without explicitly describing the range, for
example, i = 1, . . . , n. Similarly, when summing indexed quantities with no
risk of ambiguity we omit the range of summation and write, for example,∑
λi for

∑n
i=1 λi.

Markovian queues: This term is used when the distributions of all random
variables related to time, such as arrivals, service, reneging, and vacations are
assumed to be exponential.

Perfectly correlated service valuations and waiting costs: The most
common types of customer heterogeneity are waiting costs and service valu-
ations. In some cases the model is simplified by assuming perfect correlation
between these parameters, i.e., C = f(V ), where C is the waiting-cost rate
and V is the service value. Some models assume these parameters are affinely
related, i.e., C = a+ b · V , or linearly related, when a = 0 and without loss of
generality, b = 1.

Atomic customers: Customers are said to be atomic if each has a non-
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negligible demand. Otherwise, when there is a continuum of users, each with
an infinitesimal amount of demand, they are non-atomic. It is common to
refer to jobs submitted by an atomic customer as a cooperative class, and the
resulting model is said to involve class or sectoral optimization.

Queue regimes: Unless otherwise mentioned, the queue discipline is assumed
to be first-come first-served (FCFS). The notation LCFS (LCFS-PR) is used
to denote the last-come first-served (preemptive-resume) queue. The discipline
of serving in random order is denoted SIRO. Egalitarian processor sharing is
denoted EPS.

Abbreviations: In addition to queue regimes, we use the following abbrevi-
ations:
ATC - avoid the crowd
E&H - Edelson and Hildebrand’s unobservable queue
FTC - follow the crowd
IO - individually optimal
IR - individual rationality (or, individually rational)
IC - incentive compatibility (or, incentive compatible)
MTO - make to order
MTS - make to stock
PDT - promised delivery time
SO - socially optimal (system optimal)
cdf - cumulative distribution function
pdf - probability distribution function

Terminology: Different papers, especially when appearing in journals from
different areas, use different terminology to describe the same entity. We use
these terms interchangeably. Here are some examples:
server = firm/provider/agent/system manager
arrival rate = market size/demand
effective arrival rate = throughput
traffic intensity = load/utilization
capacity = service rate/processing rate/production rate
delay = waiting time/lead time/sojourn time/response time/
system time/order time fulfillment time/completion time/flow time/
responsiveness/latency/end-to-end delay

waiting cost = delay cost/delay sensitivity/time cost
waiting-cost rate = impatience factor/parameter
service value = willingness to pay/reservation price
socially optimal = welfare maximizing/efficient/centralized
flexible customers = non-dedicated customers/switchable customers
self-financing = break-even budget/balanced budget
reneging = abandonment/defection/cancellation
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1.10 Plan

Our starting point, Chapter 2, deals with observable queues. The main rea-
son for this choice is that whether a queue can be observed by customers seems
to be the first and most important assumption that distinguishes a model.
These models assume state-dependent behavior which is typical of queues
and distinguishes them from other congested systems. Most other models as-
sume unobservable queues and the assumption is so common that it is often
not explicitly mentioned in the paper.
Clearly, whether a queue is observable is a matter of information avail-

able to customers. Chapter 3 concentrates on other types of information in
queueing systems but also considers comparisons between observable and un-
observable variations and incentives for information disclosure.
The three common objectives in a queueing system are maximization of in-

dividual utilities, of social welfare, or of profits. Chapters 4 through 7 contain
relevant models according to this classification. Individual non-cooperative be-
havior is the subject of Chapter 4, social optimization is the subject of Chapter
5. Profit maximization is divided into two parts, monopolistic environments
are considered in Chapter 6, competitive markets are the subject of Chapter 7.
Chapter 8 deals with queueing networks, from simple parallel servers to gen-
eral network structures. Planned vacations are common in strategic queueing
and forced vacations (such as breakdowns) strongly affect system behavior.
Chapter 9 is devoted to these models. Supply chains are the subject of Chap-
ter 10. In these models agents have different goals but they all profit when
the system operates efficiently and are ready to enter profitable contractual
agreements. Our last chapter relaxes the assumption of fully rational agents
and allows bounded rationality.





Chapter 2

Observable queues

A queue is observable if customers know its length either by direct observa-
tion it or by indirect inference. For example, queue length can be inferred from
state-dependent (dynamic) price quotes of the server. Otherwise the queue is
unobservable. The rational queueing literature mostly deals with unobserv-
able queues, and this fact is often taken for granted without being explicitly
mentioned. The main reason for focusing on unobservable queues is, probably,
that they are easier to analyze than observable queues. Yet, observable queues
carry with them unique interesting features.

2.1 Extensions and variations of Naor’s model

2.1.1 Extensions

Li [439] (1992) considers an MTS generalization of Naor’s model, where a
firm can also produce to stock. The firm incurs a cost c per unit of production

23
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and a unit holding cost rate of h, and charges an exogenously fixed price
p per unit of sale. When the stock level is positive, an arriving demand is
immediately satisfied. Otherwise, customers join iff the queue is shorter than
a threshold value.
The author derives explicit formulas for the joining threshold and the base-

stock level and shows that:

� The optimal base-stock level is higher if customers are less patient, value
the product less, or have more attractive alternatives.

Brooms [111] (2005) considers a Markovian single-server FCFS sys-
tem with state-dependent service rate: the service rate increases in the queue
length. The number of customers in the system is bounded by its buffer size B.
The arrival rate consists of two independent streams. One stream consisting
of customers who enter the queue if its length is less than B 1 and the other
consisting of strategic customers who join only if the expected waiting time
in the system is less than a threshold θ (and the number of customers already
in the system is less than B).
Since the service rate increases in the number of customers, a customer

gains more from joining when the tendency of others to join increases. The
author rigorously proves the intuitive property that this is an FTC model
(Lemma 5), and hence multiplicity of equilibria is possible. The paper ends
with a model of dynamic learning that leads to a pure stable equilibrium.

Chen and Kulkarni [139, 140] (2006, 2007) extend Naor’s model to
two customer classes. Class 1 customers obtain preemptive resume priority
over class 2 customers. Both individual and social objectives incorporate dis-
counting. The subsystem consisting of class 1 customers provides a solution
to Naor’s single-class model with discounting. In [139] the authors assume
the service value is obtained upon service completion, as in Chen and Frank
(2001) (see [1] §2.7, where the threshold with p = 0 coincides with (1.1) in
[139]). In [140] the service value is received when the customer joins the queue,
and this assumption leads to a different solution.
The authors consider individual, class, and social optimization. They find

that:

� More 1-customers, but fewer 2-customers are accepted by the class-
optimal policy than by the SO policy. The 1-customers result is clearly
expected because of the negative externalities imposed by 1-customers.
The 2-customers result is explained as follows: Since the class-optimal
policy admits more 1-customers, the effect a 2-customer has on other
2-customers will be higher. Therefore, the class-optimal policy admits
less 2-customers.

1This type of customer is not an essential part of the model, but it simplifies the analysis
assuring that the recurrent set of states is not a function of the strategy used by the strategic
customers. This way there is no need to refer to issues as dealt with in [308].
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� More 1-customers join in equilibrium than under the class-optimal (and
hence also the SO) policy. However, the relation of the IO joining of
2-customers and the other two policies can be arbitrary.

Sun and Li [603] (2012) consider the joining decisions of customers with
the nonlinear waiting cost functions c · tm, m = 2, 3. They derive equilibrium
thresholds and provide numerical examples where the order of the equilibrium,
social, and profit-maximizing thresholds is as in Naor’s linear cost model.

Ziani, Rahmoune, and Radjef [715] (2015) solve a variation of Naor’s
model with pairs of customers arriving. When a pair arrives they indepen-
dently decide whether or not to join and are randomly ordered if both join.
In the observable case the authors compute the unique (mixed) symmetric
threshold strategy.2 In the unobservable case the authors compute the unique
symmetric joining probability. They present an example in which the average
customer joining rate is larger in the unobservable case except when service
value is small.3

Wang, Zhang, and Zhang [648] (2014) consider Naor’s model with
a quadratic utility function U(W ) = R − CE(W ) − A · C2VAR(W ), where
W is waiting time. The authors fully characterize of the equilibrium, SO,
and profit-maximizing solutions in both observable and unobservable cases.
Qualitative results when customers are risk averse are similar to those obtained
by Naor and E&H under risk neutrality, and the authors point out interesting
properties when customers are risk seeking:

� In the Observable case: When A is very negative even social welfare
benefits from high congestion and the SO threshold may be infinite.

� In theUnobservable case: Risk seeking induces FTC behavior. When
A is sufficiently negative multiplicity of equilibria (two stable solutions
and one unstable solution) is possible. Moreover, the joining probability
is not necessarily smaller under social optimization than in equilibrium.

Shone, Knight, Harper, Williams, and Minty [575] (2015) extend
Naor’s insight that the state space induced by the SO policy is contained in
the state space induced by IO behavior in equilibrium. They prove this result
for a model with N FCFS M/M/Ci facilities with heterogeneous waiting-cost
rates and service values. The result also holds under customer heterogeneity.

Shi and Lian [571] (2016) consider double-ended Markovian queues
motivated by taxi service. Taxi drivers are not strategic in this model and the

2They also describe the pure asymmetric strategies.
3The authors conclude that the queue owner generally prefers to suppress queue-length

information. Note that arguments similar to those presented in the introduction to §3 indi-
cate social welfare is higher when the queue is observable.
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maximum number of taxis allowed in the station is N . Customers incur linear
waiting costs while taxi operators incur linear waiting costs and a fixed cost
per trip. The value of a ride and price per ride are exogenous.
The authors compute IO and SO customer joining thresholds in an observ-

able version and joining probabilities in an unobservable version and discuss
ways to increase social welfare by controlling N or by the use of taxation and
subsidies.

2.1.2 Non-exponential service distribution

Some non-Markovian extensions of Naor’s results are described in [1] §2.10.
For example, customer strategy is of the (pure) threshold type also in the
observable G/M/s queue. The outcome is similar when the workload or the
time elapsed since the beginning of the current service is observable in a G/G/1
queue. The M/D/1 system under this assumption has been analyzed byAdler
and Naor [7] (1969). Also see [684] for Erlang service distribution with
dynamic pricing, [350] for Erlang service with multiple vacations, and [469] for
a related model with bulk service and general inter-service time distribution,
[696] for an extension of the M/G/1 customer decision model assuming a
generally distributed setup time when a customer arrives to an empty system,
and [637] for the SO threshold in the GI/M/c extension of Naor’s model.

Altman and Hassin [49] (2002) considered an M/G/1 queue where
queue length, but not the expected residual service time, is observable. They
demonstrate that, since the queue length provides information about the ex-
pected residual service time an equilibrium threshold strategy does not nec-
essarily exist. This left open the question of existence and uniqueness of the
equilibrium in such systems and conditions for the existence of an equilibrium
threshold strategy.

A partial answer to these questions was given by Haviv and Kerner
[324] (2007). They assumed an M/G/1 system where an arriving customer
can observe whether the server is idle (in which case the customer enters
service) or busy, and if busy, also whether the queue is empty or not. A sym-
metric equilibrium is characterized by a pair (p, q) where p is the probability
of joining when arriving to an empty queue and q is the probability of joining
when arriving to a nonempty queue. The determination of p and q is done
recursively.4 It is observed that the value of q is not relevant to a customer
arriving to an empty queue. Therefore, the equilibrium value(s) of p can be
computed first. Then, p is used to compute the equilibrium q. Some interesting
features of the solution are:

� Depending on the service distribution, the expected utility from joining

4Similar to [215].
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an empty queue can decrease with p (ATC behavior) and a unique equi-
librium p exists, or it can increase with p (FTC behavior) and multiple
equilibria usually exist. It is also possible that none of these cases will
occur.

� In contrast, ATC always prevails with respect to selecting q; the higher
the value of q selected by others, the higher the expected queue length
given that it is positive, and therefore a customer’s tendency to join
a nonempty queue is smaller. Hence, for any given p value there is a
unique equilibrium q value.

� Examples show that equilibria with q > p exist, that is to say, the
tendency to join a nonempty queue may be greater than that of joining
an empty queue. This result is in line with [49].

Kerner [397] (2011) completes the analysis of the M/G/1 queue where
queue length is observable but not the residual service. Depending on the
service distribution, one may obtain different types of behavior, including
ATC with a unique equilibrium, or FTC with multiple equilibria. Assuming
the probability of joining an empty system is 1, an equilibrium is characterized
by a vector (p1, p2, . . . , pn, . . .) giving the joining probability when an arriving
customer observes n customers in the system. As in [324], the equilibrium
probabilities are solved recursively starting with p1.
The author proves the following results:

� An equilibrium always exists, but it need not be unique or characterized
by a threshold strategy.

� When the service random variable X has decreasing mean residual life,
i.e., E(X − t|X > t) decreases with t, there is a unique equilibrium
strategy, and it is a threshold strategy.

� When X has increasing mean residual life, i.e., E(X−t|X > t) increases
in t, all equilibrium strategies are of the threshold type, and at least one
is pure.

2.1.3 Asymptotic analysis and price of anarchy

Gilboa-Freedman, Hassin, and Kerner [254] (2014) quantify the
extent of the inefficiency observed by Naor [497], that customer equilibrium
behavior in a queueing system is not SO. Naor’s model has two parameters,
namely the traffic intensity ρ = λ/µ and the normalized service value ν =
Rµ/C, where R is the service value (or reward) and C is the waiting-cost
rate.
The authors investigate the behavior of PoA as a function of these two

parameters, and the main results characterize PoA(ρ), which is the supremum
of the PoA over all possible ν-values for a given value of ρ:
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� For most real-life applications, i.e., when ρ < 0.98, PoA(ρ) ¬ 1.5.

� When ρ ¬ 1, PoA(ρ) ¬ 2.

� PoA(ρ) is unbounded for any ρ > 1.

Borgs, Chayes, Doroudi, Harchol-Balter, and Xu [98] (2014) in-
vestigate properties of the SO threshold, n∗, in Naor’s model. They find a new
representation of n∗ using the Lambert W function and use it to show that
the welfare rate under n∗ is closely approximated by µR − C(n∗ + 1). That
is to say, the maximal welfare rate is approximately what would be obtained if
queue length is constantly kept at its maximal length (and therefore the server
is continuously busy).
The authors also find that when R → ∞, n∗ behaves as (1 − ρ)Rµ/C if

ρ < 1, as
√
2Rµ/C if ρ = 1, and as logρ(Rµ/C) if ρ > 1.

Hassin and Koshman [311] (2014) compare the maximum profits ob-
tained in Naor’s model and the profits obtained when the price is R−C/µ, so
customers join iff the server is free (i.e., no queue is maintained). They show
that the latter policy always guarantees at least half of the maximal profit,
and in most cases the loss is quite small. The ratio of 0.5 is asymptotically
obtained when ρ = 1 and ν = RµC →∞.

5

2.1.4 Reneging

See §11.4 for bounded rationality models with reneging decisions.

Cripps and Thomas [176] (2014) consider a discrete-time model of an
observable single-server queue with homogeneous customers who maximize
discounted payoff. The server is bad (i.e., not functioning) with a given prob-
ability and good otherwise.6 In every period there is a single arrival and the
number of customers a good server can serve is geometrically distributed. The
value associated with balking is smaller than the benefit a customer receives
upon service completion. The customer’s goal is to maximize his discounted
payoff.
An arriving customer first faces a join-or-balk decision. Once joining, the

customer continues to observe the queue. Termination of service proves the
server is good. Otherwise, the best-informed customer is the one at the head
of the queue. If this customer reneges then all other customers in the queue
should follow.7 The decision is therefore how long should a customer who

5The significance of ρ = 1 in Naor’s model is interesting and unexpected as all costs and
profits are continuous functions for 0 < ρ < ∞. See also [254] where it is shown that the
PoA in Naor’s model is finite iff ρ ¬ 1.
6Note the similarity to the model of Mandelbaum and Shimkin (2000) (see [1] §5.2.3)

where calling customers do not know whether their call has been accepted or rejected, and
the authors determine the equilibrium reneging strategy.
7See [519, 473] for a model where customers ignore this information.
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arrived to an empty queue and has not seen a service completion wait before
recognizing that the probability of a good server becomes sufficiently small to
justify reneging.
The main result is a characterization of a symmetric equilibrium policy of

the following type: Balk if queue length exceeds a threshold; if queue length
is positive but below threshold join and stay until served or renege when the
first in the queue reneges. If the queue is empty, then join and apply a (mixed)
threshold reneging time strategy.

Debo, Hassin, and Veeraraghavan [183] (2012) consider a model
similar to that of [176] but with the emphasis on the signal a customer obtained
when arriving at an empty system. The server is either good or bad with a
known probability. The value of good (bad) service is positive (negative).
When service ends, its quality is observed by the queueing customers and all
renege if it is bad. In the base model there is no waiting cost, and thus the
only decision is whether to join an empty system.
The authors compute the equilibrium and SO probabilities of joining an

empty system and show that due to positive externalities associated with
joining an empty system, the equilibrium joining probability is smaller than
the respective SO probability. The authors also discuss how queue discipline
mechanisms, like LCFS and SIRO, can be used to improve social welfare.
Afèche and Sarhangian [19] (2015) study pricing under rational reneg-

ing for an observable M/M/1 queue with two predetermined preemptive prior-
ity classes. Customers maximize expected service reward minus a linear delay
cost minus service fees. The special feature of this model is that low-priority
customers can renege when a high-priority customer arrives, and the authors
focus on their behavior. Therefore, the model is simplified by assuming zero
service fee for high-priority customers and thus they join as in Naor’s model
and have no incentive to renege.
The authors show the equilibrium join/balk/renege strategy of low-priority

customers has a threshold structure that depends both on queue composition
and pricing structure. The authors consider pricing as a means to control the
behavior of low-priority customers in the system. A distinguishing feature of
the model is that in the presence of reneging, charging the customer upon
entering the system or upon service completion leads to different outcomes.
Welfare maximization requires charging only a service fee and no entrance
fee (i.e., for order placement or joining the queue). In contrast, revenue max-
imization requires charging not only a service fee, but also an entrance fee.
Moreover, charging only an entrance fee may generate more or less revenue
than charging only a service fee.

2.1.5 Feedback queues

Brooms and Collins [112] (2013) generalize classic results of Naor
(1969) and Yechiali (1971) ([1] §2) to Bernoulli feedback queues. Consider a
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GI/M/1 queue where a customer who completes service is fed back to the end
of the queue with probability p. Arriving customers observe queue length and
decide whether to join or to balk. This extension of Naor’s basic model adds to
it an interesting property, namely that a customer’s decision also depends on
the actions taken by future arrivals in the sense that these customers have the
potential to be ahead of him once he is fed back to the end of the queue. Hence,
the equilibrium strategy here is no longer a dominant strategy. The authors
do not explicitly mention the customer parameter of service value, but instead
define a penalty on balking. They add a crucial assumption that is not needed
in Naor’s original model: Customers who join the queue may not renege during
their sojourn.8 They characterize the equilibrium (possibly mixed) threshold
and socially optimal (pure) threshold and prove several structural properties
that lead to the following conclusions (which conform with the intuition that
this is an ATC system and joining is associated with negative externalities):

� For the M/M/1 case there exists a unique symmetric equilibrium, with
a (possibly mixed) threshold strategy.

� The same property holds in the GI/M/1 case if the strategies are re-
stricted such that the joining probability, given a queue length n, is
non-increasing in n (but no counterexample is known when this restric-
tion is lifted).

� In the M/M/1 case the SO threshold is determined by the same formula
as Naor’s with the exception that Rµ/C is multiplied by (1− p).

� The SO threshold is smaller or equal to the equilibrium threshold.

2.1.6 Priorities

Models of strategic priority selection in observable queues are surveyed
in [1] §4.1. An arriving customer observes the number of customers at each
priority level and decides which priority to buy. The regime within each class is
usually FCFS. Hassin and Haviv [307] (1997) observe that the model leads to
an FTC behavior and multiplicity of (pure and mixed) threshold equilibria.9

Altmann, Daanen, Oliver, and Suárez [52] (2002) present numer-
ical analysis of priority purchase in a system with two (preemptive) priority
classes and Poisson arrivals of homogeneous customers. The model assumes
an EPS regime within a priority class. The authors observe that the equi-
librium joining strategy is the same as when the service order within each
priority class is FCFS: for thresholds n1, n2, customers join the low-priority

8Without this assumption, a customer whose job is fed back faces exactly the same
decision as a new arrival.
9It seems that [307] is the first to consider mixed threshold equilibria in the context of

a queueing system.
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queue if it has at most n1 customers; otherwise they join the high-priority
queue if it has fewer then n2 customers, and they balk if there are already
n1 low-priority customers and n2 high-priority customers. The authors offer
an algorithm for computing pure equilibrium strategies; however, they do not
discuss mixed strategies nor multiple solutions. The theoretical results ob-
tained are compared to experimental data. An instance with heterogeneous
waiting-cost rates is also analyzed.

Printezis and Burnetas [535] (2008) assume an arrival process which
includes a class of time-sensitive customers given an offer to buy priority op-
tions. This class is small and decisions of these customers do not affect the
system’s steady-state distribution. It is further assumed that a customer in
that class is expected to arrive to the system N times in sufficiently spaced
intervals so that the system states remain independent. At the time of arrival,
each customer observes the queue length and decides whether to exercise an
option or to join the end of the queue and wait his turn. Their decision vari-
ables are the number of options to buy and when to exercise an option. The
option price is determined by a profit-maximizing queue manager.
The authors solve this model and mention the natural extension allowing

for the class of customers able to buy priority options to be significantly large.

Engel and Hassin [227] (2016) consider an M/M/1 system with two
first-come first-served queues, an observable system queue (SQ) and an unob-
servable virtual queue (VQ). An arriving customer who finds the server busy
decides which queue to join based on the SQ’s observed length and the condi-
tional VQ expected waiting time.10 Customers in the SQ have non-preemptive
priority over those in the VQ, but waiting in the SQ is more costly than wait-
ing in the VQ.
The authors derive the system steady-state behavior under a (mixed) cus-

tomers’ threshold joining strategy and show that, similar to other priority
systems, the system demonstrates FTC behavior and multiplicity of equilib-
ria.

2.1.7 Competition

Christ and Avi-Itzhak [168] (2002) consider capacity competition in
a Markovian model with two competing servers sharing a common queue.
Service price is exogenous and servers compete by setting service rates. How-
ever, customers cannot observe these rates and therefore do not discriminate
between servers. When both servers are idle, an arriving customer randomly
selects one, and when only one is idle the new arrival joins that one. If both

10This situation resembles Hassin’s (1996) “gas stations” model (see [1] §7.6) where cus-
tomers choose between an observable queue and an unobservable queue. The main difference
is that the gas stations model assumes separate servers while here there is a commons server
for the two queues.
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servers are busy, an arriving customer joins the queue with an exogenous
probability that decreases with queue length, but is independent of the service
rates. Operating cost is increasing and convex in µ, and revenue from serving
a customer is independent of the customer’s sojourn time. The authors prove
the existence of a unique symmetric equilibrium in this game.

Avi-Itzhak, Golany, and Rothblum [75] (2006) explore globally op-
timal service rates in the model of [168], that is, solutions that maximize the
aggregate profit of the two servers. They prove that the solution has sym-
metric service rates which are smaller than those obtained under competition,
and that the system can be coordinated by imposing a penalty proportional
to the service rate.

Deck, Kimbrough, and Mongrain [189] (2014) consider competition
between two firms that set state-independent (static) prices. One firm oper-
ates two single-server queues and the other operates only one such queue.
Customers have heterogeneous waiting-cost rates and identical deterministic
service requirements. The queues are observable; the choice of one of the three
queues or balking is straightforward.
The authors concentrate on price competition between the two firms. They

consider several instances of this setting and compare numerically derived
equilibrium prices with behavior observed in laboratory experiments. The
main research goal is to study the effect of allowing the two-queues firm to
charge different prices. In this case, the firm can reduce the price in one queue
to extract greater market share while increasing the price in the other to ex-
ploit impatient customers. Allowing for price discrimination results in a lower
average price and increased consumer welfare, but, surprisingly, reduces prof-
itability of both firms.
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2.2 The dual approach

IO behavior is often easier to compute than its SO counterpart, as al-
ready reflected in Naor’s work. Hassin [302] (1985) observed that IO behavior
is SO in Naor’s model when the regime is LCFS-PR. This is so because under
LCFS-PR the last job in the queue will remain the last one until leaving the
system and therefore imposes no externalities.11 This observation provides an
alternative way to compute Naor’s SO threshold; Simply compute the indi-
vidual reneging behavior under the LCFS-PR model. This method is referred
to as “the dual approach” in [672]. It is used in [1] §2.3 to compute the SO
threshold in Naor’s model and in [218] for doing the same in a model with
compartmental waiting space.

Xu and Shanthikumar [672] (1993) generalize Naor’s model and com-
pute the SO admission-control policy for FCFS M/M/s ordered-entry queue-
ing systems. In this system, the servers are heterogeneous, new customers are
assigned to the lowest-indexed available server, if one exists, or join an FCFS
queue otherwise.12 The goal is to compute the SO admission threshold. When
s = 1 we obtain Naor’s model.
The authors compare the system with the “dual system” where the regime

is a variation of LCFS.13 Using this comparison they prove the SO policy
is of a threshold type and present exact and approximate formulas for its
computation.

11See §2.3 for other models where non-FCFS disciplines are recommended.
12This policy is assumed, but it may be suboptimal even when the servers are indexed in
a decreasing order of service rates. The optimal strategy may hold a customer in the queue
and wait for a faster server to become free.
13It is interesting to observe that in the dual system service can be preempted and cus-
tomers reassigned. This is not possible in the original system where a fast server may be
idle while a slower one is serving. For models that allow reassignments see [24, 315].
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Kim, Ahn, and Righter [401] (2011) consider an M/M/s system with
service rates µ1 ­ · · · ­ µs. If server i becomes idle with no customer in
the queue, the server takes a vacation in the form of serving a secondary
customer.14 No profit is associated with serving a secondary customer. The
duration of this vacation is exp(µi), as would be in regular service. The goal
in this model is to minimize expected waiting time of primary customers by
deciding whether to start serving a primary customer when a server becomes
available.
The authors apply the dual approach. They compute the equilibrium be-

havior when more recent arrivals have preemptive priority in choosing servers.
They call this multiserver extension of LCFS last-come first-priority (LCFP).
They show that the IO strategy is now of the threshold type: For j = 1, . . . , s,
there exist computable thresholds Tj such that if server j is available the Tjth
job in the queue will use this server. It is now argued that this is the SO pol-
icy: (1) If a job wants to use a given server under IO, then it is also socially
desirable to let it do so because the social alternative is not using the server at
all for the exact same times as it would take to serve the customer (i.e., that
the server takes a vacation). (2) Suppose that even the lowest priority job does
not want to enter service at the idle server. This job causes no externalities
and therefore this decision is SO.

Akgun, Down, and Righter [24] (2014) introduce costs in the M/M/s
model of [401]. Now, customers incur identical waiting cost rates and server j
incurs a processing cost rate βj whenever processing a job.
The authors apply the dual approach assuming the same system under

LCFP with preemption.15 There are two versions of the model:

� With reassignments: At any decision instance (end of service or a
new arrival) all customers in the system (there is no distinction between
customers in service and in the queue) select their server in reverse
order of arrival. In this case, at any decision instance the IO policy
is again SO and of the threshold type: Index the servers by order of
customer preference. For server j there is a threshold Tj such that if
servers 1, . . . , j− 1 were chosen, server j is chosen by the Tjth customer
in the system, if there are that many customers in the system, where
Tj ¬ Tj+1. The other customers choose to wait.

� Without reassignment: As above, but a customer choosing to use a
server must stay with this server until service completion. In this case,
the LCFP-Pr equilibrium behavior is SO when s = 2.

Wang [637] (2015) applies the dual approach to compute the SO thresh-
old in the GI/M/c extension of Naor’s model. For this purpose, the author

14With secondary jobs there is never more than one available server, and this property is
essential for the optimality proof when s > 2.
15Unlike [401], vacations are not required here.



Observable queues 35

constructs a priority mechanism that can be used to regulate the queue. Its
description is simplified in [325] as follows: There are waiting slots numbered
1, 2, . . . and the server always serves the lowest-indexed nonempty slot. An
arriving customer either joins the lowest-indexed vacant slot or balks. As in
[302], customers’ balking behavior is SO.

Haviv and Oz [325] (2016) suggest another non-price mechanism for
regulating the observable M/M/1 queue. Customers joining when the queue
length is below the SO threshold are given preemptive priority over those
joining longer queues. The advantage of this rule is that, in equilibrium, cus-
tomers only join when it is SO to do so and therefore preemption does not
take place.

2.2.1 Altruism and partial control

Gilboa-Freedman and Hassin [253] (2014) deal with a mixed
population where a fraction α consists of altruistic, controllable, coopera-
tive c-customers, and the rest are selfish, uncontrollable, noncooperative n-
customers. The former obey the instructions dictated by a central planner
who wishes to maximize social welfare while the latter act selfishly. The model
bridges Naor’s equilibrium IO strategy (when α = 0) and SO strategy (when
α = 1). The goal of the paper is to investigate the central planner’s ability to
coordinate the system under intermediate values of α.
The authors consider two levels of control. With admission control, the

instructions only refer to whether c-customers should join the queue or balk.
With dynamic control, the social planner can also instruct a c-customer to
renege, and always instructs c-customers to give way to n-customers, including
allowing for service preemption (where service can be resumed later from the
point where it had been stopped).16

The main results are:

� Optimal static control dictates a threshold smaller or equal to Naor’s
SO threshold n∗. Thus, c-customers compensate for the over-congestion
caused by the n-customers by balking at smaller queue lengths. The
threshold increases in α.

� The optimal dynamic control strategy is independent of α. In particular,
the threshold is exactly n∗. More generally, this result holds whenever
the IO threshold of each n-customer is at least n∗, including when cus-
tomers are homogeneous except for their level of cooperation. The proof
follows [302] by using the dual approach, arguing that a customer with
the lowest possible priority causes no externalities and behaves in the
same way regardless of the value of α.

16The roles of n-customers and c-customers in this model are somewhat similar to those
of primary and secondary customers in other models.
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� The gain of dynamic control, which is the ratio of social welfare under
the optimal strategies of the two types, is typically small and therefore
dynamic control is usually not justified.17

See [77, 662] for other models where the queue manager can partially
control the customer population.

2.3 Allocation of heterogeneous items

See [698] where the focus is on herd behavior in a model similar to kidney-
allocation models discussed here.

Su and Zenios [596] (2004) consider a model motivated by allocation
of kidneys to patients awaiting transplant. Patient demand and organ supply
are independent Poisson processes. Patients depart the queue after they either
accept an organ offer or die after waiting an exponentially distributed amount
of time. The cost (due to inferior quality of life) of waiting is linear and dying
is quantified as a (negative) fixed reward. Rewards and costs are discounted.
The organ quality is a continuous random variable with a known probability
distribution. When an organ arrives, its quality is realized and it is offered to
patients in the queue according to queue discipline. Should a patient decline
the offer, it is offered to the next person in the queue. The organ is discarded
if it is declined by all existing patients.18

The authors derive the following results formally, while we instead provide
qualitative arguments. All patients in the queue are identical from the social
point of view at any time. Therefore, the only outcome that affects social wel-
fare is whether a given organ is accepted by any of the patients. In contrast,
patients only consider their own expected welfare and ignore the possible neg-
ative effects on future patients when an organ is discarded. Clearly this means
that when an organ is accepted this is the socially preferred action. Therefore,
the planner cannot improve social welfare by early filtering of organs. How-
ever, it may turn out that an organ is rejected by all patients in the queue
while it is socially preferred that one of them (no matter which one) would
accept it.
It follows that the effective decision rests with the last customer offered

the organ. Similar to Naor’s model, the FCFS discipline is inefficient here
because a rejection by the last patient generates negative externalities that this
patient ignores and, as in [302], this inefficiency can be resolved by changing
the discipline to LCFS. Under the LCFS regime the patient making the last
decision is the one who arrived first among the current patients. That patient

17The value of dynamic control is also discussed in [248, 523].
18A similar regime is used in [551] for allocating servers to customers.
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will remain the last until he accepts an offer or dies, and hence rejection entails
no negative externalities. The authors observe that FCFS is optimal only if no
future arrivals are expected. In this case, however, every discipline is optimal.
The authors suggest an interesting variation to alleviate drawbacks as-

sociated with the LCFS discipline: Conduct an FCFS regime but randomly
prioritize a fraction p of the arrivals and assign them to the head of the queue.
This regime bridges FCFS (p = 0) and LCFS (p = 1). The authors numeri-
cally demonstrate that when λ� µ, a small p suffices to approach maximum
social welfare. It is plausible that, as argued in [302], it suffices to assign the
chosen customers to any position except for the last one in the queue.

Su and Zenios [597] (2006) consider a flow of heterogeneous candidates
for organ (kidney) transplants where candidates declare their type upon joining
the system rather than receiving offers and deciding whether to accept as in
[596]. Thus, when there are n customer types there are also n (Markovian)
queues with each arrival choosing one of them. Kidneys are characterized
by a single quality parameter x ∈ [0, 1] that determines the life expectancy,
m + cig(x), of an i-candidate who receives it. Here, m is a baseline reward
(life expectancy), g(x) represents kidney quality, and ci represents a patient’s
risk level (low-risk candidates are those with a high ci value). Candidates are
also subject to a constant waiting cost rate while waiting in the queue. The
system’s objective is to allocate kidneys to the n queues and the strategy
defines probabilities pi(x) of allocating a type x organ to the ith queue.
The authors formulate the system’s problem using the achievable-region

approach, both when customer types can be distinguished and when they
are private information. They determine conditions under which the optimal
(max-sum or max-min expected utility) strategy is an assortative partition
policy: partition [0, 1] into n subintervals, A1, . . . , An, and allocate a kidney
of type x to Ai iff x ∈ Ai.

Leshno [434] (2014) assumes an infinite queue of agents, every agent
is of type α with probability p or of type β otherwise. An agent’s type is
private information. In every period a single item arrives. With (the same)
probability p it is an A-item, and if not it is a B-item. Items are offered to
agents according to their position in the queue. An agent can accept the offer
and be removed from the queue, or decline and maintain position. A declined
item is then offered to the next agent and so on until taken. Agents pay c
for every period they spend waiting and obtain a value of 1 from taking their
matching item (A for an α-customers and B for β-customers), or a value of
v < 1 from a mismatched item. Agents know their position in the queue as
well as the kind of item offered when they decide whether to take it or decline.
It is assumed that the queue is sufficiently long and that all agents are

equal with respect to social welfare. Therefore, social welfare is maximized
when all agents decline mismatched items (items that are bad for them but
good for other agents).
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Agent types are revealed when they decline an offer, and at any moment
all agents declining an offer are of the same type. The number of agents is
bounded since above a threshold they would accept a mismatched item. Under
the FCFS discipline an agent’s incentive to decline mismatched items is low
and the threshold will be small. The problem with FCFS is that incentives to
decline are not distributed equally, and this is inefficient; the first agent has
a strong incentive to decline, but the last one has very little. Therefore, the
author suggests a load independent expected wait randomized-priority regime
such that the expected wait for an agent who declines an item is independent
of the number of other such agents in the queue. This policy reduces the
misallocation rate to nearly half of the misallocation rate under the FCFS
policy. The SIRO policy is shown to be a good alternative, especially when
the exact system parameters are not known and under bounded rationality of
the agents.

2.4 Probabilistic joining

See §11.2, §11.3 and §11.3.2 for probabilistic joining based on attraction
models. The joining probabilities in these models depend on the queue length
through the estimated or quoted benefit associated with joining.
Other probabilistic joining models are included in [68, 377] where joining

depends on information provided by the server rather than on actual queue
length, [356] where a production system operates under a base-stock base-
backlog policy, [440] with dynamic service-rate control, and [168, 75] where
the queue is shared by competing firms.

Whitt [660] (1999) compares two M/M/s/r models. Model 1 is unob-
servable, and customers have delay tolerances of 0 with a given probability,
or are exponentially distributed otherwise. A customer reneges once queueing
time exceeds delay tolerance. Model 2 is with an observable workload and
without reneging. Model 2 has the same parameters and delay tolerances as
in Model 1 and customers balk if the observed workload exceeds their de-
lay tolerance. Thus, the joining probability of a new customer in Model 2 is
computed as the probability that a server becomes free before the customer
would abandon according to delay tolerance.19,20 It is numerically demon-
strated that, for large s, these two models do not differ much, for example,

19The comparison between the two models makes sense especially in a single-step reward
function model like that of Hassin and Haviv (1995) [1] §5.2.1, where service is of full value
if started earlier than the tolerance and no value otherwise.
20Jouini, Dallery, and Akşin [378] (2009) investigate a related model with two
priority classes and an exogenous constant β such that customers balk if the state-dependent
β-percentile of the waiting time distribution exceeds their waiting tolerances.
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with respect to the probability that an arrival is eventually served. The dif-
ference is small especially when the number of servers is large and the system
load is not heavy.

Marianov, Rı́os, and Barros [471] (2005) assume servers are to be
allocated to a given set of sites. Customers from different locations are then
routed to these sites with the goal of maximizing the total served demand.
The potential demand from site i is Λi, and it must be routed to a single site
(i.e., the demand is unsplittable). If i-customers are routed to a facility at site
j, only a fraction βij go there. A customer arriving to a queue of length n joins
with probability γn. This leads to the following supply-demand equilibrium
equation:

λj =
∑
i

∑
n

βijγnΛixijPnj(λj , yj)

where yj is the number of servers assigned to site j, xij is binary and equals
1 if i-customers are routed to a facility at location j, and Pnj(λj , yj) is the
steady-state probability of n customers at site j. The authors design a heuristic
procedure for computing good location-allocation solutions.

Lozano and Moreno [457] (2008) study the SO value of buffer size
in a discrete-time single-server queue with Bernoulli arrivals and geometric
service distribution. A customer arriving when the buffer is full is lost. Buffer
size is constrained to be at least 2. The following costs are considered: fixed
waiting-cost rates of joining customers, fixed maintenance cost rate when the
server is idle, a fixed cost per balking customer, and a fixed cost per rejected
customer (because of a full buffer).
In the observable case an arriving customer finding k customers in the

system joins with probability rk. In particular, the customer always joins an
empty system.
In the (almost) unobservable case a customer always joins if the server is

idle. When the server is busy but the buffer is not full the customer joins with
a fixed exogenous probability, independent of the buffer size. This discouraged
rate policy reflects a form of bounded rationality.

Hwang, Gao, and Jang [353] (2010) describe a pricing and staffing
problem of profit maximization in a restaurant modeled as an observable
M/M/s/K queue. The arrival rate is given by a state-dependent function
λ(x; p, µ) = Λ(p)h(E[W (x)]), where W (x) denotes the queueing time of a cus-
tomer who joins when x customers are already in the system, h is a decreasing
function, and price p and rate µ are decision variables. The price sensitivity of
the demand Λ(p) is one of the functions Λ0−βp (linear), Λ0e−βp (exponential),
or Λ0p−β (inverse).

Singer and Khmelnitsky [579] (2010) consider an MTS firm where
production rate is controlled continuously, but demand is realized at discrete
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points of time. Customers arriving at the same time are ordered and sequen-
tially join in one of the following ways:

� FCFS: If inventory level is positive, the customer buys a unit and
leaves. Otherwise, the probability the customer joins the queue linearly
decreases in queue length, reaching 0 at the maximal queue length.

� Quote before balking: Customers are pessimistic, join according to
the same probabilistic function assuming all preceding customers joined
the queue.

Price, unit production cost, and linear backlog costs are exogenous. The firm
dynamically monitors production rate to achieve maximum profit.
The authors obtain structural properties of the optimal strategy and de-

velop a numerical procedure for the finite-horizon case based on these prop-
erties.

Li and Jiang [440] (2013) propose a combination of product and service
provision with probabilistic joining. The firm produces at rate µp and applies
a base-stock policy with level S. Customers require a unit of the product and
non-storable service that starts only if a unit of product is available. The firm
produces at rate µ1 if the number of customers waiting for service is below a
threshold, or otherwise produces at rate µ2 > µ1. Customers can observe the
queue length but not the inventory level and the balking probability of a new
arrival is proportional to the number of customers in the system. Customers
also renege at a constant rate. The authors present a computational study and
extend the model by defining performance measures and optimizing a social
utility function.

Kesavan, Deshpande, and Lee [398] (2014) experimentally find an
inverted-U relationship between the arrival rate to fitting rooms in apparel
retailers and sales. This finding triggered a search for queueing Markovian
models having this property. The authors investigate four models: (i) unob-
servable M/M/1 with a fixed arrival probability, (ii) probabilistic joining with
λk = λ

k+1 when system occupancy is k, (iii) probabilistic joining, dynamic ser-
vice rate λk = λαk and µk = µαk−1 where 0 < α < 1, and (iv) same as model
(i), but the probability that service to a customer joining when occupancy is
k is followed by actual selling is qck where q, c ∈ (0, 1). The authors show the
dependence of sales on λ is linear in (i), concave in (ii), and inverted-U in (iii)
and (iv).
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2.5 Server selection and capacity allocation

See [41] for a multiserver game with two agents, one assigning arrivals and
the other allocating capacity to servers.

Rubinovitch [551] (1985) complements the results of Kumar and Wal-
rand (see [1] §2.9) by considering a two-server Markovian system with service
rates µ1 > µ2, and a single queue. When a server becomes free, that server is
offered to waiting customers according to their order in the queue. Both IO
and SO policies dictate accepting an offer from the fast server. An offer from
the slow server will be rejected by the customers in the head positions of the
queue until a certain threshold.
The author computes the SO threshold, observes that the IO threshold is

greater, and that an appropriate toll on using the fast server can be used to
coordinate the system.21

Tandra, Hemachandra, and Manjunath [616] (2004) consider a firm
operating two observable M/M/1 servers with admission prices p1 and p2.
When both servers are busy they operate with rates µ1 and µ2. However, when
only one server is busy the capacities are pooled and the busy server obtains
the total capacity µ = µ1 + µ2. There are two customer classes distinguished
by delay sensitivities 1 > a1 > a2 > 0. Balking is not allowed and arriving
customers join the queue with the smaller full price, which the authors define
for m-customers as the sum of the expected waiting cost and (1− am) times
the admission price. Thus the price paid by the customer is smaller than the
amount received by the firm. The authors conduct a numerical study and
compare the results to the same model without pooling.

Deo and Gurvich [195] (2011) consider a routing problem motivated
by the diversion of ambulances to neighboring hospitals. There are two servers
(hospitals). Server i faces a dedicated demand with rate λwi of walk-ins and an
independent non-dedicated (flexible) demand with rate λai of customers who
can be diverted to the other server at no cost. Each server is modeled as an
observable M/M/s system. The servers apply a diversion threshold strategy:
When the number of customers in queue i exceeds a threshold Ki this server
declares diversion status which means that, unless the other server is also on
diversion status, flexible customers are diverted to the other server.
The authors observe that if the objective of the servers is to minimize

expected waiting times at their location, an equilibrium with Ki = 0 i = 1, 2
results. Consequently they discuss centralized routing decisions.

21The conclusion that self-interested individuals over-congest the fast server is similar in
nature to that obtained for unobservable queues in [85].
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Hassin, Shaki, and Yovel [315] (2015) consider profit-maximizing ca-
pacity allocation in a system of M/M/1/1 queues. Three models are consid-
ered, and in all of them the price is optimally set to the maximal value such
that customers are still ready to join the slowest server when all others are
busy. The three models are:

� All servers must be allocated the same capacity and the decision variable
is just the number of servers. The optimal number of servers is charac-
terized. A heavy-traffic model is given and it is shown that the number
of servers increases as n2/3, where n is the scale parameter. This differs
from the Halfin-Whitt regime.

� Different capacities can be allocated to servers and an arriving customer
joins the fastest free server, if one exists. The authors give support to
a conjecture that the optimal solution always has identical capacities.

� When service terminates at a given server each customer currently
served by a slower server is reassigned to the next faster server. In
this case, the authors prove that the expected waiting time of a cus-
tomer who joins the slowest server is independent of the allocation and
only depends on the number of servers. They conclude that the optimal
number of servers equals Naor’s SO threshold.

2.5.1 Polling

Altman and Shimkin [51] (1993) consider a single server which serves
several observable FCFS queues. They consider the following nonpreemptive
server strategies:

� Random SLQ: The server always serves the longest queue and if there
is more than one longest queue then one is chosen at random.22

� Persistent SLQ: As above, but the queue that has just been served
will be selected as long as it remains the longest queue.

The authors consider the following customer strategies:

� JSQ: An arriving customer joins the shortest queue.

� JLQ: An arriving customer joins the longest queue.

In both cases, if the choice is not unique, one of the options is chosen at
random.
The main results are:

22SLQ induces sort of an FTC model. There is no threshold strategy here but customers
are encouraged to follow their predecessors and join the same queue since this is the queue to
be selected by the server. The authors do not attempt however to characterize the complete
set of solutions nor claim that a unique equilibrium exists.
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� JSQ is an equilibrium symmetric strategy under random SLQ.

� JLQ is not always an equilibrium strategy under random SLQ.

� JSQ is not always an equilibrium strategy under persistent SLQ.

� JLQ is an equilibrium strategy under persistent SLQ. However, it is not
subgame perfect.

Atar and Saha [74] (2015) consider n identical servers serving a finite
number of customer classes, each class with a separate FCFS queue. The
service discipline is either fixed absolute priority (FP) or serve the longest
queue (SLQ), both without preemption. It is assumed that arriving customers
observe their own queue but not the other queues, and either join or balk based
on this information.
The authors consider a sequence of systems at the diffusion scale heavy-

traffic regime. They prove this regime has a unique feature, namely that an
ε-Nash equilibrium can be attained with probability converging to one, with
respect to costs representing the actual delay experienced by the customers
as opposed to the more standard setting of using expected delay as cost. The
Nash equilibrium is provided explicitly.

2.6 Dynamic control

Dynamic (state-dependent) control gives the firm more flexibility in achiev-
ing its goals relative to static (state-independent) control. However, dy-
namic control might prove difficult to implement. For example, implemen-
tation may involve costly switching or setup costs. The papers described
here do not explicitly assume such costs, but many recognize the inconve-
nience associated with dynamic control. Moreover, customers may object to
dynamic control since it makes the service experience less predictable. Sev-
eral papers focus on replacing optimal dynamic control with second-best con-
trol mechanisms to alleviate loss of optimality. These papers often investi-
gate the loss associated with this change. Such examples can be found in
[72, 117, 119, 169, 229, 253, 298, 311, 372, 490, 523, 626].
Dynamic control provides rational customers with useful signals about the

system’s state or about parameters that they cannot observe directly.23,24

Most papers on dynamic control assume customers are not strategic in
selecting time of arrival. In other words, these models deal with policies that

23Models where customers ignore such signals are considered in §11.
24Dynamic capacity control is another common type of dynamic control, but it is not
considered in this section because it doesn’t necessarily mean the queue is observable and
changes in service rate are not easy to observe.
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react to the state of queue but do not affect the timing of arrivals.25 The only
exception to this seems to be [144], where strategic arrival time manipulations
in a dynamic pricing setting are considered. In particular, customers may wait
until the price is lowered before placing demand.
Research on dynamic pricing is described in [1] §2.8. See [299] where com-

peting firms dynamically change capacity, [192] for a model with strategic
vacations and dynamic PDTs, §9.6 for queueing games involving dynamic
control of arrival and service rates, and [533] for dynamic service-rate control
in a supply chain with an unobservable queue.

2.6.1 Price-sensitive customers

This section considers customers who are price sensitive but not delay
sensitive. See 6.8 for dynamic pricing, admission, and searching for customers,
and see [632] for a model with dynamic pricing and bounded rationality.

The earliest model of dynamic pricing control of a queue seems to be that of
Low [456] (1974). That Markovian model assumes price-sensitive customers
and state-dependent holding costs incurred by the server. State-dependent
prices can be selected from a finite set p1 < · · · < pK with corresponding
demand rates λ1 > · · · > λK . The author derives an algorithm for computing
the profit-maximizing prices and proves that they are nondecreasing in the
number of customers in the system. Aktaran-Kalayci and Ayhan [26]
(2009) investigate the sensitivity of the optimal prices in [456] to system
parameters.

Johansen [372] (1996) considers an M/D/1 system with price-sensitive
demand having uniformly distributed service valuations. and an exogenous
upper bound on the delivery time. The author compares the optimal workload-
dependent dynamic pricing with the optimal static pricing, and reports a
numerical study in which the gain of dynamic control is relatively small and
does not exceed 3%.

Paschalidis and Tsitsiklis [523] (2000) consider an M/M/s/s loss sys-
tem with customer classes. Batches of size ri of i-customers arrive according
to a Poisson process whose rate λ(ui) is strictly decreasing in the price ui
and their service is exp(µi). A batch can be wholly admitted or rejected. The
utility Ui obtained by a request of class i is a random variable and the request
is accepted if Ui ­ ui, and capacity suffices to serve the request. A batch
arriving when the system has insufficient capacity will be lost. The prices ui
are dynamically determined as a function of the state of the system.

� The optimal prices associated with profit and welfare maximization in
the single-class case increase monotonically with the number of busy

25Strategic arrival time decisions are the subject of §4.1.
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servers. However, this seemingly intuitive result does not extend to the
multiclass case, as shown by a counterexample. The reason for this being
the underlying packing problem that arises from the different batch sizes.

� Dynamic prices are difficult to manage and may also be less desired by
customers who prefer a fixed (predictable) price. Therefore, a central
question is whether the gain of dynamic control, measured as the added
profit and welfare that can be achieved, justifies use of dynamic pricing.
The authors compare optimal dynamic and static pricing, and conclude
that for both revenue and welfare maximization static prices are asymp-
totically optimal in several limiting regimes including light traffic, heavy
traffic, and a regime of many small users.

� Paschalidis and Liu [522] (2002) extend [523] and prove similar re-
sults for a regime with many small customers under a generalized model.
For example, allowing for a (loss) network with demand substitution ef-
fects.

Maglaras [462] (2006) considers a multiclass M/M/1 model with price-
sensitive customers. The rates µi of serving class i customers are decision
variables which the firm selects once and then remain fixed. However, se-
quencing and prices are dynamically controlled. By choosing its price vector
p = (pi) at any point in time the server can induce a vector λ(p) = (λi(p))
of instantaneous arrival rates. The firm incurs convex operating costs and a
holding cost of ci per unit time of stay of an i-customer in the system. Its
objective is to set service rates and select sequencing and pricing policies so
as to maximize the profitability of the system.
The author proposes a solution where the capacity vector is determined by

a long-run fluid approximation in which the long-run average profit criterion
focuses on optimally matching supply and demand. Subsequently, demand
rates and capacity allocation decisions are dynamically selected to maximize
the total profit in the fluid model along its transient trajectory from any initial
condition until the buffers empty. Sequencing decisions are made according to
the cµ-rule. After a finite period of time, the entire workload in the system
is held in the lowest priority class. Focusing on the transient problem from
that point on gives a one-dimensional drift control problem for the workload
process. The solution for the case of a linear demand function is solved in
closed form.
The following heuristic is numerically tested for the original problem: Se-

quence jobs according to the cµ-rule, and from any queue-length configura-
tion make a dynamic pricing decision that optimizes the fluid model tran-
sient response for the one-dimensional workload problem. As the state evolves
stochastically over time the decisions are adjusted accordingly.

Chen, Feng, and Ou [149] (2006) provide an algorithm for solving the
following model: An M/M/1 firm can switch at no cost between prices p1 > p2
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which induce demand rates λ1 < λ2. The firm incurs production, holding, and
backorder costs. The optimal policy is determined by two thresholds, a base
stock level and a price switch threshold such that the low price is chosen when
inventory is above that level. The authors extend the model by considering
production in constant-size batches [150], and Chen, Chen, and Peng [147]
(2011) extend the model by considering Erlang processing time.

Plambeck and Ward [531] (2006) consider an assemble-to-order sys-
tem where product k requires akj units of components of type j and assembly
is instantaneous. The system manager sets components production capacities
(µ1, . . . , µJ) and product prices p = (p1, . . . , pK) which are paid when an or-
der is filled. Orders for product k arrive at rate λk(p), and components of type
j arrive at rate µj . Each component is associated with a production cost cj
that is paid upon delivery of the component. The firm incurs a unit holding
cost rate hj , and the decision variables are the prices, the capacities, and the
dynamic sequencing rule.
The authors prove that a myopic discrete-review sequencing policy is

asymptotically optimal, that the optimal prices and capacities nearly balance
the supply and demand for components, and that the resulting heavy-traffic
solution can be approached by a diffusion approximation which adjusts the
product prices and production capacities obtained in a first-order fluid ap-
proximation of the model. See [532] for a further description.

Maoui, Ayhan, and Foley [474] (2007) generalize [456] in several
ways. They consider a single queue multiclass model with prices that are
state and class dependent. Holding costs incurred by the server are given by a
general (not necessarily linear) function of queue length, and the service rate
changes according to an exogenous nondecreasing function of queue length.
The demand by each class exhibits increasing price elasticity (equivalently,
increasing generalized failure (hazard) rate).26

The authors characterize the optimal pricing policies. In particular, they
show that profit-maximizing prices are nondecreasing in queue length, and if
the upper bound on queue length increases, then the optimal prices decrease
for every state.

Feng, Ou, and Pang [235] (2008) consider a Markovian model of an as-
sembly system with two production facilities. Facility i produces i-components
at rate µi. Assembly is instantaneous, demand is price sensitive, and there are
two exogenous prices which induce corresponding demand rates. The firm
incurs component holding costs and a per unit-time cost to hold a backorder.
The authors show how to compute discounted profit-maximizing state-

dependent prices and base-stock levels. Keblis and Feng [395] (2012) gen-

26Let F (p) denote the proportion of customers willing to pay price p. The cdf F (p) has
an increasing generalized failure rate if yf(y)1−F (y) is strictly increasing over the support of the
pdf f(p). Equivalently, the demand function has increasing price elasticity.
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eralize this model so the stockout costs include both fixed and variable cost
elements.

Mutlu, Alanyali, and Starobinski [490] (2009) compare dynamic and
static pricing in a profit-maximizing M/M/C/C loss system with primary
(PU) and secondary (SU) users. Each server has a dedicated fixed arrival rate
of PUs and a cost K is incurred when a PU is blocked. SUs are price sensitive
and arrive at rate λ(u) when the admission cost is u. The authors consider
three pricing methods:

� Dynamic pricing: SUs pay price un when there are n < C busy
servers. The authors characterize the solution and in particular prove
that {un} is nondecreasing.

� Static pricing: SUs pay a fixed price, independent of the system state.
The authors derive a necessary and sufficient condition for the optimal
static pricing to be prohibitively large (the resulting arrival rate of SUs
is 0, which generates no profit).

� Threshold pricing: SUs are admitted with a fixed price when the
number of busy servers is below a threshold, and are rejected otherwise.
Clearly, threshold pricing provides more flexibility. For example, static
pricing may block all SUs, while under the same parameters threshold
pricing generates a positive profit. The authors provide numerical ev-
idence that static pricing often performs badly, but threshold pricing
performs close to dynamic pricing for a variety of demand functions.
Furthermore, the authors prove that if some arbitrary pricing policy
yields positive profit, then a threshold pricing policy that yields positive
profit will also exist.

Çil, Karaesmen, and Örmeci [169] (2011) consider an M/M/1 system
with two price-sensitive customer classes. Given price pj , the arrival rate of
j-customers is λj(1−Fj(pj)), reflecting random service valuations with cdf Fj
and density function fj . These distributions are assumed to have an increasing
generalized failure rate, i.e., pfj(p)1−Fj(p) is strictly increasing. Service distributions
of the two classes are identical and the server incurs unit holding costs hjxj
(h1 > h2) per unit time, where xj denotes the number of j-customers in the
system. Profits are maximized by deciding at any state (x1, x2) which class to
serve and which admission prices pj(x1, x2) to charge.
The authors prove that the optimal policy gives preemptive priority to

1-customers. They also prove monotonicity properties of the optimal dynamic
pricing policy. Numerical results indicate, however, that static pricing policies
may not perform well for certain range of parameters.

Mutlu, Alanyali, Starobinski, and Turhan [491] (2012) consider an
M(n)/G/C/C loss system with primary users (PUs) arriving at a fixed rate
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λp and price-sensitive secondary users (SUs) arriving at rate λs(u) when the
service price is u.27 The system is interested in maximizing revenues from
admitting SUs, minus penalties associated with blocked PUs.
The authors focus on threshold pricing policies where SUs are admitted

and charged a fixed price if the number of busy servers is below a threshold,
or they are rejected otherwise. Assuming the demand function is unknown to
the server, the authors analyze convergence properties of a learning algorithm
that repeatedly adjusts the price and tests the resulting arrival rate.

Atar, Cidon, and Shifrin [73] (2014) consider an M/M/1/B queue
with dynamic price control and price-sensitive customers. Price is dynamically
selected from C1 < · · · < CK inducing the arrival rate λ1 > · · · > λK . There
are no waiting or holding costs in this model, and the goal is to maximize
expected discounted revenue. The authors prove that for some constants 0 =
b0 ¬ b1 ¬ · · · ¬ bK = B + 1, the optimal policy is to announce Ci iff queue
length is in [bi−1, bi − 1].

Chen, Hao, and Wang [151] (2014) assume in their base model that
an MTS M/M/1 firm charges one of two prices p1 > p2. Customers are price
sensitive and arrive at rates λ1 < λ2, respectively. The firm can produce in-
house at rate µ and unit production cost b, or outsource to an external facility
producing at rate a and unit cost c > b. It is assumed that λ2p2 − λ1p1 >
(λ1 − λ1)b. The firm also incurs linear holding and backlog costs.
The authors prove there exists an optimal policy defined by three thresh-

olds, (R,D, S) where S > max(R,D): When inventory exceeds S there is no
production; when inventory is between S and D, the firm produces in-house;
when inventory is below D the firm produces in-house and outsources. The
firm sells at the high price p1 iff inventory exceeds R.

Chen, Tai, and Yang [154] (2014) consider a single-server Markovian
system with two classes of price-sensitive customers. Class i’s demand, i ∈
{A,B}, arrives at rate λij when charged price pij , and the firm incurs unit
holding costs rates hi. A concavity property of the revenue function is assumed,
namely, (λji+1p

j
i+1 − λ

j
ip
j
i )/(λ

j
i+1 − λ

j
i ) is decreasing in i.

The authors characterize the optimal price for both products in each state
of the system, and specify the production policy for each state, i.e., whether
to produce an A-item, a B-item, or leave the server idle.

Chen, Feng, Hao, and Keblis [148] (2015) consider an M/M/1 firm
that serves subscribed demand arriving at a rate λ for an exogenous price
per customer. The firm uses excess capacity to serve free market demand
arriving at rate λi when the price set by the firm is pi, i = 1, . . . ,K. The
firm incurs holding cost rates of h1 per subscribed customer and h2 per free-
market customer. The firm’s decisions consist of the type of customer to serve

27Unlike the closely related model of [632], PUs do not preempt service of SUs.
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and the price to charge given the system state (x, y), where x is the backlog
of subscribed customers and y is the backlog of free-market customers. The
solution is characterized by switching functions G(y) and Hi(x) such that for
a fixed x H1(x) ­ · · · ­ HK−1(x). Subscribed customers are given preemptive
priority when x > G(y), free-market customers are given preemptive priority
when x < G(y), and the price is pi when Hi−1(x) ­ y > Hi(x).

2.6.2 Price- and delay-sensitive customers

See §11.3.2 for models with dynamic price and delay quotes under bounded
rationality, and [228] for a model with dynamic due dates in a decentralized
environment.

Harubi, Shechter, and Subotnik [300] (1979) offer a discrete-time
model of dynamic pricing designed to maximize system efficiency. They do not
assume a particular customer decision model, or specific arrival and service
processes, but assume a particular form of the pricing function. We describe
here an interesting generic model inspired by their ideas.
The heterogeneous waiting costs of customers are private information and

admission prices increase with system load. Customers are aware of the firm’s
pricing policy and state upon arrival the maximum load level at which they
would be willing to join the queue. If the current load in the system queue
is not higher than this maximum, the customer joins the system queue. Oth-
erwise, the customer enters a virtual queue (where the waiting cost is lower)
and stays there until the system load and price decrease to the stated maxi-
mum load level. The result is an auction-type priority regime, which remains
in effect until the customer joins the system queue.

Johansen [371] (1994) considers an M/G/1 system with an observable
workload.28 In particular, the job’s processing time is observed upon arrival.
The benefit for joining customers is stochastically decreasing as a function of
the current workload u and their service time w. The server operating costs
and the price also depend on these two variables.
The opportunity cost is the system’s expected loss of future earnings caused

when the customer joins the system. The author proves that this cost is in-
creasing in u, and increasing and convex in w. The SO admission control
consists of state-dependent threshold values which determine the maximum
service time of the admitted requests. The author derives conditions for this
sequence to be monotone in u, but notes that the profit-maximizing prices
may decrease in u.

Plambeck [528] (2004) considers a Markovian queue with two customer
types differing in price and delay sensitivity. Demand of k-customers at time

28A discrete-time version is analyzed in [370].
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t is Poisson with rate λk(t) =
(
λ̄k − αkPk − βkdk(t)

)+
, where Pk is price

charged and dk(t) is the queueing delay quote at time t for class k = 1, 2. The
crucial assumption that β1 � β2 implies that 2-customers are patient and tol-
erate long waits. Thus, these customers can be used as a buffer against stochas-
tic fluctuations in demand and service. The server can therefore maintain
almost perfect balance between demand and service rate. Thus, this heavy-
traffic condition is a consequence of the assumption. The decision variables in
this model are the prices, dynamic delay quotes, service capacity, and service
sequencing.
The heavy-traffic model assumes a sequence of systems with waiting costs

decreasing to 0. The author applies an asymptotic compliance performance
criterion which states that it is very unlikely for a customer’s queueing delay
to exceed his quoted lead time by a significant amount on the time scale on
which he measures delay. In the solution of the model, the dynamic control
reduces to giving priority to 1-customers. The lead-time quotes are d1(t) = 0,
while d2(t) is the queueing time resulting from the priority regime given the
number of customers in the system at time t.
The author also treats the asymmetric information version where cus-

tomers choose their class by adding IC constraints. An interesting feature of
this solution is that when the queue is short, the lead-time quotation to 2-
customers is higher than the actual one in order to prevent 1-customers from
choosing the class 2 offer.29

Two aspects of the proposed solution are compared by simulation in non-
asymptotic parameter regimes: the long-run average profit and the average
amount by which a customer’s actual lead time exceeds the quoted lead time.

Ata and Shneorson [72] (2006) consider a Markovian model where both
demand and service rate are dynamically controlled. The cost rate associated
with serving at rate µ is a convex function, and the value rate associated with
demand λ is a concave function. Customers are homogeneous with respect to
waiting-cost rate and join if their service value exceeds full price. For every
queue length n the authors compute the SO arrival and service rates (λn, µn),
from which prices pn that induce λn can be easily derived. The optimal ar-
rival rate decreases and service rate increases in queue length. In contrast,
the authors observe that optimal prices need not be monotone. A numerical
analysis suggests the advantage of dynamic control over static control is most
significant when delay costs are large.

Plambeck and Ward [532] (2008) extend [531] by considering cus-
tomers that are both price and delay sensitive. The authors consider an
assemble-to-order system consisting of a manufacturer producing a set J of

29This outcome resembles the strategic delay policy introduced in [9, 12], but differs from
strategic delay because it involves no trade-off: In the asymptotic regime the 2-customers
become infinitely patient so that inflating their lead-time quotes does not reduce revenue
from these customers.
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components, and assembling from them a set K of products. Assembly is instan-
taneous, but the required components must be available. The manufacturer
sets production rate µj for each component j ∈ J , price pk and lead-time
guarantee lk for each k ∈ K, and the sequencing rule.30 The production cost
associated with a unit of component j is cj and holding it in inventory costs
hj per unit time. The demand for product k is a function λk(p, l) where p is
the vector of prices and l is the vector of lead-time guarantees. An important
example of the demand function is generated by assuming that customers dif-
fer in service values vk for having product k, and delay-cost functions f(l),
and each chooses a product that maximizes vk − f(lk) − pk, if this value is
positive.
An order for product k must be filled within lk units of time. To this end,

the manufacturer can immediately obtain at any time an extra unit of com-
ponent j by paying an expediting cost xj > cj . The manufacturer dynamically
sequences outstanding orders for assembly and expedites components when
necessary. The authors also expand their model to allow price, maximum lead
time and production capacity to change in response to shifts in demand and
supply conditions.
The model includes subtle points. The objective is to maximize expected

discounted profit. Early delivery is allowed, and yet the demand depends on
the quoted upper bounds and not on the lead-time distribution. Unlike the
case of average profit maximization (e.g., [131]), delivery cannot be delayed at
zero cost to the quoted deadline when discounting is considered. Even if a unit
of demand can be satisfied earlier than its deadline because all components
have been manufactured, the firm may prefer to wait with delivery and keep
some components for satisfying the demand of a more urgent product. A
related point is that customers agree to pay the price also in the case of early
delivery. With discounting, this means paying a higher price. Therefore, the
authors also consider a variation of exact lead-time quotation where the firm
cannot deliver early, but conclude the system manager would strongly prefer
the flexibility associated with quoting an upper bound on delivery rather than
an exact deadline. Moreover, expediting may be worthwhile not only when it
is required for timely delivery, but also for obtaining earlier payment.
The authors prove that optimal prices, lead times, and capacities result

in heavy traffic. The high-volume asymptotic analysis considers a sequence of
systems indexed by n = 0, 1, . . . with increasing demand nλk(p, l) and produc-
tion rates nµ leading to an asymptotically optimal discrete-review policy. In
some cases, the lead-time quote should be exaggerated to encourage impatient
customers to buy expensive products. However, their demand will be consis-
tently filled earlier than the quoted lead time in order to realize the revenue
early. Such policies are similar in spirit to the strategic delay of [9, 12], but
here they rely instead on customers’ bounded rationality.

30Two products can be physically identical but with different (pk, lk) values.
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Çelik and Maglaras [131] (2008) solve a dynamic-control model
in which a single server offers multiple service options (products) indexed
i = 1, . . . , I. Service options are differentiated by processing rate µi, price pi,
and target lead time di. To meet its lead-time commitments, the firm can
expedite service and instantaneously produce a unit of product i at cost ci.
The firm dynamically varies prices p(t) = (pi(t)) and production sequencing
to maximize long-run average expected revenue minus expediting costs.
The realized demand for each product i is (nonhomogeneous) Poisson with

an arrival rate vector which depends on the prices posted at that instance and
the vector of delay guarantees. The lead-time guarantees are reliable upper
bounds because they are kept by expediting when necessary.31

The authors analyze an approximating large-scale diffusion control prob-
lem motivated from settings where both arrival and service rates are large.
In this limiting model, several aspects of the problem simplify: Sequencing
decisions are made according to the least slack policy, the system only expe-
dites the cheapest class as measured by the ciµi index, prices are increasing
functions of the total workload and modulate the system so as to induce full
resource utilization. The authors numerically verify the effectiveness of the
resulting heuristic.

Besbes and Maglaras [90] (2009) consider profit maximization in a
single-server queue processing orders from price- and delay-sensitive customers
with heterogeneous service values. The main characteristic of the model is that
the market size evolves stochastically over time. The authors study the queue
dynamics and resulting price-optimization problem. Examples they suggest
for the stochastic evolution of the market size include transitioning between
predetermined levels according to some transition matrix, or affine diffusion
models that are often used in modeling interest-rate behavior. The market-
size process changes at a slower time scale than the transient dynamics of
the queue and the authors study the behavior of this queueing system under
static and dynamic pricing policies. They focus on the slower time scale where
the market-size process fluctuates and show that queue dynamics can be cap-
tured via a stochastic fluid model driven by the stochastic variability of the
market-size dynamics. The analysis leads to simple and implementable pric-
ing heuristics, and numerical experiments examine the effect of arrival process
variability on the solution as well as the server’s policy when it does not know
the instantaneous arrival rate when making pricing decisions.

Ata and Olsen [70] (2009) consider profit maximization in a model
with homogeneous customers, a nonlinear delay cost function c(τ), and a finite
service value R. Each arriving customer is either rejected right away or obtains

31Customers’ demand is a function of these upper bounds and not of the actual state-
dependent lead-time distribution. A similar assumption exists in papers on strategic delays.
It may reflect bounded rationality of customers, and indeed the lead-time distribution is
difficult to estimate.
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a reliable state-dependent lead-time quote τ such that c(τ) < R, and pays an
admission price R − c(τ). To guarantee the quoted lead time will always be
met the authors assume deterministic service duration. Service duration is
a decision variable the firm sets at the beginning of the planning horizon.
The central theme is the trade-off between committing future capacity now
or reserving it for later higher revenue customers.
When c is convex, customers should be served in order of appearance.

When c is concave it is natural to consider a solution where most customers
are served soon after arrival to avoid the initial steep increase in cost, while
letting others have a very long wait and exploiting the flatter section of the
cost function.
The authors consider the problem in a discrete-time periodic review model

with large capacity and high volume of arrivals. They propose asymptoti-
cally optimal strategies by dividing the (homogeneous) demand into high-
and low-priority classes, quoting high-priority customers the shortest possible
lead time, and postponing service to low-priority customers. The authors also
solve the asymptotic model for a generalization where c is “S-shaped” (or,
convex-concave).

Yildirim and Hasenbein [684] (2010) consider multiclass Poisson ar-
rivals where the service distribution of class k customers is Erlang(k, µ).32 All
costs and rewards are discounted and the admission fee p(i, k) is both state
and type dependent, where i is the system workload in terms of the number
of (exponential) service stages. The admission fee is paid upon admission, the
reward R is obtained when service is completed, and the waiting cost of ck
per time unit is incurred continuously. For any given state i and type k, the
maximum price p(i, k) that induces the customer to join is computed first.
A by-product of this computation is the IO strategy when admission is free.
This behavior is characterized by thresholds k∗i such that a k-customer joins
at state i iff k ¬ k∗i . A profit-maximizing server chooses between rejecting a
new customer or accepting the customer and asking for the maximal price,
p(i, k). The main qualitative question is then whether the profit-maximizing
policy can be characterized by a threshold on i+ k.
The authors present two numerical examples. In one example such a

threshold exists, but in the other case there is a (small) deviation from a
strict threshold rule.

Giloni, Koçağa, and Troy [256] (2013) consider dynamic pricing in
an FCFS M/M/s/I system with customer classes distinguished by service
valuations and (nonlinear) queueing costs.
The authors show that under the SO admission policy the set of classes

admitted when the queue length is i + 1 is a subset of those admitted when

32The paper refers to batch arrivals with exp(µ) service. Batches act as one entity, splitting
of a batch is not allowed, and the reward is obtained only after all customers in a batch are
served.
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it is i. However, this property does not necessarily hold under revenue max-
imization, when customers are strategic and the waiting cost functions differ
among classes. In fact, in this case the total arrival rate does not necessar-
ily decrease in the queue length. This assertion is demonstrated by a simple
two-class example where the class with the lower potential arrival rate is more
time sensitive, but has a higher service value. When the queue is short, the
optimal price is such that only this group joins. When the queue is longer, the
situation is reversed.
The authors also generalize their model to include partial differentiation:

classes are clustered into super-groups and the server can price-discriminate
super-groups but not individual classes.

Akan, Ata, and Olsen [23] (2012) consider social-welfare maximization
in a multiclass extension of [70]. The service values Ri are heterogeneous, as
are the delay-cost functions ci, but the two classes have the same deterministic
service requirement. The function ci is convex on [0, di] and concave on [di, Di],
where Di = c−1i (Ri) is the maximum acceptable delay quote for i-customers.
It is assumed that c′i(t) > c′j(t) for i < j and t ∈ [0, Di], d1 ¬ · · · ¬ dN , and
D1 ¬ · · · ¬ DN . The goal is to design a dynamic menu of price and lead time
so that (i) all customers join, (ii) it is IC, and (iii) the long-run average rate
of welfare is maximized.
The authors present and solve a fluid approximation and use the insights

and policy derived from it to propose a policy for the stochastic system. When
the system is not congested the queue discipline is FCFS. When the system
is congested the fluid approximation is applicable and more impatient classes
receive shorter delay quotes to achieve the same marginal delay cost.

Ata and Olsen [71] (2013) consider a two-class extension of [70] with
two customer classes and asymmetric information. The firm sets queue dis-
cipline and a state-dependent IC menu of price and lead-time pairs. Service
value R is common to both classes and the delay cost functions ci, i = 1, 2,
are convex-concave, where ci is convex on [0, di] and concave on [di,∞]. Class
1 is the impatient class and class 2 is the patient class. The shape of the two
delay costs is similar but the point of switch di is earlier for the impatient
customers, i.e., d1 < d2. The model requires that all customers agree to one
of the contracts and thus negative prices are allowed.33

The authors propose a sequence of heavy-traffic systems. The main result
is a corresponding sequence of policies that are asymptotically optimal. The
intuitive idea is that when the workload is small, both classes are kept in the
convex cost region and a modified Gcµ-rule is in effect (see [1] §4.6). When
the workload is large, the impatient class is kept in its convex region while (a
subclass of) the patient class operates in the concave region.

33The authors mention that in practice this is unlikely to occur.
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Kim and Randhawa [400] (2015) consider dynamic pricing when cus-
tomers are price and delay sensitive and the service-valuation distribution has
a non-decreasing hazard rate. Arriving customers observe queue length and
join if their valuation exceeds full cost.
The authors consider a large system with arrival rate nλ and service rate

n. The loss of revenue due to variability under the optimal pricing scheme
is O(n1/3), in contrast to O(n1/2) under static pricing. The authors propose
a simple two-price threshold policy within a logarithmic term of the optimal
scale.

2.6.3 Delay compensation

Delay compensation is a form of dynamic pricing which depends on the
system state through expected or realized waiting time.
See §6.2.4 for delay compensation in unobservable queueing models, [15]

for discounts based on the realized lead time in the presence of risk aversion,
[161] for delay compensation as part of the subscription contract, and [340]
for delay compensation in a supply chain.

Banker and Hansen [79] (2002) consider a multi-period model where
at the beginning of each period the server sets the capacity of the facility
so it can serve all backorders and, in addition, up to N new orders in that
period. Customers have heterogeneous service valuations and only those who
value service above the posted price p join the queue. Let their number be s.
If s > N then N customers are selected to be served, and the rest are offered
compensation d if they agree to be served in the next period. The cost of
waiting is a ­ d and therefore only customers whose service value is at least
p − d + a accept the backorder offer. The server’s decision variables are the
extra capacity N , the price p, and the discount d.34,35

From the firm’s point of view this is a single-period problem and, as the
authors note, price discounts behave in a similar fashion to soft capacity, i.e.,
expensive capacity purchased at a premium to augment existing capacity (like
overtime).36 Both price discounts and soft capacity allow the manager to serve
additional customers once initial capacity has been exhausted. The authors
offer three heuristics and test them numerically.

34Note that customers are rational in basing joining behavior only on p because there is
no waiting involved until they learn whether they will be instantaneously served. There is
no gain in speculating because a ­ d so that the offered discount does not create additional
incentive to join.
35A similar model is considered by Bayram, Ismail, Abdallah, Qaraqe, and Ser-
pedin [82] (2014), but the upper bound on the served demand in each period is exogenous
and the solution is simple. The firm serves in each period as many customers as the bound
allows and offers the smallest discount necessary to persuade the extra demand to wait
service in the next period.
36See also papers on expediting delivery.
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Keon and Anandalingam [396] (2005) compute optimal dynamic price
discounts which are used to shift demand from congested to uncongested pe-
riods.37 They consider an M/G/c/c loss system with an exogenous price and
an upper bound on the blocking probability. The arrival process occurs in
continuous time and is non-stationary. However, time is divided into discrete
periods with an approximately constant rate of potential demand λk in period
k. These periods are long enough so that the steady-state distribution of the
number of customers in the system can be used. The server offers nonnegative
discounts dk for those customers who arrive at period k and agree to postpone
their demand to the next period. A customers who is delayed cannot be de-
layed again. Each customer is characterized by the valuations v of immediate
service and vd of deferred service, v > vd. The fraction of customers agreeing
to postpone service is an increasing function of the offered discount. The firm
minimizes the expected value of the discounts subject to the upper bound on
the blocking probability.
The authors show that the problem can be solved sequentially, using the

solution for period k − 1 to solve for the optimal discount in period k.

Sen, Raghu, and Vinze [565] (2009) consider a multiclass multi-task
M/M/s priority system with service rate depending on service type. The price
for type j service at priority class k is Sjk − PjkWjk, where Wjk is the ex-
pected waiting time and Pjk is compensation paid to the customers per unit
of waiting. The authors use the term price-penalty scheme for this dynamic
pricing mechanism. Type i customers that demand type j service select the
priority class k which minimizes their full price Sjk−PjkWjk+ δijWjk, where
δij is the user delay-cost rate. The provider’s objective is to maximize profits,
consisting of the revenue obtained from customer payments minus a linear
operating cost per each unit time of server activity. The decision variables are
the parameters Sjk and Pjk as well as the number of servers.
The authors numerically investigate through simulation the effects of the

price-penalty scheme. They conclude that although the customers’ surplus or
the provider’s profit are often smaller, the proposed scheme is likely to improve
overall system welfare as compared to a fixed-price FCFS approach.

2.6.4 Competition and networks

See [1] §7 and especially §7.3 for early research on competition in observable
queues.

Hsiao and Lazar [347] (1991) study dynamic control of multiclass de-
mand in a network. There are Nk users of class k andM service stations, each
with its own queue. Demand generated by k-users is Poisson with rate λkjk ,

37Already in 1964, Leeman [433] suggested that firms, such as supermarkets, charge
check-out fees that are higher at certain times of the day or week and lower at others in
order to regulate the timing of arrivals of customers who have preferences in shopping times.
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0 ¬ jk ¬ Nk − 1, k = 1, . . . ,K, depending on the number jk of outstanding
k-users in the network. When a k-user’s demand is generated, it is routed to
station i ∈ {1, . . . ,M} with probability rk,i. Upon service completion at server
i, the k-user is routed to station j with probability rk,i,j , j ∈ {1, . . . ,M}, or
the user leaves the service facility with the complementary probability. Service
at station i is exponential with a class-independent rate µi.
The system’s goal is to establish state-dependent arrival rates λkjk and

maximize aggregate throughput subject to an upper bound on the average
delay. The optimal controls are characterized as follows: For some integers
Lk and mk < Lk, if the number of outstanding k-users is less than Lk but
different from mk, then the demand rate of k-users is equal to the maximum
possible value ck. Otherwise it is 0. In state mk the demand rate can be an
intermediate value between 0 and ck.
In the class decision version, each class maximizes throughput subject to a

bound on the average delay. The best response of a given class to the controls
set by the other classes and the controls in the resulting equilibrium are shown
to have a similar structure as the optimal strategy.

The existence of an equilibrium in the model of [347] is proved in the follow-
up paper by Korilis and Lazar [409] (1995).] The authors even use a gen-
eralized version of the system where the service stations have quasi-reversible
queues. This contains, in addition to the single-server queue with exponential
service, single-server LCFS queues and infinite-server systems with general
service distributions.

Campos-Náñez, Fabra, and Garcia [126] (2007) consider a Marko-
vian model of n servers with heterogeneous service rates and finite buffers.
The n queues are observable, and customers are price sensitive but not
delay sensitive. Suppose that an arrival occurs when the system’s state is
x = (x1, . . . , xn), where xi is the number of customers at queue i. The servers
whose buffers are not full participate in an auction, and server i offers a bid
bi(x) to the arriving customer. The customer joins the server with the low-
est price, but only pays the second-lowest price value. The servers’ goal is to
maximize discounted revenues, and the model is solved using dynamic pro-
gramming.
In general, the equilibrium bidding will be such that the firm is indifferent

between winning the bid, i.e., selling one unit of buffer capacity, or withhold-
ing that unit for future revenue. The authors demonstrate that the result-
ing equilibrium is not efficient in the sense that it doesn’t maximize system
throughput. They also propose an extension of the model that incorporates
delay-sensitive customers.

Sundar and Ravikumar [613] (2013) consider two service providers
dynamically setting prices in a market with two customer types: 1-customers
that randomly select a server, and 2-customers that observe both queues.
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Customers use price and delay information to decide whether to join a queue
or balk. Price equilibrium is achieved through an adaptive learning mechanism
where the firms update strategies according to different time scales. The slower
firm waits to see the faster firm’s equilibrium strategy before updating its own,
whereas the faster firm considers the strategy of the slower firm as being static.
The authors present experimental analysis that indicates that this process
converges.

Xia [665] (2014) considers a closed Jackson queueing network with M
strategic servers,N (nonstrategic) identical customers, and fixed routing prob-
abilities. All servers incur the same fixed unit holding cost rate Ch and unit
capacity rate Co. Each server minimizes costs by dynamically controlling ser-
vice rate within given queue-length dependent bounds. The author proves that
the average cost of a server is monotonic with respect to its service rates, and
the best response is always to set the service rate at either the maximal or
the minimal value allowed. It follows that this property holds in any equilib-
rium. As for social optimization, since this is a closed system holding costs are
the constant NCh. Therefore, the social goal is simply to minimize capacity
costs, and this is achieved by always setting the minimum possible service
rate. The worst case for social optimality is when servers select the maximum
possible service rate for every queue length. This outcome can be reached in
equilibrium when Co � Ch.



Chapter 3

Information

This chapter describes research focusing on the information available to de-
cision makers in rational-queueing models. Some models deal with uninformed
servers, but most focus on the information available to customers.
Obviously, when the system operates in the SO way, social welfare is higher

when more information is available. It is also easy to show that in Naor’s model
with selfish customers social welfare is higher in the observable case. To see
this, recall from [221] that if potential demand is high then in equilibrium
social welfare is zero in the unobservable case and nonnegative when the queue
is observable. Otherwise, if the potential arrival rate is not high then, as shown
by Naor, too many join the observable queue but even more (i.e., all) join
the unobservable queue. The question of whether a profit maximizer wishes
to reveal queue length information to customers and whether it is socially
desirable to force such revelation was investigated by Hassin (1986), see [1]
§3.2. See [141] for more on this subject.
An important stream of research is concerned with customer information

heterogeneity with regard to queue length, service quality, or even their own
service duration. These types of heterogeneity are described in §3.1, §3.2, and
§3.3, respectively.

59
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3.1 Queue-length-information heterogeneity

Some papers bridge the observable and unobservable models by assuming
only a fraction of the customer population can observe queue length.

The double-ended queue model of Large and Norman [426] (2012) can
be described in terms of the taxi market as follows: Taxi customers are indexed
by i = 1, 2, . . . in order of arrival. There are two customer types, informed and
uninformed. With probability π > 0 the customer is informed and sees the
length of the queue, otherwise the customer is uninformed.1 Each customer
makes an irrevocable decision of either balking (ai = 0) or joining the queue
(ai = 1). Thus the rate of joining per unit time is E(ai). Similarly, di is the
number of taxi arrivals during period i and d̄ its expectation. Customers incur
a diminishing cost per unit time of queueing. Payoffs from getting in a taxi are
drawn independently and uniformly on (0,1), but customers also pay a fixed
toll p∗. They join the queue if their payoff exceeds some threshold depending
on their information.
Under natural conditions it is proved that an equilibrium exists and that

in all equilibria the queue length is ergodic. Consequently E(ai) = d̄, so there
is zero drift in the process. It then follows that the average threshold used by
customers is (1− d̄).
It can further be deduced that they all employ the average threshold of

(1− d̄). From this fact one can infer that uninformed welfare is exactly d̄2/2,
which does not depend on toll or queue discipline.

Hu, Li, and Wang [349] (2014) assume a fraction γ of customers in a
Naor-type M/M/1 system are informed about the queue length prior to decid-
ing whether to join. These customers behave exactly as in Naor’s model. Un-
informed customers join in equilibrium with probability q∗, which is uniquely
determined similarly to the E&H model after taking into account the existence
of informed customers.
The authors characterize q∗ and investigate the sensitivity of the following

performance measures to changes in γ: throughput, accessibility (the probabil-
ity that an informed customer joins), welfare of each customer class separately,
and social welfare. They find that these effects are uniquely determined by
the type of equilibrium joining behavior of the uninformed customers, namely
whether q∗ = 0, q∗ = 1, or 0 < q∗ < 1. For example, as a function of γ,
if q∗ > 0 then social welfare is strictly increasing, but if q∗ = 0 then social
welfare is strictly increasing for C ¬ Rµ < 2C and strictly decreasing for
Rµ ­ 2C.2

1Informed customers serve to maintain ergodicity by joining less when they see a long
queue and joining more when the queue is short. This is why it is necessary to assume that
the number of informed customers is at least a positive fraction π > 0.
2Here, as in Naor’s model, R is the service value and C is the waiting-cost rate.
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3.2 Quality-information heterogeneity and signaling

As §3.6, this section relates to environmental uncertainty but here it arises
when firms cannot credibly communicate quality of service to customers. The
following papers provide insights on both customer and firm behavior. When
and why do customers join longer queues even when waiting is costly? Why
do successful firms choose to generate congestion rather than to raise prices
or increase capacity?3

This section concerns asymmetric information. However, in contrast to the
more common asymmetric information models, here customers try to infer
information on the firm’s relevant parameters, not the other way around.

Veeraraghavan and Debo [633, 634] (2009, 2011) consider games in
which customers choose between two service facilities with observable Marko-
vian queues and unknown service values V1 and V2, based on the queue lengths
and on prior beliefs and information regarding the quality (value) of service
at each facility. Customers cannot jockey or renege. Each customer receives a
signal s ∈ S = {1, 2} such that P (s = i|Vi > Vj) = g ­ 0.5. g is referred to
as signal strength. When g = 0.5, the signal is uninformative. When g = 1,
the signal reveals which service is better. A customer knows his own signal
strength and the signal strength’s distribution but not the realizations of the
signals of the other customers.

Veeraraghavan and Debo [633] (2009) assume no waiting costs, and
that a customer’s objective is to join the queue of the higher quality server.
Customers choose which queue to join based on a prior assumption that
Pr(V1 > V2) = Pr(V1 < V2) = 0.5, a private signal, and queue length.
The authors consider a class of general threshold strategies: Customers

join the longer queue when its length is greater than Tk + k, where k is
the length of the shorter queue and Tk is a nonnegative integer. They show
that the only equilibrium strategy in this class has T0 = 0. It follows that
the equilibrium strategies are identical at all nonzero probability states, and
the only subgame-perfect equilibrium strategy (SPE) is: choose the queue
corresponding with your signal if the queue lengths are equal, and join the
longer queue otherwise. Under this strategy, at any given time, one server is

3Giebelhausen, Robinson, and Cronin [251] (2011) examine waits as a signal
of quality in laboratory experiments and conclude that when quality is important and
unknown, “the increased quality signaled by a wait is enough to overcome the negative
impact of that wait.” Koo and Fishbach [407] (2010) conclude from laboratory and
field studies that customers are more affected by the number of customers behind them
than by the number of customers ahead of them in the queue. They provide the following
explanation: “When people are part of a queue, the presence of others behind them is a
proxy for accomplished actions ... signals that the queuing is more valuable. In contrast, the
presence of others ahead is a proxy for unaccomplished actions ... signals required effort”
(cf. [710]).
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idle, and the authors show that the long-run market share of the better server
is equal to the signal strength g. The authors assume no waiting costs in order
to focus on the information value contained in the length of the queue, and
their results are sensitive to the presence of waiting costs. They discuss the
complexity of analyzing a model with waiting costs.

In the companion paper, Veeraraghavan and Debo [634] (2011) con-
sider a model that integrates negative waiting cost externalities with positive
informational externalities associated with herding behavior. There are two
M/G/1 observable service facilities whose service values are random variables
with a known symmetric joint distribution. The waiting-cost rates for the
two servers are identical. Customers are homogeneous except for their private
information regarding which server is of higher quality.
There are three possible strategies: (F) follow your signal; (S) join the

shorter queue; (L) join the longer queue. The latter strategy means herding
as customers ignore their signal and join the longer queue. The focus of this
research is to demonstrate that herding is a possible rational strategy and to
characterize the conditions which encourage this behavior.
In the simplest version used to demonstrate the behaviors in this model,

there are two customer classes. A fraction α of the customers has perfect infor-
mation (they know which server is the better one) while the other customers
have no information (their signal strength is 0.5). Moreover, the buffer space
of each server accommodates one customer in service and one in queue, and
the service value is high enough such that balking is never optimal if there is
an available space at one of the servers. Therefore, the only decision is which
server to join when one is idle and the other is busy but has an empty queue.
For one and two waiting positions in queue buffer sizes, the authors fully

solve this model. In particular, all three strategies can be sustained in equi-
librium and for some parameter values both L and S define equilibria. A
main insight is that rational customers may join longer queues despite wait-
ing costs, especially when traffic intensity is low. Numerical examples are used
to demonstrate and characterize herding when queue buffers are larger.
Since optimal rational decisions are rather complex, the authors also con-

sider a bounded rationality version where customers behave under the assump-
tion that all others follow their signal. In this case, less informed customers
herd if the queue-length difference is greater than a threshold.

Callander and Hörner [124] (2009) investigate a model of social learn-
ing and find that the conditions that lead agents to abandon their own infor-
mation and follow the minority rather than the majority are that “information
is sufficiently heterogeneous and the well informed are not overly abundant.”
The authors illustrate their findings with the following simple queueing model.
There are two observable M/M/2/2 queues. Service values are 1 for one queue
and -1 for the other. A fraction q of the customers are informed and obtain
a signal that proves to be correct with probability p > 0.5 on which queue is
the good one. Balking comes with no cost or benefit.
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The authors define a function f(µ, p) and prove that iff q ¬ f(µ, p), the
equilibrium strategy of uninformed customers is to join the shorter queue
(while informed customers follow their signal). Another interesting result is
that the probability a customer chooses correctly is increasing in q but non-
monotonic in µ. The authors also solve the corresponding M/M/3/3 model
with p = 1.

Debo and Veeraraghavan [187] (2009) survey results on herding be-
havior in service systems.

Zhang [698] (2010), motivated by applications concerning kidney alloca-
tion to transplant candidates, investigates strategic behavior in a queue where
customers wait for a unit of a product. Product units are heterogeneous and
when a unit arrives it is first offered to the customer at the head of the queue.
Customers use their knowledge of the system parameters along with private
signals on the specific unit and decide whether to accept the unit and depart
the system. If a customer rejects an offer the unit is offered to the next in line.
In general, when customers are offered a unit they use their private signals
and also consider that the unit has already been rejected by predecessors.
Customers in the queue do not share information and this may lead to herd
behavior where customers ignore their own signals and reject a unit because
it has already been rejected by a small number of preceding customers.
The authors add to this simplified model properties related to the kidney

market. In particular, customers are heterogeneous and maximize discounted
payoff. A specific utility function is assumed and its parameters are estimated
based on empirical data. The empirical findings are consistent with the theo-
retical prediction of observational learning. Even identical units (kidneys from
the same donor) are often received very differently as one may be accepted
at an early stage while its counterpart could be rejected and travel down the
queue before being accepted or not.

Debo, Parlour, and Rajan [184] (2012) consider an observable
M/M/1 queue where the server has high quality (h) with probability p, and
of low quality (l) otherwise. A given proportion of customers are informed
about the server’s quality, while the other customers are uninformed and have
a prior belief p that the server has high quality. The value of a θ-service is vθ,
θ ∈ {l, h}. Waiting cost is linear and common to all customers, and customers
decide between joining and balking. The server chooses between a slow or
a faster service, but cannot communicate the service rate to its customers.
Operating at the faster service rate is more costly.
The strategy of informed customers is the standard threshold strategy with

threshold nl or nh, nh ­ nl, depending on the server’s type. In contrast, the
strategy of uninformed customers is characterized by a hole, n̂, between nl and
nh, in which uninformed customers balk. At every other queue length between
0 and nh−1, uninformed customers join. The explanation is as follows: Clearly,
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if queue length n is shorter than nl, an uninformed customer obtains positive
expected utility from joining, even when the quality is low. Suppose that when
n = n̂ > nl, uninformed customers balk. This means that n > n̂ indicates an
informed customer joined it at n̂, and hence the server’s type must be h.
An interesting outcome of the customers’ strategy is that a high-quality

server may communicate its type by maintaining a queue of length greater
than n̂. To achieve this goal, the high-quality firm may prefer the slow rate
thus ensuring queue length above the hole with a high probability. This may
happen even when there is no extra cost involved in choosing the high service
rate!

Debo, Rajan, and Veeraraghavan [185] (2012) study how quality
can be inferred from pricing and congestion in a market with firms that can-
not credibly convey the quality of their service to customers. An observable
M/M/1 system is operated by a firm with either high or low-quality service.
The probability a firm is of high quality is public information.
A given proportion q of the customers are informed and know the firm’s

quality. The others are uninformed. Customers have heterogeneous service
valuations such that for t ∼ U[0,1] the value from high-quality service is tvh
while the value from low-quality service the value is tvl, with vl < vh.
In the base model, customers incur positive but very small waiting cost

rates. This assumption enables analytical analysis, but the qualitative results
also hold under relatively high waiting cost rates, as the authors show numer-
ically.
On arrival, each customer observes the price and queue length. An equilib-

rium satisfies the following conditions: (i) all customers (informed and unin-
formed) obtain nonnegative utility; (ii) beliefs uninformed customers have on
the service quality are consistent over all possible queue lengths, and consis-
tent with the strategies of the firms; (iii) each type of firm maximizes profit,
given the customer joining strategies.
The firms may choose to differentiate themselves by separating prices. In

this case all customers become informed of the service quality and high con-
gestion adds no information about quality. In other cases the equilibrium is
with pooling prices, the congestion level is informative, and more congestion
is to be expected at a high-quality firm.
The authors characterize the existence of separating and pooling equilibria

according to q and vl/vh. When both types exist, a high-quality firm would
prefer the pooling equilibrium because to credibly signal its high quality it
needs to charge a very high price and face reduced profits from lost customers.
Therefore, in this case prefers to use congestion rather than price as a signal
of quality. The low-quality firm’s profits are equal in both equilibria and hence
pooling is Pareto dominant.

Kremer and Debo [418] (2015) describe a laboratory experiment ver-
ifying the central qualitative conclusions obtained in [184]. Their adaptation
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of the theoretical model incorporates a finite number of players and deter-
ministic service times. Since real-life customers cannot be expected to follow
the predictions of the theoretical model, the authors relax the rationality as-
sumption and compute instead a quantal response equilibrium which involves
a parameter β corresponding to the degree of rationality. This theoretical
model predicts, and the experimental study verifies, that under certain condi-
tions the buying probability of an uninformed customer may locally increase
in waiting time.
The study further demonstrates (both theoretically and empirically) the

empty restaurant syndrome – short waiting times mean low waiting costs, but
customers may balk because they infer low quality. This tendency to avoid
empty systems increases the more informed customers are in the population.
Another conclusion states, with obvious managerial implications, that the
high-quality firm benefits from informed customers only when they are in suf-
ficient numbers. If there are only a few informed customers in the population
then, because most arrivals are uninformed customers who avoid empty sys-
tems, the system rarely generates the long queues that benefit high-quality
firms from the presence of even a small fraction of informed customers.

Guo, Haviv, and Wang [277] (2014) solve an unobservable version of
[184] assuming that service rate is fixed and not a decision variable. Service
quality is a random variable and can be either high or low, and customers
are informed or uninformed. A strategy defines three joining probabilities: of
uniformed customers, of informed customers when service quality is high, and
of informed customers when service quality is low. As the potential arrival
rate increases, the solution changes from a unique equilibrium to a continuum
of equilibria, and the uninformed customers first join, then do not join, and
finally join with some probability.
The authors also solve a variation of their model (see §3.2) where all cus-

tomers are uninformed but they can buy quality information. The equilib-
rium is characterized by two parameters, probability of buying information
and probability of direct joining.

3.3 Processing-time information

See [583] where the firm quotes PDTs based on known service times, and
[405] where new customers know their service times when bidding for priority.

Enders, Gandhi, Gupta, Debo, Harchol-Balter, and Scheller-Wolf
[226] (2010) suggest a mechanism that motivates informed customers who
know their processing times to reveal this private information, and also fairly
treats uninformed customers who only know the service time distribution.
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Each job is divisible into an integer number of unit-sized pieces that must
be processed in a given order. The system maintains high- and low-priority
queues, and preemption is allowed. Upon arrival, each customer receives D
tokens; each token can be used to route one unit of the job to the high-priority
queue. An informed customer places tokens on D units of his job (or on all
units if the number does not exceed D) wishing to minimize his expected
delay. The main result of the paper is that placing tokens on the last D
units of the job is a strongly dominant strategy for informed users. Therefore,
the resulting order of processing approximates the desired shortest-remaining-
processing-time discipline.
A much harder task is characterizing the equilibrium behavior of unin-

formed customers. To do this the authors focus on the following example.
The job size is one unit with probability p, or two units with the complemen-
tary probability. The arrival process is Poisson with proportion α uninformed,
(1−α)p informed with a one-unit job, and (1−α)(1−p) informed with a two-
units job. Each customer is given a single token. The behavior of informed
customers is determined by the above rule, so what remains is to identify
the strategy for uninformed customers. It turns out the situation is FTC and
there are three possible types of equilibria: (i) a unique equilibrium where
uninformed customers place their tokens on their first unit; (ii) a unique equi-
librium where they place it on the second unit (if their job turns out to be of
two units); (iii) three equilibria with the two previous pure equilibria and a
mixed equilibrium. Interestingly, a numerical study reveals that SO solutions
are always of the second type.

Haviv [322] (2014) considers an M/G/1 unobservable model where arriv-
ing customers know their service duration and base their join-or-balk decision
on this information.4 In general, if the demand has a continuous cdf, there is a
threshold value xe such that those who join in equilibrium are the customers
whose demand is below xe, and there is a similar SO threshold xs ¬ xe. The
system can be coordinated in many ways, for example, by charging no fee
for service shorter than xs or charging a very high fee otherwise. It might
be desirable to apply pricing mechanisms that continuously change with de-
mand x, and make an xs-customer indifferent between joining or balking.
For example, consider holding fee α, service fee β, and flat fee γ such that
(α + C)Wq(xs) + (β + C)xs + γ = R, where Wq(xs) is expected queueing
time under threshold xs, C is waiting-cost rate, and R is the service value.
The author focuses on three special cases where just one of these values is
positive: α > 0, or β > 0, or γ > 0; and observes that a possible disadvantage
of the flat fee is that less consumer surplus remains. When the regime is FCFS
customers pay more under holding fees than under service fees, whereas under
EPS all joining customers are indifferent towards these mechanisms.

4See [1] §3.5 for other models that make this assumption.
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3.4 Information acquisition

In the supermarket game of Xu and Hajek [670] (2013), customers
are homogeneous and upon arrival each randomly inspects a given number
k out of N M/M/1 queues and joins the shortest one. Customers incur a
fixed inspection cost per queue and linear waiting costs. Customers choose
the number of queues to inspect with the intention of minimizing expected
costs.
The authors apply mean field theory to derive an approximate expression

for the expected cost for a customer who inspects a given number of queues
when all others apply a common mixed strategy. They use it to prove that a
symmetric equilibrium is characterized by a mixed strategy where customers
randomly choose between two consecutive integers. An interesting feature of
the model is that queue inspection generates positive externalities5 and there-
fore the SO solution inspects more queues than the equilibrium IO solution.
The main results are:

� There exists a unique equilibrium when ρ < 1/
√
2, where ρ = λ/Nµ.

� Multiple equilibria are possible when ρ is very close to 1.6

� The equilibrium obtained by the mean field model is a good approxima-
tion if N is sufficiently large.

� In the mean field model with ρ < 1√
2
, if all other customers inspect

more queues, then the variability of queue lengths is reduced, there is
less incentive for a given customer to inspect queues, and we obtain ATC
behavior.

� A customer inspecting only one queue would benefit if others inspect
more queues. However, one who inspects more than one queue prefers
large variability in queue lengths and hence could benefit if others do
not inspect many queues. Thus, the act of inspection is associated with
positive externalities on some customers and negative externalities on
others.

Hassin and Roet-Green [313] (2014) offer another model which
bridges Naor’s observable and E&H’s unobservable models. The queue is ini-
tially unobservable and the customer faces the three options to balk, join, or
inspect the queue. If inspecting, a second join-or-balk decision is then made

5This is similar to [313].
6This outcome is surprising because the more queues others inspect the smaller the

queue-length variability and the expected gain from inspecting a queue, so one expects
ATC behavior and a unique equilibrium. The multiplicity of equilibria in heavy traffic
could perhaps be attributed to the mean field approximation.
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given queue length. Inspecting the queue is associated with a fixed cost. A
strategy is defined by the probabilities of balking, joining, and inspecting at
the first decision stage. The second decision is made according to Naor’s dom-
inant strategy.
The authors observe that fixing any of the three probabilities results in an

ATC model. Thus, this is a pairwise ATC situation. In particular, when the
probability of balking without inspection is fixed, the ATC situation reflects
the positive externalities associated with inspection. The higher the probability
that others inspect the queue, the lower any customer’s need to do so. However,
this observation is not sufficient to prove uniqueness of the equilibrium and a
direct proof is provided for this result. The proof involves a characterization
of the feasible space of utilities obtained from joining without inspection and
from inspecting the queue.
Interestingly, the authors demonstrate that the equilibrium average joining

rate when customers incur inspection costs can be higher than the rates of
both the observable and unobservable cases.

Hassin and Roet-Green [314] (2014) consider a multi-queue sys-
tem with customers sequentially inspecting multiple queues to observe their
lengths, and after each inspection decide whether to join one of the inspected
queues or to continue the search. Customers incur a fixed inspection cost and
linear waiting costs, and seek to minimize expected total cost.
Numerical evidence with two queues indicates that the equilibrium strat-

egy is unique, and in general, it is not of a threshold type and may involve
cascades even in the case of two identical queues. That is to say, a certain
action (continue or stop the search) can prevail in the equilibrium when i or
i + 2 customers are observed in the first inspected queue, but the opposite
action is taken if i + 1 customers are observed. In general, as the inspection
cost increases, customers tend to inspect fewer other queues. However, for a
given observed first queue length customers may inspect more queues as the
cost increases.

Guo, Haviv, and Wang [277] (2014) solve a variation of their model
(see §3.2) where all customers are uninformed but can buy quality information.
The equilibrium is characterized by two parameters, the probability of buying
information and the probability of direct joining.

Hassin and Snitkovsky [316] (2016) study a queueing system with
Poisson arrivals, two exp(µ) servers SL and SQ, and a single queue. Upon
arrival, a costumer chooses between paying a sensing price and trying to attain
service by SL, or joining the queue and waiting to be served by SQ. A costumer
who senses SL and finds it idle is immediately accepted to service, but if SL
is busy the customer is sent to the queue and waits to be served by SQ.
The authors prove that there exists a unique equilibrium sensing strategy

in this system. The equilibrium sensing probability is below the SO value in
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most cases, but the opposite inequality is also possible. As a consequence,
PoA is not always a unimodal function of the system utilization.

3.5 Information control

The level of information available to customers and servers is an important
part of every strategic queueing model. We describe here models that focus
on this issue, but of course there are many other models scattered elsewhere
in this survey also dealing with this subject.

Dobson and Pinker [203] (2006) consider an M/M/1 queue and a se-
quence of strategies S0, . . . , S∞. In Sk, if the system’s load is less than or
equal to k, the firm announces the τ fractile of the lead time, where τ is ex-
ogenous. Otherwise, the firm announces the expected lead time conditioned
on the state being k or higher.7 The strategy S0 corresponds to the unobserv-
able model; the other extreme S∞ corresponds to the observable model. The
joining probability is an exogenous decreasing function of the quoted delay.
The authors assume the firm chooses the Sk strategy which maximizes

the throughput of the system, and investigate the effect sharing increasing
amounts of information has on the system’s throughput and average waiting
time.

Guo and Zipkin [284, 285, 286, 287] (2007-9) compare different levels
of information and investigate impact on system performance. They consider
throughput and average customer utility as the system’s performance mea-
sures. There are no prices and the server’s decision is the level of information:
unobservable, queue observable, or workload observable. The service value is
R and a customer’s waiting cost is θE[c(W )], where W is waiting time, c(W )
is a basic cost function common to all customers, and θ is a customer-specific
weight that measures sensitivity to delay. The θ-customer’s expected utility
is then u(W, θ) = R− θE[c(W )].
A simple example demonstrates that the system’s throughput may increase

or decrease when moving from observable queue to observable workload. Sup-
pose service time is 1 or 2 with equal probability, and the waiting-cost rate
is 1. Denote service value by R. (i) R ∈ (1, 1.5). No customer joins when the
queue is observable even when the system is empty, but when the workload,
in particular the arriving customer’s service time, is observable a customer
joins if his service duration is of unit time and the queue is empty. There-
fore, in this case the throughput is larger when the workload is observable.

7In a rational model this is equivalent to informing customers of the exact queue length
if it is below k or otherwise only informing them the length is at least k.
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(ii) R ∈ (1.5, 2). No customer joins when the system is not empty. When the
system is empty all join in the observable queue case, whereas only half of the
customers join when the workload is observable. Therefore, in this case the
throughput is larger when the queue is observable.
In [284], the authors show the primary factor determining whether infor-

mation is good or bad for the service provider and the customers is the shape
of the cdf H of the customers’ delay sensitivities and not the waiting cost
function. The authors find sufficient conditions to ensure that more informa-
tion benefits the provider and the customers. For example, when H(θ) = θα

for θ ∈ [0, 1] and some α > 0, the average customer utility is proportional
to the throughput, the two system performance measures are aligned, and
more information benefits both. The authors also give examples where more
information reduces the customers’ expected utility due to externalities.
In [285] it is shown that the results of [284] with respect to comparing

the unobservable and observable workload models still hold with phase-type
service times. The observable queue model is not discussed here because its
analysis is much more involved, as has been demonstrated in [49, 397].
In [287] the authors investigate the effect of customers’ delay and risk

sensitivities on the system’s performance measures. Some of their main results
are:

� If customers are less heterogeneous with respect to delay sensitivities,
they obtain a smaller average utility, and the system throughput is larger
under light traffic and smaller in heavy traffic.

� In the unobservable case, when customers have a smaller cost function
their average utility is larger. However, this property does not necessarily
hold in the two observable versions.

� A system with more risk-averse customers need not have a smaller
throughput.

� The value of information is not necessarily larger for customers who are
less patient or for more risk averse customers.

In [286] the authors incorporate into their model two other information
models. In the case of partition information, the nonnegative integers are
partitioned into intervals and a customer is informed about the interval that
contains the system occupancy at the time of arrival.8 In the case of phase
information the service time of each customer consists of a random number
K of exponentially distributed phases. Assuming that K has a geometric
distribution, the unconditional service time is again exponentially distributed.
The available information is the number of remaining phases of all present
customers. This is more information than just queue length but less than

8This model is similar to the compartmental model of [218] and contains as special cases
the unobservable and the observable queue length models.
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the workload. It is shown that more information can increase or decrease
throughput depending on the shape of the distribution of customer delay
sensitivities.

Economou and Kanta [218] (2008) consider two models with partial
information that bridge the extremes of observable and unobservable queues.
In their setting the queue is composed of compartments of fixed size a. Joining
customers obtain partial information on their positions in the queue. Suppose
that the number of customers in the system is n. Model N assumes a new
arrival knows the number bn/ac+ 1 of the compartment to which he will en-
ter. Model P assumes that he knows only his position (n mod a) + 1 in the
compartment. In the N case, the information with a = 1 is the exact queue
position, as in Naor’s observable queue, for which there exists, in general, a
unique equilibrium threshold strategy. When a→∞ we obtain E&H’s unob-
servable system for which there exists a unique equilibrium strategy, which
in general is a mixed strategy. The P case yields exactly the opposite conclu-
sions. Hence, both models bridge the two extreme cases but in opposite ways.
However, the dependence of the value of the information on the compartment
size a is not straightforward. In particular, whether the compartment number
is more significant when a is large or when it is small.
The authors analyze both cases, but their analysis of the equilibrium in

the N case is less complete as it only deals with pure strategies. The authors
apply the dual approach (see §2.2): Assuming customers know continuously
the compartment in which they reside but not the position within it, and
assuming an LCFS-PR service regime, a customer has incentive to renege
only when moved to another compartment because of a new arrival. When
this happens, all customers who were behind him have already left the system
and therefore this customer imposes no externalities and behaves in the SO
way. The authors use this insight to compute the SO solution.
The analysis of the P case includes a detailed solution of the equilibrium

threshold strategies and shows the existence of an equilibrium threshold strat-
egy such that the threshold is a decreasing function of the arrival rate, while
the social and profit-maximizing thresholds exhibit unimodal behavior. The
authors also show that the objectives of profit maximization and welfare max-
imization coincide only when a = 1, i.e., when the queue is unobservable.
An interesting question is the dependency of the social and profit gains

on the compartment size a, especially when this parameter can be controlled.
The authors find that in the N case these gains can reach maximum values
at intermediate levels. In the P case, the authors show an example in which
the optimal values increase with a, indicating that more information increases
both profits and social welfare. They also obtained examples where profit
decreases with compartment size while social welfare increases.9,10

9S. Kanta, private communication.
10Recall that in the P model the information is minimal when a = 1 and maximal when
a→∞.
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Armony, Shimkin, and Whitt [68] (2009) consider non-price con-
trol of a queue by supplying new arrivals with information that affects their
join/balk/renege decisions. The goal of the delay announcements is to in-
duce balking when the system is heavily loaded and retrying at a later time.
Specifically, the server announces the delay of the last customer to enter ser-
vice (DLS). Given an announcement w, arriving customers respond by two
exogenous functions: Balk with probability B(w), or otherwise renege before t
time units with probability F (t|w), for t > 0. In equilibrium, announcements
conform with customer responses which affect the system’s performance that
leads to these announcements. The results are compared to the fixed delay
model (FD) where the customers only know the long-run average delay (as
E&H). However, it is assumed that the customers respond by the same func-
tions B and F . Simulation shows that DLS announcements are more effective
in causing customers to renege and reducing the delay of served customers,
and that the difference can be significant. Heavy-traffic approximations are
also used to show that a unique equilibrium fluid delay exists under very gen-
eral conditions, but multiple equilibria are possible when these conditions are
not satisfied.

Shone, Knight, and Williams [574] (2013) prove a necessary and
sufficient condition on the system parameters under which the equilibrium
average joining rate is the same when the queue is observable and when it
is unobservable. They also prove a similar condition with respect to the SO
solutions. However, it is not possible that both of these conditions hold simul-
taneously.

Hassin and Koshman [311] (2014) consider limited dynamic pricing in
a profit maximization model that combines features from both the observable
and unobservable versions of Naor’s model. For an exogenous threshold N ,
customers are informed of whether the queue length is less than N (state L)
or at least N (state H).11,12 Admission prices are pL and pH .13

The authors numerically solve the model and find that:

� N = 1 (meaning customers join iff the server is idle) always guarantees
at least half of the maximum value that can be generated by the system
(see §6.1).

Yu, Allon, and Bassamboo [688] (2015) provide empirical evidence
that a longer estimated delay not only affects customers waiting cost estimates
but may also give them more freedom in selecting activities while waiting and
hence reduce their waiting-cost rates.
To explore this phenomenon the authors construct a model where cus-

tomers receive delay announcements. To be credible, announcements must

11See §6.1 for a discussion when N is a decision variable.
12See [440] for another paper that assumes a similar service rate strategy.
13The special cases N = 0 and N =∞ are equivalent to the E&H unobservable model.
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take into consideration the effect on customer behavior. The authors use an
iterative procedure to compute the equilibrium such that the waiting estimate
offered by the announcement matches the one experienced by the customers.
The balance of the contradicting impacts of a longer expected waiting time

with a smaller waiting cost rate may reduce customer motivation to renege
when a longer wait is predicted. The authors find that, according to their
call center data, informing customers about anticipated delays can improve
their surplus, and that for this purpose it might suffice to announce partial
information messages, for example low, medium, and high expected waiting
times.

Boudali and Economou [102] (2015) investigate a bulk-service system
where a compartmental model naturally arises.14 The system is Markovian,
customers have identical service values and waiting cost rates and are served
in batches of size K. Let q = Km+ j where 0 ¬ j < K be the queue length.
Thus, m denotes the number of complete batches in the queue and j is the
number of customers in the incomplete batch.
An interesting feature of the model is that it combines ATC and FTC

behavior. The authors determine the equilibrium joining strategies in four
cases, depending on whether customers observe each of m and j:

� The observable case: There exists a unique equilibrium strategy,
which is of threshold type with respect to m and of reverse-threshold
type with respect to j, i.e., for m0 ¬ · · · ¬ mK−1 join iff m ¬ mj .

� The almost observable case: In this casem is observable but j is not.
The authors characterize the set of equilibrium m∗ pure threshold strate-
gies where customers join the system iff m ¬ m∗. Multiple equilibria are
possible and their m∗ values constitute an interval of integers.

� The almost unobservable case: In this case only j is observable.
The equilibrium strategies are of the mixed reverse-threshold type, i.e.,
joining if j is above a threshold and mixing at the threshold. The authors
conduct a detailed case analysis and compute for each case the (generally
unique) equilibrium.

� The unobservable case: In this case all balk is always an equilibrium
and there may be one or two equilibria with a positive joining probabil-
ity. This case reminds of a similar situation that has been noted regard-
ing the customer behavior in the unobservable M/M/1 queue with the
N -policy (see [272]).

The authors numerically compare the four information settings and reach
many interesting conclusions. For example, when the system load is low social
welfare increases when j is concealed from customers, whereas when the load
is high it is important to reveal m.

14See [218] for a similar situation for a single-service system.
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Simhon, Hayel, Starobinski, and Zhu [577] (2016) consider a vari-
ation of Naor’s model where the firm reveals the queue length if it does not
exceed a threshold D. Customers arriving when the queue is longer than D
know this fact. The authors compute the equilibrium joining probability when
the queue is longer than D. The authors show that equilibrium throughput
is a monotone function of D and therefore if the firm’s goal is to maximize
throughput then the optimal policy is one of the extremes, either the observ-
able queue or the unobservable queue.

3.6 Environmental uncertainty

This section considers systems that operate in an uncertain environment.
The users or operators in the system may be uninformed on the state of the
environment at the time they make a decision and therefore some of the system
parameters may become random variables with unknown realization.

3.6.1 Customer uncertainty

See [542] for an uncertain number of customers that can be included in a
single batch of service; [438, 168, 75] for models of competition where servers
set service rates but do not inform their customers about the selected values;
[216] for environments that differ in both arrival and service rates; see [217,
352, 519, 699] for other models where the service rate is unknown.

Hassin [305] (2007) considers an M/M/1 queue where the service value
(quality) R, the waiting-cost rate C, or the service rate µ is a random variable
obtaining one of two given values with known probabilities. For each case,
the author analyzes three subcases: (i) Customers are uninformed about the
realization of the random variable and the server sets a single price indepen-
dent of the realization; (ii) customers are informed, and the server sets a price
depending on the realization; (iii) customers are informed, but the server is
restricted to setting the price before the random variable is realized.
Some of the main qualitative results are:

� Uncertain µ: Informing customers is desired even if the price is set
exogenously and not optimally by the server. The difference between
profits obtained with informed and uninformed customers increases in
the amount of uncertainty.

� Uncertain C: For prices that induce positive demand in the case with
no information, the same level of social welfare is attained whether cus-
tomers are informed or not. However, informing customers may be ben-
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eficial when one of the possible values of the waiting-cost rates is so high
that without information no customers will show up.

� Uncertain quality of service: When restricted to a single price, for
small C the server is motivated to conceal the realized service value from
the customers. For large C, the opposite holds.

� Increased uncertainty may increase or reduce profits and welfare.

� Sun and Li [604] (2014) extend [305], allowing for the random pa-
rameter to obtain n > 2 values. They also introduce further variations
where the server can set distinct prices when one of the k < n lowest (or
highest) possible values is realized, and set a common price otherwise.
The results are qualitatively similar to those obtained for n = 2 in [305].

Guo, Sun, and Wang [282] (2011) consider an unobservable queue
where the server provides partial information on the service time distribution
to its customers. It is assumed that customers interpret this information ac-
cording to the maximum entropy principle. This means that customers behave
as if the service time distribution is the one leaving the largest remaining un-
certainty (i.e., the maximum entropy) consistent with the partial information
revealed by the server. Examples of partial information considered by the au-
thors are the range, mean, mean and range, mean and second-order moment
of the logarithm, and mean and variance of the service time distribution. In
each case the equilibrium joining/balking strategy is computed both when the
waiting costs are linear and when they are quadratic increasing. The authors
conclude that supplying only partial information may increase welfare, but for
profit maximization it is beneficial to reveal more information on the service
time distribution.

Sun and Li [602] (2012) consider an almost-observable Markovian queue
with multiple vacations (see §10). Customers are informed that the service
rate has one of two possible values (or that it belongs to a given interval), but
the exact value is concealed from them. The authors consider several ways
of determining the equilibrium threshold queue length for the join-or-balk
decision; pessimistic (max-min), optimistic (max-max), a combination of the
two, min-max regret, and highest average payoff. All of these criteria ignore
the signal the queue length provides on the service rate.

Sun, Li, and Tian [608] (2013) obtain analogous results for the unob-
servable version of [602]

Debo and Veeraraghavan [188] (2014) consider an observable M/M/1
queue where service value V (t) is a linear function V (t) = V0 + rt of the ex-
pected service time t, and where r > 0, implying that longer service is associ-
ated with a higher value on average. Customers cannot observe the realization
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of these variables. Customers incur linear waiting costs and a customer’s strat-
egy defines for each queue length n a joining probability α(n). An important
feature of the model is that the positive correlation between service duration
and quality means a long queue indicates high-quality service but also a long
waiting time.
In an interesting special case, there are only two possible service values.

The authors characterize the possible types of equilibria in this case. The
equilibrium can have a (pure or mixed) threshold strategy, or a sputtering
strategy. A sputtering strategy is defined by two thresholds n0 < n1. When
the queue is shorter than n0 or strictly between n0 and n1, the strategy dictates
joining, there is a randomization at n0, and balking occurs if the queue length
is n1. Thus, joining probabilities are not decreasing in queue length.
In the general case where the priors about the expected service times and

value are more uniformly distributed over some interval, the authors show
that randomization may occur in multiple queue lengths.

Cui and Veeraraghavan [178] (2015) consider an observable M/M/1
system where customers hold heterogeneous beliefs about the service rate.
These beliefs can differ arbitrarily from the true rate. Price is exogenous, and
therefore the server’s goal is to maximize throughput. The server’s decision is
whether to supply customers with service-rate information.
Customer beliefs induce heterogeneous individual thresholds. Customers

do not update their beliefs given the queue length they observe. The insights
obtained include:

� As expected, greater individual thresholds increase the firm’s revenue,
but higher revenues also result when thresholds are less spread-out.

� When beliefs are pessimistic, the average threshold is lower than the real
one and the firm can increase profits by revealing the service rate. This
revelation typically, but not always, reduces welfare.

Zheng [709] (2015) considers two customer classes. Optimistic customers
constitute a fraction α of the customer population and believe the service rate
is µ, while pessimistic customers believe the service rate is µ′ < µ. Customers
also differ by waiting cost rates c ∼ U[0,1] but have the same service value
and pay the same price.
The author solves the resulting equilibrium joining probabilities and shows

that while the equilibrium joining probability of optimistic customers is non-
increasing in price, this is not always so with respect to the pessimistic cus-
tomers.

3.6.2 Server uncertainty

See [358] for an adaptive learning algorithm when the demand function is
piecewise linear with a single breakpoint whose location is unknown to the
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firm; [90] for stochastic evolution of the market size with a server not knowing
its instantaneous value; [231] for a case where the capacity cost of a server
is unknown to its competitor; [390] for a supply chain game where each of
two players applies min-max optimization to cope with the uncertainty about
the parameter set by the other player; [331, 491] for cases where the server
does not know the arrival rates; [380] where an MTS server has imperfect
information on the system length.

Gayon, Talay-Değirmenci, Karaesmen, and Örmeci [248] (2009)
study an M/M/1 system operating in an exogenously changing demand envi-
ronment that evolves according to a continuous-time Markov chain with small
transition rates as compared to production and demand rates. Customers are
price sensitive, and those arriving when there is no stock on hand are lost.
The firm maximizes the long run average rate of revenues net of its (nonlinear)
holding costs.
The authors present MDP equations for three models: static pricing,

environment-dependent pricing, and dynamic pricing (varying both with the
environment and queue length). In each case the optimal replenishment policy
is an environment-dependent base-stock policy. The authors prove monotonic-
ity properties of the dynamic prices and base-stock levels and conduct a nu-
merical study which reveals that the gain of dynamic pricing is quite modest
in a wide range of parameter values.

Afèche and Ata [14] (2013) study a learning-and-earning problem for
an observable queue serving a population with an unknown proportion q of
patient customers with waiting-cost rate of cL, while the remaining customers,
with waiting-cost rate cH , cH > cL, are impatient. There are two scenarios:
optimistic, where q = qo, and pessimistic where q = qp < qo. Service value is
R for all customers. The server uses dynamic pricing to maximize discounted
expected revenue. The server cannot distinguish patient from impatient cus-
tomers and updates its belief of q by observing the behavior of arriving cus-
tomers, including those who balk. Specifically, learning is possible only under
a high price that deters H-customers from joining, so there is a tradeoff be-
tween immediate earning and learning. Waiting costs apply while queueing
but not during service. Therefore, when there are n customers in the system
it is optimal to charge either PL = R − n(cH/µ) or PH = R − n(cL/µ), or
reject the new arrival.
The main results are:

� For the restricted problem of an M/M/1/2 queue, where the only deci-
sion is the price at state 1, when q is known to the server there exist
thresholds RL, RH , q

¯
such that:

If R ¬ RL then reject customers for all values of q;
If RL < R < RH then set price PH for all values of q;
If R > RH then set price PL if q ¬ q

¯
and PH otherwise.
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� Suppose now that the prior probability for the optimistic scenario is α.
If the high price PH is charged the server can observe whether arrivals
join or balk and update α in a Bayesian way. It turns out that in the
restricted problem there is a threshold α∗ such that the optimal price is
PH iff α > α∗. Clearly, once the outcome is to charge PL the learning
process stops. As a result, learning is potentially incomplete. The authors
characterize the probability the server ends up charging PL indefinitely
while the true scenario is optimistic.

� For the unrestricted case and known q, there exists an optimal nested
threshold strategy where the server sets price PL if the queue is short,
PH when the queue is of intermediate length, and rejects all arrivals
when the queue is long.

� For the unrestricted case and unknown q, the optimal pricing policy
partitions the queue state into five zones. In the first (lower) part, the
price is low and all customers are admitted. In the second, the price is
high or low depending on the updated belief. In the third zone, the price
is high and only L-customers are admitted. In the fourth, the price is
high or all are rejected depending on the updated belief, and in the fifth,
all customers are rejected.

Haviv and Randhawa [326] (2014) consider an M/M/1 system with
heterogeneous service valuations. Let R(λ, p) be the equilibrium revenue when
price is p and the potential arrival rate is λ. Let R∗(λ) = maxp{Π(λ, p)}. The
authors impose regularity conditions on the customer valuation distribution to
ensure that optimal demand-dependent pricing is well defined and increasing
in λ.
Suppose the queue manager does not know λ and applies demand-

independent pricing which maximizes infλ
R(λ,p)
R∗(λ) . The problem is first sim-

plified by proving that worst-case performance occurs either when λ → 0 or
when λ → ∞. After introducing general bounds on worst-case performance,
the authors show that when the distribution of customer valuations is uniform
over [0, v], demand-independent pricing performs very well. Let h denote the
waiting-cost rate.
The main results include:

� The lowest value of the bound maxp infλ
R(λ,p)
R∗(λ) equals 75% and is

achieved when h = 0.

� The performance of demand-independent pricing improves as customers
become more delay sensitive (equivalently, they have higher service val-
ues). When h/(µv) grows without bound the performance approaches
100%.

� Demand-independent pricing works well for other distributions of service
valuations, for example the exponential.
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� Demand-independent pricing works better for revenue optimization than
for social optimization.

3.7 Delayed information and cheap talk

Each of the two seemingly unrelated topics of this section is introduced
separately, and then combined in [28].

The model treated by Wolisz and Tschammer [662] (1993) is non-
strategic but raises interesting questions concerning strategic variations. The
following part is of particular interest. Consider a system of identical parallel
servers. Workload information at the servers is announced every ∆ units of
time. There are two extreme selection strategies. In one, each arriving cus-
tomer randomly and uniformly selects a server. In the other, customers use
the queue-length announcement and all join the least loaded queue. Which al-
ternative is socially preferred depends on the information delay parameter ∆.
When ∆ is small, the expected waiting time is smaller when customers use the
information. When ∆ is large, following the information leads to batches of
customers jointly joining the server with the smallest workload, thus causing
high congestion in the queue.15

Suppose now that ∆ is such that social optimization prefers random se-
lection. In this case it might be that individuals could profit from using the
delayed information (random choice by all is not an equilibrium). Suppose a
proportion p of the population consists of clever boys who use state informa-
tion, whereas the other customers are obedient. The authors show that if p is
small, the clever boys may considerably profit from using state information,
and even the obedient customers will slightly benefit from the behavior of the
clever boys’ behavior. However, when p is large both types suffer from the
lack of obedience.16 Let p∗ be the fraction which minimizes expected waiting
time. The queue manager may then control the system by letting an arriv-
ing customer use the information with probability p∗, and instructing him to
randomly select the server otherwise.

Allon, Bassamboo, and Gurvich [31] (2011) consider an unobserv-
able M/M/1 system where customers value service at R and incur waiting-cost
rates of c. The server obtains a value v per served customer and incurs con-
vex holding costs h(w) per customer who waits w in the system. The server
provides announcements regarding queue length information (referred to as
cheap talk) which customers cannot verify.

15Hence, customers are irrational.
16Another model where only a portion of the population is obedient is discussed in [253].
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With symmetric information customers would behave, as in Naor’s model,
according to the self-optimizing threshold strategy ns = bRµc c. If the server
had full control over the customers, they would follow a different revenue-
maximizing threshold nm.17

The main results are:

� There exists an optimal strategy for the firm with only two announce-
ment types. The firm may randomize its announcement type in at most
a single state of the queue. The rest of the discussion refers to pure firm
strategies.

� There are two possible types of two-signal equilibria: The firm announces
High when the queue length exceeds a threshold and announces Low
otherwise.

– Join or Randomize: Customers who receive Low join the system
while those who receive High join with probability θ ∈ (0, 1).
– Randomize or Balk: Customers who receive Low join the system
with probability θ ∈ (0, 1) while those who receive High balk.

The authors provide a full characterization of both types of equilibria.

� There always exists a babbling equilibrium where the firm provides mean-
ingless signals and customers ignore them. (Such an equilibrium does not
always exist if customers are restricted to pure strategies.)

� Clearly, if ns = nm the server will provide correct information and cus-
tomers will trust this information. The following results hold when cus-
tomers are restricted to pure strategies:

– When ns > nm there is no pure-strategy equilibrium. Intuitively, if
customers adopt nm as their threshold, an announcement of Q ­
nm actually means Q = nm. In such a case an arriving customer
prefers joining, contradicting the equilibrium requirement.

– Suppose ns < nm: If the expected utility of joining the system
is positive when it is known that Q < nm, then customers will
cooperate with an announcement threshold nm and the system is in
equilibrium when customers join if the server announces Q < nm or
balk otherwise. In the opposite case, no pure-strategy equilibrium
exists.

Allon and Bassamboo [28] (2011) investigate the advantages of delay-
ing the delay announcements in the M/M/s model of [31] by adding a first
M/M/∞ stage thus creating a system of tandem queues. Upon completion
of a first-stage service the firm makes its (non-verifiable “cheap talk”) delay

17The authors apply different notation for the thresholds.
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announcement to the customer who then decides whether to enter the main
service phase or to balk. The first stage could be associated with some direct
benefits, but it also allows the firm to improve its main stage admission policy
by using information from the first queue. The desired admission policy of the
firm in the second stage is a threshold policy where the threshold depends on
the number of customers currently in the first stage (i.e., a switching curve).
Customers’ joining behavior to the first stage is assumed to be non-strategic,
with a fixed rate independent of the firm’s delay announcement policy.
An influential cheap talk equilibrium in which the firm can affect customer

behavior exists for a range of normalized customer service values. The authors
show that adding the first stage may increase or decrease this range, and they
investigate its effect on the firm’s profits and customer welfare.

3.8 Ticket queues

Xu, Gao, and Ou [671] (2007) consider an M/M/1 system with partial
information on queue length given by means of ticket technology. Before en-
tering the system, newly arriving customers obtain, consecutively, numbered
tickets. These customers then observe a display showing the number of the
currently served customer and decide whether to stay or balk. Customers can-
not see the actual queue length. A customer joins if the difference between his
number and the displayed number, is less than a threshold value. To compute
the threshold the customer needs to compute the expected queue length given
his position, which is not an easy task. The authors describe a set of states and
the associated birth-and-death equations, but the number of states grows ex-
ponentially with the threshold. Therefore, they also suggest an approximation
algorithm.
The authors solve a bounded rationality version of the model where cus-

tomers are naive and assume their position reflects the exact queue length. To
eliminate the resulting customer decision errors the authors suggest display-
ing, in addition to the current number in service, the conditional expected
queue length as well. Of course a simpler alternative would be to give a ticket
only to customers deciding to join the queue after observing the displayed
number. However, even in such cases, customers often obtain a ticket and
then change their minds and abandon the queue. Therefore, the model sug-
gested here can be viewed as an interesting prototype of a queue with partial
information obtained with ticketing technology.
The authors do not discuss the impact of the bounded rationality assump-

tion on social welfare. As in Naor’s model, the IO threshold tends to be greater
than the SO one and thus customers’ overestimation of queue length can im-
prove social welfare. Therefore, concealing queue-length information may be
socially desirable.





Chapter 4

Customer decisions

The vast majority of the strategic queueing literature focuses on server-
customer interaction; customer equilibrium behavior is just one component of
the game. This chapter surveys models focusing on customer decisions.

4.1 Temporal decisions

Most of the literature considered in this survey assumes steady-state con-
ditions of a queueing system. In contrast, this section mostly deals with non-
stationary models related to decisions of customers who are aware of the
timing of some special events, like opening and closing times of a facility. Sim-
ilarly, in queues with retrials customers deciding to retry take into account
information they have on the state of the system from their previous trials
and therefore such a model is intrinsically non-stationary.
See [396, 450, 452] for models where customers select the time to submit

demand requests facing waiting costs and dynamic pricing.
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4.1.1 Arrival-time decisions

Early research on strategic timing of arrivals to queues is described in
[1] §6.1-3. Holt and Sherman (1982) analyzed the equilibrium arrival process
when prizes are allocated on an FCFS basis at time 0 and with linear waiting
costs. In the observable version, customers balk if the number of earlier arrivals
already matches the number of available prizes, whereas in the unobservable
version customers only discover this at time 0 after having already incurred
waiting costs.1 Glazer and Hassin (1983) considered the ?/M/1 model where
customers independently choose arrival times to an FCFS single-server system
with exponential service that opens at time 0 and closes at time T . The
model assumes a monopolistic server queue with no option for customers to
balk. Therefore, the only concern of customers is the minimization of expected
waiting time. It is assumed that the distribution of the total number of arrivals
is Poisson and early arrivals, before time 0, are possible. Glazer and Hassin
(1987) considered a similar model in a queueing system with bulk service at
predetermined instants, much like that of a bus schedule.

Lariviere and Van Mieghem [427] (2004) consider M strategic cus-
tomers each choosing a time period t ∈ {1, . . . , T} to receive service. The
base model assumes sufficient service capacity so that all M customers can
be served in one time period. Customer m seeks to minimize his delay cost
Wm(α), which is assumed to be monotone increasing in the number of cus-
tomers choosing the same period. Customers spread out as much as possible
and therefore a pure asymmetric equilibrium is such that the number of cus-
tomers in various periods differs by no more than one. Similarly, there exists a
unique symmetric mixed equilibrium in which customers independently, uni-
formly and randomly choose their arrival times. As the number of customers
and time periods grows, an independent Poisson arrival process to each time
period is generated.
The authors consider several extensions. An interesting one, similar in

spirit to the model of Glazer and Hassin (1987) (see [1] §6.3), is when the
system can only serve a limited number of customers in each period, with
customers unserved in period t carrying over to period t + 1. The authors
develop conditions under which the above results, and in particular the Poisson
limit, still hold.

Wang and Zhu [650] (2005) assume a service period divided into evenly
spaced shifts, and the waiting time in each shift is determined by the number
of customers who choose it. Customers are heterogeneous, and in particular
have different delay costs per shift and per wait during the shift. The price
is the same in all shifts, so in equilibrium later shifts experience shorter ex-
pected waits such that the marginal customer in a given shift is indifferent

1Bell [84] (1985) independently solved a similar model.
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between that shift and the next. Also, the marginal customer in the last shift
is indifferent between choosing it or not showing up at all.
The authors prove, under additional assumptions, that there exists a

unique equilibrium and that later shifts will be selected by customers with
a lower ratio of delay cost per shift to waiting cost within the shift.

Wang and Zhu [651] (2007) consider profit-maximizing decisions made
by the firm in a demand model similar to that of [650], but under asymmetric
information.
McCain’s queueing game [481] (2010) §11 is another observable version

of Holt and Sherman’s model with n customers and n prizes of different values.
Prizes are simultaneously awarded at a specified time. Customers can join the
queue for the next best prizes, or stay out and obtain a random prize from
those remaining. Joining decisions are sequentially made in some arbitrary
order and queue length is observable during the process so customers know
exactly the prize they will receive should they join the queue. A fixed waiting-
cost rate is incurred while in the queue, but there is no such cost for those
who stay out. The SO policy is obviously for all to stay out and prizes to be
arbitrarily distributed. In general, in equilibrium some customers join while
others stay out and, compared with the optimum, some of those who join are
better off while the others are worse off.

Hassin and Kleiner [310] (2011) follow the ?/M/1 model assuming
service durations are exponentially distributed and the total number of arrivals
is a Poisson random variable. All customers arriving before or at T are served.
Customers wish to minimize waiting time and have no preference about when
they are served. The main results are:

� Unless the system is very heavily loaded, the elimination of queueing be-
fore opening time does not significantly reduce (in equilibrium) expected
waiting time.2 This surprising result is explained as follows: Customers
who would otherwise show up before time 0 arrive now at 0, which re-
duces expected waiting time. In addition, approximately the same num-
ber of customers who would otherwise show up in some interval (0, t′)
now arrive at 0, which increases expected waiting time by approximately
the same amount.3

2Random order at time 0 is clearly optimal when the system closes at T = 0; see Bell
[84].
3Yoshida [686] (2008) observes a similar result in a non-stochastic model where the

decision variables of a mass transit authority are the number, capacity, and schedule of
trains. Commuters decide on arrival time wishing to minimize costs of early and late arrival,
and of waiting. It is assumed the cost of arriving early is the smallest of the three and it
is shown that the implications of random access to trains depend on whether the cost of
arriving late is smaller or larger than the cost of waiting for the train. In the former case,
replacing FCFS by random access has no effect. In the latter case, it reduces customers’
aggregate costs. See [321] §3 for a similar phenomenon in the fluid approximation of the
model.
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� The authors present a simple accurate approximation to the SO solu-
tion. According to this approximation, customers arrive with positive
probabilities at times 0 and T , and uniformly on (0, T ).

� Numerical comparison of the equilibrium and SO solutions shows that
the suboptimality of the equilibrium is greater when λ is large and µT
is small. For example, with λ ¬ µT ¬ 20, PoA< 1.62.

� Social welfare can often be increased in equilibrium if arrivals are re-
stricted to {0, t1, T}, where t1 is an appropriately selected internal point.

Jain, Juneja, and Shimkin [359] (2011), consider the concert queueing
game. Customers choose arrival time, which can be before or after opening
time, preferring both early service completion and short waiting time. A fluid
approximation greatly simplifies the analysis and enables obtaining closed-
form solutions. The authors show how to obtain the fluid model as the limit
of a sequence of stochastic queueing systems. They note that this analysis does
not show convergence of the equilibrium solutions of the underlying systems
to the fluid model’s equilibrium.
In the fluid model, a server starts operating at time 0 with a constant

rate µ. The cost function for a class i customer who waits w units of time and
obtains service at time τ is αiw+βiτ . The class i arrival profile is a cdf Fi with
total mass Λi. The aggregate arrival profile is F (t) =

∑
Fi(t), and it uniquely

defines the queue-size process Q(t). Therefore, an arrival at t is associated
with waiting time W (t) = Q(t)/µ+max{0,−t}. With an equilibrium profile
F , the cost CiF = αiWF (t) + βi(t+WF (t)) is minimal over the support of Fi.
The main results with a single class are:

� There exists a unique equilibrium profile given by a uniform distribution
on
[
−Λµ

β
α ,
Λ
µ

]
.

� The equilibrium queue size increases linearly for t < 0 and decreases
linearly for t > 0.

� Assuming the SO solution sets customer arrivals to the instant their
service is due to start, then PoA=2.

For the multiclass extension with I classes, let mi = αi/(αi + βi) and
assume m1 < m2 < · · · < mI . Let TI = Λ/µ and Ti−1 = Ti − Λi/(µmi).
The equilibrium profile is unique with Fi being a uniform distribution on
[Ti−1, Ti] with density µmi, and PoA¬ 1 +

√
βmax/βmin. The authors also

discuss possible PoA reductions by priority assignment, time-dependent tar-
iffs, and class-dependent restrictions on time of service.

Juneja and Shimkin [379] (2013) consider the stochastic (non-
asymptotic) single-class version of the concert queueing game with a gen-
eral (not necessarily Poisson) number of customers. A central finding is the
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non-existence of asymmetric equilibria: A unique equilibrium exists and it is
symmetric.4 The authors also study the convergence of the equilibrium dis-
tribution to that of the fluid model as the number of users increases. They
show that the PoA is larger than 2 and converges to this value for a large
population size.

Haviv [321] (2013) unifies the ?/M/1 and the concert queueing game
models by considering the arrival patterns of customers in both stochastic
and fluid models, with a finite or infinite closing time T , with and without
early arrivals, and with and without tardiness costs. The total number of
arrivals is Poisson(Λ). The author derives the equations necessary to solve
the stochastic versions, solves the fluid approximations, and derives the PoA
for the latter case. The main result is that in the fluid model with T < Λ

µ ,
with or without early arrivals, when the waiting-cost rate increases the PoA
approaches Λ/(Λ−µT ) and therefore is unbounded. However, when the other
parameters are fixed, PoA=2 in both extreme cases T → 0 and T → Λ/µ.5

Ravner [544] (2014) considers a server that starts operating at time
0. Customers are indexed by arrival times and incur three types of costs: a
queueing cost α per time unit in the system; a tardiness cost βt if service starts
at t; and an index cost γN for the N +1st arrival. In fact, the index cost is in
many cases natural, with earlier models often using tardiness costs as a proxy.
The author provides closed-form solutions for the case where two cus-

tomers choose their arrival times, and compares several variations depending
on whether arrivals before time 0 are allowed, and whether there is a given
closing time. The solution is then characterized for more than two customers.
The equilibrium arrival process is qualitatively similar to models that do not
assume index costs. For example, these models also include a uniform arrival
distribution before opening and a decreasing arrival density after opening.
A notable case where the model with index costs is qualitatively different

from previous models is when β = 0. In this case, the equilibrium distribution
has infinite support, the density for t > 0 decreases exponentially fast, and
numerical analysis suggests that this rate depends on the cost parameters and
service rate but not on population size. As a result, the individual equilibrium
cost incurred by customers is determined straightforwardly by the order cost
parameter.

Breinbjerg, Sebald, and Østerdal [108] (2014) consider a non-
stochastic discrete-time queueing variation of the concert queueing game with
three homogeneous players independently choosing when to arrive. Only one
customer can be served during each period and early arrivals are excluded.

4This result raises similar questions regarding other models of equilibrium arrival pat-
terns where only symmetric equilibria were analyzed.
5There is a typo in Remark 6 of the paper where the bounds are given, ∆ there should

be replaced by Λ.
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The authors compute the (pure) asymmetric equilibrium solutions under
FCFS, LCFS, and SIRO for all possible values of the ratio of waiting to late-
ness costs. They conclude that LCFS provides the highest social welfare among
these disciplines, whereas FCFS provides the lowest. The authors also present
results of lab experiments where players simultaneously and independently
choose arrival times but the game is not repeated and therefore does not
converge to the asymmetric equilibrium.

Platz and Østerdal [534] (2015) study a non-stochastic (fluid) concert
queueing game model where service starts at time t = 0, early arrivals are
excluded, service value decreases over time, and waiting costs are linear. The
system has a finite per unit time service capacity such that T time units are
needed to serve the given demand.
Suppose the service discipline is FCFS. As in [310], either all customers

arrive at t = 0 or a fraction arrive at t = 0 followed by a period without any
arrivals and then a smooth stream of arrivals until time T . The authors prove
that:

� Equilibrium under FCFS is unique and minimizes aggregate welfare
among all work conserving disciplines.

Under LCFS, if agents arrive at a rate greater than capacity, service time for a
customer will be a lottery with two possible outcomes: either the customer is
served immediately (with a probability corresponding to the ratio of capacity
to arrival rate) or the customer is served later when all customers arriving
after him have been served. In equilibrium, customers will arrive at a faster
rate than capacity, hence everyone except for the last arrival faces a lottery
over service times, and the arrival rate will be such that all agents have the
same expected utility (with no jumps). The authors prove that:

� Equilibrium under LCFS is unique and maximizes the aggregate welfare
among all queue disciplines.6,7

Honnappa and Jain [346] (2015) extend the concert queueing game
model, assuming that service is rendered by several parallel servers with dif-
ferent opening times Ts,i and service rates µi. They consider a fluid approxi-
mation of the model and show that all active servers finish serving customers
at the same time, and that equilibrium arrivals to server i are uniformly dis-
tributed over an interval [−T0,i, T ]. These results are also extended to more
general networks and heterogeneous customers, and give a PoA¬ 2 as in the
single-server model of [359].

6Note the similarity of these results and those related to Naor’s model. The optimality
of LCFS was proved in [302] (see [1] §2.2), and it is intuitively clear, though no formal proof
has been given, that FCFS is the worst discipline. See this observation on page 27 of [338].
7Jouini [376] proves the following interesting related result in a model with non-strategic

customers. Consider a GI/GI/s queue with a constant rate of reneging, For the class of
work-conserving non-preemptive scheduling policies, the expected waiting time of served
customers is maximal (minimal) under FCFS (LCFS). The opposite relations hold for reneg-
ing customers.
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4.1.2 Arrivals to a loss system

Mazalov and Chuiko [478] (2006) present another problem concerning
strategic choice of arrival times to a queue. They consider a single exponential
server in a loss system such that an arriving customer is rejected if the server is
busy. Customers have identical preferences with regard to start of service. This
is expressed by a function C(t) giving profit resulting from service starting at t.
Player strategy is a density function of arrival times on a finite interval [t0, T ]
and players try to maximize expected profit. The authors obtain a closed-form
solution for two players and C(t) = t(1− t).

Haviv, Kella, and Kerner [323] (2010) consider an M/M/s/s loss
model in which a customer pays for trying to get service but is rewarded only
if the server is available. The model is non-stationary, starts from an empty
queue at time 0, and that fact is public knowledge.
The queue is unobservable but customers can infer the probability of the

server being available. Specifically, the authors investigate the equilibrium
arrival pattern under two information scenarios:

� Suppose customers know their time of arrival. When s = 1, there exists
a time te such that until te all customers try with probability 1, and
after te try with probability pe, which is exactly the equilibrium joining
probability in the E&H model. When s = 2, there exists a time te such
that all try with probability 1 until te, and for t > te they will try with
probability pe(t), which is monotonically decreasing to pe.

� Suppose customers do not know their arrival time but they know their
serial number. Let s = 1. Then, the equilibrium strategy is periodical
such that for some integerme the ith customer tries iff i = 1 (mod me).8

Haviv and Ravner [327] (2015) consider an ?/M/m/m + c version
of the ?/M/1 model where the number of arrivals N is deterministic, early
arrivals are forbidden, arrivals are rejected if there are no free servers or waiting
positions, and customers maximize their admission probability.
The equilibrium solution resembles that of [310] with an atom at 0, an

interval (0, te) with no arrivals, and a continuous arrival density on [te, T ].
The authors characterize the equilibrium and SO solutions. An interesting
finding is that the PoA is not monotone with respect to N and is higher for
intermediate values of N .

4.1.3 Retrials

As explained in the introduction to this chapter, the solution of a rational
model of retrials is difficult, as it involves non-stationary analysis. For this

8This policy is reminiscent of the “cascades ”in [314].
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reason, the literature on strategic retrial models is quite scarce and the models
that can be solved are subject to restrictive assumptions.9

See §6.8 for other models with orbit queues where instead of customers
retrying, when the server becomes idle it is the server that starts a search for
a customer in the orbit queue. See [694, 703, 642, 643] for models combining
retrials, breakdowns, and vacations.

Kulkarni [419] (1983) was the first to solve a strategic model of re-
trials. Two players (or customer classes) with different waiting costs submit
service requests to an M/G/1/1 system. A blocked request returns after an
exponential time, and a customer’s decision variable is the retrial rate. The
author computes the best response functions and finds there can be at most
three equilibrium solutions. The equilibrium in a similar system, but with
nonatomic customers, is solved and shown to be unique by Hassin and Haviv
(1996), see [1] §6.4.

Brooms [110] (2000) considers a Markovian model where customers ar-
rive to a multiserver loss system. A customer seeing an available server joins
to obtain immediate service. If all servers are busy, the new arrival either joins
a buffer and retries after an exponentially distributed time with an exogenous
parameter, or obtains the service elsewhere with a given fixed expected wait-
ing time.10 The system is observable to new arrivals who can see both the
number of busy servers and the number of customers “in orbit.” However,
this information is not available to the customers in orbit who reside there
and retry until successfully connecting to a server. The customer’s objective
is to minimize the expected sojourn time, including time spent in orbit.
The author proves that a customer’s best response is of the threshold

type and that a unique (mixed) symmetric equilibrium exists. Intuitively, this
conclusion follows because if more customers are orbiting then a new arrival
is less inclined to join the buffer, and this is an ATC situation.

Wang and Zhang [647] (2013) investigate the single-server case of [110].
They characterize the equilibrium and SO threshold strategies and numeri-
cally compare them.
The authors also solve the unique equilibrium probability qe of joining

when the server is busy in the almost-unobservable case where arriving cus-
tomers know the state of the server but not the number in orbit. They also
compute the SO probability q∗ and show that q∗ ¬ qe. The authors also
conclude that social welfare increases when the orbit pool is observable.

9From about 300 papers in an extensive bibliography on retrial queues, only [110, 445,
660] deal with strategic behavior. See J.R. Artalejo, “Accessible bibliography on retrial
queues: progress in 2000-2009,” Mathematical and Computer Modelling 51 (2010) 1071-
1081.
10The author refers to the servers as public servers and to the alternative option as getting
service from one of an infinite number of slower private servers. The situation resembles
the shuttle model in [1] §1.5.
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Cui, Su, and Veeraraghavan [177] (2014) assume customers who retry
will do so after a much longer time than the service cycle and therefore the
decision is not when to retry but only whether to do so, and the model becomes
stationary. The queue is observable and customers choose among joining the
queue, joining an orbit queue, or balking. Customers incur linear waiting costs
and a constant retrial cost.

� When the retrial cost is low, customers join if queue length is below a
threshold or retry otherwise. When the retrial cost is assumed to be more
significant, customers join short queues and balk when queue length
exceeds a threshold. Equilibrium strategies may include mixing at the
threshold queue length.

� The option of retrying may increase or decrease customer welfare. Re-
trials spread the workload and therefore induce positive externalities.
When the retrial cost is low, customers do not retry enough as com-
pared to the SO solution. Customers retry too much when the retrial
cost is high.

Wang and Zhang [644] (2015) consider a Markovian model that al-
ternates between ON and OFF states. Customers do not observe the state
of the system, with the exception that if the server is available upon arrival
they know this and start service. Customers finding the server busy or OFF
can balk or join an orbit queue from which they retry. The unique feature
of the model is that if the state changes to OFF during the service of a cus-
tomer, the customer waits at the server until the state is ON again and then
resumes service. Thus the server can be at one of four states: idle, serving, or
OFF with or without a preempted customer. The authors compute the unique
equilibrium joining probability and the (smaller) SO joining probability.

4.1.4 Restarting

Restarting is the combined action of reneging and re-arriving. Clearly, this
is not a rational action in a single FCFS queue. On the other hand, it may be
rational when, for example, the regime is different from FCFS. This possibility
is discussed by Hassin [302] where the optimality of the LCFS regime in Naor’s
model is conditioned on the system’s ability to prevent such actions.
Note the difference between a restart and the more common retrial.

Restarting is an elective action while retrials are often forced. For example,
customers may restart to obtain a more favorable position in the queue or
a faster server. Retrials are typically associated with customers arriving to a
queue already at maximum length and having to wait outside the queue to
retry later.
Restarting is also closely related to jockeying with the main difference

being that a jockeying customer usually has full information on the queue he
joins whereas a restarting customer does not have this information.
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Libman and Orda [445] (2002) consider a general model of accessing
network resources and describe a queueing example. Consider an M/M/1/m
loss system. A customer sends a request for service but does not know at the
time whether it is accepted. Only after processing of a request is complete
will the customer obtain an acknowledgment. When no acknowledgment is
received within a given time frame the customer estimates the probability
of rejection to be sufficiently high as to justify resending the request.11 A
customer cannot hold more than a single request and sending a new request
voids the prior request, even if it had been accepted.12 In such a case the
initial request is still processed to completion but no acknowledgment is sent.
The customer incurs linear waiting costs and a fixed cost per request. Balking
is not permissible and therefore the customer keeps retrying until receiving an
acknowledgment. The customer’s decision variable is the (identical) waiting
time between consecutive requests, which the authors denote as timeouts.
Short timeouts increase the server’s load and, moreover, shorter timeouts

adopted by other customers induce a shorter best response. This FTC behavior
naturally leads to the possibility of multiple equilibria, and the authors solve
an example where three equilibrium solutions are possible: (i) A stable solution
with long timeouts and high probability of admission; (ii) a stable solution
where customers retry with no timeout at all, servers are overloaded, and
requests are lost with probability 1; (iii) an intermediate unstable solution.

Zhang, Wu, and Huberman [699] (2008) consider a system of m
FCFS M/M/1 parallel queues. The service rate of each server is drawn from
a known probability distribution. Customers do not see queue length or know
the service rate of the server, but do know when they are being served. Each
customer aims to minimize expected waiting time. Waiting customers have
the option of restarting, i.e., costlessly canceling and re-submitting a service
request.13 A new request, as well as a restarted one, is randomly allocated
to one of the servers. The customer’s decision is how long to wait before
restarting.
Proving the existence of an equilibrium solution and computing it is dif-

ficult because of the need to keep track of the information accumulated by a
customer and using it in the restart decision (this is similar, and seemingly
even harder, than in the context of retrials). The authors treat an interesting
special case in which each customer chooses either to be patient and never
restart or to be impatient and restart continuously. An equilibrium is charac-
terized by the probability p that a customer chooses to be patient. Intuitively,
one expects that when the system load is low, it is better to be impatient
and discover an idle server when one exists, whereas it is better to be patient

11A similar model was considered by Mandelbaum and Shimkin (2000) (see [1] §5.2.3),
but in that model customers renege and do not resubmit service requests.
12See §4.5 for models that allow duplicate orders.
13This is different from [445] where an accepted old request is not canceled but rather
remains in the queue to be processed though the customer would not benefit from it.



Customer decisions 93

when the system is highly loaded. Moreover, this is a single-parameter ATC
model and therefore it should have a unique equilibrium. Indeed the authors
compute bounds ρ1 < ρ2 such that the equilibrium probability is p = 0 if
ρ ¬ ρ1 and p = 1 if ρ ­ ρ2.14 When ρ1 < ρ < ρ2 there exists a unique mixed
equilibrium.
It is noted that in the SO solution all customers are impatient and the

system acts like a single M/M/m queue. Thus the equilibrium, in general, is
not SO.

4.1.5 Laboratory experiments

This section reviews experimental studies on queues with endogenous ar-
rival times. The papers [543, 564] concern single-server FCFS queues where
neither balking nor reneging are allowed. The basic theoretical ideas underly-
ing these two studies, having been modified to satisfy the constraints of the
experimental design, can be found in the ?/M/1 model of Glazer and Hassin.
The models in [591, 542] are variations of the model of Holt and Sherman.
(See [1] §6.1-3 for early literature mentioned in this section.)
The experiments were conducted with groups whose members interact

anonymously with one another. Participants were paid in cash contingent
upon their decisions and they attempt to maximize individual payoffs. These
experiments provide information about the way people decide whether and at
what time to join a queue and uncover systematic patterns of behavior speci-
fying under which conditions aggregate behavior may or may not converge to
equilibrium play.
The experiments reveal a contrast between individual and aggregate be-

havior. Individual behavior is heterogeneous with participants exhibiting dif-
ferent patterns of adaptive learning over time. For example, some participants
switch arrival times on almost every round, whereas others hardly switch at
all. At the same time, the experiments show steady patterns of aggregate be-
havior that approach equilibrium play. An attempt to explain the dynamics
of play can be found in Bearden, Rapoport, and Seale [83] (2005).
Unlike in the theoretical studies, in the experimental models service is

assumed to be deterministic and equal for all players, the size of the population
is finite and commonly known, time is discrete, and customers in the queue
at the time of closing do not obtain service.

In the first experiment of Rapoport, Stein, Parco, and Seale [543]
(2004), early arrivals are not allowed. Four groups of 20 players repeatedly
played the stage game 75 times. In each round, each individual player had to
choose an arrival time for service in a day of 600 minutes, with service lasting
30 minutes. Thus, with perfect coordination, all customers could be served
without any waiting. After each repetition players received a fixed reward for

14ρ = λ/(mµ).
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successfully receiving service and were charged a fixed amount per unit time
of staying in the system.
The aggregate equilibrium arrival pattern was characterized by many en-

tries at opening time followed by very low arrivals in the next 90 minutes,
and then a stabilizing to a nearly uniform pattern. This aggregate behavior is
accounted for remarkably well by the theoretical equilibrium distribution.

The subsequent experiment by Seale, Parco, Stein, and Rapoport
[564] (2005) allowed for early arrivals. This proved to be a good fit to the
theoretical equilibrium. In particular, the arrival rate before opening was con-
stant. The experiment was repeated in a “public information” setting where
after each round players were accurately informed of the arrival times chosen
by all participants. This information setting resulted, as expected, in faster
learning and convergence. In the private information setting players were only
informed of their own payoff. With an extended service time of 45 minutes,
the average payoff remained negative throughout the experiment in spite of
the balking option. Another interesting result was that information about the
decisions and payoffs of the other members of the population mattered only
when congestion was unavoidable.

Stein, Rapoport, Seale, Zhang, and Zwick [591] (2007) conducted
an experiment where, rather than a sequence of service provisions, the ex-
periment provided only a single batch of service and thus is closely related to
the waiting-time auction model of Holt and Sherman. Customers not included
in the batch leave the system without obtaining service.15 The authors state
their model in terms of a ferry departing at a fixed time T , serving a popu-
lation of size n, and having capacity s < n. In the observable case balking is
possible if there are already s customers at the queue. Customers receive a
reward for obtaining service, and incur a fixed cost for arriving at the location
of the ferry and linear waiting costs. In the experiment s = 14 and n = 20.
Four settings were investigated, with and without balking, and with and

without public information. The stage game was repeated 60 times. The main
outcome was that in all four settings aggregate behavior shifted towards equi-
librium. The other results were consistent with [543, 564].
The authors compared social welfare under the symmetric mixed-strategy

equilibrium solutions to two alternative strategies. In one strategy, s customers
arrive at T and the others stay out. This strategy requires central coordination.
An alternative strategy that requires less coordination is when all n customers
arrive at T so that s will be served and n− s incur the arrival cost. The PoA
for the data used in the experiment was greater than 3.16

15Rather than waiting for the next batch as in Glazer and Hassin (1987), see [1] §6.3.
16We note a third option that should give a better result than the second one, in which
players compute a probability p of arrival at T that maximizes the expected overall utility
(in the second option, p = 1 which, in general, is not optimal).
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Rapoport, Stein, Mak, Zwick, and Seale [542] (2010) repeated the
experiment of [591] using real time so subjects could experience the time pres-
sure before joining the queue and waiting time after arrival. They also con-
sidered a condition where the batch size assumes one of two values with equal
probabilities. When s was fixed the authors obtained a monotone decreasing
density of the arrival time, but with a batch of random size the density has
another peak caused by the possibility that a large batch size is used (hence
giving a higher chance of service for late arrivals). At the end of each round the
players were provided with full (public) information on the choices made by
the others. The main outcome of the experiment was that when s is determin-
istic, the aggregate behavior approaches equilibrium. However, with variable
batch size participants behaved in a way that prevented convergence.

4.2 Joining, reneging, and jockeying

4.2.1 Reneging

Zohar, Mandelbaum, and Shimkin [719] (2002) present numerical
support for the hypothesis that reneging is determined through a patience
function of expected system delay. An equilibrium is obtained when the delay
assumed by customers when deciding on their reneging time and that which
results from their behavior coincide. Specifically, let x denote the expected
delay (unconditional, or conditioned on finding all servers busy) in an M/M/s
system. The queue is unobservable, but a customer knows when service starts.
The probability a customer abandons within t units of time from arrival if
service does not start by then is given by the parametric patience distribution
G(x, t). Let v(x) be the expected time a customer has to wait until admitted to
service when customers assume the expected waiting time to be x. Equilibrium
is obtained by equating x to v(x).
The authors note that rational behavior should lead to decreasing patience

in x, because expected return per unit wait becomes smaller as time progresses
and, in this case, a unique equilibrium exists. However, in practice one often
observes the opposite tendency of customers to comply with the expected
waiting time in the system. The authors derive sufficient conditions for the
existence of a unique equilibrium in both cases. When these conditions are
violated, multiple equilibria are possible. The authors also give conditions for
the abandonment rate to be approximately constant, which conforms with
data.

Zhou and Soman [710] (2003) investigate psychological aspects of
reneging. They describe two empirical studies which test whether the number
of people behind a customer in a queue influences that customer’s decision to
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renege. The experiments showed that as that number increases, the likelihood
of reneging decreases. The authors do not explore strategic implications of
their findings, but their findings do give rise to some natural and interesting
strategic models.17

4.2.2 Joining decisions when the service rate, value or costs
are queue-length dependent

Dimitrakopoulos and Burnetas [196] (2011) assume an unobservable
queue where the service rate dynamically changes according to queue length.
Specifically, there is a threshold T such that whenever queue length exceeds
it, the service rate is changed from a slow value µl to a faster one µh. These
three parameters, namely T , µl and µh, are exogenous to the model. The only
variable is the arrival rate λ. The authors compute the equilibrium and SO
values of this variable and investigate their sensitivity to the parameters.
The model involves contradictory elements of ATC and FTC behavior,

which lead to interesting outcomes. The authors prove that there are at most
three equilibrium arrival rates. When multiple equilibria exist the SO arrival
rate is between the two extreme equilibrium rates, whereas in all other cases
it is less than the equilibrium rate.

Więcek, Altman, and Ghosh [661] (2015) consider an M/M/∞ sys-
tem where customers are homogeneous, have a fixed service value, and their
time cost rate decreases with the number of users in the system. The authors
consider (mixed) threshold joining strategies such that customers join the sys-
tem when the number of users is above a given threshold.18,19 Clearly, this
is an FTC situation. The authors obtain closed-form formulas for the equi-
libria in a fluid approximation model and show that, unless the equilibrium
prescribes never or always to join, there are infinitely many equilibria.

Lachapelle, Larsy, Lehalle, Lions [425] (2015) propose a mean field
game approach to several queueing models motivated by financial market trad-
ing. One of these models considers an observable Markovian FCFS queue of
traders. Traders with a unit for sale join the queue if the expected value re-
ceived will be positive. An arriving buyer buys from the first in queue at a
price depending on queue length. The price vector is exogenous. Traders also
incur a constant waiting cost rate.
The authors study the dynamics of the proposed models, derive numeri-

cally solvable equations, and compare the results with empirical data.

17See [229] for a theoretical model where the length of the queue behind a customer affects
his welfare by providing protection against being overtaken.
18If the threshold is at least 1, then all states except for the empty system state will
be transient. However, the authors allow for an initial state or, alternatively, there is an
additional sufficiently small uncontrolled inflow.
19The model assumes that the joining decision precludes a customer from reneging when
the number of users drops below the threshold.
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4.2.3 Jockeying

Ganesh, Lilienthal, Manjunath, Proutiere, and Simatos [244]
(2012) define the following strategic random local search queueing model.
There are m processor-sharing servers with capacities µ1, . . . , µm. Let Ni be
the number of customers at server i so the service rate a client gets is µi/Ni.
Every customer in intervals of exp(β) time randomly picks a server j, apart
from his current server i, observes Nj , and jockeys if

µj
Nj+1

> µi
Ni
. Customers

are myopic in the sense that they ignore past information they might possess
on congestion in some of the queues.20

The authors first consider a closed system with n customers, no new arrivals
and no departures and show that the expected time to balance the system,
i.e., achieve |Ni −Nj | ¬ 1 for all i, j, is O

(
logm

(
m2

n + logm
))
. They then

consider an open system with arrival rates λ1, . . . , λm to the respective servers
with departures after service terminations and derive stability conditions and
asymptotic estimates for the steady-state distributions when m→∞.

Dehghanian, Kharoufeh, and Modarres [190] (2015) consider a
model with a single strategic customer.21 There are two observable M/M/1
queues with different arrival and service rates. The strategic customer chooses
a queue upon arrival and can jockey between queues at any time, even while
being in service. This customer incurs linear waiting costs and a cost of jock-
eying. The authors characterize the optimal jockeying policy.

4.2.4 Joining and reneging in a shared facility

When the congestion in an EPS facility is high, customers may suffer
negative expected utility. Thus, some may wish to leave the system. In such
a case those who remain enjoy positive expected utility. This situation raises
interesting questions about the adequate concept of equilibrium. The decision
model is simpler when it distinguishes between the new arrival and current
users of the system by excluding the reneging option. Literature on strategic
reneging is surveyed in [1] §5.1-2, and further results and ideas can be found
in [308] §2.1 and §3.22,23

Buche and Kushner [113] (2000) follow Altman and Shimkin (see
[1] §2.6.2) and consider joining decisions of customers in an observable EPS
queue with a state-dependent service rate. Reneging is not possible, balking is
associated with a fixed cost, and there is also a stream of customers that cannot

20This is a bounded-rationality simplification common to many models with jockeying,
retrials, etc. In fact, the resampling in this model is a form of retrials.
21See [662] and [1] §2.9 for similar models.
22Similar questions arise when the actions of noncooperative agents must jointly satisfy
a constraint. See, for example, [129].
23For a non-queueing treatment of similar situations, see “A theory of exit in duopoly,”
by D. Fudenberg and J. Tirole, Econometrica 54(4) (1986) 943-960.
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balk. Arriving customers do not know the strategies of the other customers
but have access to sample data on past performance which they can use to
estimate the cost associated with joining and compare it with the cost of
balking. The authors suggest a learning process and show that it converges to
an equilibrium.

Ben-Shahar, Orda, and Shimkin [87] (2000) generalize the model of
[113]. They consider an observable Markovian EPS multiclass service system.
The service rate is µ(x) when x customers are present, and the service rate
for each user, µ(x)/x, is assumed to be a strictly decreasing function of the
load, x. Customers of class i find the offered service acceptable iff its expected
duration, given the system’s state upon arrival, is at most θi. A threshold
profile is specified by a (mixed) threshold strategy for each customer class.
The authors prove the existence and uniqueness of such an equilibrium profile.
Suppose customers are unable to make complex predictions regarding the

decisions of other users. A naive approach for estimating expected service time
would be based on the assumption that the initial load persists throughout
a user’s service period. However, customers will find that this approach does
not accurately reflect acquired experiences. The authors therefore consider a
learning process.24 The system starts at time 0 without any prior data. A
customer arriving at time t ­ 0 has access to the average service times of
customers who have already left the system, conditioned on the load at their
time of arrival. The authors demonstrate convergence of a simple heuristic
joining rule that relies on this information to the (fully rational) equilibrium
solution.

Blume, Duffy, and Temzelides [94] (2010) generate a dynamic entry
game played by rational agents with the potential of exhibiting self-organized
criticality, i.e., where “tension from small shocks, gradually built into the
system without notable aggregate implications, reaches a critical level,” and
then “a small disturbance might have a disproportionately large effect.” In
essence, they envision a group of EPS facilities, or pools, with independent
demands. When a pool becomes crowded, customers independently exercise
randomized reneging and may move to another pool in the group which may
in turn trigger a progression of reneging decisions.
Consider first a single pool. When x agents are in the pool, each enjoys

a strictly decreasing expected utility u(x), such that u(x) ­ 0 if x ¬ x̄, and
u(x) < 0 otherwise. When a new agent arrives and x exceeds threshold x̄,
every agent in the pool independently and simultaneously stays with prob-
ability p(x) or otherwise balks. The equilibrium probabilities are such that
the expected discounted value resulting from this lottery is 0. Of course the
realized outcome may be that many agents renege simultaneously and those
choosing to remain enjoy positive expected utility, or it may be that nobody

24Learning is not a result of a lack of information, but of bounded rationality, i.e., using
a simpler algorithm.
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leaves and all suffer negative expected utility. The authors prove the existence
of unique equilibrium reneging probabilities.
The authors simplify the multi-pool case by assuming the pools are linearly

ordered and there are no explicit moves from one pool to another, but still,
the payoff to agents in pool j ­ 2 is negatively affected by the number of
agents in that pool and also by the number of agents leaving pool j − 1. The
pools operate sequentially within each period and the number of agents leaving
pool j − 1 is known to agents in pool j before they make their choice. The
authors prove the existence of an equilibrium. Indications to the possibility of
self-organized criticality in this model are numerically demonstrated.

Brooks [109] (2014) considers customers’ entry to a network of queues
with a given transition matrix. There is a special node such that complet-
ing service there is associated with a fixed reward R. Staying in the system
costs the customer C per time unit. As in Naor’s model, due to the existence
of negative externalities the number of customers joining the system under
self-optimization exceeds the SO number and the system can be regulated
by appropriately taxing the reward R. All joining customers face identical ex-
pected utility rate, which a profit maximizing system owner can fully extracts.
Therefore, the profit-maximizing toll induces the SO joining behavior.

4.3 Benchmark effects

See [32] and [413] for models where demand depends on the difference be-
tween the delay or service rate at a server and a market standard, respectively.

Yang, de Véricourt, and Sun [679] (2014) consider two service firms
facing an exogenously fixed price p. The demand captured by each firm de-
pends on the difference between the expected waiting time at that firm and a
market waiting-time benchmark r. Specifically, firm i, i = 1, 2, is an M/M/1
system with arrival and service rates λi and µi, unit capacity cost ci, and
expected waiting time wi. The benchmarks considered here are the minimum
expected waiting time rm = min{w1, w2} and the average expected waiting
time ra = (w1 + w2)/2. The satisfaction level of a customer with a realized
waiting time t is a decreasing concave piecewise linear function s(t, r) with
a single breakpoint at r. The demand of a given firm increases linearly with
the expected satisfaction of its customers and decreases linearly with the ex-
pected satisfaction at the other competing firm. Firm i wishes to set capacity
to maximize profit pλi − ciµi, where µi is a decision variable and λi is the
equilibrium arrival rate.
The main results are:
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� With benchmark rm, the equilibrium is either unique or there is a con-
tinuum of equilibrium solutions with w1 = w2. The latter stickiness
effect case occurs when the benchmark effect is strong enough.

� With benchmark ra there exists a pure equilibrium associated with a
reversal effect. That is, the firm with the shortest waiting time at the
equilibrium in the absence of benchmarks may end up with the longest
delay when benchmark effects are present.

� In both cases, expected waiting time decreases as a result of the existence
of a benchmark.

Yang, Guo, and Wang [678] (2014) assume customers have reference-
dependent utility composed of the sum of an intrinsic component and a gain-
loss component. Specifically, they add to the E&H model gains and losses
incurred when customers compare themselves to a reference point represented
by a random customer. If the customer waits less (more) than the random
customer, a gain (loss) proportional to the difference in waiting costs is in-
curred. A similar effect also exists with regard to the nominal amount the
customer pays. Risk aversion arises because losses are weighted more heavily
than gains.
An interesting feature of this model is that utilities associated with join-

ing and balking depend on the strategy of other customers. Let g(δ) be the
difference between the utilities of joining and balking when other customers
join with probability δ. The authors prove that for small service rates g is
concave; otherwise it is monotone increasing. These properties imply an FTC
behavior and multiple equilibria. Intuitively, the FTC situation arises because
customers are risk averse with respect to losses they incur relative to others
and one who deviates from the common behavior risks an even greater differ-
ence. However, there is at most one stable non-zero equilibrium. The authors
compute the SO joining probability and the profit-maximizing price, assum-
ing the server can induce the desired equilibrium when it is not unique. They
also consider an extension where customers choose between two servers and
prove the existence of a duopoly price equilibrium.

4.4 Priority purchasing, overtaking, and line-cutting

For early contributions on customer priority purchase decisions see [1]
§4. While the result of “overtaking” or “line-cutting” is similar to that of
priorities, these terms are often associated with a more negative connotation.
The literature on cutting in lines usually concentrates on the sociological and
psychological aspects of such actions. Little has been said about strategic
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implications of line-cutting, though it is a natural and common aspect of
queueing.

Marbach [470] (2001) mostly deals with a non-queueing model, but also
describes the following queueing application. A finite number of heterogeneous
customers submit demands to an unobservable M/M/1/m preemptive priority
system. Preemption here is not only with respect to service but also with
respect to queueing. Thus, in this case when the buffer is full and a new
service request arrives the system may expel a lower priority request from
the queue. Customers are loss sensitive, i.e., their utility is a function of the
expected rate of service completions of their jobs. The price ui for submitting a
request in priority i is independent of whether the request is eventually served.
Customers select the rates of requests in each priority wishing to maximize
utility after deduction of payments. The author solves an example suggesting
that equilibrium properties which are proved for the non-queueing model also
hold in the queueing model. In particular:

� For some index i∗ the active priority classes are i∗ and the classes with
lower priority.

� The success probabilities associated with these classes relate to each
other in the same ratio as their prices (while for i∗ this ratio is a lower
bound).

Allon and Hanany [38] (2012) assume each individual from a finite pop-
ulation of identical customers generates a Poisson stream of service requests. A
request is of type H (High) with probability α or otherwise it is type L (Low).
Type is private information. A request of type X ∈ {H,L} is associated with
service rate µX and waiting-cost rate cX , such that cH ·µH > cL ·µL. Balking
is not allowed and customers minimize expected discounted waiting costs.
New requests can adopt a line-cutting strategy, asking those in the queue

for permission to overtake them. This is done by starting at the end of the
queue and, if permission is granted, proceeding towards the head of the queue.
The total system cost is minimized by the cµ-rule. This means a request

should choose the line-cutting behavior iff it is of type H, and that L-requests
in the queue accept all cutting requests. The authors consider a punishment
strategy. Once a deviation from the cµ-strategy is observed, all future cutting
requests are rejected, resulting in an FCFS regime. Thus customers face a
trade-off between optimizing short-run and long-run expected utility.
The authors provide a necessary and sufficient condition for the cµ-rule to

define an equilibrium when queue length is unobservable. Qualitatively this
condition is satisfied when cH − cL is large, α(1−α) is large (i.e., α is neither
very small nor close to 1), and the discount factor is high (customers are
patient). When the queue is observable the strategies may be state-dependent,
but the cµ-rule still defines an equilibrium if customers are sufficiently patient.
The authors also consider a variation where a deviation from the cµ-strategy
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is observed only by a small number of customers in the queue but the strategy
could depend on a commonly known public signal.25

Erlichman and Hassin [229] (2015) consider an observable M/M/1
queue with homogeneous customers choosing upon arrival, the number of cus-
tomers in the current queue they wish to overtake while paying a fixed cost
per overtaken customer. An overtaking customer saves the wait during ser-
vice of customers overtaken. Moreover, customers more towards the end of
the queue are more likely to be overtaken by future arrivals and therefore the
more customers expected to be overtaken by future customers, the greater
the incentive of an arriving customer to overtake those already in the queue.
Therefore, this is an FTC type game. Some of the main results are:

� The set of equilibrium overtaking strategies is very rich and contains
unexpected solutions.

� Analyzing the pure equilibrium strategies Σk of overtaking k customers
(or all, if their number is less than k) for a constant k, the authors
define two thresholds. If the normalized service value is below the lower
threshold, then the unique equilibrium is Σ∞. If it is above the higher
threshold, then Σ0 is the unique equilibrium. If it is between the two
thresholds, then all Σi i = 0, . . . ,∞ are equilibrium strategies.

� In some cases, under a Σk equilibrium, an arriving customer’s expected
waiting time decreases with queue length.

� If the server can induce customers to choose the equilibrium which max-
imizes profits, then the overtaking regime brings higher profits than
would the respective single-price two-priority regime.

Haviv and Ravner [328] (2015) consider in their base model an unob-
servable M/G/1 queue with homogeneous customers incurring linear waiting
costs. The system applies non-preemptive delay-dependent dynamic priorities.
Each arriving customer decides on the amount to pay for priority. The priority
at time t of a customer arriving at time s, s ¬ t, and paying b ­ 0 is b(t− s).
The authors prove that though the best-response function of a customer is first
increasing (FTC behavior) and then decreasing (ATC behavior) as a function
of the payment offered by other customers, the equilibrium payment is unique.
The authors also extend their analysis allowing for multiple classes differing
in waiting costs, but in this case the uniqueness of the equilibrium remains
unresolved.

Alves [53] (2015) describes a model in which customer behavior deter-
mines the number (one or two) of queues in an M/M/2 system. A customer

25A related non-strategic model is analyzed in “Analysis of queueing systems with cus-
tomer interjections,” by Q-M He and A. A. Chavoushi Queueing Systems 73 (2013) 79-104.
There, the success of an interjecting request depends on the kindness of customers already
in the queue as measured by an exogenous probability of the request being accepted.



Customer decisions 103

arriving when the servers are busy and there is no queue can choose between
forming a single common queue or separate queues. A new customer arriving
to a single queue can form a second queue, but this intention is understood by
his predecessors who can react before he implements it and divide the single
queue into two queues. The outcome depends on customer attitudes to risk
and the possibility of jockeying.

4.5 Duplicate orders

See §4.1.4 for models where customers can resubmit service requests while
canceling their previous ones.

The first part of Li [439] (1992) considers a single server model we de-
scribe in §2.1.1. The author also extends this model by modeling lead-time
competition among n identical MTS firms. Demand is satisfied with equal
probabilities by one of the firms having positive inventory. If the product is
not available from any of the firms, the customer places the same order at
each firm, and obtains it from the firm which produces the finished product
first. Remaining orders with the rest of the firms are then canceled. No cost
is associated with duplicate orders, neither is there any cancellation fee. An
important assumption of this model is that each firm only observes its own
inventory level. The model’s parameters are the number of firms, arrival rate,
service rate, unit price, production cost, and holding cost. The main results
are:

� An explicit condition for the existence of an MTO equilibrium (i.e., an
equilibrium where all firms have zero base-stock levels).

� An MTS equilibrium is more likely to exist under competition than in
a monopoly market, and is more likely to exist in a monopoly market
than under competition where duplicate orders are forbidden.

� The likelihood firms make to stock increases in the number of the firms.

� Allowing duplicate orders increases buyers’ welfare and decreases pro-
ducers’ welfare.

� Duplicate ordering could be socially desirable if buyers’ value of time
is much higher than the value placed on time by the producers (i.e.,
the waiting-cost rate is much higher than the interest rate). In other
situations, a cancellation fee may be appropriate as a means of deterring
duplicate orders.
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Calbert [121] (1999) models a command center which obtains reports
from many sources that may be reporting on the same event, thus causing a
replication of messages. The reward from a serviced message decreases with
waiting time. Sending a message is costly and each source selects the sending
rate of its messages hoping that one will be serviced while aiming to maximize
expected net utility. To prevent over-congestion in the resulting equilibrium
it is suggested that the command center regulates the cost/reward structure.

Armony and Plambeck [67] (2005) consider a manufacturer producing
a product at a finite rate and selling it through two independent distributors
with base-stock levels B. A customer arriving to an out-of-stock distributor
orders from this distributor with probability 1−α and waits for the order to be
ready. The customer tries the other distributor with probability α. If the other
distributor is also out of stock, the customer orders from both distributors,
waits until the first of these orders is satisfied, then cancels the other order.
Customers renege after an exponentially distributed time. The distributors
identify customers placing duplicate orders and give them priority to avoid
losing sales to the other distributor. Assuming the manufacturer is unaware
of duplicate orders, the authors prove that both the demand and reneging
rates are overestimated by the manufacturer who consequently over-invests
in capacity. The customers and distributors in this model are not strategic,
in particular α and B are exogenous. However, the model has potentially
interesting variations in which these parameters are endogenously determined.

Ata, Skaro, and Tayur [69] (2015) consider a Markovian model moti-
vated by organ transplantation. There are K servers and K customer classes.
Class k customers arrive to server k, k = 1, . . . ,K. A given fraction 1−πk are
dedicated to this server, while the other fraction πk can costlessly submit J
duplicate orders to servers from a set A(k). Customers of all classes abandon
the system at a common rate γ. Customers choose the servers to which they
submit requests so as to minimize expected waiting time.
The authors solve a fluid approximation and show that if every class has

sufficiently many customers who can submit multiple orders the equilibrium
choice results in equal waiting times at all servers. They also characterize the
equilibria in a diffusion approximation obtaining second-order perturbations of
the waiting times under fluid approximation. A simulation study demonstrates
the advantages of duplicate orders, particularly in lowering the effective rate
of abandonments.

Guo and Hassin [275] (2015) consider a single-server unobservable
SIRO queue.26 Customers can submit multiple (duplicate) orders and when
any one of these orders enters service the customer cancels the others. The
key observation is that the SIRO queue with duplicate orders is equivalent
to a queue with relative priorities. The authors show that, as in the absolute

26An alternative regime with similar features is EPS.
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priority model (see [307]), this is an FTC case and in general the equilibrium
number of duplicate orders by a customer is not unique. However, it turns out
there can be at most two pure equilibrium solutions, which are consecutive
integers, and one other solution obtained by mixing these two strategies.
Note that [27, 205] deal with the closely related problem of purchasing

relative priorities in a single-server queue. A main difference is that in these
papers the decision variable is continuous.

Guo and Hassin [276] (2015) consider a Markovian model with two
identical servers and homogeneous customers. The service fee is exogenous and
server i, i = 1, 2, designates a part Oi of that fee as an ordering fee. Customers
can submit service requests to both servers and when one of the orders enters
service the customer cancels the other, but the ordering fee is non-refundable.
Submitting duplicate orders thus shortens the expected system time at the
expense of losing the ordering fee.
Customers choose among submitting requests only to server 1, only to

server 2, to both servers, or balking. The authors derive expected waiting time
for each of these possibilities and a given strategy of the other customers and
use it to compute the symmetric equilibrium, which they show to be unique.
It turns out the more duplicate orders the less a single-order customer waits
and the more a duplicate-order customer waits. The latter property arises
despite the positive effect of duplicate orders. The system also demonstrates
a pairwise ATC property. In particular, for a fixed probability of balking,
the more customers submit duplicate orders the less attractive it becomes. A
monopoly would set ordering fees low enough so that all joining customers
submit duplicate orders and we obtain the equivalent of an M/M/2 queue.
However, this is not the case when servers compete by setting ordering fees
and competition actually reduces customer incentive to place duplicate orders.

4.6 Choosing the arrival rate

This section surveys models focusing on arrival rates decisions of atomic
customers. We note that these models and others where customers decide on
service duration (§4.7) are related in the sense that both assume customers
decide on the size of their demand.
Additional models where customer arrival rates are decision variables are

scattered in other chapters, particularly in §8. For models where customers
choose arrival rates and a central planner acts to induce social optimality by
controlling the queue discipline or by pricing, see [570] and [593], respectively.
Some papers on routing demand (for example, [46, 554] also assume that

the total demand from a user is a decision variable. Thus there is a combined
decision of determining the arrival rate and allocation to servers.
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Dutta, Goel, and Heidemann [211] (2003) assume that a finite num-
ber of homogeneous customers decide on their demand rates in an unobserv-
able M/M/1 system. Customers are not delay sensitive and their goal is to
maximize individual throughputs.
The authors discuss the effect of admission mechanisms on the customers

equilibrium choice of arrival rates. In some of these mechanisms a customer
equilibrium does not exist, for example if a request is rejected when the buffer
of an M/M/1/s queue is full. In other cases an equilibrium exists but the ag-
gregate arrival rate approaches 0 as the number of customers increases. Lastly,
the authors introduce an admission mechanism such that an equilibrium exists
and, furthermore, the arrival rate is bounded from below when the number of
customers grows.

Menasché, Figueiredo, and de Souza e Silva [485] (2005) assume
a finite number of users, with each one choosing an arrival rate. Users’ utility
depends on their demand rate and on the congestion at the server. The authors
investigate the dynamics by which users adapt their rates and the convergence
of this process to an equilibrium. They present an example with an M/M/1/s
system and a specific utility (QoS) function.

Jin and Kesidis [368] (2005) consider a general model with N cus-
tomers. Customer n sets arrival rate λn wishing to maximize a performance
measure θn(λ1, . . . , λN ) that depends on the actions taken by other users. The
network chargesMθn and the utility of customer n is a function Un(θn)−Mθn,
where (i) θn is nondecreasing in λn, and (ii) Un is nondecreasing and concave.
The authors design an algorithm for computing the equilibrium arrival rates.
They describe in detail two queueing applications: An M/G/K/K queue, and
a queue where the demand of customer j is rejected if the expected queue
length exceeds a threshold γ(j).

4.6.1 Maximizing power

A customer in a queueing system often faces conflicting objectives of max-
imizing throughput λ and minimizing expected delayW . A performance mea-
sure that heuristically takes into account both of these goals is the power,
which is the ratio λβ/W for a constant β > 0. The parameter β indicates the
relative emphasis placed on throughput versus delay. This measure is a rea-
sonable rule-of-thumb since it increases in the customer’s throughput λ and
decreases in its expected delay W . See also [594] §2.5.

Douligeris and Mazumdar [207] (1992) consider a single-server
Markovian model where demand is generated by two users with homogeneous
service requirements. User i submits demand at rate λi to maximize the power
λβii /W (λ), where W (λ) is the expected delay when the total demand rate is
λ =

∑
λi.
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� A unique equilibrium point exists where λi = µβi/ (1 +
∑
βk) .

� A Stackelberg version of the game brings about higher throughput,
power and delay than the equilibrium of the simultaneous game.

� Sahin and Simaan [555] (2008) consider a variation of [207] proving
the existence of a unique interior equilibrium in a similar flow control
problem, but with exogenously fixed routes on a general network.

Altman, Başar, and Srikant [46] (2002) consider N users generating
demand requests and distributing them among M/M/1 servers. For demand
rate λij sent by user i to server j, Λi =

∑
j λij is the throughput of user i,

λj =
∑
i λij is the demand served by server j, and Wj = 1/(µj − λj) is the

expected delay at server j. The objective of user i is to maximize the power
function (Λi)β+1/

∑
j λijWj , for β ∈ (0, 1), quantifying a trade-off between

the goals of maximizing throughput and minimizing delay. The authors define
a refinement of asymptotic equilibrium that applies to finite but arbitrarily
large values of N and prove that such an equilibrium exists.

Inoie, Kameda, and Touati [355] (2006) consider an M/M/s system
where customers choose demand rates to maximize their power values. The
authors demonstrate the following “paradox.” If several such M/M/s systems
are aggregated into a single system serving the total demand and employ-
ing the total number of servers, then, as expected, customers’ power can be
improved if their choices are centrally controlled. However, the equilibrium
solution may be associated with reduced power.

Gai, Liu, and Krishnamachari [240] (2011) consider the system of
[207] for the case of a common parameter βi = β. They compute the SO
arrival rate both when social utility is the sum of individual utilities and also
when it is the sum of their logarithms. They bound the PoA in terms of the
number of users and β, showing that it degrades linearly (or worse) with the
number of users.
As expected, the equilibrium arrival rates exceed the SO values. The au-

thors suggest non-price mechanisms for controlling the arrival rates. A drop-
ping policy is characterized by a function P (λ) such that when the total arrival
rate is λ, every request is accepted with probability P (λ). The authors inves-
tigate functions with thresholds r1 < r2 such that P (λ) = 1 for λ ¬ r1,
P (λ) = 0 for λ ­ r2, and the function linearly decreases from 1 to 0 in the
interval [r1, r2]. They show how to compute, for any given ε > 0, thresholds
which lead to a unique stable equilibrium such that PoA¬ 1 + ε.
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4.7 Choosing the service duration

Here we describe models where service duration is set by the customer
(see [1] §8.6). This is in contrast to expert systems where it is the server who
determines service duration (see §6.3).

Kim and Hwang [404] (2009) consider revenue maximization in an
M/G/N/N model where customers choose the duration of service (or “call”).
Service fee is a piecewise linear function of service duration with a single
breakpoint from which a discount rate applies. The server’s decision variables
are the location of the breakpoint and the discount rate. The discount encour-
ages long calls, but also increases blocking probability. Customer behavior is
guided by an exogenous function. When customers with demand that exceeds
the breakpoint arrive, the duration of their calls beyond the breakpoint is
assumed to increase by a factor of 1 +α · dβ , where d ¬ 1 is the discount rate
and α and β are positive constants.

Tong [625] (2012) considers an M/G/1 system where customers choose
their service duration τ . The service value to a customer of type α is
v(τ) = τ− τ

n

α . This is a concave function which is first increasing and then de-
creasing. The parameter n represents the degree of concavity. If customers are
charged a fixed rate per service, they choose τ such that v′(τ) = 0. If they are
charged a fixed cost of r per unit time, they will choose a service duration such
that v′(τ) = r. A customer’s type is realized from a given pdf upon arrival.
The author shows that when there is ample demand, the time-based scheme
induces higher revenues, a higher throughput, and less congestion. Fixed pric-
ing tends to be chosen only when congestion is less important: either market
size is not large or customers are not highly sensitive to waiting time.



Chapter 5

Social optimization and cooperation

As mentioned in the introduction, computing the SO solution defines an
optimization problem, which is not the subject of this survey. Our focus is on
topics related to the gap between the IO and SO behavior and on ways for
inducing an SO equilibrium, i.e., coordinating the system.
We also include in this chapter research concerning degradation of system

performance due to lack of cooperation, in particular the PoA. Other re-
lated subjects are the Downs-Thomson and Braess paradoxes, which concern
routing decisions, and are surveyed in §8.7 and §8.6.

5.1 Coordination by pricing

Nadiminti, Mukhopadhyay, and Kriebel [492] (2002) consider a
general model with a finite number of customers. The benefit derived by cus-
tomer i from using service at rate λi is an increasing and concave function
vi(λi). The waiting cost of customer i is λiC(λ), where λ =

∑
λj , and C(λ)

is increasing and convex.
Let λ∗ be the SO total arrival rate, and let λ∗i be the corresponding demand

109
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rate of customer i. The first-order SO condition for λ∗i > 0 is v
′
i(λ
∗
i ) = C(λ

∗)+
λ∗C ′(λ∗).
The authors suggest that under symmetric information the firm charges

a nonlinear price p(λi) = C ′(λ∗)
∫ λi
0 (λ

∗ − λ)dλ. Customer i wishes to maxi-
mize vi(λi)− λiC(λ)− p(λi), and when λi = λ∗i the first-order conditions for
individual and social optimality coincide.
Under asymmetric information the firm does not know the value functions

vi(λi) and cannot compute λ∗. The authors suggest the following mechanism.
The firm announces that if total demand is λ then customers will be charged
prices p(λi) = C ′(λ)

∫ λi
0 (λ − q)dq. Furthermore, customers are required to

supply functions λi(λ) giving their demand if the total arrival rate is λ. The
authors prove that λ∗ is the unique value of λ that achieves

∑
λi(λ) = λ, and

therefore the firm can use this information to induce the SO solution as in
the case of symmetric information.

Stidham [593] (2004) discusses a general model in which users set their
demand rates to a set J of servers, and each unit of demand from user r
requires complementary services from a subset Sr ∈ J . A user setting demand
at rate xr obtains utility Ur(xr)−hrxr

∑
j∈Sr Dj(yj), where yj =

∑
r:j∈Sr xr,

U is concave, and D is a convex function giving the delay at server j. The goal
is to induce an SO equilibrium by pricing the different services. The author
shows that:

� If demand of each user is very small, an equilibrium point satisfying
the first-order SO conditions is induced by tolls equal to the users’
external effects, which are defined as the marginal increase in total delay
caused by a marginal increase in that user’s flow.1 However, this doesn’t
guarantee global optimization.

� An algorithm dynamically setting a price equal to the current external
effect of a customer converges to an equilibrium point.

� In a simple example with a single M/G/1 processor-sharing (or M/M/1
FCFS) queue with two users, if utility functions are linear then there
exists an SO solution whereby only one of the users submits any demand.
If the utility functions are nonlinear the SO solution can be internal,
i.e., both demand rates are positive. The suggested pricing mechanisms
may converge to an equilibrium which is not globally SO.

1Cf. [1] §3.3.
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5.2 Positive network effects

In some cases congestion has opposing effects. On one hand customers are
delay sensitive, while on the other hand they also enjoy network effects which
increase with the number of other customers using the system. See §9.5 for
Internet-related models with network effects. See [495] on profit maximization
in a model with network effects.

Johari and Kumar [373] (2009) study a system with N identical users,
negative congestion effects, and positive network effects. Specifically, user i’s
utility is

ui(N) = αλi + βλi · f

∑
j 6=i

λi, N

− λi`
∑
j

λj , N

− d(λi),
where λi is the usage rate of customer i (i.e., the arrival rate of its demand).
The four terms refer to the linear utility from usage, positive network effects
(f is nonnegative, nondecreasing, and concave), congestion effects (` is non-
negative, increasing, and convex, such as the M/M/1 expected waiting time),
and personal cost of usage (d is nonnegative, nondecreasing, and convex).
The main results include:

� A unique symmetric equilibrium.2 The corresponding rate λEQ(N) is
derived as a function of the number of users N , and is an increasing
function.

� The authors derive the SO arrival rates for a given N and also derive
the SO number of users N∗ given that for any number N the users
follow the equilibrium λEQ(N). It turns out that N∗ is larger than the
number M∗ of users that maximizes the utility of a single user when
usage levels are according to the equilibrium (of course, without network
effects M∗ = 1).

� For a givenN the SO individual usage rate may be smaller or larger than
the corresponding equilibrium value.3 The authors characterize these
cases.

� The analysis is complemented by discussing special cases with M/M/1
delay when each of the congestion and network effects depends either
only on N or only on total usage.

2This is not obvious because the model contains FTC elements.
3This is a result of the coexistence of positive and negative externalities.
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Nair, Subramanian, and Wierman [494] (2014) assume that, given
a total arrival rate λ, the utility of each user is proportional to λ1+β for some
β ∈ [0, 1]. Two types of delay costs are considered; fixed waiting-cost rates
with M/M/1 expected waiting time, and a convex increasing function of the
system utilization ρ. The firm gains an exogenous amount per unit demand
and incurs linear capacity costs. The firm selects capacity to maximize net
profit.
The authors compute the equilibrium in the monopoly case, and in [493]

also consider two types of competition. In one, network effects are industry-
wide and user utility depends only on aggregate demand. In the other case
these effects are firm specific and user utility depends on demand at the firm
they choose. The authors also solve a variation in which users cooperate to
maximize total welfare (this is not the social problem as it ignores the firm’s
costs). The main qualitative result is that competition does not significant
improve user welfare. If network effects are firm-specific, then the firm with
greater network effects will nearly become a monopoly.

5.3 Priorities

Kim and Mannino [403] (2003) generalize a result of [487] (see [1]
§4.4.3.2) by considering general service distributions. Consider a multiclass
M/G/1 model with asymmetric information, nonpreemptive priorities, het-
erogeneous service valuations, heterogeneous delay costs, and heterogeneous
service time distributions. The system can be coordinated by charging a price
pi(t) = Ait + Bt2 from a customer who declares to be of type i and with a
realized service time t.

Van den Berg, Mandjes, and Núñez-Queija [88] (2007) consider
profit maximization in an M/G/1 priority system with jobs whose size x is
a random variable. The size of the job is observable and the server charges
size-dependent prices for priority. We observe that because of the ability to
discriminate according to size the resulting prices leave no customer surplus
and therefore the profit-maximizing solution is also SO.
There are two priority classes. The service discipline within each class

is EPS and low-priority customers are served only when there are no high-
priority customers in the system. The value received when the expected delay
of an x-job is D is a function w(D/x). The server sets unit-prices ph(x) and
pl(x) for admitting an x-job to the high- and low-priority classes, respectively.
The main result of the paper is the existence of thresholds 0 ¬ th ¬ tl

such that under the optimal solution (short) jobs with x ∈ [0, th) obtain high
priority, (long) jobs with x ­ tl obtain low priority, and those in the middle
interval balk.
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Hsu, Xu, and Jukic [348] (2009) generalize the model of [487] by
assuming customer classes are subject to exogenous bounds on expected delay.
Let vi be the unit waiting cost, ci mean service time, and Bi the upper bound
on the expected system time of i-customers such that vici ­

vi+1
ci+1
, i = 1, . . . , n−

1. It is assumed that Bi − ci ¬ Bi+1 − ci+1, i = 1, . . . , n− 1. Thus, the class
given higher priority under the cµ-rule is also less tolerant of queueing delays.
The SO scheduling rule partitions the user classes into groups with fixed
priorities among these groups, and randomized priority within each group.
The authors also design optimal IC pricing and scheduling rules for the

decentralized version of the model, i.e., where customer types are private in-
formation. An interesting feature of the solution is that the price charged to
users within a group can be attributed to externalities imposed on the first
class within that group. When service requirements are nonhomogeneous, as
in [487], the IC pricing depends on the actual processing time of the customer.

Gavirneni and Kulkarni [247] (2015) examine an M/G/1 variation
of the two-class non-preemptive priority model (see [1] §4.2) with random
customer waiting-cost rates having the Burr cdf G(x) = 1 −

(
1 + (x/a)d

)−k
for given positive parameters a, d, k. Service fee c is exogenous and priority
can be purchased at a price K set by the firm. In equilibrium, customers join
according to a threshold level of participation α such that the α fractile of the
customers with the highest waiting costs buy priority. The queue manager can
induce any level of customer participation by controlling the priority price.
Denote the expected system cost when customers are served in order of

arrival by Cfcfs, by Cmin when served non-preemptively in decreasing order of
waiting costs, and by Csoc when there are two service priorities and priority
is allocated in an SO way. The efficiency of the system is Cfcfs−CsocCfcfs−Cmin .

4 The
authors find that the efficiency of the system is above 73% and increases
further with system utilization ρ.

5.3.1 Auctions

Literature on equilibrium priority auctions is described in [1] §4.5. These
models are applicable in cases of asymmetric information. In a highest-bid-
first (HBF) regime customers offer payments (also called bribes) to the queue
organizer with those offering higher payments obtaining priority over those of-
fering smaller payments. See §6.6.3 for the use of priority auctions to maximize
profits.

Stahl [590] (2002) considers social-welfare optimization in a Markovian
unobservable multiclass system with heterogeneous waiting-cost rates and ser-
vice valuations. There exists symmetric information about customer type and
it is possible to control both admission and priorities. For example, a class

4One can refer to this measure as differential PoA.
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with higher service value and waiting costs may be given admission prefer-
ence but lower priority in the queue. The author derives a closed-form solution
when customers have identical service valuations or identical delay costs. The
author then derives the equilibrium bidding for priority strategy assuming a
nonpreemptive priority regime and therefore, unlike in [303], the solution is
not SO.

Kittsteiner and Moldovanu [405] (2005) consider an auction for pri-
ority in an M/G/1 queue with nonpreemptive priorities where customers pri-
vately know their processing time.5 The waiting-cost function is nonlinear and
common to all customers.
Deriving bidding equilibria turns out to be complex because the bid of

a customer depends on the entire distribution of queueing time. Indeed, an
increase in the cost incurred by a customer waiting an additional time unit
depends on his specific processing time. If the waiting cost function is convex
(concave), this dependence is increasing (decreasing) in the processing time.
This effect determines the form of the equilibrium bidding function which may
be increasing in the processing time (leading to the longest-processing-time-
first (LPT) discipline) or decreasing (leading to the shortest-processing-time-
first (SPT) discipline).
Generally, when customers are homogeneous and service value is finite,

some balk. In such an equilibrium that implements SPT, only customers with
processing times below a threshold join. The equilibrium threshold is greater
than the SO threshold, which can be explained by the existence of negative
externalities. However, the authors make the interesting observation that in
their model there are also positive externalities. Suppose two customers arrive
consecutively while a third is being processed, and assume the first of the
two has a long processing time. The externality on the customer arriving last
might be overall positive because he will be served before his predecessor. This
would not be the case had the machine been idle upon the first customer’s
arrival.
The authors also discuss the following stronger form of control. Customers

bid a price per unit time of processing when arriving, and pay this price after
their service is completed according to the realized processing time. Numerical
calculations indicate the possible advantage of this scheme.

Courcoubetis and Dimakis [174] (2009) consider a single Markovian
unobservable queue shared by n types of strategic customers. Aggregate ar-
rival rate is assumed to be sufficiently high so balking is induced to keep the
load below C. An i-request has value ri, incurs waiting costs of ci per time
unit, and has average size 1/µi. Customers choose weights w which deter-
mine their congestion-control mechanism. If at a given instance t there are
requests j = 1, . . . , a in the queue, then the shares xj(t) of the capacity C

5See §3.3 for related models.
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that the requests obtain are such that the sum
∑
j uj(xj(t)) is maximized

where uj(x) = −wjx1−α/(1− α) and 0 ¬ α < 1. The case α = 1 corresponds
to uj(x) = wj log x. Requests are charged at λ(t) per unit of capacity per unit
time where λ(t) is the shadow price (or Lagrange multiplier) of the capacity
constraint, which is equal to the probability that demand exceeds capacity.
The authors observe that when n = 1 the case α = 0 corresponds to a

HBF bidding regime where preemptive priority is given to the highest bid.
This regime maximizes social welfare, as shown by Hassin (1995) (see [1] §4.5,
[594] §2.6). On the other hand, the case α = 1 reduces to a model with relative
priorities analyzed by Haviv and van der Wal (see [1] §4.3.2) and leads to a
unique symmetric equilibrium which is not SO. The authors conjecture that
this inefficiency holds for every α > 0. A similar inefficiency is demonstrated
when n = 2 and one of the customers is only slightly sensitive to delay (c2
close to 0). However, efficiency can be achieved in this case through a two-
part tariff where, in addition to λ(t), customers also pay a fixed price per unit
demand.

5.3.2 Discriminatory processor sharing (DPS)

The survey on DPS byAltman, Avrachenkov and Ayesta [43] (2006)
deals in its last section with DPS models of non-cooperative queueing games.
Much of that material is also covered in [1]. We describe here more recent
contributions.
The following intriguing question arises in unobservable queueing systems

with heterogeneous customers. Suppose customers arriving to an M/M/1 fa-
cility differ in service value, delay cost and service rate. Clearly it is desirable
to encourage the entry of customers with high service values as well as low
time costs and short expected service lengths. This can be done by giving
these customers priority over others. However, for a given composition of the
queue, the optimal service discipline is the cµ-rule that allocates customer
priorities without regard to service value. Mendelson and Whang [487]
(1990) solved this problem, showing that SO joining can nevertheless be ob-
tained while implementing the cµ-rule by setting appropriate class-dependent
entry fees.6

In some cases, restrictions imposed on the firm’s policy prevent it from
implementing the first-best solution. Hayel and Tuffin [334] (2005) and
Hassin and Haviv [309] (2006) independently considered second-best so-
lutions in such cases in models with two customer types, identical service
rates, and symmetric information. Hayel and Tuffin assume the utility of cus-
tomers is a type-dependent negative exponential function of their waiting time,
while Hassin and Haviv assume a linearly decreasing function. These papers
consider social-welfare and profit optimization when service prices are exoge-

6Their result is even stronger as they show that social optimality is achieved even if
customer types cannot be observed by the queue manager.
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nously fixed and demand is determined by the equilibrium conditions; they
prove that both objective functions can benefit from the use of DPS relative
priorities. The authors of [309] also consider a variation where service price
is a decision variable, but it must be the same for both classes. They show
that giving absolute priority to one of the classes is profit maximizing, but
this class is not always the one selected by the cµ-rule.

Sun, Tian, Li, and Zhang [611] (2007) extend [309], allowing the cus-
tomer classes to have different service rates and give sufficient conditions for
the existence of a unique equilibrium when the service fees are exogenously
set. They describe a degenerate case where multiplicity of equilibria is possi-
ble, leaving open the question of whether multiplicity of equilibria is possible
except in such cases.

Wu, Bui, and Johari [664] (2012) consider a multiclass M/M/1 DPS
model where classes differ in waiting-cost rates and customers buy relative
priorities. The cost of purchasing relative priority weight β is βα, where α > 0.
The authors prove that for any α ­ 1 there exists an equilibrium such that
all jobs of the same class choose the same priority level. The existence of an
equilibrium when α < 1 is supported by numerical computations but has no
analytical proof. The authors also consider heavy-traffic approximations for
which they bound the PoA by a function of arrival and waiting-cost rates.

Doncel, Ayesta, Brun, and Prabhu [205] (2014) consider an M/G/1
DPS model with atomic customers buying relative priorities.7 The price of
relative priority is proportional to weight, and a minimum allowable weight
ε is given. The service capacity is normalized to 1, customers have heteroge-
neous expected service durations Bi and heterogeneous expected delay upper
bounds ci, and they buy minimum relative priorities that guarantee these re-
quirements. A customer is fair if Ri = Bici ¬ 1−ρ = 1−

∑
λjBj , which means

that the QoS requirement would be obtained under EPS. The main results
are:

� If the game is feasible then the social optimum is also an equilibrium.

� In the case of two customers, except for very a particular case, the
equilibrium is unique. The authors present a closed-form solution in the
case of exponential service. In particular, the equilibrium is (ε, ε) if the
customers are fair.

� Assume Ri = k < 1 for all i. If ρ ¬ 1 − k, then the unique equilibrium
is the EPS solution (ε, . . . , ε) and if ρ > 1 − k, then the game is not
feasible.

7See [275] for a related model where customers submit duplicate orders in a single-server
queue.
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� The authors provide a heavy-traffic approximation in the general case.
This approximation is numerically verified to be accurate when all Ri
values are similar.

Ali, Bodas, and Manjunath [27] (2014) consider equilibrium and
SO sale of relative priorities when customers have heterogeneous waiting-
cost rates. As expected, customers with higher delay costs buy higher relative
priority weights in both solutions. The authors show that prices can be used
to coordinate the system.

Monsef, Anjali, and Kapoor [488] (2014) approximate equilibrium
routing of demand by K atomic users to parallel M/M/1 servers under a
generalized processor sharing (GPS) regime: service capacity is divided pro-
portionally to given weights φ1, . . . , φK among users having requests in the
queue.8

Oz, Haviv, and Puterman [508] (2014) show that relative priorities
can reduce the equilibrium social cost in systems having flexible customers. In
their models, a server serves at most two customer classes. Class i customers
have waiting-cost rate Ci, server j is an M/M/1 system with service rate µj ,
and the total demand of class i is λi. Flexible customers select their server
and servers that serve more than one customer class apply relative priorities.
The authors consider two models. The W-shaped model has two customer
classes and three servers, such that i-customers can obtain service from server
i, i = 1, 2, or from server 3. The M-shaped model has three customer classes
and two servers such that server j, j = 1, 2, can provide service to j-customers
and to class 3.
The authors derive the expected waiting time of each customer class at

each server for given priority parameters. The main results are:

� In the W model there exists a unique equilibrium routing of demand,
social cost cannot always be minimized with absolute priorities.

� In the M model both servers apply relative priorities. For any set of
relative priority parameters there exists a unique equilibrium routing of
demand. At least one of the servers allocates absolute priorities in the
SO solution.

5.4 Strategies using memory

A central planner can adopt a strategy of randomly admitting each arrival
with probability 0.5, admitting every other customer, or admitting a customer

8This is in contrast to DPS where the fraction depends on the number of user requests
in the system.
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only if the time elapsed since the last admission exceeds a given threshold.
The first strategy is more common in strategic queueing literature; the latter
options may be advantageous but require a stronger means of control, i.e.,
using memory.

Lin [446] (2003) considers a Markovian unobservable single-server loss
system with multiple user classes, each represented by a gatekeeper. The gate-
keeper of class i cannot observe the server, the other arrival processes, nor the
other gatekeepers. If the gatekeeper admits a customer and the server turns
out to be idle, the customer enters service and the gatekeeper obtains reward
αi. If the server turns out to be busy, the customer balks and the gatekeeper
pays βi. If the gatekeeper blocks a customer, no cost or gain is incurred. In an
equivalent formulation, the gatekeeper receives no reward when a customer is
served, there is a unit cost when a customer is admitted while the server is
busy, and there is a cost ci = αi/(αi+ βi) when the customer is blocked. The
latter formulation has a single parameter, ci, and its cost is a linear trans-
formation of the former formulation. The objective of each gatekeeper is to
maximize long-run average net gain (minimize long-run average cost).
The assumptions of exponential service and single server mean the only

information a gatekeeper can use is the amount of time s elapsed since last
admitting a customer.9 A randomized strategy is a function π : s → [0, 1]
which gives the probability of blocking a customer arriving at state s. Under
a pure threshold strategy (or, a call-gapping policy) with a threshold t (the
gap size), π(s) = 1 if s ¬ t (the arrival is blocked), and π(s) = 0 otherwise.
The main results of the paper are:

� Regardless of the policies other gatekeepers use, the optimal policy of
gatekeeper i is of the threshold type, which also includes the case t =∞
(i.e., block all arrivals).

� A solution is found for the best response threshold of a gatekeeper given
the thresholds used by the other gatekeepers.

� A counterexample with two (possibly symmetric) gatekeepers to the
intuitive conjecture that the best response gap size is always monotone
decreasing in the other gatekeepers’ gap size.

� When gatekeepers are homogeneous there exists a unique symmetric
equilibrium and, possibly, other asymmetric equilibria.

� A solution is derived for overall minimization of the system cost. As ex-
pected, the resulting threshold is greater (more customers are blocked)
than the equilibrium threshold because admission of a customer is asso-
ciated with negative externalities.

9The model resembles one with retrials, with gatekeepers playing a role similar to cus-
tomers in orbit having information about the server being busy at a given time.
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Anselmi and Gaujal [61] (2011) consider the use of memory in the rout-
ing of a single Poisson arrival stream to N servers with general heterogeneous
service distributions by a broker who cannot observe the state of the queues.
The traditional probabilistic memoryless broker attaches a routing probabil-
ity to each arrival (for example, [85]), but here the broker attaches a routing
probability that can change for different arrivals depending on the knowledge
of previous dispatching decisions. The ratio of expected delays without and
with memory is the price of forgetting (PoF).

� The authors provide a lower bound on the optimal expected delay.

� When service is exponentially distributed, PoF¬ 2.

� By definition, PoA in the system with memory is bounded above by
PoA in the probabilistic system times PoF. Using the bound of N
derived in [330] for the PoA for a probabilistic broker, it follows that
with memory PoA¬ 2N .

5.5 Decentralized systems

This section considers coordination of different divisions of a firm induc-
ing them to adopt overall optimal behavior. Similar models are surveyed in
Chapter 9 on supply chains. The difference is often related to the motivating
scenario. Chapter 9 describes models of competing agents in a supply chain
and ways to coordinate the system while sharing profits. However, the distinc-
tion is often arbitrary. See [1] §4.6 for a decentralized model by Radhakrishnan
and Balachandran (1995).

Wang and Barron [639, 640, 638] (1995, 1997, 2000) present queue-
ing examples to variations of a decentralized model where operating costs
depend on a random parameter θ which is the private information of the
information systems (IS) department of an organization. The central manage-
ment announces a strategy (λ(θ̂), µ(θ̂), T (θ̂)) where θ̂ is the value reported by
IS, and T is a transfer payment. IS reports θ̂ so as to maximize the sum of
direct revenues and transfer payments minus operating costs. The objective of
the central management is maximizing aggregate service value minus the sum
of waiting costs and a convex combination of IS operating costs and transfer
price.

Radhakrishnan and Balachandran [540] (2004) consider an FCFS
system where user i generates demand at rate λi and has a waiting-cost rate
vi, i = 1, . . . , n. Mean service time is (s − k) and variance is σ2 = 1/p. The
parameter s is fixed, but the variables k and p are controlled by the queue
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manager at a price given by a function C(p, k), that is separable in p and k.
The system costs consist of waiting costs and the cost C(p, k). A time interval
is available for service and the expected waiting time is approximated by the
Pollaczek-Khinchin formula.
Suppose an optimal pair (p, k) is chosen and user i is charged a fraction

viλi/(
∑
vjλj) of the cost C(p, k). The authors show that with this cost allo-

cation the optimal pair (p, k) would also be the expected utility-maximizing
choice of each user, and that the allocation is the only one with this property.
Suppose now the arrival rates λi are private information and the queue

manager sets the values p and k according to customer arrival rate declara-
tions. The authors design an IC allocation mechanism that achieves truthful
usage reports with the SO (p, k) values.

Nasrallah [499] (2006) suggests a model of interaction value analysis
where members of an organization interact to maximize the organization’s
goals. The decision variables are the fractions pij of i-messages directed to
user j in the organization. Messages possess predetermined priorities, expire
at a common rate, and the benefit of a successful i-to-j message is hij . The
organization sets routing probabilities to maximize the total value of suc-
cessful messages. A decentralized solution is obtained when individual par-
ties in the organization act to maximize the organization’s goal by modifying
their choices and react to the choices of other parties. The author numerically
solves an example under different “organization climates” (denoted capital-
ist/disciplined/fraternal) and compares the self-organizing outcomes to the
centralized optimum.

Lynn and Balachandran [460] (2007) consider an M/G/1 system with
two divisions, i = 1, 2, which submit service requests at constant rates λi,
obtain profits of gi per request, and incur constant waiting costs of Hi per
unit time. Requests of division 1 have priority over those of division 2. The
service means si are fixed, but the firm wants to reduce waiting costs by
controlling the service variance. Service with second moment 1/pi(k) costs
C(k). The functions pi(k) are monotone increasing and concave and C(k) is
monotone increasing and convex where k is the control variable.
When the firm has full information on the divisions’ parameters, the cost

C(k) is allocated to divisions in proportion to their expected waiting-cost
rates. In this case the value of k which minimizes the firm’s waiting and
investment costs also does so for each division separately. The authors also
investigate the effects of asymmetric information, in particular when Hi or λi
is the private information of division i.

Erkoc, Wu, and Gurnani [228] (2008) deal with a general model of
cost minimization with promised delivery time (PDT) and capacity buildup,
where decisions are made by the marketing and engineering divisions of a
firm. We describe here a queueing-related special case of their model where
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definitive results are obtained. Customers arrive to an M/M/1 system. Each
arrival is quoted a state-dependent PDT. In one version of the model, capacity
is built at the beginning of the planning horizon and cannot be changed. In
the other version capacity can be dynamically controlled. Capacity costs are
linear. If the firm quotes PDT l and service is completed at time x then the
firm incurs a tardiness penalty τ(x− l) if x > l and a quotation cost η(l − x)
if l > x, where η < τ . PDTs are quoted and the associated quotation costs
are paid by the marketing division, while capacity is decided and financed by
the engineering division. Both divisions are responsible for the tardiness cost
which they share in a given proportion. This setting generates a game between
the two divisions, each minimizing its expected costs.
In general, the equilibrium solution of this game differs from the firm’s

optimal policy. When capacity is static, the authors give an explicit solution
and show that:

� The optimal and equilibrium PDTs are independent of arrival rate.

� The deviation between optimal and equilibrium capacity levels declines
with the arrival rate.

� The system can be coordinated in both dynamic and static cases by
instituting transfer payments from the marketing to the engineering di-
visions.

Pekgün, Griffin and Keskinocak [525] (2008) analyze the inefficien-
cies created by decentralized decisions in an M/M/1 service firm. Demand is
a linear function of the price p set by the marketing division and the lead time
L quoted by the production division. The firm incurs a fixed unit production
cost. The setting is a Stackelberg game where one of the departments serves
as leader and the other follows. Two scenarios are considered, each with a dif-
ferent leader. In both cases, production acts to satisfy the quoted lead time,
which marketing ignores. Moreover, production is motivated to maximize the
firm’s net profits whereas marketing only considers income and ignores unit
production costs.
The firm’s profit turns out to be greater when marketing leads. However,

this profit is still smaller than would be in a centralized solution. Therefore,
the authors suggest contracts such that from every served customer, marketing
obtains α1p−w and production obtains α2p+w, for some w and α1+α2 ¬ 1.
They prove that contracts that guarantee the centralized optimal solution
exist for each of the leader scenarios,

Xu, Dai, Sycara, and Lewis [674] (2012) consider a Markovian model
where a principal assigns demand to an operator. The quality θ of the opera-
tor is high with given probability p, and low with complementary probability
1− p. A θ-operator operates at rate µθ, where µH > µL. The value of θ is not
observable by the principal who bases its decision on the type x(θ) ∈ {H,L}
claimed by the operator. The principal then assigns the operator demand at
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rate λ(x) and payment I(x) per unit time. The principal maximizes the ex-
pected value of λ(x)− C

µθ−λ(x) − I(x), and the decision variables are λ(x) and
I(x), x ∈ {H,L}.10 The operator reacts to the offered rates and prices maxi-
mizing utility U(x, θ) = I(x)− e·µθ

µθ−λ(x) for a constant e. The ideal benchmark
solutions cannot be achieved in this decentralized setting. To achieve a truth-
telling equilibrium, the H-type operator is given an extra rent cost to prevent
him from mimicking an L-type and obtaining less assigned jobs. The authors
derive an explicit solution for the optimal IC strategy by the principal.

5.6 Systems with public and private service facilities

Stenbacka and Tombak (1995) (see [1] §8.2) consider a market with one
private server and one public server, and examine the effects of privatizing
the public server. See [283] for a model where customers choose between a
private firm and a public multiserver system that provides cost-free service
and inactivates some servers at periods of low congestion.

Larsen [428] (2005) considers a market where customers face two service
options: either be served at no cost by a public M/M/1 system where queueing
is associated with a linear cost function, or be served by a profit-maximizing
subcontractor that provides immediate service, but for a fee. Customers choose
where to go in a decentralized way. The system performance measure is the
expected full price for the customers. The equilibrium consists of a joining
probability in the unobservable case and a threshold joining strategy in the
observable case, and a price set by the subcontractor.11

The main results are:

� The subcontractor’s profit is higher when the public server is observable
and customers act independently. In this case, the subcontractor obtains
lower demand but charges a higher price.

� The existence of the subcontractor increases average customer welfare
in both models.

� No definitive conclusions can be made as to whether one of the settings
leads to higher customer welfare over the other.

10The authors’ goal was to design a system with both high throughput and low waiting
time so the objective function is a combination of these two measures. The first two terms
have different dimensions. Multiplying the constant C by expected queue length rather than
by expected waiting time seems a reasonable alternative.
11The author’s terminology is different from ours, referring to the equilibrium decision
in the unobservable case as “centralized” and to the performance measure as “total social
cost” although it includes transfer payments to the subcontractor.
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Guo, Lindsey, and Qian [279] (2015) assume customers choose be-
tween a toll-free public facility and a congestion-free private facility charging
P per service. A central planner controls a budget B to minimize the sum of
customer costs.12 The budget B is treated as a sunk cost.
Two subsidy schemes are compared.

Conditional subsidy: customers who wait at the public system τ units of time
are sent to the private server and their service fee is borne by the planner.
Unconditional subsidy: An amount S ¬ P is given to any customer who
chooses the private server. The paper provides insights about the preferred
subsidy scheme when the public queue is observable and when it is not, and
about the impact of providing delay information to customers. For example:

� When the public queue is unobservable the best choice of subsidy type
depends on the available budget. Conditional subsidy is the preferred
option when the budget is large.

� When the queue is observable, unconditional subsidy is preferred.

� Providing delay information to customers improves customer welfare.

Andritsos and Tang [56] (2013) consider a model motivated by health-
care insurance applications. This is, sort of, a supply chain consisting of a
funder that outsources treatment of patients to a nonstrategic M/M/1 public
hospital. The utility of a patient is U = V −αd, where V ∼ U[0,1] is the value
of treatment, d is the expected delay, and α is the waiting-cost rate. Patients
seeking treatment are those for whom U ­ 0. An exogenous average welfare
requirement level τ must be achieved, i.e., the rate of surplus generated by the
public system must be at least τ . The funder’s decision variables are the price
paid to the hospital per treated customer and the hospital’s capacity. The au-
thors derive explicit formulas for the values of these variables that minimize
the funder’s total cost rate.
Suppose now a patient can obtain treatment at a private provider without

delay. The private provider incurs a fixed cost κ per customer and charges the
customer a price p, which is not covered by the funder. The authors derive
the equilibrium solution in this game between the funder and the private
provider; they conclude that the entry of the private provider reduces waiting
time at the hospital and that the funder’s costs may increase or decrease.
The possibility that the funder’s costs increase when the private firm enters
the market might look surprising. This results from the economies of scale
inherent in the queue and the requirement to achieve a given total surplus.

Andritsos and Aflaki [55] (2015) assume a Hotelling type model with
two competing M/G/1 servers located at the ends of the interval. The utility

12Customer costs consist of queueing costs at the public system and payments to the
private system. This is different from social welfare which doesn’t consider the transfer
payment P as a cost.
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of a customer located at l and served by a server located at lh is U = V −
αW −γp− τ |l− lh|, where V is the service value, W is expected waiting time,
and p is the price. The authors compare two scenarios:

� Non-profit servers: Servers obtain a reimbursement amount r from
a public funder per customer served. Servers incur heterogeneous oper-
ation costs per customer and unit capacity costs. The server’s goal is
to set capacity for achieving maximum total customer welfare subject
to a self-financing constraint. The authors show there exists a unique
equilibrium and derive a closed-form formula for it.

� A non-profit and a for-profit server: The waiting time at the profit-
maximizing server is negligible, but a price for service is charged. The
server also obtains from the public funder a subsidy s ¬ r per customer.
The authors characterize the equilibrium and provide an explicit formula
for the M/M/1 case.

The authors conduct sensitivity analyses for each scenario and compare the
cases. They obtain several interesting results, including the following:

� There exists a threshold r̄ of the reimbursement r such that the expected
waiting times with two non-profit servers is lower than in the mixed case
iff r ¬ r̄.

� For low rates of demand, non-profit competition yields a lower total
customer cost. Otherwise, there exist thresholds r1 ¬ r2 such that mixed
competition yields a lower total customer cost iff r1 < r < r2.

Guo, Lindsey, and Zhang [280] (2014) consider a Markovian two-tier
service system where customers with homogeneous linear delay costs choose
one of two unobservable queues: a private queue for a profit-maximizing server
and a public toll-free queue for a server with a fixed capacity µf . Balking is
not an option, but it is assumed that µf > λ so that the public server can
serve the entire population. There are two decision variables related to the
private server: The service rate, µc (that comes at a linear cost cµc), and the
price, p.

� The authors derive an explicit SO solution such that the toll service
is self-financing, i.e., covers its expenses. Three types of solutions are
possible: All customers use the toll service, both systems are used, or all
customers use the toll-free service.

� The maximal social welfare of a self-financing system is decreasing in
the public capacity µf . This is the counterpart to the Downs-Thomson
paradox in transportation systems.
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5.7 Cooperation in service systems

5.7.1 Sharing of revenues and costs

Our interest in this section is in models where queue operators are willing
to cooperate by pooling resources and sharing costs. Most of these papers as-
sume customers are not strategic and waiting costs, if they exist, are incurred
by the servers. Some papers on supply chains with a common supplier are rele-
vant here, for example [35], as well as the concept of economies of scope. Also,
[682] describes a situation where two users share the costs associated with
lost demand. Models of competition under limited cooperation are described
in §7.3. See §8.1.2 for routing decisions under partial cooperation, [558, 559]
for a model where customers share information, [75, 168] for resource sharing
under competition, and [92, 93, 527] for cooperation in routing games.

Haviv [319] (2001) considers a single-server system with n customers
generating Poisson demand requests at rates λi, i = 1, . . . , n. Customer service
requirements have different first and second moments. Customer cost is defined
as the mean number of requests in the system.
The author considers ways of sharing system costs. Specifically, charging

customers for the congestion costs they impose according to the Aumann-
Shapley mechanism. The author examines four types of queue disciplines,
FCFS, LCFS with and without preemption, and EPS, and computes for each
the resulting cost allocation. The special case with only two customers, where
one has a zero arrival rate, suggests a charging scheme in the single-class
M/G/1 queue.

González and Herrero [259] (2004) consider n agents running M/M/1
systems with arrival and service rates λi and µi. Agent i is committed to a
guaranteed expected waiting time (µi−λi)−1 = ti. The capacity cost is linear
and, without loss of generality, is c(i) = µi = 1

ti
+ λi. It is assumed that if

a subset S of agents cooperate and maintain a common server, this coalition
must commit to expected waiting time tS = mini∈S ti, and their capacity
cost will be c(S) = 1

tS
+ λ(S) <

∑
i∈S

1
ti
+ λ(S) =

∑
i∈S c(i), where λ(S) =∑

i∈S λi. Therefore cooperation reduces costs. We note that this property
is not intuitively obvious; on one hand there are economies of scale which
coalition S enjoys, but on the other hand it provides better but costly service
to its aggregate demand. The authors observe that the core of this game is
not empty and provide a core allocation based on the Shapley value.

Hayel and Tuffin [335] (2006) apply the Aumann-Shapley price mecha-
nism to Mendelson and Whang’s model [487] with homogeneous service rates.
In particular, they determine which fraction of the total congestion must be
borne by each of the customer classes and show that these prices are IC.
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The prices are derived also for heterogeneous service rates and for a related
network model.

Garćıa-Sanz, Fernández, Fiestras-Janeiro, Garćıa-Jurado, and
Puerto [246] (2008) analyze variations of the model in [259]. In the first
one, the commitment of each agent specifies delay standard ωi and reliability
level αi. This is equivalent to µi = λi − lnαiωi , and the cost of a coalition S
is c(S) = λ(S) + maxS

{
− lnαi
ωi

}
. As in [259], the core of this game can be

fully described and the authors present a core allocation based on the Shapley
value. The authors interestingly observe that if the delay guarantee refers to
queueing time only (excluding service time), agents may prefer not to cooper-
ate. In another variation, preemptive priority schemes are allowed to exploit
the fact that different players have differing commitments to their populations.
The authors prove that the use of preemptive policies allows for fulfilling the
requirements of all customer types at a lower cost. Again, the existence of a
core allocation is constructively proved.

A cooperative game is totally balanced if the core of all its subgames is
non-empty. Anily and Haviv [57] (2010) assume that by pooling queues
a coalition S serves the demand

∑
i∈S λi at rate

∑
i∈S µi. The coalition cost

is the mean number of customers in the pooled system. The game is neither
monotone nor concave. To prove the game is totally balanced the authors
define an auxiliary game that is both monotone and concave, and its core
coincides with the non-negative parts of the core of the original game. In ad-
dition, except for degenerate cases, there exist infinitely many core allocations
in which at least one server pays some of the other servers to persuade them
to join the coalition. The authors introduce further insights into this model
in [59].

Özen, Reiman, and Wang [510] (2011) consider two types of queueing
systems. A type-µ system has a fixed number of identical servers and capacity
can be varied by adjusting the service rate. A type-K system has a fixed service
rate and its capacity can be controlled by changing the number of servers.
The authors also consider two cooperation modes. Under the resource sharing
mode cooperating operators combine their service capacities and optimize the
amount of demand to be served. Under the demand pooling mode operators
combine their customer bases and optimize the system capacity in which they
invest.

� The authors consider an allocation scheme based on distributing coali-
tion profits in proportion to each participant’s contribution and provide
sufficient conditions for it to be a core element. This is the case in both
cooperation modes in type-µ systems if the underlying queueing model
is Erlang-B (M/G/s/s model using blocking rates as the performance
measure) or Erlang-C (M/M/s model using the probability of waiting,
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mean delay, or the probability that delay exceeds a given threshold as
the performance measure). Similarly, this is the case in resource sharing
games in type-K systems.

� The core of a demand pooling game may be empty in type-K systems
and the authors present a sufficient condition for proportional allocation
to be in the core when the underlying model is Erlang-B.

Anily and Haviv [58] (2013) consider a class of cooperative games
called regular games, where each player is associated with a vector of quan-
titative properties and the cost of a coalition is a function of its vectors of
properties but otherwise is independent of player identities, as in the model of
[57]. They define a class of regular games called regular market games which
are totally balanced and possess core allocations. Three queueing examples
falling within this class are demonstrated:

� Servers have dedicated demand streams and customers arriving to a busy
server are lost. The servers in a coalition can reallocate service capacity
but they cannot redirect demand. They can also rent out capacity for a
given fixed price per unit time. The cost of a coalition is the cost of lost
servers minus revenues from capacity rental.

� Server i owns an unobservable M/M/1 queue with demand and service
rates λi and µi. Waiting cost rates are homogeneous. A coalition can
redirect demand among its members and also outsource some demand
at a fixed unit cost. The cost of a coalition consists of waiting and
outsourcing costs.

� Similar to the previous model, but instead of redirecting customers
among servers the capacity is reallocated among the servers. In addi-
tion, the authors allow the option of shifting some of the capacity to
other tasks in the firm. The cost of a coalition consists of the total con-
gestion minus a linear savings per capacity unit that is not used by the
coalition.

Timmer and Scheinhardt [623] (2013) consider cooperation among
N service providers while preserving the autonomy of the individual queues.
It is assumed that demand for server i is λi, and initial capacity is µi. Cooper-
ating servers may redistribute capacities among each other. The cost c(S) of
a coalition S is the minimum sum of delays of its customers over the possible
allocations of aggregate capacity

∑
µi.

The authors describe a mathematically equivalent description of the sys-

tem as a Jackson network for which c(S) =
(
∑
k∈S
√
λk)2∑

k∈S(µk − λk)
. In particular,

when λk = λ for all k ∈ S, the minimum cost is obtained by equally distribut-
ing the capacity

∑
i∈S µi among its |S| members, and c(S) = |S|λ/(µ̄S − λ),

where µ̄S =
∑
i∈S µi/|S|. The main result is the explicit formulation of fair
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cost allocation x, which also shows that the core of the game is not empty. In
the special case of equal arrival rates, the following cost allocation is in the

core: xi =
(
2− µi − λ

µ̄N − λ

)
c(N)
|N |

.

Ernez-Gahbiche, Hadjyoussef, Dogui, and Jemäı [230] (2014) an-
alyze a Stackelberg game with a single customer and multiple MTS M/M/1
suppliers. A coalition structure is a partition into coalitions of the supplier set,
each pooling service capacity. For a given coalition structure, the customer
leads a Stackelberg game allocating demand to coalitions while anticipating
their resulting behavior. The customer can refuse to participate in a game
that doesn’t guarantee nonnegative utility or otherwise must allocate the en-
tire demand. Given the allocation, each coalition selects a base-stock level
(or refuses to participate). The profit of a coalition is distributed among its
members in proportion to their capacities. The customer gains a fixed reward
from service and incurs backorder costs partly reimbursed by the coalition. In
addition to backorder compensation the coalition incurs unit production costs
and holding cost rates while earning a fixed reward per served unit.
The authors numerically solve an example where the size of coalitions in

stable structures grows with system load, and the grand coalition remains
stable only for high loads.13

Karsten, Slikker, and van Houtum [391] (2014) extend results for
the M/G/s/s type K model of [510] allowing for the cost rate H(s) associ-
ated with operating s servers to be concave increasing and unbounded. They
also treat a variation where blocking penalty costs are replaced by a maximal
blocking probability constraint, and prove that allocation of costs in propor-
tion to the server’s own demand is in the core of the game.

Karsten, Slikker, and van Houtum [392] (2015) consider a set of
players, each associated with an M/M/s system with a given rate of demand.
Players form a coalition by pooling servers and demand.

� In the FIX-queueing game, each player brings a predetermined number
of servers to a coalition. The coalition’s costs consist of a fixed cost per
server and a fixed cost rate per customer in the system. The game is
shown to be strictly subadditive and therefore servers benefit from form-
ing coalitions. It also benefits all customers as a whole, who experience
less expected delays in total when a larger coalition is formed. A core
allocation is guaranteed to exist for this game. Moreover, if the ratio of
servers to arrival rates is the same for all players, then a cost allocation
where each player pays proportionally according to personal demand is
shown to be in the core and nonincreasing in the size of the coalition.

13Stability is defined assuming coalitions are farsighted and consider the possibility that
“once they act, another coalition may react, a third coalition might in turn react, and so
on, deterring then the first move.”
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� In the OPT-queueing game, a coalition chooses the optimal integer num-
ber of servers to satisfy demand. The cost of employing a given number of
servers is nonincreasing as the coalition grows. The authors demonstrate
that the core of this game may be empty but there are approximately
stable allocations.

Yu, Benjaafar, and Gerchak [689] (2015) consider a cooperative game
among n firms each with its own dedicated demand. Firms set their service
rates, each paying the same linear capacity cost. However, firms have hetero-
geneous holding cost rates and are subject to heterogeneous delay standards,
namely, the probability that the delay is below a given value w0 is at least αi
for firm i. A coalition pools the demand of its members and serves them in
FCFS order while being subject to the maximal delay standard of its members.
A crucial observation is that the extra capacity, µ−λ, required to fulfill a delay
standard is independent of λ. Therefore, the extra capacity for a coalition is
the same as the maximum extra capacity required independently for any of
its members. Consequently, as in [259], although the shared facility guaran-
tees a better standard relative to what these customers would obtain without
pooling, this is done with smaller capacity and cost. The authors provide an
explicit cost allocation that belongs to the core of the game.
The advantages of allowing the coalition to prioritize customers according

to their original affiliations are discussed under a more general setting where
the bound w0 is replaced with a bound wi for firm i, i = 1, . . . , n. The resulting
game is shown to be submodular and a core allocation is derived.
As in [246], these results do not hold for variations of the model, for exam-

ple when the guarantee constraint is on queueing time rather than on sojourn
time.

5.7.2 Pareto optimality

The common assumption is that social utility is additive and hence the
objective of the central planner is to maximize the sum of individual utilities.
A weaker notion is that of Pareto optimality, which states no user can be
made better off without hurting some other user.

Courcoubetis and Varaiya [175] (1983) consider a Markovian model
of a closed system with two players sharing an FCFS server and maximizing
resource utilization, which is the time they spend in service. The service rate
µi and expected time from a service completion to submission of a new service
request 1/λi are the ith player’s decision variables, but their ratios ρi = λi/µi
are exogenously fixed. If player i were alone, the proportion of time in service
is ui = (1/µi)

(1/λi)+(1/µi)
= ρi
1+ρi
, which is independent of the decision variables.

The authors show that the sum of resource utilizations is maximized when
µ2
µ1
=
√
ρ1
ρ2
. However, for any values (µ1, µ2) the resulting utilizations (u1, u2)

are Pareto maximal. That is:
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� No cooperation between players can simultaneously increase both uti-
lizations.

Shenker [570] (1995) considers a queue in which N users select demand
rates. The utility of user i is a convex function Ui(λi, ci), increasing in λi
and decreasing in ci, where ci is the user’s average queueing demand. The
queue manager wishes to induce the socially best equilibrium from the interior
of the achievable set14 by selecting a queue discipline from a class of work-
conserving disciplines that include FCFS, LCFS, EPS, and polling. The first
result states that no discipline in this class is guaranteed to induce a Pareto
optimal solution for every convex utility function.
The author examines a fair share service discipline that is best explained

by the following example. Consider three users choosing rates λ1 < λ2 < λ3.
Then, all users get highest (preemptive) priority on a portion of size λ1 of their
demand. Users 2 and 3 get second priority on a portion of λ2 − λ1 of their
demand, and the third user obtains the lowest priority on the last portion of
λ3 − λ2 of its demand. This mechanism has desirable features. For example,
it is the only one in the class of disciplines considered here which guarantees
a unique equilibrium for every admissible utility function.15

Liu and Simaan [454] (2005) consider a two-class model of routing de-
mand to parallel M/M/1 servers with a finite number of users in each class.
Class objectives differ from those of their members. While users wish to mini-
mize expected wait, the class objective is either to maximize the class demand
served by the fastest server, or for a given set of server- and class-dependent
service fees to minimize the total cost of its users. The authors offer a solution
concept called Non-inferior Nash Strategy (NNS), which means that the rout-
ing strategies adopted by the classes define an equilibrium of the class games
and, in addition, the routing of a class must be Pareto optimal with respect
to its individual users’ objectives.

5.7.3 Bargaining solutions and routing

See [199] for a related model in a system with breakdowns.

Mazumdar, Mason, and Douligeris [480] (1991) look at random
loop-free routing in a Jackson network of M/M/1 queues. There are N players,
player i wishes to maximize the negative inverse power −P−1i where the power
Pi of player i is defined as the ratio between throughput and delay (see §4.6.1).
The authors show that the flow scheme S∗ which maximizes the product of

14I.e., absolute priority is not given to any subset of users.
15The fare share service discipline is similar in some aspects to the token system of [226].
In both cases different parts of a customer’s demand are given different priorities, but the
way in which they are used is different.
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user powers corresponds to a Nash bargaining solution with respect to the
initial agreement point −aP−1i (S∗), i = 1, . . . , N , for a being sufficiently large.

Dziong and Mason [212] (1996) examine an M/M/s/s loss system
with two users, where user j sends a Poisson(λj) stream of connection requests
(calls), each requiring dj servers (channels) and service of duration exp(µj).
The user receives utility λ̄jdj/µj , where λ̄j is the acceptance rate of j-type
calls. The system state is defined by the number and type of connections
established, and the admission strategy is state-dependent.
From amongst the Pareto efficient strategies, a fair one is desired. For this

purpose it is assumed that players have preference functions that depend on
their own utility as well as on that of other players. The dependence on others’
utilities can be positive,16 negative, or non-dependent.17

Traditional solutions maximize either the average or the minimum utility
among all players. The authors consider several bargaining solutions and com-
pare them to each other and to the traditional strategies of (i) complete sharing
policy, in which a new call is accepted if there is sufficient free capacity; (ii)
coordinate convex policies, in which the maximum number of type j calls in
the system is bounded; (iii) trunk reservation policies, where a jth type call is
rejected if the number of free trunks is smaller than a threshold; (iv) dynamic
trunk reservation policies where these thresholds are state-dependent.

Cao, Shen, Milito, and Wirth [127] (2002) consider a Stackelberg
game between an M/M/1 server and a user. The user generates service re-
quests with random maximal acceptable response time s. If service of an s-
request is completed within the required time s, the user gains an amount
g(s). Otherwise there is no gain or loss. The server leads the game by an-
nouncing the service fee, and the user reacts by choosing a range of s values of
requests it submits for service. The server maximizes revenue while the user
maximizes net gains (after paying for service).
The authors present examples for a cooperative version of the model with

a parameter-dependent bargaining solution concept that generalizes the Nash
bargaining point and where the disagreement point is either the solution of
the Stackelberg game or the origin (0, 0).
Also offered is a noncooperative version with the same demand model and

two competing servers with heterogeneous capacities. The user applies a two-
thresholds policy such that small s-valued requests balk, high values join the
less congested server, and the rest join the more congested server.

La and Anantharam [424] (2002) consider a repeated game where each
repeated stage is equivalent to the game analyzed in [506]. Thus, cooperation
can be enforced by policies that penalize users if they deviate from the desired
behavior. The main results are:

16Positive dependence expresses a form of altruism.
17The authors use a generalization of several well-known arbitration schemes. The case
of independent utilities corresponds to the Nash bargaining point.
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� When the network consists of parallel links there exists a subgame per-
fect equilibrium that achieves the SO solution and no user is worse off
relative to the unique stage-game equilibrium.

� In general directed networks with a common source-destination pair
there exists a subgame-perfect equilibrium that is also SO. This prop-
erty does not always hold when source-destination pairs are different.

Grosu, Chronopoulos, and Leung [263] (2008) compute the Nash
bargaining solution when N M/M/1 servers with heterogeneous service rates
µ1 ­ · · · ­ µN allocate demand of rate Φ amongst themselves. Servers mini-
mize their rate of demand and at the disagreement point incur infinite cost.
The following algorithm computes the bargaining point: Let n = N . While
cn = 1n (

∑
µj − Φ) > µn set λn ← 0 and n ← n− 1. Lastly, set λi = µi − cn

for the n remaining servers. The authors observe that the resulting overall
expected sojourn time is not very far from the SO value derived in [85].

Subrata, Zomaya, and Landfeldt [598] (2008) compute the Nash
bargaining point in a game routing given demand to M/G/1 servers with
heterogeneous service distributions, communication costs, and predetermined
committed guarantees on the sum of communication and waiting costs. In
this game, servers wish to minimize the expected delay of demand.18 In [600],
the authors consider a variation of the game where M/M/1 servers with a
common target response time and given initial demand cooperate by shifting
demand. The servers minimize energy costs equal to squared service rates µ2j .

Penmatsa and Chronopoulos [527] (2011) consider n M/M/1 servers
with heterogeneous service rates µi and initial demand rates φi. Demand can
be sent for processing from one server to another resulting in effective de-
mand rates λi such that

∑
φi =

∑
λi. The total rate of demand sent among

servers λ = 0.5
∑
|φi − λi| is processed by an M/M/1 communication sub-

system. The goal of servers and the communication subsystem is to minimize
expected delays. The authors compute the bargaining point of the game with
the disagreement point corresponding to λ = 0. They assess the quality of the
solution according to a fairness index that measures the equality of response
time at different servers: [

∑
Di]
2
/
[
n
∑
D2i
]
, where Di is the expected delay

at server i.
Experimental results indicate the solution is not much lower in efficiency

but provides more fairness relative to the SO solution.19

18See [599] for a numerical study of an algorithm for computing an equilibrium in the
non-cooperative version of this model.
19See §8.1.1 for a summary of a non-cooperative version of a routing model given in this
paper.
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5.8 Efficiency and price of anarchy

Bell and Stidham [85] (1983) (see [1] §3.7, [594] §1.5) were the first to
solve the equilibrium and optimal joining strategies for customers selecting a
server in an unobservable multiserver Markovian system with heterogeneous
service rates, µ1, . . . , µn.20 Stidham [592] (1985) uses these results to bound
the PoA in heavy traffic, that is, in the limit as λ → µ, showing that the
equilibrium choice can be worse than the SO assignment by as much as a
factor of n, and that this bound is tight. The worst case is obtained when
there is one very fast server and n− 1 very slow servers.

Friedman [238] (2004) constructs an example that, as in [592], has
many slow servers and one fast server. The author does not assume heavy-
traffic conditions, but the number of servers is arbitrarily large. Specifically,
the example considers n servers with service rate 1 and a single fast server
with service rate n. The arrival rate is λ = n−1. In equilibrium, all customers
select the fast server with expected waiting time of one unit and an aggregate
expected waiting-time rate of n− 1. The optimal solution allocates an arrival
rate of n −

√
n to the fast server and

√
n−1
n to each slow server resulting in

an aggregate waiting-time rate of n−
√
n

n−(n−
√
n) +

√
n−1

1−
√
n−1
n

= O(
√
n). Therefore,

PoA≈
√
n.

Haviv and Roughgarden [330] (2007) modify the example of [238]
to obtain PoA that asymptotically approaches the number of servers, n, and
prove this is the worst possible example.Wu and Starobinski [663] (2008)
independently obtain a similar result. They also extend their results to G/G/1
queues with high loads.

Johari, Mannor, and Tsitsiklis [374] (2005) analyze a general network
resource allocation game. We simplify the description here and adapt it to
their queueing application. Consider an M/M/1 facility with a fixed service
rate µ and R customers. The utility customer r derives from submitting service
requests at rate λr is a concave function Ur(λr), and customers incur waiting
costs c per unit time in the queue.
Given complete knowledge and centralized control of the system, the goal

is to set quotas λ1, . . . , λR maximizing
∑
U(λr)−cλ/(µ−λ), where λ =

∑
λr.

The authors consider two models of decentralized systems where the utility
functions are private information.
The first is a bounded-rationality model where quotas are set by the fol-

lowing auctioning mechanism: Each customer j = 1, . . . , R declares the total

20The routing formulas have often been rediscovered since.
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amount wj he is willing to pay. Given the bids w = (w1, . . . , wR), the man-
ager sets a price p(w) per unit of allocated quota. All users are treated alike
and are charged the same price. Hence the quota allocated to customer j
is λj(w) = wj/p(w). Assuming customer j optimizes expected net utility
Uj(λj)−wj ignoring the effect his choice has on price and assuming the man-
ager sets a price equal to the marginal cost, i.e., p(w) = cµ/(µ−λ(w))2, there
exists a unique equilibrium solution.
In the second model, customers are rational and anticipate the effect their

strategy has on allocation. As in the first model, the manager sets the price
equal to the marginal cost and λ(w) is set as before. A unique equilibrium
exists under these assumptions.
Denote by S∗ the solution value of the full information centralized problem,

and by S the equilibrium solution value in the second model. Then the PoA,
S∗/S, is bounded by a constant (≈ 1.5).

Mazalov, Monien, Schoppmann, and Tiemann [479] (2006) con-
sider a directed network with source s and sink t. A demand of rate r has to
be routed from s to t along the s−t paths. The cost of a path is the maximum
delay of an edge along the path. Their main results are:

� A characterization of s − t series-parallel graphs (assuming that every
edge is contained in a simple s− t path): A directed graph is s− t series
parallel iff for any edge-latency function the equilibrium social cost is
unique.

� The price of stability is attained on parallel links.21

� The authors derive the price of stability in the case of M/M/1 latency
as a function of the number of parallel links and demand rate. For a
large r this converges to the number of parallel links, as in [330, 663].

Acemoglu and Ozdaglar [6] (2007) consider a general model, but we
restrict the description to its queueing application. Users decide how much of
their demand to allocate to each of a group of parallel servers.22 The value
of each served unit is constant and the delay cost at server i is a convex
nondecreasing function li(xi) of the rate xi of served demand.23 Each of a set
of service providers sets prices for a subset of servers it owns. Clearly, if all
the servers are owned by a single owner this will extract all customer surplus
and result in a SO solution. In general, the equilibrium solution is socially
suboptimal, and the authors prove that PoA=[2(

√
2− 1)]−1 ≈ 1.21.

21In this case the model reduces to that of [85].
22While describing the demand, the authors refer to small users but actually mean a
single user with splittable demand, as seen in their Equation (1).
23We refer here to §6 in [6] that allows li(0) > 0, which is the case when the latency
represents the sojourn time in a queue. The authors’ tightness proof of this bound uses a
linear non-queue latency function.
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Czumaj, Krysta, and Vöcking [179] (2010) consider a finite number
of customers routing demand to parallel servers. The demand of a customer
is unsplittable and must be routed to a single server. The authors show that
when the social objective is either the sum or the maximum of the delay
costs across the queues, the PoA is unbounded. Therefore, they consider
two variations of bicriteria PoA. One variation measures the factor by which
the demand must be decreased so the equilibrium cost matches the original
optimal cost. The other measures how much the servers’ capacities must be
decreased so that the optimal cost matches the original equilibrium cost. The
authors provide bounds for both values. Other results concern many customers
with small (but atomic) demand, heterogeneous customers, and loss systems.
The authors conclude that rejection of demand requests in the case of an
overload is necessary for the PoA to be bounded.

Altman, Ayesta, and Prabhu [44] (2011) assume Poisson demand
routed to processor-sharing servers having heterogeneous service rates and
customer waiting costs. Customers are homogeneous except for the size of
service requirement, which is a random variable. The service requirement is
known to the dispatcher in the centralized case but is private information in
the decentralized case. The social objective is to minimize expected waiting
cost in the system. The authors prove that, unlike the result in [330] where
the waiting cost is the same at all servers, here the PoA is unbounded.

Ayesta, Brun, and Prabhu [76] (2011) investigate the dependence of
the PoA on the number of customers K.24 They consider unobservable single-
server queues with heterogeneous service and waiting-cost rates. Customer i
allocates a Poisson(λi) stream of jobs amongst the queues seeking to minimize
waiting costs. Existence and uniqueness of the equilibrium is guaranteed by
[506]. The main result is that the PoA is of order

√
K independent of the

number of queues. Interestingly, the worst performance is obtained when λi =
λj for all i and j.

Doncel, Ayesta, Brun, and Prabhu [206] (2014) refine the analy-
sis of [76] to situations where there might be many servers, but only a few
varying service rates, and homogeneous waiting costs. As observed in [85],
self-interested customers overload the fast servers. The authors demonstrate
that for given service rates, the PoA is non-monotone as a function of the
system utilization with peaks corresponding to traffic intensities when the
equilibrium solution requires more active servers.
Specific results obtained with two types of servers are:

� The equilibrium solution is close to optimal in most cases. Bad cases
occur when the slow servers are numerous and very slow.

24This is in contrast to other papers, like [238, 330, 663], that focus on the dependence
of the PoA on the number of servers.
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� Let λ denote aggregate demand rate and assume service rates are fixed.
There are (explicitly derived) thresholds, λopt < λne such that when
λ ¬ λopt both equilibrium and SO solutions use only fast servers.
Only the SO solution uses slow servers when λopt < λ < λne, and
both solutions use fast and slow servers otherwise. PoA is 1 in the first
interval, increases in the second, and decreases in the third. In particular,
PoA reaches its maximum at λne.

� With two types of servers and K customers, PoA¬ K
2
√
K−1 . This bound

can be achieved asymptotically when the number of servers is increased.

Anselmi, Ayesta, and Wierman [60] (2011) consider a system of
N parallel profit-maximizing servers with heterogeneous service rates. The
service value is assumed to be very high so price and lead times do not af-
fect aggregate demand, but do affect on customers in their selection of a
server. Customers join servers with minimum full price. Even with homoge-
neous servers a price equilibrium need not exist. For example, no equilibrium
exists when the system is heavily loaded such that all providers need to be
used to keep congestion cost finite. The authors do however derive sufficient
conditions for a unique price equilibrium to exist. They also show that the
PoA is in general unbounded, but when an equilibrium exists and N → ∞,
PoA→ 1.
Knight and Harper [406] (2013) consider the routing of non-atomic

customers at n distinct locations to service facilities. Service value and trans-
portation costs depend on customer location, but waiting-cost rates are iden-
tical for all customers. Instead of net utility maximization, the authors con-
sider cost minimization, where the service value is considered as a balking
penalty. This modeling assumption greatly affects the definition and size of
the PoA: When demand grows to infinity (such that most customers must
balk) PoA→ 1, and when service value of any type grows to infinity PoA
increases, but remains bounded. The authors demonstrate these results using
data from a health service by modeling service facilities as M/M/c queues.

Stidham [595] (2014) extends [330] in two ways. First, as in [44], servers
have heterogeneous waiting-cost rates hj . When λ → µ ≡

∑
µj the PoA

approaches µ
∑
hj/(

∑√
hjµj)2. Secondly, the author extends the results to

GI/GI/1 servers and shows that the same formula still holds, but with the

modified waiting cost function, h̃j = hj
[
µj(C2a − 1) + λ(C2Sj + 1)

]
/2λ, where

C2a and C
2
Sj
are the squared coefficients of variation of the inter-arrival time

and time of service at server j, respectively. A similar result is shown for a
network of queues.
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5.9 Trading positions

See [24, 315, 672] for related models where customer reassignment is carried
out by a queue manager.

Gershkov and Schweinzer [249] (2010) consider mechanisms for
rescheduling a clearing system (i.e., when there is no arrival process). Cus-
tomers’ heterogeneous waiting-cost rates are private information and service
takes one unit of time. An efficient schedule serves the customers in decreasing
order of waiting-cost rates. A trade mechanism specifies customer payments
and schedule, given their waiting cost rate claims and the initial schedule. The
mechanism must satisfy IR, IC, and must maintain a balanced budget.
The authors show that no such mechanism exists when the initial service

schedule is deterministic (for example FCFS), and that to enable trade it is
necessary that the players have weaker rights to initial positions in the sched-
ule. In particular, in the extreme case where the initial schedule is random,
an efficient mechanism exists, for example, an auction.
The authors mention that a stochastic queueing version is an interesting

generalization of their deterministic model. Note that a bidding mechanism
for an M/M/1 system which optimally regulates the arrival process and the
service order is discussed in [303] (see [1] §4.5.2).

Yang, Debo, and Gupta [680] (2015) consider auction mechanisms
for queue positions in an M/M/1 system with heterogeneous customer delay
costs. The system is unobservable to the customers and joining customers
have the option of maintaining their FCFS position. Alternatively, customers
can pay a fee H and claim a waiting-cost rate (their bid). These fee-paying
customers will sell positions to others with higher bids and buy from those
with lower bids.25 In each transaction the buyer pays the seller’s price per
expected waiting time exchanged. The main results are as follows:

� Suppose H = 0.

– Customers with waiting-cost rates above the threshold balk. All
joining customers participate in the auction.

– Some trades are associated with a negative value to the buyer, but
overall equilibrium trading makes all joining customers better off.

– All customers overbid (i.e., bids are strictly greater than their true
waiting-cost rate).

25Rosenblum (1992), see [1] §2.11, considered position trades in a queue where waiting
costs are public information. As noted in [1] §2.11, a drawback of the model is that it ignores
the potential value of future trades. The present paper amends this drawback.
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� The authors characterize the equilibrium solutions when H > 0. Mul-
tiplicity of equilibria is possible. In particular, the solution where no
customer participates in the auction defines an equilibrium. Customers
with high waiting-cost rates balk. Among joining customers, those with
low costs bid hoping to benefit from selling their positions while those
with high costs bid hoping to shorten their delays. Customers with in-
termediate costs do not participate in the auction.

� Increased efficiency and profit to the broker can be achieved by limiting
trade: Customers bidding in an interval [R

¯
, R̄] do not trade position

with one another (but do trade with customers bidding outside of the
interval).

– In equilibrium, all joining customers bid but there are no bids
within the restricted interval except for at R̄. Hence, these cus-
tomers protect themselves from buying transactions associated
with a loss.

– The authors compute the optimal interval [R
¯
∗, R̄∗] and bidding

price H∗. R
¯
∗ < R̄∗ and therefore this is not a special case of the

unrestricted trade auction.

– All joining customers participate in the optimal auction.

– Customers bidding outside of the restricted interval are served in
order of waiting-cost rates, but those with bids R̄∗ are served in
FCFS order.

El Haji and Onderstal [224] (2015) conduct laboratory experiments in
a static environment (i.e., all customers arrive before service starts). Waiting
cost rates are private information, and the authors consider two mechanisms
for reallocating positions. In the server-initiated auction, all customers bid for
the first position in the queue with the winner’s bid being equally distributed
among the others who now bid for the second position, and so on. In the
customer-initiated auction, each new arrival observes the queue length and
sequentially trades positions with queued customers. The authors compare
the two approaches in terms of system efficiency and customer preferences
and explain why the outcome deviates from theoretical predictions.



Chapter 6

Monopoly

Operations management literature on strategic queueing models naturally
focuses on profit maximization. The part of that research that considers a
monopolistic server is described in this chapter.

6.1 Profit maximization in Naor’s model

Let S∗ denote the maximum social welfare obtainable in Naor’s model.
Clearly, S∗ is an upper bound on profit in the system. The firm can achieve this
profit if and only if the following conditions hold: 1. Customers join according
to the SO threshold n∗, and 2. all welfare generated in the system goes to the
firm. These conditions are not satisfied by Naor’s optimal static price when
n∗ > 1.1

Four mechanisms that achieve profit S∗ are known, as described below.
The first three are discussed in [229].

1It is numerically shown in [311] that optimal static pricing guarantees more than 0.8S∗.

139
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The simplest mechanism, suggested by Chen and Frank (2001), see [1]
§2.8, uses dynamic pricing. The price leaves zero customer surplus at any
state where customers are encouraged to join and is a higher price where they
should balk. In Naor’s model, this means charging price pn = R−C n+1µ from
a customer arriving when the system occupancy is n < n∗, and charging a
higher price that prevents joining when n ­ n∗. When customers are het-
erogeneous, achieving S∗ by dynamic pricing is possible if each customer’s
type is observable (symmetric information) and dynamic price discrimination
is permitted.
An alternative mechanism that achieves profit S∗ follows from Hassin’s

[302] (1985) observation that customer behavior is socially optimal when the
queue regime is LCFS-PR. In this case, the expected utility for any arriv-
ing customer is the same and is independent of the current queue length.
Therefore, charging a fixed fee (almost) equal to this value will not deter the
customer from joining and will preserve the socially optimal behavior while
all gains go to the firm.2

A third possibility for achieving the profit S∗ follows from work on priority
sales byAlperstein [39] (1988) who showed that an LCFS-PR regime can be
obtained through appropriate pricing of preemptive priorities while inducing
the threshold n∗ and leaving no customer surplus.
The fourth possibility is a limited form of dynamic pricing as suggested

by Hassin and Koshman [311] (2014). Customers are informed whether
queue length is < n∗ (state L) or ­ n∗ (state H). The admission price is the
highest possible price such that all customers join the queue when the state
is L, i.e., R−CWL where WL is the expected sojourn time in an M/M/1/n∗
system. When the state is H, the price will be sufficiently large so that all
arrivals will balk.

6.2 Price and capacity

In the short run the natural decision variable is price p, whereas in the long
run the firm can also alter its capacity µ. In both cases, these two variables
determine the delay W . It doesn’t matter which pair of the three (p, µ,W )
is known in the case of a monopoly, because the customer may deduce the
missing value. However, the demand is naturally described in terms of (p,W )
and authors often use W as a decision variable instead of µ. W is then of-
ten referred to as a delay guarantee. In the rational setting, customers of a
monopoly can deduce the equilibrium W from the pair (p, µ), and need not
rely on unreliable delay quotes.

2Note that with the alternative regulation mechanisms suggested in [637, 325] the server
cannot fully extract customers’ welfare by a single price.
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6.2.1 Pricing

A notable feature of pricing in the E&H model is observed by Chen and
Frank [141] (2004) (also see [1] §3.1.3). The short-run profit-maximizing
admission fee decreases when demand increases and more customers are ad-
mitted to the queue. The reason being that a higher admission rate brings
higher delay and a degradation in the quality of service supplied by the sys-
tem. This phenomenon differs from common market behavior where an in-
crease in demand leads to an increase in price. Chen and Frank also show
that the optimal price increases in service value and capacity. Moreover, in
the long run a sustained increase in the arrival rate will cause the firm to add
processing capacity and raise the price. Some of the papers surveyed below
reach similar conclusions concerning the sensitivity of prices to demand.

Ziya, Ayhan, and Foley [717] (2006) compute revenue-maximizing
prices in queueing systems having multiple servers, a finite waiting room, price-
sensitive but delay-insensitive customers, and demand satisfying increasing
price elasticity. The main results are:

� The M/M/1/m queue: The optimal price is monotonic in m.
Whether it is increasing or decreasing depends on whether the system
load at zero price is above or below a certain threshold.

� The M/GI/s/s queue: The optimal price decreases in s.

� The authors report M/GI/1/m and M/M/s/m examples where the op-
timal prices are non-monotonic in the number of servers.

� In [718] the authors compute upper bounds on the optimal arrival rates
for a multiple-class generalization of their model.

Maoui, Ayhan, and Foley [475] (2009) compute profit-maximizing
prices and analyze their sensitivity to the system parameters in M/G/1 and
M/M/1/s queues. Customers are price sensitive and have heterogeneous ser-
vice valuations leading to a demand function with an increasing generalized
hazard rate (cf. [474]). The server sets the price of admission and incurs linear
holding costs. The authors prove that an increase in potential arrival rate or
a decrease in service rate results in a higher optimal price, which differs from
the Chen-Frank observation,

Printezis and Burnetas [536] (2011) consider two customer classes
with common service values but different delay sensitivities.3 Customer types
are observed by the server and price discrimination is allowed, but the queue
regime is restricted to FCFS.
The authors compute the profit-maximizing prices. The solution is com-

pared with that of the profit-maximizing solution when price discrimination is

3See [537] for a similar model with asymmetric information.
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not possible. In both cases, customers from the more delay-sensitive class en-
ter only if the other class joins at maximal rate. An interesting result, similar
to the Chen-Frank observation, is that the optimal prices under price dis-
crimination increase with capacity. However, this is not generally true when
price discrimination is not possible. Another result states that when capac-
ity is a decision variable, the benefits of price discrimination are higher with
intermediate values of capacity or capacity costs.

Yeh and Lin [683] (2012) assume the expected frequency of facility
breakdowns increases with demand. Demand itself is price elastic, meaning a
price increase results in a revenue reduction. However, a price increase also
results in reduced demand which decreases the frequency of breakdowns, which
are immediately repaired, but at a cost. Therefore, the optimal price reflects
balancing revenue and maintenance costs. Assuming increasing price elasticity
and a strictly increasing failure rate of the facility, the authors prove that the
expected number of breakdowns in a cycle is a concave and strictly increasing
function of the demand rate. As a consequence, the profit function is strictly
concave with a unique maximizing demand rate. The effect of the parameters
on the optimal pricing policy is numerically demonstrated.

Zhou, Chao, and Gong [711] (2014) consider a market with finite
potential arrival rates of two customer classes with heterogeneous service val-
uations and waiting-cost rates. The firm operates an FCFS regime with a
single price. The main qualitative finding is that the optimal price is not
monotone in the potential arrival rates. However, conforming with the Chen-
Frank observation, as long as the firm does not change the customer classes it
serves, the price (weakly) decreases when the potential arrival rate of either
class increases.

Haung and Su [318] (2015) consider an M/M/1/b system with homo-
geneous price-sensitive customers and two service classes, k = 1, 2, associated
with service rates µ1 > µ2. Given prices P1, P2, it is assumed that class k
demand rate is γk = Dk

D1+D2
where Dk = AkP

−Ek
k for constants Ak and Ek

(Ek is the price elasticity of class k’s demand). The authors numerically study
relations among the profit maximizing price ratio P2/P1, and the ratios A2/A1
and K2/K1.

6.2.2 Joint price and capacity optimization

Jahnke, Chwolka, and Simons [358] (2005) assume demand decreases
linearly with the full price λ(π) = α − βπ. They define the full price π in
a special way: π(p, µ) = p + εmax{0, ρ − Γ}, where p is the price, Γ is a
market standard for utilization, ρ = λ(π(p, µ))/µ is the utilization level, and
ε, α, β are constants. From these relations it follows that demand is a kinked
function of p, meaning it is piecewise linearly decreasing and concave with a
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single breakpoint. The authors provide a closed-form solution for the profit-
maximizing price and service rate subject to linear production and capacity
costs.

Jiang [365] (2005) compares the SO and profit-maximizing solutions in
an M/M/1 queue with heterogeneous service valuations. It turns out that the
profit-maximizing solution has a higher price, a lower arrival rate, lower delay
costs, and lower investment in capacity.4

Ray and Jewkes [545] (2004) consider a profit-maximizing M/M/1
firm operating in a market where price p, demand λ, and delay L are linearly
related to each other: p = d − eL, and λ = a − bL. Delay is defined with
respect to a given reliability level s, and capacity costs are linear.5 In such a
market the sign of b is important. If b > 0, then an increase in L comes with
a decrease in demand despite the price reduction. Customers are more lead-
time sensitive than price sensitive in this case. If b < 0, then a price reduction
increases demand despite the increased delay, so customers are more price
sensitive than lead-time sensitive.
The authors emphasize the importance of the manager knowing whether

customers are more price sensitive or more lead-time sensitive. For example,
when customers are more lead-time sensitive and the firm increases the delay,
capacity will decline since both the delay requirement is relaxed and demand
decreases. However, when customers are more price sensitive an increase in
the delay causes the opposite effect since the firm now needs to satisfy a larger
demand. In this case capacity may increase or decrease.

Serel and Erel [566] §4.4 (2008) prove conditions for uniqueness of the
locally optimal solution in a pricing and staffing optimization problem. This is
a profit maximization M/M/s model where the waiting costs are incurred by
the server, customers are price sensitive, there is an exogenous upper bound
constraint on expected waiting time, and customers are not delay sensitive as
long as their expected delay remains below the bound.

Parra-Frutos [521] (2010) considers profit maximization through pric-
ing and capacity setting in the E&H model with unbounded potential demand.
The main finding is that when the capacity cost is concave (even linear), there
is no optimal solution for the firm, and the higher the capacity the higher the
expected profits it can obtain.

4Sufficient conditions for some of these properties are also provided by Mendelson and
by Stenbacka and Tombak, see [1] §8.1-2.
5A very similar model is presented in [658]. This model has no capacity cost, but the

firm incurs holding and tardiness costs.
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6.2.3 Differentiation by quality and delay

Chayet, Kouvelis, and Yu [138] (2011) assume customer utility func-
tions θ̃q − cw − p, where θ̃ ∼ U[0,1] is the customer’s quality-sensitivity pa-
rameter, w is the delay measure, q measures product quality, c is the customer
waiting-cost rate, and p is the service price. When the firm offers quality q,
a θ̃-customer joins the system iff θ̃ ­ θ = (p + cw)/q, resulting in an effec-
tive arrival rate λe = (1 − θ)λ. The firm chooses q, p and µ and earns profit
[p− a(q)]λe − b(q)µ = [θq− cw− a(q)](1− θ)λ− b(q)µ, where b(q) = βq2 rep-
resents the unit investment in capacity and a(q) = αq2 is the unit production
cost, when production quality is q.
The firm can segment the market by operating dedicated facilities offer-

ing quality levels q1 > q2, prices pi, and lead times wi, i = 1, 2. Alterna-
tively, a single flexible facility can produce both quality types with a com-
mon FCFS queue (or possibly giving priority to customers choosing the high-
quality product). In both cases, the market is segmented such that for some
0 ¬ θ2 < θ1 < 1, customers in [θ1, 1] prefer product 1, those in [θ2, θ1] prefer
product 2, and the others balk. The authors assume the investment required
for a flexible facility that can switch between products of qualities q1 and q2
is b(q1, q2) = β[δq1 + (1− δ)q2]2, with δ ∈ (0, 1], and focus on the case δ = 1.
The main results are:

� An appealing feature of this model is that the solution with dedicated
facilities is expressed in terms of a single parameter M = 2

√
βc/λ. For

a flexible facility, the optimal quality levels also depend on δ and β/α.

� The profit-maximizing quality levels and market segmentation under the
dedicated and pooled solutions are quite different. Dedicated facilities
can better optimize market coverage and product positioning, but lack
the benefits of pooling capacity.

� Dedicated facilities yield some unexpected results: Capacity investment
and quality may increase with higher marginal investment costs, and
capacity investments are non-monotonic in market size.

Xu, Lian, Li, and Guo [673] (2016) consider a Hotelling model with
customers uniformly distributed over [0,1] and unobservable M/M/1 servers at
the two ends of the interval. Customers have homogeneous travel and waiting
costs and service valuation. The firm charges pd from customers guaranteed to
join their nearest queue and pp < pd from customers assigned with probability
0.5 to each of the queues. In equilibrium, customers near the ends of the in-
terval prefer the deterministic assignment, a fraction of the others chooses the
probabilistic assignment, and the rest balk. This price discrimination enables
the firm to increase profits.
The authors compare the profit-maximizing prices pd and pf in the case

of FCFS and under prioritization of one of the two service types. The total
revenue, however, is not affected by the regime.
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6.2.4 Delay compensation

Any dynamic pricing scheme where higher congestion is associated with
lower prices can be interpreted as delay compensation. We describe here dif-
ferent types of delay compensation. See §2.6.3 for delay compensation in ob-
servable queues. See [311] for a model where price is reduced when the system
is congested.

Tuffin, Le Cadre, and Bouhtou [631] (2010) consider an M/M/1
system where customers whose realized system time exceeds threshold d receive
delay compensation q. The expected compensation is therefore q · e−(µ−λ)d.
The firm’s decision variables are price p, as well as q and d. Depending on q and
d, customers may benefit from a higher arrival rate that increases chances of
obtaining the delay compensation thus leading to FTC behavior and multiple
equilibria. The authors assume that, because of long-run benefits, the firm
benefits from inducing the equilibrium with the largest arrival rate even if
it is not the equilibrium that maximizes profits. They demonstrate through
examples that a compensation scheme can increase revenues.

Afèche, Baron, and Kerner [15] (2013) investigate profit maximiza-
tion when customers are heterogeneous and risk averse and the server charges
lead-time-dependent tariffs, that is, payments depend on realized lead times.
Customers of the same type have the same utility function U and delay-cost
function C, but differ in service valuations. The utility of a customer with
value v who stays in the system for time w is U(v − C(w)− P (w)), where P
is the price function set by the server. The main results are:

� Lead time-dependent pricing does not increase profits when customers
are risk neutral. However, discounts based on the realized lead time can
increase profits when customers are risk averse.

� If the server can distinguish among customer types it is optimal to elimi-
nate delay-cost risk by fully compensating customer delay. If the provider
serves indistinguishable customer types and charges a single tariff, then
the more patient customers receive overcompensation and their utilities
increase with lead time!

� When customer type is private information, pricing based on realized
lead times allows for price discrimination. The first-best (i.e., when types
are distinguishable) menu of tariffs may be IC, yielding higher revenues
than with risk-neutral customers.

� For a single customer type the simplest refund policy, issuing a full
refund for late delivery, performs well relative to the optimal lead-time-
dependent tariff.

� Under joint pricing and capacity optimization, optimal pricing based
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on realized lead times yields higher profits with less capacity compared
to flat-rate pricing. This profit gain can be significant, particularly if
capacity is expensive.

Chen, Huang, Hassin and Zhang [144] (2015) assume that the price p
of a product is exogenous and that an M/M/1 manufacturer with constant unit
production and inventory holding costs applies a base-stock policy with base-
stock level S. If customers arrive to a positive inventory level they immediately
obtain a product and pay p. Otherwise, they choose between joining an FCFS
queue or buying the product elsewhere at the same price p. While making
decisions customers do not know queue length, though they do know if there
is a shortage. Customer delay-cost rates are random variables from a given
continuous distribution. When the product is out of stock it is offered under
improved terms to encourage customers to wait until the product becomes
available. The authors consider two compensation schemes, namely, uniform
compensation and priority auctions:

� Uniform compensation: During stockout periods the product is sold
for a reduced price α < p. A fraction of the customers, consisting of
those having lower waiting-cost rates, join the queue while the others
balk.

� Priority auctions: During stockout periods priorities are determined
through a highest-bid-first (HBF) auction. The firm’s decision variables
are the base-stock level S and the minimum allowed bid α.

� Comparison: Assuming linear delay costs, a priority auction yields
higher profits,6 uses lower S and α, and results in higher sales. Both
mechanisms yield higher profits, lower S, and lower customer costs rel-
ative to the optimal base-stock solution without them. Hence both firm
and customers profit from the institution of these mechanisms.

� Speculation: A customer with a low time cost that arrives during an
in-stock period might reduce expected costs by waiting until a shortage
occurs and buying at a reduced cost. To avoid this undesirable behavior
the authors offer restrictions on price reduction.7

6.2.5 Advertising

Araman and Fridgeirsdottir [62] (2011) examine a web publisher that
generates revenues by posting ads on its website and offers advertising plans
to advertisers. A plan is basically defined by the expected number N of view-
ers that should see the ad during a period of expected length T , with price
p charged per view. Advertisers and viewers arrive according to stochastic

6This is similar to [17].
7Similar restrictions are assumed in [79] excluding behavior where customers prefer a

loaded server thereby increasing chances of being rejected and compensated.
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processes with the arrival rate of advertisers a function of p and N . Ads are
placed on webpages and when a viewer uploads a page all the ads posted on
the page are delivered. The publisher’s decision variables are the number κ of
pages (sets of s ads each) and the price per view. Given that there are κ pages,
every κth viewer sees the same ad. This affects the time until the contract is
fulfilled and the ad is removed. When there is no vacant ad slot, new contracts
must wait and the publisher incurs a linear waiting cost. The authors derive
expected waiting-time equations and use them to compute the optimal plan.
They also derive heavy-traffic approximations.

Jhang-Li and Chiang [364] (2015) consider a firm profiting from ser-
vice fees while generating additional revenues from advertisements. There are
two customer classes, premium and basic. Class i has waiting cost rates θic and
heterogeneous service valuations expressed by total value functions θiV (λ).
The firm has the option of advertising and the price obtained p(a) per cus-
tomer depends on the advertising level a. However, advertising at level a also
reduces i-customers’ utility in proportion to θia. The firm decides on (i) ca-
pacity associated with a convex increasing cost function; (ii) subscription fee
per customer class subject to class IR and IC constraints; (iii) advertising
level; (iv) whether to prioritize premium customers; (v) whether to supply
advertisement-free service to premium customers.
The authors solve six variations of the model with a specific form of the

function p(a), namely, advertising to both classes, only to basic customers,
or not at all, and in each case with and without prioritization. Sensitivity
analysis raises some interesting observations. For example, a reduction in cus-
tomer disutility from service may increase or decrease optimal capacity and
subscription fees. The authors also set conditions for the negative optimal
subscription fees, in the form of rebates or non-monetary rewards, when gains
from advertising are high.

6.2.6 Heavy-traffic approximation of price and capacity

Maglaras and Zeevi [463] (2003) consider heavy-traffic approximations
to a Markovian system with large capacity C shared by the customers but
having an upper bound on capacity allocated to a customer at any time. The
demand function λ(p), where p is full price, is assumed to be elastic, meaning
a full-price increase results in a revenue reduction. The authors show that the
optimal regime given this assumption involves high resource utilization with
only minor degradation effects, as in the Halfin-Whitt QED regime, which
the authors extend by incorporating sharing, pricing, and rational customer
behavior. Heavy traffic is modeled by allowing the capacity C and potential
demand Λ to grow in proportion to each other.
Let p̄ be the price that matches demand to capacity. The authors consider

both the short-run pricing problem and the long-run joint capacity and pricing
decisions. In the short run, the revenue-maximizing price is p̄ plus a second-
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order correction term proportional to 1√
C
. In the long run the problem is

essentially decoupled, when C is a decision variable associated with a linear
cost. In the first step, the stochastic effects of the system are neglected, it
is assumed the system is fully utilized, and an optimal value of Ĉ is then
computed. Given this value, the optimal price is computed as in the short-run
problem.

Maglaras and Zeevi [464] (2005) examine an unobservable system with
two customer types. Type G (guaranteed) users receive one unit of processing
capacity and are admitted according to a control policy. Type BE (best effort)
users equally share the residual capacity, with an upper bound of one unit
of processing capacity per user, and are always admitted. Arrivals of both
classes are Poisson where the arrival rate of G-users depends on price whereas
the arrival rate of BE-users depends on the full price. The firm’s goal is to
determine revenue-maximizing class-dependent prices and the admission rule
for G-customers.
The main model assumes G-users generate a higher revenue rate per unit

capacity and a G-user is rejected only when service capacity is fully taken
up by other G-users. A fluid approximation of the model is solved by setting
prices so G-customers are never rejected and BE-customers have no delay.
This solution is the basis for an asymptotic approximation where a sequence
of systems are examined such that service capacity and demand grow by the
same scale parameter n. The resulting system operates in the Halfin-Whitt
regime. The utilization is of order 1 − γ/

√
n and the expected delay of BE-

customers is of order d/
√
n, where the constants γ and d depend on the

system’s parameters. Furthermore, the blocking probability of G-customers is
o(e−cn) for some constant c > 0.
The authors consider a variation in which the server reveals the amount

of capacity that BE-customers currently obtain. Under heavy-traffic assump-
tions, when service rates of both customer classes are equal, this revelation
results in higher revenues and smaller expected delays.

Kumar and Randhawa [422] (2010) consider a heavy-traffic model
where the arrival rate to an M/M/1 system depends on the full price and
market size. Their goal is to study the impact of the delay-cost structure on
the firm’s pricing and investment in a growing market. Specifically, the arrival
rate is λ = n ·Λ(p+h·E[W rq ]) where n is market size, Λ(·) is a demand curve,
p is price,Wq is queueing time, r ­ 1, and h > 0. The firm’s decision variables
are price p and capacity µ, which costs the firm κµ. Using the steady-state
distribution Pr(Wq > t) = ρe−(µ−λ)t, where ρ = λ/µ, the delay cost equals
hρ Γ(r+1)(µ−λ)r , where Γ is the gamma function.
The authors show that optimal solutions lead the system to a heavy-traffic

regime. The rate at which utilization approaches 100% when n increases de-
pends on the form of the delay cost. A system with traffic intensity ρn is in
a k-heavy traffic regime if nk(1 − ρn) → C ∈ (0,∞) as n → ∞. Thus, the
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Halfin-Whitt regime has k = 0.5. It is shown that when r ­ 1, i.e., delay
costs are convex, k = r

1+r ­
1
2 . Thus utilization approaches 100% at a rate

faster than the conventional O(
√
n). The same result is obtained for r < 1

(concave costs) if the service order is FCFS. However, under concave costs
the discipline that minimizes delay costs is LCFS and, in this case, the firm’s
optimal solution is to operate in ½-heavy traffic.
The authors also consider a variation where capacity is fixed and the only

decision variable is price, and another when arrival rate is fixed and the ob-
jective is to select a capacity level that maximizes social welfare.

Lee and Ward [430] (2014) derive an asymptotically optimal (static)
price and capacity solution in a system with price-sensitive customers. Given
price p, the demand rate is λ(p), and the server incurs linear capacity and
holding costs. The authors first solve a deterministic version with a unique
optimal solution (p∗, µ∗). They then consider a sequence of systems where
system n has demand nλ(p) and show that the optimal solutions (pn, µn)
satisfy pn → p∗ and µ

n

n → µ∗. Lastly, the authors deduce a refined policy
which is asymptotically optimal on diffusion scale.

6.2.7 Intertemporal pricing

See [452] for multi-period pricing and delay guarantees where customers
select a period according to a logit choice model.

Guo, Liu, and Wang [281] (2009) show that a unique subgame-perfect
equilibrium exists in the following two-period pricing game. Customer service
valuations are uniformly distributed over [0,1] and service values obtained in
the second period are discounted. In the second period the server sets a profit-
maximizing price. Customers anticipate this policy while deciding whether to
join the first-period queue and pay the announced first period price. Customer
behavior is characterized by two thresholds: those with high service valuations
join the first-period queue, those with intermediate values join the second-
period queue, and the rest balk. The authors show that revenue-maximizing
prices are larger than welfare-maximizing prices.
The authors also present numerical results for the server’s losses in a model

where the server behaves as if the customers are myopic, though they are
strategic.

Liu, Li, Xu, and Li [450] (2015) prove that an equilibrium exists in
the following multi-period model. There are n full-price minimizing users of an
M/M/m facility allocating demand among periods h = 1, . . . ,H. The queue
owner maximizes profits by setting period-dependent prices. User waiting cost
rates are heterogeneous and increase each period by a factor δ > 1. It is
assumed that the system is heavily loaded so the probability that an arriving
request has to wait in queue is approximately 1.
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6.2.8 Risk averse customers

See [678] on SO joining and profit maximizing pricing for risk averse cus-
tomers with reference-point sensitivity, and see [15] risk-averse are compen-
sated for their wait.

Başar and Srikant [81] (2002) consider an M/M/1 facility with µ =
n · c. There are n users and the utility of user i from throughput rate xi is
Ui(xi) = wi log(1 + xi). The server sets price p per unit of demand and the
users follow by choosing demand rates such that user i maximizes Ui(xi) −
pxi− 1/(nc−

∑
xj). 8 The authors provide explicit solutions for special cases

of this model, particularly the cases of c = 1 and n → ∞. They show that
when n increases, the server’s revenue per unit of capacity increases.

Shen and Başar [569] (2007) extend [81] for the case c = 1, allowing
for nonlinear pricing ri(xi). With symmetric information the monopoly can
fully extract customer surplus and profit maximization coincides with welfare
maximization. The authors derive an approximation to the optimal IC solu-
tion when there is a large number of users whose type cannot be identified
by the server. The loss of profit due to incomplete information is numerically
evaluated.

Hayel, Ouarraou, and Tuffin [331] (2007) consider measurement-
based pricing in a multiclass M/M/1 FCFS queue where the arrival rates
(throughputs) and average delay (response times) cannot be observed by the
queue manager and need to be statistically estimated. Customers are risk
averse and their cost consists of three components: Price, which depends on
the measured throughput and delay, delay cost, which linearly depends on
the actual experienced delay, and cost of aversion, which is proportional to
the standard deviation of the price computation due to measurements.9 The
aggregate value of class j customers is an increasing concave function V (λj)
of their throughput λj . Equilibrium arrival rates are set so the cost applied
to each class is equal to its marginal value.
Time is separated into periods of length T and measurements are per-

formed in each period. The throughputs λj are estimated by sampling a frac-
tile ε of the population. The delay (common to all classes) is measured by
sending a Poisson(γ) stream of probes into the system. Probes are special
jobs, served like standard jobs, but designed to measure response times. The
probes do not contribute to the system’s welfare but add to its congestion.
The parameters ε and γ are decision variables which, like the prices pj , depend
on the measured throughputs and delay.
The authors design an algorithm for computing a pricing scheme and sam-

pling parameters maximizing the total expected net value minus the cost of
the measurements.

8Note that the expected waiting time (nc−
∑
xj)−1 is not multiplied by xi.

9The latter cost is not considered part of the aggregate social-welfare function.
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6.2.9 Refurbished products

See [668] for a supply chain that re-manufactures defective items at no
charge.

Vorasayan and Ryan [636] (2006) suggest a model for profit optimiza-
tion when price-sensitive customers choose between a new and a refurbished
product. Ghosh, Ryan, Wang, and Weerasinghe [250] (2010) derive an
asymptotic optimal strategy for a similar model. Both of these models assume
an M/M/1 production facility where a given fraction of purchased product is
returned by customers, refurbished, and held in inventory. The price for a new
product is exogenous and the firm sets the sale price for refurbished items.10

Customer valuations are heterogeneous and a customer ready to pay p for
a new product is also ready to pay δp for a refurbished item, where δ < 1.
Customers face three options: buy a new product, buy a refurbished product,
or balk. The demand for refurbished products is lost if none is available. The
firm incurs costs for lost sales of refurbished products and for backorders of
new products.

6.2.10 Capacity auctions

Yolken and Bambos [685] (2011) investigate selling a fixed amount
of processing capacity to N M/M/1 customers with heterogeneous rates of
demand, job sizes, and waiting costs. Capacity is allocated through an auction
such that user i submits a bid wi and obtains a fraction θi = wi/

∑
wj of the

capacity. Customers minimize the sum of waiting and bidding costs. Results
include:

� The game has a unique equilibrium.

� Total revenue
∑
wi increases with customer demand and waiting costs.

� A closed-form expression for the symmetric equilibrium bid when cus-
tomers are homogeneous.

� An example with one big customer and N − 1 small customers (similar
to [238]) where the PoA asymptotically behaves like

√
N .

� When customers have homogeneous delay sensitivities, the PoA can be
bounded by a function of the smallest, largest, and total demand rate
of the N users.

10In [636], the proportion of returned products to be refurbished is also a decision variable.
The authors show that with sufficient capacity to satisfy demand, the optimal proportion
is either zero or close to 1.
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6.2.11 Optimal buffer and batch size

Setting an optimal buffer size is equivalent to rejecting customers when
the queue length exceeds a threshold. It is also a restricted version of dy-
namic pricing which sets a very high price when this queue length is reached.
The marginal advantage of increasing the buffer size in Naor’s model is also
investigated in [311].
See [475] §4.3 for a discussion on optimal buffer size in an M/M/1/s queue

with price-sensitive customers and linear holding costs incurred by the server.

Masarani and Gokturk [476] (1987) consider an M/M/1/N queue
where the server incurs a cost C(N) and the buffer sizeN is a decision variable.
Demand is assumed to have constant elasticity λ(p) = µpε where p is the price
and 0 < ε < 1. The authors prove that for any given N , if ε is less (more) than
0.5, the profit-maximizing prices lead to ρ > 1 (ρ < 1). In the special case of
linear costs C(N) = cN and ε = 0.5, the optimal buffer size is N =

√
µ/c−1.

The authors also consider competition among identical firms assuming
C(N) = cN , entry to the market is free, the service price is exogenously
determined, and customer joining probability is the same for all servers re-
gardless of their waiting room size. This bounded rationality assumption leads
to an equilibrium where all firms choose a unit-size buffer. The authors com-
pute the equilibrium number of firms and show that when ε = 0.5 and at the
monopolistic price, competition increases the total number of buffer slots.

Wang and Choi [652] (2013) consider a multiclass G/G/1 model. Jobs
of type i are accumulated until they number Qi and are then placed in a
queue for bulk service. The authors approximate expected waiting times Wi
as functions of arrival and service parameters and batch sizes Qi. For class-
dependent prices pi, arrival rates are determined through usual equilibrium
conditions of the form Ri− pi−CiWi = 0. The firm’s problem is to set prices
and batch sizes that maximize a long-term objective function. The authors
numerically demonstrate that optimal batch sizes can be highly sensitive to
the objective function. The authors present a single-class variation of the
model in [653].

6.3 Expert systems

In expert service markets, customers cannot fully assess the type and
amount of service they need.11 Experts performing both the diagnosis and

11Some authors use the term discretionary in describing systems where duration of ser-
vice is determined by the server, as distinguished from non-discretionary service of which
duration is determined by objective standards.
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the service may supply too much or too little service to optimize their own
utility. One way to avoid the problem is by employing independent agents
for handling the diagnosis. Another would be by setting an adequate price
structure that would eliminate or diminish the motivation for fraud.
Expert systems inherently assume asymmetric information, but in contrast

to common models where customers have private information, it is the expert
who has an informational advantage over the customer.
Another distinguishing property of expert systems is that the service du-

ration can be the basis for the price, unlike in other models with service rate
decisions.
We distinguish between models where a longer service benefits the cus-

tomer from those in which it doesn’t. See §9.2.2 for value-creation models in
which longer service benefits the server.

6.3.1 Duration-independent service value

This section assumes the service value to be independent of the service
duration. Customers obviously prefer shorter service which reduces price and
waiting costs. A notorious example is the taxi market, having some distin-
guishing features: (i) customers are heterogeneous with respect to the amount
of service they need; (ii) it is not possible to undertreat a customer because
the desired service is the shortest possible, but it is possible to refuse service;12

(iii) it is unlikely for a customer to encounter the same driver and therefore
cheating involves no loss of future business; (iv) the charging scheme is exoge-
nous and is often a two-part tariff with the variable part being proportional
to the service duration.

Glazer and Hassin [257] (1983) considered a non-queueing model of
the taxi market with a two-part tariff F + pt, where F is a fixed price, t is the
duration of the ride, and p is the charge per unit time of service. The authors
recommend setting F = pW , where W is the expected customer interarrival
time, i.e., the time it takes the driver to find a new customer. Otherwise, if
F < pW , a driver would find it profitable to serve fewer customers and cheat
them by taking long routes. If F > pW , the driver would find it profitable to
refuse long rides.
Price structures that eliminate service refusal by taxi drivers who maximize

discounted profit are offered by Janssen and Parakhonyak [360] (2011).
We note that when taxis line up and wait for customers drivers may decline

short rides knowing they would quickly return to the back of the line. In such
a case the customer should be allowed to go down the line until a driver
agrees to serve him. Drivers along the line will have a decreasing threshold
distance they would agree to serve and if no driver accepts a service request

12A similar assumption is made in other models described in this section.
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the customer must balk and find other means of transportation. This setting
is somewhat similar to models of kidney allocation (see §2.3).

Debo, Toktay, and Wassenhove [186] (2008) analyze profit-
maximizing two-part tariffs in an expert system under the following assump-
tions:

� The system is an almost-unobservable M/M/1 queue. Customers cannot
observe queue length upon arrival, but know whether the server is idle
(state 0) or busy (state 1). Customer strategy is characterized by a pair
of joining probabilities, one for each state.

� Customers are homogeneous, having a common service value and
waiting-cost rate.

� The server admits all customers who choose to be served and chooses
the amount of service to supply depending on the state (0 or 1) at the
time of the customer’s arrival. Undertreatment is not possible.

� There are two service procedures with different service rates. The strat-
egy of the server is to choose the service rate for each of the two system
states. Choosing the lower rate is considered a service inducement.

� The price consists of a fixed fee charged to each customer obtaining
service plus a variable rate per unit of service time.

� In equilibrium, both the customers and the server are aware of the
other’s strategy.

The authors focus on the conditions that lead to service inducement. The
waiting-cost rate should be small and, most interestingly, the system load
should be between upper and lower thresholds. When these conditions hold,
service inducement allows the expert to extract all surplus from customers
without introducing large inefficiencies. That is, the surplus customers would
enjoy with a fixed service rate in Naor’s model is now extracted by the expert
via a variable rate and slow service.

6.3.2 Duration-dependent service value

This section deals with customer intensive services, where quality of ser-
vice increases as the time spent by the service provider serving a particular
customer increases. A customer’s decision to join the queue depends on qual-
ity of service, expected delay, and price. The server thus faces quality-speed
tradeoffs. Longer service increases service quality but may cause longer de-
lays. Models of co-production, where customers choose service rates, are also
related to this subject, see §4.7.
Note that the research reported here mostly assumes service value to be

proportional to service rate. In contrast, [188] assumes instead that the service
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value is proportional to service duration and [626] assumes dependence on the
square root of the service duration. Two papers [654, 655] use a Brownian
motion modeling of the diagnostic accuracy.
See [175, 188, 442] for other models where customers benefit from long

service durations.

Wang, Debo, Scheller-Wolf, and Smith [654] (2010) assume two
customer types of known proportions in the population, with customers not
knowing their own type. No cost is incurred when a customer obtains the
correct type of service/treatment, but there are type-dependent costs incurred
by both customer and service facility when the wrong treatment is given.
It is assumed that the customer’s decision is “difficult” in the sense that
the parameter values are such that, without any additional information, the
customer is indifferent between the two treatment options.
Before seeking treatment each customer decides whether to go through a

diagnostic process by weighing the value of information to be gained against
the inconvenience of waiting to be diagnosed. Customer type is defined as
+1 with prior probability π, or −1 with the complementary probability. The
diagnostic process is modeled as a Brownian motion with drift r representing
the skill of the diagnosing agent. Belief updating starts from π at time zero
and evolves until it hits one of two boundaries y ¬ 0 ¬ x set by the service
facility. Once the process hits the boundary customer type is diagnosed and
the customer is provided the corresponding service. A nice feature of this
model is that the choice of the boundaries determines both the accuracy (error
probabilities) and the distribution of the process duration.
The customer’s decision variable is the probability of requesting the diag-

nostic procedure. The manager’s decision variables are the number of diag-
nosing servers and the boundaries x, y. The equilibrium solution is computed
using a heavy-traffic approximation for the expected waiting time. The au-
thors reach many interesting conclusions including the following:

� Increasing asymmetry in error costs may affect the error rates either in
the same direction or in opposite directions.

� For the symmetric case where π = 0.5 and the costs for erroneous diag-
nosis are type-independent (and therefore x = −y):

– When the diagnostic skill level increases, callers experience longer
waits on average.

– Adding staff (servers) may increase congestion or error, but not
both.

Anand, Paç and Veeraraghavan [54] (2011) consider an M/M/1 sys-
tem with potential demand rate Λ and an initial service rate µb. The server
costlessly sets a service rate 0 < µ ¬ µb, and the resulting value of service is
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linearly decreasing with service rate (faster service comes with lower quality):
V (µ) = Vb + α(µb − µ)+. The intensity parameter α ­ 0 determines the sen-
sitivity of service value to service speed. The server’s decision variables are
price and service rate. As in the E&H model, the equilibrium arrival rate is
Λ if this leaves customers with nonnegative expected utility, or else it is the
value that sets the expected utility to 0 so potential customers are indifferent
between joining or balking.

� The interesting characterization of the solution is that the service cannot
be too slow because, in this case, the expected delay is too high. Also,
service cannot be too fast as this results in low quality. Both extremes
force the server to lower price causing a profit loss. Therefore, there is
an intermediate profit-maximizing service rate.

� As can be expected, when the intensity parameter α increases the op-
timal rate decreases which results in better service, but with longer
delays. The optimal price and associated equilibrium demand are both
unimodal functions of α, first decreasing and then increasing.

� The paper also considers capacity competition when the price is re-
stricted to be uniform, but quality can vary among servers. It turns
out that when the number of competing servers increases, service value
and also price rise while the expected delay remains constant. This is in
contrast to traditional models of service rate competition.

Ni, Xu, and Dong [502] (2013) extend [54] by assuming two classes of
customers differing in the intensity parameter α. The server’s decision vari-
ables are the service rate and class-independent prices. The authors demon-
strate that revenue is not, in general, a unimodal function of the service rate.
They solve the firm’s problem by computing maximal revenues in four re-
gions and then choosing the largest one. They also demonstrate that price-
discrimination could increase profits.

Dai, Sycara, and Lewis [181] (2011) assume the value of service to
be linearly decreasing in µ. Customers incur linear waiting costs and have a
reservation utility r. Potential demand is large so for a given service rate the
arrival rate equates the expected net utility of an arriving customer to r. The
authors derive the service rate that maximizes the net utility of the arriving
customers.13

Wang, Debo, Scheller-Wolf, and Smith [655] (2012) consider a vari-
ation of their model [654]. They assume the staffing level is fixed and is not a
decision variable. A fixed inconvenience cost is incurred by any customer un-
dergoing diagnostic service, independent of waiting time. The authors consider

13This is different from social optimization which considers aggregate added value relative
to the reservation value r.
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mainly the symmetric case (numerically demonstrating that the major results
hold in the asymmetric case). A mismatch cost, independent of customer type,
of an incorrect diagnosis is split in a given proportion between customer and
server (acting as an insurer). For a given boundary value x, customer equilib-
rium is characterized by the joining probability pe(x). Joining the diagnostic
system may save the mismatch cost for both server and customer, but the
customer also considers the inconvenience and waiting costs which affect the
equilibrium joining probability. The server sets the boundary value x which
minimizes its share of the mismatch costs.
The authors show that the equilibrium joining rate is non-monotone in

x because of the opposing effects of increasing accuracy and congestion. The
main result of the paper is that the optimal solution leads to an equilibrium
where the server captures the whole potential demand only when its skill, as
reflected by r, is sufficiently high, or the fixed inconvenience cost is sufficiently
low, or the customer’s share in the mismatch cost is sufficiently high. In this
case, the server will choose the largest x such that pe(x) = 1.

Dai, Akan, and Tayur [180] (2012) consider a healthcare system where
patient costs are partially covered by insurance. The system is modeled as an
M/M/1 queue.
The value (quality) of service Q(µ) is assumed to decrease linearly with

the service rate. For constants 0 ¬ β ¬ 1 and π, if price p ­ π, then the
part covered by the customer is a convex combination βp + (1 − β)π ¬ p.
Customers also incur linear waiting costs. The equilibrium arrival rate λ(µ, p)
is determined by equating customer net utility to 0, i.e., Q(µ) = cW + βp +
(1−β)π = c

µ−λ(µ,p) +βp+(1−β)π where cW denotes expected waiting cost.
The price p∗ and service rate µ∗ that maximize p · λ(µ, p) can be explicitly
computed. The authors prove that p∗ decreases with both π and β while µ∗

increases in β and decreases with π.
The authors show that the profit-maximizing solution provides longer (bet-

ter) service but serves fewer customers than socially desired. Interestingly, the
expected waiting time is the same under both solutions. The authors show
that setting a reimbursement ceiling or penalizing the server for slow service
is not sufficient to coordinate the system. Also discussed are heterogeneity
in customers insurance parameters and time values, allocation of time be-
tween diagnosis and analysis, misdiagnosis costs incurred by the server, and
uncertainty about the skill level of the provider.

Kostami and Rajagopalan [413] (2014) present a multi-period varia-
tion of [54]. Longer service increases quality, and this increase is reflected in the
potential demand rate which at period j+1 satisfies Λj+1 = Λj− δλj(µj− µ̂).
In this relation λj = Λj − αpj (α > 0) is the demand rate,14 µj is the service
rate, and pj is the price, at period j, and µ̂ is a benchmark service rate. It

14Compare this assumption with equation (4) in [54] where the demand relation to price
is endogenously derived.
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is assumed the quality sensitivity parameter δ is small and that λj is not too
small. Customers are quality and price sensitive but not delay sensitive as all
delay costs are incurred by the firm. The authors show that when the firm can
dynamically control price but can only set the service rate once, it is optimal
to keep demand constant over time. In general, the firm benefits from a high
benchmark speed.

Tong and Rajagopalan [626] (2014) propose a model of profit maxi-
mization in which both service and demand rates are endogenous. Customers
are indexed by type α, a priori unknown to both customers and firm, which
is a random variable with pdf f . Arriving customers go through a diagnostic
phase which reveals their type. The value of service of total duration τ (in-

cluding the diagnostic phase time τ0) to an α-customer is v(α, τ) =
√
τ−τ0
α .

Given α, the customer is provided with service of duration τ(α) for a fee p(α),
independent of the system state.
Service duration τ(α) is deterministic for a given customer but becomes

a random variable given the customers’ heterogeneity. Therefore, this is
an M/G/1 queue.15 In equilibrium, the expected net utility of customers
is zero. The firm sets the functions τ(α) and p(α) to maximize λE(p) =∫
λp(α)f(α)dα.
The profit-maximizing solution determines the expected price E(p), but

the corresponding price for each customer type can be implemented in several
ways. At this stage a second condition is added, namely that each customer
gets zero utility ex-post, and with this condition the solution is uniquely de-
termined.
The authors compare the optimal solution with two second-best single-

parameter solutions: fixed price and service value guarantee (through type-
dependent service duration); and fixed price per unit time of service, let-
ting customers choose their service duration after they learn their type. Both
schemes are reported to do well relative to the optimal solution.

Paç and Veeraraghavan [511] (2015) focus on the signals an expert
provides to customers and the effect of congestion on the expert’s cheating and
system efficiency. They show how cheating can emerge even when customers
can verify whether their request was treated (but not whether they obtained
excessive service). Customers’ problems are either major or minor with known
probabilities. The resolution of a minor problem provides the customer value
vL and requires expected service time τL, whereas treating a major problem
gives value vH > vL and requires expected time τH > τL. Waiting cost rate
c is common to all customers. The server first announces the diagnosis of the
customer type L or H, and the customer can then either join or costlessly
balk based on the customer’s updated belief concerning his type. The expert’s

15Expected waiting time is approximated by assuming that the service coefficient of vari-
ation is independent of the firm’s decisions.
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decision variables are service fees, pL and pH , and the state-independent di-
agnostic strategy.
Quantitative results are derived assuming diminishing marginal returns

vH/τH ¬ vL/τL, but the qualitative conclusions also hold without this as-
sumption. The main results include:

� Committing to an honest diagnosis is costly for the expert, especially in
small markets.

� As vH increases, over provision is more likely and more customers are
deterred from joining. To make his actions credible, an honest expert
charges high prices for both treatment types. Thus, low prices may serve
as a warning for excessive service.

� As potential demand decreases, signaling an honest diagnosis becomes
more costly since the excess capacity makes overtreatment easier. As a
result, overtreatment is unavoidable in small markets.

� Social welfare optimization may require either specializing and serving
one class of customers or prioritizing a class. Whether the server special-
izes in or prioritizes minor or major problems depends on the relation
between service values and service times.

6.3.3 Optimal screening of strategic applicants

Wang and Zhuang [656] (2011) consider an M/M/1 screening pro-
cess where strategic individuals apply for entry. An approver can immediately
approve an application or decide to screen the applicant. Screening numer-
ous applicants reduces the chance of admitting a bad applicant but increases
waiting times, which could reduce the willingness of good applicants to apply.
Applicants are either good or bad. Their type is private information but

they also posses an observable attribute t ∈ {1, 2} and the approver knows
the conditional probabilities relating applicant type and observable attribute.
The approver gains R when admitting a good applicant and loses C when
admitting a bad applicant. An applicant of type θ obtains reward rθ when
admitted and incurs waiting cost rate cθ when screened. A bad applicant will
incur a penalty if screened.
The approver maximizes the reward from admitted good applicants net

of the penalty from admitted bad applicants. The approver’s strategy is the
probability of screening a t-applicant while the applicants’ strategies are the
probabilities that a (θ, t)-potential applicant decides to apply, θ ∈ {good,bad}
and t = 1, 2.
The authors compute the equilibrium strategies when discriminatory

screening based on the customer’s attribute is and is not allowed. They then
investigate conditions on the model’s parameters such that the benefit from
discriminating is sufficiently large as to justify the discrimination.



160 Rational Queueing

6.4 Subscriptions and nonlinear pricing

Firms offer long-term service contracts (subscriptions) which guarantee
subscribers a certain price and delay. The common price structure is a two-
part tariff consisting of a fixed subscription fee and variable usage cost. At the
same time, the firm can also exploit capacity by serving additional demand at
a comparatively high price and without a delay guarantee. It is well known in
the general economics literature that such differentiation may increase both
profits and social welfare.16 This section describes the implementation of sim-
ilar principles to queueing systems.
See [569] for nonlinear pricing when customers are risk averse.

Cheng and Koehler [161] (2003) consider a Markovian model with
a finite population of customers. The distribution of the time from end of
service to the customer’s next demand is exp(λ). Customers face two options
for obtaining service during a period T and both have the same distribution.
One is self-service, which costs a fixed exogenous ownership cost OC; the other
is subscribing to an M/M/s firm that charges a two-part tariff, consisting of a
fixed subscription fee F and a fee p per service and offers compensation of y for
each time unit of queueing. Customers have heterogeneous service valuations.
The average time between consecutive services for a customer is λ−1+µ−1

in the case of self-service and λ−1 + µ−1 +Wq at the firm, where Wq is the
expected queueing time. Therefore, a customer who values service at R will
subscribe if T

λ−1+µ−1+Wq
(R− p+ yWq) − F ­ T

λ−1+µ−1R − OC. Given the
distribution of R, this relation determines the number of subscribers M .
The authors prove that under an “economies-of-scale” assumption that

restricts F and p from being too large there exists a unique equilibrium so-
lution.17 Moreover, they prove that the firm’s profit can be written as a uni-
modal function V (M) which is independent of the wayM is achieved through
the decision variables F, p and y. Therefore, M can be viewed as the firm’s
decision variable and there is a wide range of optimal pricing and reimburse-
ment policies. Numerical examples are used to obtain insights into both the
short-run and long-run solutions.

Caldentey and Wein [123] (2006) consider a firm offering long-term
contracts with a fixed price r per use. Customers arrive at rate Λ and have
heterogeneous reservation prices. The market splits into two customer types:
A fraction of the customers sign long-term contracts if their reservation price

16See, for example, A. Glazer and R. Hassin, “On the economics of subscriptions,” Euro-
pean Economic Review 19 (1982), 343-356.
17An FTC feature arises from the firm’s compensation policy, namely, the longer the wait
the higher the compensation. Therefore, the uniqueness of an equilibrium does not follow
directly from the ATC argument.
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is larger than r; the remainder are speculators who wait to see the spot price
R(t) upon arrival. Speculating customers consist of a mixture of customers
operating exclusively in the spot market and of others whose reservation price
happens to be below the price r. Using the above information it is possible to
compute E[νS ], the mean reservation price for a spot-market customer. It is
assumed that spot market prices behave like a variant of geometric Brownian
motion and their average is equal to E[νS ] plus a normal random variable
with mean 0.
The firm sets the contract price and dynamically controls production and

admission of speculative demand. The firm incurs linear costs per unit of in-
ventory or backorder and wishes to maximize an exponential utility function.
The proposed solution consists of a base-stock production policy and an ad-
mission policy for speculative demand that rejects an order if the inventory
level is below a threshold that is linearly related to the spot price.

Masuda and Whang [477] (2006) analyze a model with two customer
types, i = 1, 2, and a nonlinear pricing scheme called fixed-up-to (FUT). With
this scheme, the server offers options (πi, λi, pi), one intended for each cus-
tomer type. A customer selecting the ith option and using the service at rate
λ obtains benefit Vi(λ) and is charged Pi(λ) = πi+ pi(λ− λi)+, where πi is a
fixed cost for any usage rate below λi, and pi is a penalty per unit of over-limit
use.
Let fi be the population size of i-customers. If each i-customer selects

demand rate λoi then the total demand rate is Λ =
∑
fiλ
o
i , and the expected

waiting time in the system is an increasing convex function, W (Λ).
The benefit to an i-customer is a concave function Vi(λ) and it is assumed

that the marginal values satisfy V ′i+1(x) > V ′i (x) for every x ­ 0 so these
functions intersect only at 0 (this is a crucial assumption). The customer’s net
utility is Vi(λ) − Pi(λ) − cλW (Λ), where the waiting-cost rate c is common
to all customer types. Customer type is private information not known to the
service provider.
The main result is that there exists an IC and IR FUT menu that achieves

maximum profit among all nonlinear pricing schemes. Interestingly, the result-
ing equilibrium rates do not exceed the allowances λi, and the specific values
of over-limit penalties pi do not matter as long as they are large enough to
guarantee this property.

Randhawa and Kumar [541] (2008) compare charging customers with
heterogeneous service valuations by means of a subscription or on a per-use
basis. Demand arriving when the server is busy is lost, subscribers pay a fee p
per unit time, service is exp(µ), and the time from the end of service or from
a failed attempt to the subscriber’s next demand is exp(λ). A demand request
is denied (a failed attempt) with probability γ depending on the number N of
subscribers and the capacity k of the facility. Only the potential subscribers
with service valuations exceeding the expected fee to be paid for the time
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interval between successful attempts actually subscribe. This yields a relation
between γ and N(p, γ) leading to an equilibrium probability of denial. The
decision variables of the firm are capacity k, and fee p. Given these values,
an equilibrium N and γ can be computed. However, the computations are
difficult and the authors resort to asymptotic analysis in which the number of
potential subscribers n grows without bound.
The authors compare the solution with an alternative model in which cus-

tomers pay per use rather than subscribe. In both cases customers have a
desired level of use and they take into consideration the probability of failed
attempts when choosing an attempt rate so that the rate of successful at-
tempts conforms with their desired level. The authors prove that O(n) scaled
profits in the two models are equal. In some interesting cases it is proved, and
demonstrated numerically in others, that scaled O(

√
n) profit with subscrip-

tions is higher. In contrast, neither solution dominates the other with respect
to quality of service as reflected by the denial probability, consumer surplus,
or social welfare. A final result is that a firm may increase profits by offering
both subscription and pay-per-use.

Hall, Kopalle, and Pyke [298] (2009) consider a Markovian FCFS
queue with a single server committed to supplying service to core customers
for a fixed price and within a given expected waiting time W0. The arrival
rate of these customers is fixed. The server can utilize excess capacity and
admit occasional fill-in customers as long as all commitments are kept. Fill-
in customers are price sensitive but not delay sensitive and their demand is
λf (pf ), where pf is the charged price.
The authors compare three options: (i) a constant price pf independent of

the state of the queue, (ii) a constant price up to a threshold while blocking
fill-in customers above the threshold (both price and threshold are decision
variables), (iii) and state-dependent dynamic pricing. Clearly, option (iii) is
more flexible than (ii) which is more flexible than (i), and hence profits as-
sociated with the optimal choice in each option should increase from (i) to
(iii). The authors conclude from a numerical study that the main gain rela-
tive to option (i) (almost 80%) comes from implementing option (ii), and the
additional gain from dynamic pricing is much smaller (about 4%).18

Cachon and Feldman [117] (2011) consider a service provider in a
market with a finite number of homogenous customers. Each customer needs
service on multiple occasions, referred to as service opportunities, which occur
at rate τ .19 The value of a service opportunity is a uniform random variable.
When a service opportunity occurs, a customer decides whether to submit a

18Note the similarity of these results to those in [311] where customers are full-price
sensitive and the queue is unobservable but that customers know if its length exceeds a
cutoff value.
19It is assumed that average sojourn time is much smaller than the average time between
service opportunities and therefore arrival rate to the system is almost independent of queue
length.
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service request to the server based on three factors: service value, expected de-
lay, and price. It is observed that a two-part tariff consisting of both a per-use
fee and a subscription price can maximize the service provider’s profits. The
per-use price achieves the SO congestion and the subscription fee extracts all
customer welfare. The authors look, however, for a simpler pricing scheme and
compare profits that could be obtained by using one of these price structures
alone.

� The authors consider both the short-term model with a fixed service ca-
pacity where the firm only chooses the pricing policy, and the long-term
version where the firm also sets capacity. In both versions, subscription
pricing generates more revenue than a per-use fee unless the system is
highly congested (and capacity is sufficiently expensive in the long-run
model).

� The loss of revenue relative to the optimal two-part tariff solution is
small when congestion is low or high and is more significant in interme-
diate levels.

� If customers are heterogeneous with usage rates τ − δ or τ + δ and know
their type, subscription pricing is preferred if capacity is fixed, utilization
is high, and δ is sufficiently large.

Afèche, Baron, Milner, and Roet-Green [16] (2015) consider an
M/M/1 monopoly facing two customer types, i = 1, 2. The market consists
of Ni i-customers, receiving value ri per service and each generating demand
at rate γi � µ. The waiting cost for both types is c per time unit. The firm
designs a menu of lead times and two-part tariffs. The two-part tariff contract
for each customer type consists of a subscription fee Fi and price per use pi.
The firm also controls the number of class i customers it serves.
The authors show that under asymmetric information, although all cus-

tomers have the same delay sensitivity, the optimal solution prioritizes cus-
tomers with higher demand rates if they have lower marginal valuations per
use. Moreover, the added profit relative to the best FCFS contracts may be
highly significant.

6.4.1 Hyperbolic discounting

Hyperbolic discounting explains the observed behavior of individuals pre-
ferring an immediate smaller reward to a larger one in the near future, but
having the opposite preference when the choice is between rewards given in
the farther future. These preferences are represented by the hyperbolic dis-
count function (1 + αt)−γ/α which corresponds to a discount rate γ/(1 + αt)
that decreases with time t.20 Thus, customer time preferences are not consis-
tent and the choice between two rewards in different future times depends not

20Common discounting with time consistent preferences is obtained when α → 0. The
undiscounted model is obtained when also γ → 0.
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only on when these options will be realized but also on the time in which the
decision is made.

Plambeck and Wang [529] (2013) consider a queue where M homoge-
neous customers generate independent Poisson streams of demand for a single
exp(µ) server. The server offers a contract containing a subscription fee at a
constant rate s ­ 0 and a fixed usage fee u. Completion of service W units of
time after arrival generates a rate r/L of benefit during the interval [W,W+L]
for some L ­ 0. Applying hyperbolic discounting, the present value of service
is

E

[∫ W+L
W

(r/L)(1 + αt)−γ/αdt

]
− u− E

[∫ W
0

c(1 + αt)−γ/αdt

]
,

where c is the waiting-cost rate. The expected discounted value for a customer
is obtained by summing the present value of all future services and subtracting
the subscription cost

∫∞
0 s(1 + αt)−γ/αdt.

The authors consider an asymptotic model where µ→∞ while M/µ and
c/µ remain constant. In this asymptotic regime, the service value has the
form βr − P̄ where P̄ = u + cE[W ] is the full price and the condition for
accepting the subscribing offer has the form λ̂(ηr − P̄ ) ­ s, where λ̂ is the
rate at which the customer believes he will opt for service.21 The parameter
β (β > η) is interpreted as the customer’s “self-control” and the customer’s
time preferences are consistent when β = η.
Some of the main results are:

� The SO usage fee can be positive (customers pay) or negative (the
manager pays the customers). The explanation for this is that hyperbolic
discounting discourages customers from seeking immediate service, and
social welfare can be improved by encouraging more arrivals.

� Under a break-even budget constraint, the manager maximizes social
welfare by charging for subscriptions in addition to the negative usage
fee. Revenues from subscriptions will be used to cover the cost of paying
customers to go for service.

� When customers are heterogeneous with respect to discounting param-
eters, priority scheduling can be used to dramatically increase system
performance.

� The authors also investigate the impact of naivety when customers over-
estimate β, and therefore also overestimate their frequency of use. They
show that in this case, under revenue-maximizing pricing, revenue is
higher and utilization is lower.

21Customers may realize they will not always go for service when needs arise in the
future and the anticipated frequency of getting service determines their willingness to pay
for subscriptions.
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Plambeck and Wang [530] (2012) ask whether a queue manager would
choose to reveal queue length when customers apply hyperbolic discounting.
They show that when the manager sets price and capacity to maximize profits,
and β is small, revealing queue length decreases social welfare but increases
profits. Therefore, it may be desirable to force the server to hide the length
of the queue. This contrasts the case without hyperbolic discounting (Hassin
(1986), see [1] §3.2).

6.5 Providing substitute services

The main goal of the research described in this section is to investigate the
advantages of market segmentation by supplying options with differing delay
or quality, and price. Some of these models are similar to material surveyed
in Chapter 8. The main difference being that the focus here is on a monop-
olist operating a multiserver system to segment the market. See [517] for a
comparison of dedicated vs. pooling servers when customers reside in a linear
city, and [667] for a supply chain offering substitutable services.

6.5.1 Differentiation by price and delay

Boyaci and Ray [104] (2003) compute profit-maximizing prices and
capacities for a monopoly that differentiates the market by offering two service
classes. Each class is served by a dedicated M/M/1 server. Demand at server
i linearly depends on price pi and delay Li, and on the substitution effects
resulting from the price and delay of the alternative server j:

λi = a− βppi + θp(pj − pi)− βLLi + θL(Lj − Li).

The capacity cost is assumed to be linear, the delay L2 of the regular class
is fixed according to market standards, the delay L1 of the express class is
constrained to being smaller than L2. The authors investigate the solution’s
sensitivity with respect to capacity costs and observe the importance of the
ratio βp/θpβL/θL

in characterizing the solution.

Kim [402] (2007) investigates a queueing system with two customer
classes and a movable-boundary regime: Loss-sensitive c-customers are served
in an M/M/Nc/Nc subsystem and delay-sensitive p-customers are served in an
M/M/Np subsystem. When all Np p-servers are busy, free c-servers can serve
p-customers, but such services are preempted when the servers are needed
by new c-customer arrivals. Customers have heterogeneous service valuations
and linear costs associated with loss probability (for c-customers) and delay
(for p-customers). The firm’s goal is to set profit-maximizing prices Pc and
Pp. The author illustrates the problem by solving an example.
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Printezis, Burnetas and Mohan [537] (2009) consider a service
provider operating two identical M/M/1 queues. There are two customer
classes with finite potential demand rates and waiting-cost rates c1 > c2.
Customer type is private information but all customers share the same ser-
vice value and service rate. The service provider sets prices p1 ­ p2 for servers
1 and 2, and customers react by joining a queue or balking. The solution of
this model is simplified by observing the following property: The equilibrium
effective joining rate of the more time sensitive class 1 can be positive in equi-
librium only if class 2 fully joins. The authors give an explicit expression for
a threshold M of the service rate on which the solution depends:

� µ ¬M . In this case only 2-customers join.

� µ > M . In this case class 2 is fully captured with positive net utility,
while class 1 customers have zero net utility.22

Jayaswal, Jewkes, and Ray [362] (2011) extend [104] by considering
class-dependent prices βip and delay sensitivities β

i
L, such that β

1
p < β2p and

β1L > β2L. The decision variables are price and service rate.
The authors also solve the shared capacity variation of the model where

all customers are served by the same server with preemptive priority given to
express customers (class 1). Notable conclusions include:

� When capacity is expensive, express customers obtain faster and more
expensive service under the sharing option while regular customers ob-
tain slower and less expensive service, as compared to the dedicated
servers option.

� The introduction of substitutability increases the cost of service for the
regular class and decreases it for the express class, i.e., it results in a
more homogeneous pricing scheme.

� When capacity becomes more expensive, a dedicated firm reduces both
price and delay differentiation while a shared capacity firm reduces its
delay differentiation (and may increase or decrease its price differentia-
tion).

� Teimoury, Modarres, Monfared, and Fathi [619] (2011) consider
a similar model and numerically demonstrate that dedicated queues and
substitution effects can lead to less price and delay differentiation.

Zhao, Stecke, and Prasad [707] (2012) consider a Markovian system
with two customer types, l and p (lead-time and price sensitive), which cannot
be distinguished by the server. Arrival rates are λl and λp, service valuations
are vl and vp, and waiting-cost rates are βl > βp. The utility of an i-customer

22Note that since customers have positive surplus the profit and social-welfare objectives
do not coincide and thus the results of the paper do not apply to social-welfare optimization.
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is Ui(L,P ) = vi − βiL − P , where P is price and L is lead time, i ∈ {l, p}.
Regular and express services are fulfilled by separate servers with rates µl > µp
targeted for l- and p-customers. The firm’s decision variables are prices Pl and
Pp, and service capacities µl and µp associated with the same linear costs.
The goal of the research is to determine conditions under which the firm

can increase profits by maintaining dedicated servers rather than pooling the
two customer types and operating a single server with a common price.23 It
is shown that two queues are less attractive to the firm than a single queue
when βlβp <

vl
vp
, or vlvp < 1. However, the opposite outcome is possible when

βl
βp
> vl
vp
> 1.

Teimoury and Fathi [618] (2013) offer a two-stage production Marko-
vian model. In the first MTS stage the firm completes a portion θ of the
manufacturing process using a base-stock policy with level s.24 In the second
MTO stage the firm completes the production process. The fraction of semi-
finished products suitable for completion decreases with θ. There are costs
associated with operating the system and the retailer sets θ, s, and price to
maximize profits. The authors formulate this optimization problem and pro-
pose a multi-product model with linear demand, substitution effects,25 and
shared storage capacity.

6.5.2 Capacity allocation

Ros and Tuffin [550] (2004) consider a general network model with a
queueing-related result (Theorem 2). Customers have heterogeneous service
values and only those with a positive expected full price join. The system has
fixed capacity which it can allocate to two M/M/1 facilities and charge differ-
ent prices. The authors prove that revenue is maximized by pooling capacity
and operating a single facility with a single price.

Kostami and Ward [414] (2009) construct a heavy-traffic approxima-
tion to a model motivated by theme park applications. The system consists
of two queues with dedicated service, an inline queue QI and an offline queue
QO. QI is observable and reneging is not permitted. Customers renege at a
constant rate from QO and although the number of customers joining this
queue is observable, reneging is only recognized when the customer doesn’t
show up to obtain service.26 Customers have different waiting-cost rates at the
two queues and an arriving customer enters the queue with a smaller expected

23The authors mention as a possible extension the comparison to a single server with
differentiated services.
24It is common to refer to θ as the order penetration point or decoupling point, expressing
the manufacturing stage where the product becomes linked to a specific customer order.
25Customers are not delay sensitive and differentiation is by price only.
26This assumption results in an information setting similar to that of the ticket queue
model in [671].
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waiting cost while ignoring the reneging process from QO.27 The server in-
curs holding costs proportional to the length ofQI. The server’s motivation for
maintaining QI is in reducing the possibility of abandonment from QO, which
is associated with a penalty for each abandonment. The server’s decision is
how to best allocate capacity between the two queues and minimize costs. The
authors use simulation to demonstrate the accuracy of their approximations.

Chau, Wang, and Chiu [136] (2010) consider a monopoly serving cus-
tomers with homogeneous service valuations and heterogeneous waiting-cost
rates. The firm has a fixed capacity to be allocated to several M/G/1 servers.
The authors prove a general theorem which implies that for the M/G/1 special
case if the firm is restricted to a single price, then profits and social welfare
are maximized when capacity is pooled (i.e., allocated to a single server).

6.6 Priorities

This section on priority regimes is closely related to §6.5 on providing
substitutable services. Here we deal with a single-server system that allocates
priority rights to customers ready to pay the required amount to reduce their
waiting costs while the alternative considered in §6.5 is maintaining multiple
servers for the same purpose.
A main characteristic of a priority model with strategic customers is that,

in most cases, customers choose the priority class. This is in contrast to sys-
tems with predetermined priority classes. These alternatives are also sometimes
classified as open class vs. closed class models. Closed class models are often
associated with symmetric information, whereas open classes are typical of
models with asymmetric information where customer class or type is private
information.
Some of the models explicitly refer to priority classes while in others the

use of priorities is implied implicitly by a requirement that the solution is
achievable or follows the cµ-rule.
A priority regime can naturally be used to increase welfare or profits when

customers are heterogeneous. It is interesting to note that priorities can also
be used for these purposes when customers are homogeneous, as was first
observed in [302]. Similar conclusions can be found in [70, 467, 560].
Static-priority regimes assign customers to priority classes and apply

absolute-priorities with or without preemption. Relative priorities extend the
achievable space, and their use for profit-maximization and social-welfare max-
imization is the subject of §5.3.2. The present section also includes more

27The existence of reneging from QO reduces the expected wait there but also affects the
probability the customers will eventually enjoy the service. It is assumed that customers
ignore both effects.
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general scheduling policies that select the next customer to be served in a
state-dependent manner and are not required to be work conserving (see, for
example, [12] for relevant definitions).
Priority models aimed at social-welfare maximization are surveyed in §5.3.

Mandjes [467] (2003) considers an M/M/1 queue with nonlinear waiting
costs represented through the value u(w) = w−α of service completed after
a delay w.28 There are two customer classes: Data-users with α = αd, and
voice-users with α = αv, where 0 < αd < αv (time is normalized so the two
functions coincide at w = 1.) This means data-users are more sensitive to
shorter delays but less sensitive to longer delays. The important qualitative
property here is that the functions intersect, whereas this doesn’t happen
under the common assumption of linear waiting costs. The main results are:

� When an identical non-differentiating entry price is imposed only one
type of user will arrive in equilibrium. This is the class dominance
property (see [1] §3.4.1, [594] §4.5). The author computes the profit-
maximizing price.

� Suppose the service rate is low such that only data-users arrive under
the non-differentiating solution.

– A server who can distinguish customer types may increase profits
by directing the voice-users to a (preemptive) high-priority class
with price pH , while the data-users are directed to a low-priority
class with price pL. The author computes the profit-maximizing
prices.

– If customers are free to choose a priority class then a different
equilibrium may result, i.e., these prices are not IC. The author
computes the profit-maximizing IC prices.

� An example with homogeneous customers demonstrates that a two-
priority system can increase profits even in this case.

� Hayel, Ros, and Tuffin [333] (2004) compare generalized proces-
sor sharing (GPS) with FCFS and priority queueing in a heavy-traffic
version of [467].

Katta and Sethuraman [393] (2005) consider an M/M/1 queue with
N customer types. Type i is characterized by potential demand Λi, service
value Ri, and time value Ci. The server cannot recognize customer type and
offers a profit-maximizing IC menu of prices and priorities. The authors prove
that if ratios Ri/Ci are increasing in Ci, then the solution is work conserving

28A similar utility function is assumed in [265]. Nel and Zhu [501] (2011) numerically
solve examples of duopoly price competition in an M/M/1 system with homogeneous atomic
customers assuming utility is reciprocal to expected waiting time, i.e., α = 1.
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(includes no strategic delays), and is characterized by an index n such that the
arrival rates of classes i = 1, . . . , n− 1 equal Λi, and those of i = n+1, . . . , N
are 0. The main result is that profit can be further increased by pooling some
of the customer types, provided that the delay cost distribution has a non-
monotone hazard rate.29

Zhang, Dey and Tan [704] (2007) assume that waiting-cost rate h and
service value v are perfectly correlated and uniformly distributed and customer
type is private information.30 The number of priority classes is exogenous.
Priority i is associated with an expected delay guarantee di and a price pi.
In equilibrium there will be thresholds distinguishing the types of customers
who buy different priority levels, or balk.
The authors compute profit-maximizing prices in several variations of the

model according to: whether the number of priority classes is one or two;
whether delay guarantees are exogenous or decision variables;31 and if capacity
is fixed or can be modified at a linear cost.
The authors also treat the single-class problem with a constraint on the

variance of the delay.

Gilland and Warsing [255] (2009) consider equilibrium behavior in
an M/M/1 queue with two priority classes. For the base model with homoge-
neous customers, a fixed price for high priority, costless low priority, and no
balking, it is shown in [1] §4.2. that due to FTC behavior there can be three
equilibrium solutions, where either all buy priority, nobody buys, or there is a
mixed equilibrium. The authors continue this line of research allowing for het-
erogeneous waiting-cost rates uniformly distributed over [0,1] and considering
a monopolistic server that maximizes profits from priority sales.
The solution is characterized by a threshold such that jobs with waiting

costs above threshold buy priority. The main result of the paper is that the
profit-maximizing price induces the SO threshold. This result differs from
E&H in that the server does not obtain all customer surplus and therefore the
server’s objective differs from the social objective. Yet, the same solution is
reached because, as follows from the authors’ derivation (in their Appendix
B), when service rate is normalized to 1, we arrive at 2C+Π = λ+ λ2

1−λ , where
C is social cost and Π is profit. Therefore, maximizing profit is equivalent to
minimizing social cost. This result is extended to general service distributions
and to more than two priority classes. The authors show that most of the gains
(social and revenue) obtained by segregating the market can be achieved with
few priority classes.
The authors also consider a variation where all service requests belong to a

single customer. When the customer buys priority for urgent jobs, less urgent

29In [18] pooling can be optimal for any delay cost distribution.
30The case where h and v are independent is also considered and analyzed; details can
be found in the online supplement of the paper.
31Strategic delay is not optimal in the cases considered here.
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jobs will wait longer. This reduces the incentive of the owner to buy priority
and indeed the authors prove that more priority is sold in equilibrium when
jobs belong to nonatomic customers.

Yu, Zhao, and Sun [687] (2013) assume a waiting-cost rate c ∼ U[0,1],
a service value R common to all customers, and the firm’s capacity cost to be
proportional to µ2. The benchmark model has a single-server shared queue.
The firm’s decision variables are price and capacity. In the main model the
firm segments the market by offering preemptive priority classes with delays
L1 < L2 and prices p1 > p2. Customer equilibrium is characterized by two
thresholds such that customers with low, intermediate, or high waiting costs
join class 1, class 2, or balk, respectively. The profit-maximizing solution de-
pends on a single parameter RΛ, where Λ is the potential arrival rate. The
authors prove that the two-class solution outperforms the benchmark single-
class solution and that the lead time in the latter solution is between optimal
L1 and L2.

He and Chen [336] (2014) consider a two-server system where cus-
tomers differ in their waiting-cost rates which can be CH or CL < CH and in
flexibility. Some customers are dedicated to a specific server while the others
are flexible and can be served by either server. The firm offers six contracts
to differentiate the six customer types. Each contract specifies price and ex-
pected waiting time, and the contracts designed for flexible customers also
specify the probability of being routed to each server. The contracts are de-
signed to maximize the firm’s profit rate subject to IC and IR constraints,
and guaranteed expected waiting times must be achievable. In addition, it is
assumed that dedicated customers never pretend to be flexible.
The authors prove that it suffices for the firm to observe customer delay

costs to achieve the first-best solution, but knowing their flexibility alone is not
sufficient. They also consider a simpler mechanism with only four contracts
and the same conditions offered to both flexible customers and dedicated
customers in the same queue.

Güler, Bilgiç, and Güllü [266] (2014) consider profit maximization in
an M/M/1 queueing-inventory system.32 Customers belong to a finite set of
classes with heterogeneous reservation prices and waiting-cost rates. The firm
follows a base-stock policy and arriving demand is immediately satisfied when
the inventory level is positive.33 Otherwise, customers join a non-preemptive
priority queue. The authors first prove that the optimal priority rule for profit
maximization is the cµ-rule and therefore the remaining decision variables are
base-stock level and class-dependent prices. Given these values, the arrival

32Extensions to M/M/m and M/G/1 systems are also considered.
33A higher profit might be achieved with a policy that satisfies the demand of class i only
when the inventory level exceeds a threshold ci. However, this is more difficult to solve and
the policy can be harder to implement.
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rates of the classes are determined as in the E&H model. The authors compute
the optimal base-stock level for given arrival rates and show that:

� Prices given by the first-order conditions are IC.

� A continuous approximation of the state probabilities yields an explicit
solution for the single-class case.

Deng, Chen, and Shen [194] (2015) formulate the design of a profit-
maximizing set of contracts in the presence of valuation and waiting-cost het-
erogeneity as a second-order cone programming problem. The main qualitative
part of the analysis assumes two levels of delay sensitivity with waiting-cost
rates cH > cL, and two levels of service valuations vH > vL. Thus there are
four customer types, LH, HH, LL, and HL, which are private information.
The authors note that their model, in contrast to previous ones, does not

assume strict order among customer types. They find that under the optimal
solution, conforming with the cµ-rule, customers with higher waiting costs
enjoy higher priority, but this is not necessarily so for customers with higher
valuations.

Liu and Berry [449] (2014) consider an unobservable M/G/1 queue
with two priority classes and homogeneous full-price-minimizing customers.
High-priority service is controlled by a profit-maximizing primary service
provider (SP) and regular priority service is shared by N > 2 competing
secondary SPs. Competition leads the secondary SPs to charge zero price and
the question is what price will the primary SP charge.34 The main insights
include:

� A characterization of conditions on the first and second moments of the
service distribution leading to a profit-maximizing solution where all
buy priority.

� The primary SP may earn less profits when capacity increases and the
system is less congested.

� Social welfare may increase or decrease as a result of the cost-free low-
priority option.

Nazerzadeh and Randhawa [500] (2015) assume customer waiting-
cost rates and service valuations are random variables perfectly correlated in a
sublinear way, i.e., the waiting-cost rate of a customer with valuation v is w(v),
and w(v)/v is a decreasing function. A profit-maximizing firm designs a menu
of K feasible price and delay values, where K is exogenous and the preemptive
cµ-rule is used. The menu induces a partition of the customer population

34It is shown in [1] §4.2 that the M/M/1 version of this model has FTC behavior and at
most three equilibrium probabilities for buying priority. All buy priority can be an equilib-
rium associated with rent dissipation.
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according to waiting-cost rate thresholds. The authors consider a heavy traffic
approximation when the potential arrival rate is nΛ and service rate is n,
where n → ∞. They show that for K ­ 2 the revenue is of the form An +
B
√
n + O(n1/(2K)), meaning the solution with two classes (K = 2) captures

almost the entire benefits of differentiation and that offering additional classes
can only increase revenues by O(n1/(2K)).

Chen, Cui, Deng, and Shen [155] (2015) add a new dimension to con-
tracts used to differentiate customers in an M/M/1 system under asymmetric
information. Their model assumes two possible waiting-cost rates cH > cL and
two possible service valuations vH > vL, defining four customer types, LH,
HH, LL, and HL with arrival rates λij , i, j ∈ {L,H}. Customers are offered a
menu with a choice of four contracts of the form (qij , wij , pij), i, j ∈ {L,H},
where qij is probability of admittance, wij expected delay if admitted, and pij
price charged if admitted. A customer with service value v and waiting-cost
rate c obtains utility qij(v−cwij−pij) when accepting the contract. The con-
tracts and associated priority scheduling are designed to maximize revenue
subject to IR, IC, and feasibility.
The use of probabilistic admission control may increase revenues since

customers with high values are willing to pay more for a higher probability
of admittance. The authors solve the server’s problem by decomposing it into
16 subproblems. They numerically verify that adding probabilistic admission
control can increase the server’s revenues. While in more than 95% of the
scenarios the relative gain was less than 5%, in some cases the revenue gain
reached 20%.

6.6.1 Strategic delays

Afèche [9, 12] (2004, 2013) designs a revenue-maximizing menu of price
and lead time as well as scheduling policy for an M/M/1 queue with two cus-
tomer types differing in delay-cost rates c1 > c2 and service value distributions
Fi(v), i = 1, 2. If customer types can be distinguishable, then revenue is maxi-
mized by applying the cµ-rule and by controlling arrival rates with appropriate
pricing. As shown in [487], if the server cannot distinguish customer types the
cµ priority policy also yields an SO and IC menu of price and lead time.
However, this is not true when the server maximizes revenues, and the au-
thor derives a solution method that uses the achievable-region approach. The
objective is to maximize the revenue rate over arrival rates λ = (λ1, λ2) and
lead timesW = (W1,W2) subject to the constraints that lead times be oper-
ationally achievable (OA) and IC. The problem is solved by first determining
the optimal lead times and the corresponding scheduling policy for fixed λ
and then optimizing the resulting revenue function over λ.
Given a fixed λ, the cµ-rule optimizes revenues among all OA policies,

but it need not be IC: 2-customers may prefer the high-priority 1-class to the
low-priority 2-class or 1-customers may prefer 2-class to 1-class. In the latter
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case, incentive compatibility can be restored by reducing the 2-class price
and artificially increasing the 2-class lead time. The author coins the term
strategic delay for this artificial delay policy which manipulates customers’
strategic service class choices, and its operational impact is that scheduling
is no longer work conserving. Strategic delay involves a trade-off between
revenue gain from high-priority customers and revenue loss from low-priority
customers. The author identifies necessary and sufficient conditions for the
revenue-maximizing IC solution to include strategic delay.35

The author also shows in [9] that for types with heterogeneous service
requirements, delay tactics other than strategic delay may be optimal; namely,
if patient customers have the higher cµ index it may be optimal to alter
priorities relative to the cµ policy, in some cases prioritizing customers in the
reverse cµ order.

Yahalom, Harrison and Kumar [676] (2006) consider a variation of
[12] in which the delay-cost function is nonlinear. The cost of a class i customer
associated with delay d is aiC(d), i = 1, 2, where C is a convex function, and
a1 > a2.
The main results are:

� The feasible region is the intersection of the achievable region and the
required IC constraints. Therefore the solution need not be on the effi-
cient frontier. The optimal solution in this case is either Pareto efficient,
or class 1 is given priority while class 2 is intentionally delayed.

� For the quadratic cost function C(w) = w2, it is possible to give an ex-
plicit description of the Pareto efficient frontier. Additional assumptions
guarantee that a variant of the Gcµ-rule will be optimal.

Maglaras, Yao, and Zeevi [465] (2015) complement the analysis of [12]
using an approximate analysis to investigate the importance of strategic delays
in large-scale multiserver systems characterized by large capacity and market
potential. The service provider operates an M/M/s system and faces N cus-
tomer types. Each customer type is characterized by a finite market potential,
a willingness-to-pay distribution, and a delay cost. Customer types are private
information. The service provider offers k ¬ N classes distinguished by price
and delay and customers select a class according to IC and IR conditions.
The authors define a simple deterministic relaxation (DR) which ignores

queueing and is readily translated into a price-delay menu and scheduling
policy that are near optimal for the stochastic problem, provided the system
is sufficiently large. Their main results are:

35The policy of inflating lead-time quotes that appears in [528] resembles the notion of
strategic delay. In the asymptotic analysis of [528], patient customers become infinitely
patient and strategic delay does not lead to lost revenue from these customers. In contrast,
the analysis here considers the tradeoff between revenue gain from high-priority customers
and revenue loss from low-priority customers.
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� The significance of strategic delay for systems with sufficiently large ca-
pacity and market potential depends on the number of service classes
and system utilization: (a) If the DR solution prescribes k = 2 service
classes, then strategic delay is significant only if the system is also un-
derutilized in the DR solution. However, for two-class systems where
the asymptotic effects are not in force, strategic delay can be significant
even with optimized capacity. (b) If the DR solution prescribes k ­ 3
service classes, then strategic delay is significant regardless of the system
utilization prescribed by the DR solution.

� If the DR solution prescribes a fully utilized system and k ­ 2 service
classes, then in a large-scale system that implements the corresponding
near-optimal stochastic solution all priority classes except the lowest
class operate in the QD regime; the lowest priority class operates in the
ED regime (in contrast to [463] where delay costs are homogeneous and
there is a single service class).

Afèche and Pavlin [18] (2015) study a multi-type version of [12]. Cus-
tomer types are described by a continuous distribution F of delay costs c which
are perfectly correlated with the service value V (c) = v+ c · d (v, d > 0). This
property leads to an interesting outcome, where it may be optimal to exclude
the customers with the least, the most, or with moderate delay sensitivities
and service valuations. This behavior can be explained by noting that the net
utility v + c(d − w) to a c-customer from service with lead time w increases
in c if w < d and decreases in c if w > d.
A menu of price and lead-time contracts satisfying IR and IC conditions

is such that lead times are nonincreasing in c, prices are nondecreasing in c,
and the set Ca of admitted customers has the following structure: the set of
customer types that buy low lead-time qualities, Cl := {c ∈ Ca : w(c) > d},
and the set of types that buy high lead-time qualities, Ch := {c ∈ Ca : w(c) <
d}, are (possibly empty) intervals that include the least time-sensitive type
(cmin) and the most time-sensitive type (cmax). Customer types (if any) that
buy the intermediate lead time, Cm := {c ∈ Ca : w(c) = d}, randomize
between buying a contract and balking.
Based on these properties, the decision variables of the server can equiv-

alently be the rates λh, λm, and λl of joining customers from Ch, Cm, and
Cl, respectively, and the lead times w(c) targeted to c ∈ Ca. Revenue maxi-
mization calls for prioritizing customers according to their virtual delay costs
whereas, IC requires the delays w(c) to be non-increasing in customer types
c. This may cause conflicts which are resolved by pooling adjacent types of
customers into a single service class.
The authors provide necessary and sufficient conditions for three nonstan-

dard features of the optimal solution: (i) pooling without strategic delay may
be optimal for any delay-cost distribution, and the paper specifies whether
such pooling occurs at the high, medium, or low end of the delay-cost spec-
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trum; (ii) pricing the middle of the delay-cost spectrum out of the market; and
(iii) pooling with strategic delay at the low end of the delay-cost spectrum.

6.6.2 Delay-dependent dynamic priorities

Sinha, Rangaraj, and Hemachandra [580] (2010) consider Poisson
streams of primary and secondary customers with arrival rates λp and λs, iden-
tical service distributions, and the following delay-dependent dynamic priority
scheme: At time t, the instantaneous priority of a customer arriving at time
T is q = bi(t−T ), where bi = bp (bi = bs) for primary (secondary) customers.
After completing service the server selects the customer with highest instan-
taneous priority. Let β = bs/bp, then β = 0 means that primary customers
obtain absolute priority, β = ∞ means that secondary customers obtain ab-
solute priority, and β = 1 induces the FCFS regime.
The firm has an agreement with primary customers guaranteeing them an

expected waiting time of at most Sp. The firm can admit secondary customers
as long as it fulfills this commitment. Secondary-class demand rate is a linear
function λs = a− bθ − cSs where θ is the admission fee and Ss the expected
delay for this class.
The authors characterize the profit-maximizing price θ and priority pa-

rameter β. When Sp is large the solution gives priority to the secondary cus-
tomers. For intermediate values 0 < β < ∞, if Sp is too small there is no
feasible solution.
An analytic proof for the exact characterization of the interval of Sp where

β < ∞ is given by Gupta, Hemachandra, and Venkateswaran [293]
(2015). These authors obtain in [292] analogous results for a variation of
[580] that allows for service preemption.

Gupta, Hemachandra, Raghav, and Venkateswaran [291] (2014)
obtain complementary results to the analysis of [580]. They also consider the
switching frequency, which is the number of times the server switches classes
per number of customers served. Computational experience indicates that this
performance measure is highest under FCFS, i.e., when β = 1.

Hemachandra and Gupta [339] (2015) provide a game theoretic inter-
pretation for the optimal solution identified in [580]. The solution corresponds
to the unique equilibrium of a two player non-cooperative game: Player 1 rep-
resents the queue and Player 2 represents the secondary class of customers.
Player 1 maximizes the revenue rate θλs subject to the expected waiting-time
constraints by setting the admission fee θ, the expected secondary class delay
Ss, and dynamic-priority parameter β. Player 2 sets the offered arrival rate
λs = a − bθ − cSs. This is a constrained game as strategy sets available to
each player depend on the strategy picked by the other player.
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6.6.3 Priority auctions

See §6.2.10 for revenue and PoA analysis of a capacity auction, [144] for
priority auctions in an MTS system with delay compensation, and [468] for a
discrete-time model where auctions for service are repeated in every period.

Afèche and Mendelson [17] (2004) assume a customer’s net value from
service completed t time units after arrival to be v ·D(t)−C(t), where D(t) is a
decreasing function with D(0) = 1 and C is an increasing delay-cost function
with C(0) = 0.
The first part of [17] assumes uniform pricing for FCFS service. Let D̄(λ)

and C̄(λ) denote the expected values of D and C upon service completion of
a random customer. If a uniform price P is imposed, then the inverse demand
function is P (λ) = V ′(λ)·D̄(λ)−C̄(λ), where V (λ) is the expected rate of value
generated by the system when the arrival rate is λ. The model’s assumptions
ensure a unique λ∗ satisfies the first-order conditions for maximizing the social-
welfare objective V (λ) · D̄(λ) − λ · C̄(λ). Similarly, a unique λM satisfies the
first-order conditions for maximizing the revenue λ · P (λ). The authors show
that λM may exceed λ∗, that is, a monopolist serves more customers and
charges a lower price than is SO.
The second part of [17] considers an M/M/1 highest-bid-first model. This

model assumes D and C are linear. The model with preemptive priorities is
a variation of Hassin’s model [303] (see [1] §4.5) with two main changes: It
uses the generalized delay-cost structure, and the server requires an entry fee
(equivalently, a minimum bid). The following results are obtained:

� With preemptive priorities, as shown in [303], bidding without entry
fees leads to social optimality. In contrast, revenue can be increased by
requiring a positive minimal bid.

� With nonpreemptive priorities the results are similar to those under
uniform pricing and FCFS: the revenue-maximizing entry fee may be
larger or smaller than the SO fee.

� Compared to uniform pricing, priority auctions give both higher social
welfare and higher revenue. The percentage gains are much larger under
preemptive priorities.

� The delay-cost structure greatly affects performance. The value of pri-
ority auctions significantly increases in the value-delay cost correlation.

� The scheduling policy also affects the priority auction benefits. For ex-
ample, the most impatient customers always benefit under preemptive
priorities as compared to uniform pricing, but may be worse off under
nonpreemptive priorities.

� Zhou and Huang [712] (2015) consider an M/M/1 queue with het-
erogeneous service valuations v ∼ U[0,1] and perfectly correlated delay
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cost rates D(v) = αvβ . The main result is, again, that bidding will
guarantee higher revenues and social welfare than will a flat fee.

Zhang, He, Ma, Cheng, and Yang [697] (2005) assume an M/M/1
queue with a highest-bidder-first (HBF) auction for preemptive priority. Balk-
ing is allowed, service value is V , and waiting-cost rates c ∼ U[0, cmax]. Let
pmin = V − cmax/(µ− λ). The authors show that the minimal bid (entry fee)
which maximizes the firm’s profits is max{V/2, pmin}.

Abhishek, Kash, and Key [3] (2012) study the pricing schemes of a
cloud service provider. Service valuations take one of two values, v1 or v2, and
customer waiting-cost rates are continuous random variables.
Under the pay as you go (PAYG) scheme there is no waiting, each customer

obtains a dedicated server, and pays a fixed price per unit time of service.
The firm can also sell excess capacity at a reduced price in a spot market

using an auction. The spot market is modeled as a GI/GI/k system with
preemption and bidding for job priority. An equilibrium in the spot market
is associated with cutoff values (c1, c2) such that customers with value vi
participate in the auction if their waiting-cost rate is at most ci, i = 1, 2. The
authors compute the equilibrium cutoff values and the associated revenue.
When a hybrid system consisting of both a PAYG scheme and a spot

market is implemented, the PAYG price set by the firm will affect cutoff
values in the spot market and also the associated profit. The authors conclude
(combining analysis and simulation) that in many cases revenue raised by the
PAYG system in isolation dominates that of the hybrid system.

6.6.4 Bribery

The following relationship has been claimed by Gunnar Myrdal: corrupt
bureaucrats may slow service to attract more bribes. This behavior conforms
with analytical results obtained in a decentralized bidding model investigated
by Hassin, see [1] §8.3.
Some papers in this survey reach similar conclusions with respect to a

firm’s incentive to invest in capacity. See [95, 159] and [361].

Jayaraman and de Véricourt [361] (2013) analyze data on bribery
and find that bribery increases with delays. To explain this finding the authors
develop a simple M/M/1 model with linear waiting costs and no balking. Each
time a customer waits t time units in the system (even during service), the
server requests fee b (a bribe). If the customer declines, the server sends him
to the end of the queue. A bribe transaction is also associated with a fixed
loss K to the server reflecting the risk of being caught. The authors compute
the profit-maximizing pair (t, b). The interesting outcome is that optimal t is
strictly positive, so bribes are only requested during periods of congestion.36

36Note that this is an FTC model. A customer’s incentive to pay the fee increases when
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6.6.5 Advance reservations

Oh and Su [505] (2012) consider a profit-maximizing restaurant allocat-
ing a portion of its capacity for reservations while keeping the rest for walk-in
customers. Unfilled capacity from reservation no-shows cannot be reallocated
to walk-in customers. The base model assumes homogeneous customers with
random service values that are realized only after they decide whether to make
a reservation. If the restaurant allocates a fraction of its capacity to reserva-
tions it must take into account IC relations guaranteeing that customers pre-
fer to make a reservation before their service value is realized. Customers who
cannot make reservations, due to the limited capacity allocated, wait for their
service values to be realized and then choose between walking in or balking.
A reservation comes with a no-wait guarantee while walking in is associated
with a waiting time depending on the capacity allocated to walk-ins and their
arrival rate. The restaurant’s decision variables are the capacity allocation, the
prices for customers who make reservations and for walk-ins, and the no-show
penalty (often called a “nonrefundable reservation fee”). The main results are:

� Profit can be increased by levying a no-show penalty and by giving dis-
counts to customers who make reservations. The optimal penalty equals
the price of the meal.

� When market size increases, the optimal policy changes from allocating
the entire capacity for reservations to a hybrid system that allocates less
capacity, and finally to allocating the entire capacity for walk-ins.

Simhon and Starobinski [578] (2014) consider an N -server system with
Poisson arrivals and instantaneous service granted at given discrete instants.
Customers have homogeneous service valuations, know the time to the next
service but cannot observe the queue. A customer’s lead time is the time
from arrival to the next service instant. The customer’s decision is whether
to pay a fee and make a reservation in advance. Customers with reservations
obtain priority and are accepted to service if there is a free unassigned server.
The remaining servers, if any, are randomly allocated to customers without
advance reservations.37

The authors prove that in equilibrium either all customers make reser-
vations, or none do, or there exists a threshold such that the customers who
make reservations are those whose lead times are above a threshold. Moreover,
there is always at least one threshold equilibrium. Assuming that the service
provider can choose the equilibrium when it is not unique, the authors show
that profit from reservations is maximized by charging a reservation fee only
from those whose reservation is granted.

more customers are doing so. Therefore the equilibrium, if one exists, need not be unique.
The authors observe there can also be an equilibrium where all customers reject the bribe,
but don’t discuss the possibility of mixed equilibria.
37Note the similarity to models presented in §4.1.1, but in those the arrival time of a
customer is a decision variable.
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6.7 Hotelling-type location models

Dobson and Stavrulaki [204] (2007) consider a profit-maximizing mo-
nopolist offering a product at price p. The firm serves customers located on a
line that contains the origin, where a single facility is located. Customers are
homogeneous except for their location. The aggregate arrival process for inter-
val I is Poisson with intensity l|I|, service value is p̂, and the waiting-cost rate
is α. The service rate µ is a decision variable costing cµ per unit time. Shipping
the product to a customer at distance s takes g(s) units of time. In equilibrium,
customers buying the product are those for which p̂ ­ p + α[W (µ, λ) + g(s)]
where W (µ, λ) denotes expected delay. This means that if the effective served
demand is λ it includes those customers located in I(λ) = [−S(λ)/2, S(λ)/2],
where S(λ) = λ/l. The price p(µ, λ) is determined by a marginal customer
at the end of I(λ), giving p(µ, λ) = p̂− α[W (µ, λ) + g(S(λ)/2)]. The two de-
cision variables are now λ and µ. Assuming exponential service, and given a
value λ, the optimal service rate µ(λ) is shown to satisfy µ(λ) = λ+

√
αλ/c.

This square root type law resembles that of the Halfin-Whitt regime, but is
obtained here in a different non-asymptotic model.
The optimal price consists of two separable additive terms, one conges-

tion related, and the other transportation related. An interesting outcome
is that when transportation costs are increasing convex in traveled distance,
an increase in the served demand accompanied by the appropriate profit-
maximizing service rate may be associated with an increased price. This re-
sult contrasts common intuition that faster facilities serve customers at lower
prices due to economies of scale.
Lastly, the authors deal with maximizing profit per unit distance of served

demand and use the solution to approximate the case where the market size
(length of demand interval) is very large and facilities can be established at a
fixed cost.

Pangburn and Stavrulaki [517] (2008) assume customers situated on a
line containing the origin where a profit-maximizing service facility is located.
There are two customer classes differing in service valuations p̂1 > p̂2, waiting-
cost rates, and constant densities (per unit distance). The paper considers
several models:

1. Pooled services: The firm sets a single FCFS server and a common
price for both customer classes. The resulting demand of class i is an
interval [−Si, Si], so total demand is λ = 2λ1S1+2λ2S2. Under M/M/1
assumptions, the authors obtain a closed-form solution for this case.

2. Dedicated services: The firm sets a dedicated server for each class
with rates µi and price pi, i = 1, 2, and the firm bears operations cost
c(µ1+µ2). The optimal solutions are separately computed for each class.
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3. Comparison:

(a) The optimal pooled price is not necessarily between the two prices
in the dedicated model; it is greater than the minimal but can also
be higher than both.

(b) In both pooled and dedicated models an increase in time value of
either class causes a decrease in demand and in optimal capacity.

(c) The profit ratio πdedicated/πpooled increases, in general from a value
below 1 to a value above 1 as p̂1/p̂2 increases from 1. Thus choosing
whether to pool or to dedicate depends on the parameter values.

4. Self-selection: Clearly, asymmetric information, where customer types
are private information and customers are free to choose their server,
reduces the firm’s profit. However, this reduction turns out to be minor
(less than 10% on average in the computational experiments).

5. The authors also consider other queueing models. For example, they
show that a pooled model with class priorities and self-selection can be
a profitable alternative.

Alptekinoğlu and Corbett [40] (2010) investigate a multi-server (or
multi-product) Hotelling-type model. Products are characterized by location
on [0,1]. Customers are homogeneous except for their locations (ideal-product
preferences) which are independent and identically distributed on [0, 1]. The
expected utility of a θ-customer buying product z and guaranteed delay t is
p̄− p− rt− d|θ− z|, where p̄ denotes the reservation price and p is the price.
Complete market coverage must be achieved, meaning every customer obtains
nonnegative utility. The firm makes three simultaneous decisions: product
location, an inventory (base-stock) policy, and price. The firm partitions the
interval into segments and allocates an M/M/1 server to each.
The authors characterize some essential properties of the profit-maximizing

strategy:

� MTS (i.e., positive base-stock level) is optimal for a given market seg-
ment when the segment is sufficiently narrow and densely populated.

� For a unimodal customer preference-location distribution, the optimal
product line has a hybrid MTS-MTO design with MTS products clus-
tered around the mode and MTO products at the tails.

Tan, Li, Zhang, and Yang [615] (2015) consider a directed Hotelling-
type model motivated by inland waterway transportation. Customers are uni-
formly scattered over [0,1] and wish to reach a common destination at point
0. For a special point x1 (the location of a river port) road-system travel from
x to x1 costs C0R|x − x1| + C1R, and waterway transportation from x to the
destination 0 costs CW (x). It is assumed CW (x) includes a fixed cost CW (0)
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and is convex on (0, 1]. Constraints are imposed on the cost functions, in par-
ticular CW (0) > C0R and C

′
W (1) < C0R. Customers choose the less expensive

alternative, either directly traveling from their location to the destination or
travelings through x1. Those using the port also incur M/M/1 (linear) waiting
costs. The problem is to choose location x1, capacity µ (costing I(µ) where I
is convex), and price τ that maximize net profit of the port.
The authors prove that for a given location x1, either all choose land trans-

portation, or for x∗ < x1 the customers using the port are those located on
[x∗, 1]. The authors characterize the profit-maximizing price when location
and capacity are fixed, the optimal price and capacity when location is fixed,
and the combined problem of selecting price, capacity and location. The solu-
tion has the port located at a point x∗1, and the customers it serves are those
from [x∗1, 1].

6.8 Searching for customers

See §9.2.1 for models where firms affect demand by setting a marketing
effort level, and [703] where the server searches for the first customer in the
orbit queue in a loss system with breakdowns.

Son and Ikuta [589] (2007) consider a discrete-time Geo/Geo/1/1 loss
system where a profit-maximizing server incurs a fixed cost when searching
for customers (i.e., the arrival process at the beginning of the next period is
activated). There are also sideline profits obtained when the server is idle. Cus-
tomers have heterogeneous service valuations. In the admission-control model
an idle server either accepts or rejects customers according to their service
valuations. In the price-control model, the server sets a price and customers
whose valuations exceed the set price and arrive when the server is idle, join. In
both cases, the server faces three options: never search for customers, always
search, or search only when idle. The authors describe recursive equations for
this Markov decision process and characterize the solution.

Son [586] (2007) extends [589] to a Geo/Geo/1/n queue. In this model
optimal strategy may dictate searching for customers only when the queue is
sufficiently long and the server prefers to serve more customers rather than
wait for the queue to empty and enjoy the sideline income. The author derives
conditions such that never searching or always searching is optimal. Clearly,
without the sideline profit, both the optimal admission threshold for service
valuation in the admission control version, and the optimal price in the price
control version, are monotone increasing with queue length. However, here
these functions first decrease with queue length and then increase. Thus, in
general, optimal admission policy admits a customer with given service value
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only if the queue is neither too short nor too long (i.e., there are two threshold
values such that the customer is admitted only in intermediate states).

Son [587] (2008) studies a variation of [586] with deterministic ser-
vice time and an unbounded queue. In the admission-control case there is
a state-dependent threshold such that only a customer whose service value
exceeds this threshold is admitted. Under profit maximization there is a state-
dependent price. When the sideline profit is high and the queue is short, the
queue manager becomes more selective, knowing that if no customers are ad-
mitted, after a while the queue will empty and the server will start earning the
sideline price. In such a case, both threshold and price decrease with queue
length up to a point before increasing. In an extreme case, both functions can
even be monotone decreasing.

Son and Ghamari [588] (2008) further extend [586] to a Geo/Geo/n/N
system. Both admission thresholds on service valuation and prices set by the
firm need not be monotonic in the number of customers in the system. When
the sideline profit is large and the queue short, the firm may wish to have
fewer customers unless they are willing to pay highly for service. As queue
length increases, this effect diminishes and thresholds may decrease. However
thresholds will again increase when the queue is almost saturated.

Economou and Kanta [220] (2011) consider an M/M/1/1 model where
customers finding a busy server upon arrival choose between balking or joining
an orbit queue. The reward from service is fixed and the waiting-cost rate is
constant. The authors consider two cases. In the observable case, a customer
encountering a busy server is informed of the number of customers in the orbit
queue. This information is not available in the unobservable case.
In the observable model the orbit queue is FCFS. When the server becomes

idle, a search for the first customer who joined the orbit queue is started. The
search-time distribution is exponential with parameter α independent of queue
length. Service starts once the customer is found. However, if a new arrival
occurs before the search is completed, the search stops and the new arrival
enters service. The same mechanism is assumed in the unobservable case. Here,
a discipline of the orbit queue need not be explicitly assumed since customers
are risk neutral and base their decision to join on expected values.
The unobservable case is ATC, and there exists a unique equilibrium prob-

ability that a customer facing an active server will join the orbiting queue.
The authors give explicit formulas for the equilibrium, the SO, and the profit-
maximizing probabilities. Of these three probabilities, the profit-maximizing
probability is the smallest and the equilibrium probability is the largest.38

38Unlike the E&H model, profit and social-welfare maximization generally differ here. In
the present model, customers observe the state of the server and a customer arriving when
the server is idle obtains a higher surplus than one arriving when the server is busy. This
means that, unless all customers balk when the server is busy, the server cannot fully extract
customer surplus, in contrast to the unobservable E&H model.



184 Rational Queueing

In the observable case, the authors derive formulas similar to those of Naor
[497] for the equilibrium, SO, and profit-maximizing threshold strategies. The
equilibrium threshold is the greatest of the three and the profit-maximizing
threshold is the smallest. This is the same order as in Naor’s model, and also
conforms to the order among the respective probabilities in the unobservable
case. We note that though the orbit queue is FCFS the general order of service
isn’t FCFS since new arrivals overtake customers waiting in orbit.
The authors compare the unobservable and observable cases. Depending

on the parameters, social benefit in equilibrium may be smaller when the
queue is observable.

6.8.1 Attracting demand

Zhou, Lian, and Wu [713] (2014) consider an M/M/1 profit-
maximizing firm with potential demand rate Λ of informed customers (I-
customers). The firm can attract more demand by offering a free (shorter)
experience service to uninformed customers (U-customers). It is assumed that
the number of U-customers is unlimited and the firm could initiate an experi-
ence service whenever the server is free. However, service cannot be interrupted
once started and therefore serving U-customers increases I-customers’ waiting
times. The advantage of offering the free service is that a given proportion of
U-customers will continue to obtain the regular service at the regular price.
The authors derive the expected waiting time of I-customers when the firm

serves a given demand rate of U-customers with experience service, and char-
acterize the optimal price and admission rate of U-customers. In particular,
only in a scarce demand market, i.e., when Λ is below a given threshold, will
the firm provide experience service.

Nair, Wierman, and Zwart [495] (2015) consider a two-stage (Stack-
elberg) game between a profit-maximizing firm providing for free service and
its user base. Revenues are proportional to demand (such as revenue from
advertising), and the firm incurs a fixed cost per server. Users incur linear
waiting costs. Service value per user is an increasing function of arrival rate,
thus expressing positive network effects. The firm first declares the number
of servers it will employ, each with an exogenous fixed service rate, and de-
mand is determined consequently. The authors consider two cases. In the first,
users cooperate and set λ so as to maximize aggregate welfare. In the other
case, users are noncooperative and equilibrium demand is achieved either at
its maximal potential size or when customers are left with no surplus.
As market size becomes large, profit maximization leads to heavy traffic.39

When customers do not cooperate, the firm essentially provides the minimum
number of servers required to serve the full potential user base. Stronger pos-
itive network effects and lack of customer cooperation lead to increased de-

39Similar results are obtained in [422, 528] and [532].
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mand and profit for the service provider. A main finding here is that lack of
cooperation has a more significant impact than the positive network effects.





Chapter 7

Competition

Competition in queueing systems takes different forms. Firms compete by
setting price, capacity, delay guarantee, information, and queue discipline.
When capacities are fixed, firms can compete by quoting prices, and delays
then result from equilibrium demands. Alternatively, firms can quote delay
guarantees and let prices adjust accordingly. The latter option has been named
time-based competition. In a long-run model, any two out of price, lead time,
or capacity, can be set by competing firms while the third variable will be
determined by equilibrium conditions. See, for example, [32].
Relevant literature is surveyed in [1] §7. Summaries on competition re-

search are also scattered in other chapters. See the following sections for com-
petition models focusing on various topics: Observable queues §2.6.4; control
of systems with private and public servers §5.6; PoA §5.8; providers of com-
plementary services §8.3; breakdowns §10.2.3; demand allocation that induces
competing servers to invest in capacity §9.3; supply chains §9.4; firms se-
lected according to an attraction model §11.2.2; and competition over location
§11.2.3. See also [439] and [276] for lead-time and ordering-fee competition, re-
spectively, where customers place duplicate orders, [476] for competition when
firms choose buffer size, [54] for capacity competition when utility increases in

187
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service duration, [342, 567] for delay-quote competition, [679] for competition
with benchmark effects, and [127] for competition between servers facing a
single customer.
Models of routing customers to servers often relate to competition among

servers. Several such models related to competition are described in Chapter
8.

7.1 Competition when customers maximize utility

Sattinger [561] (2002) considers competition in a closed unobservable
system with a finite population of customers. The time from service termi-
nation to the instant a customer returns to the queue is exponentially dis-
tributed. The firms are homogeneous, incur a fixed cost per customer served,
and set prices to maximize expected profit. Arriving customers select a firm
that minimizes discounted expected costs.
The effective arrival rate induced by this system is approximated by the

waiting time in an M/M/1 system. The author proves that the equilibrium is
unique and symmetric, and provides an explicit formula for the equilibrium
price which can be used to determine the long-run number of firms in the
market when firms also incur a fixed operating cost rate.

Chen and Wan [142] (2003) study simultaneous price competition be-
tween two firms in a market with homogeneous customers. Firm i has fixed
capacity µi; the potential total arrival rate to both firms is Λ. Customers
choosing service from firm i incur a waiting cost hi per unit time, pay price
pi, and receive service value Ri.
With identical firms, the authors define thresholds Λ

¯
< Λ̄ and show that:

� A pure Nash equilibrium always exists.

� For the scarce demand case where Λ ¬ Λ
¯
, there exists a unique equilib-

rium given by p1 = p2 = 4hΛ/(2µ− Λ)2 and corresponding arrival rate
λ1 = λ2 = Λ/2.

� In the moderate demand case where Λ
¯
< Λ < Λ̄, there may exist a

continuum of equilibria. In particular, a unique symmetric equilibrium
always exists such that λ1 = λ2 = Λ/2 and p1 = p2 = R− h/(µ−Λ/2).

� In the ample market case with Λ ­ Λ̄, each server charges the monopoly
price and obtains the arrival rate of a monopoly.

� As opposed to the other two cases where consumer surplus is zero, in
the scarce demand case consumer surplus is positive.
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With heterogeneous firms the authors show that:

� When demand is scarce there exists a unique equilibrium in which only
one firm operates, but the price it sets is lower than the monopoly price
and consumer surplus is positive.

� For higher values of Λ there is a unique equilibrium where both firms
operate and consumer surplus remains positive.

� When Λ further increases, an equilibrium does not exist or a continuum
of equilibria exist in which consumer surplus is zero.

� When Λ exceeds a certain threshold there exists a unique equilibrium
in which both firms charge monopoly prices.

� When a unique equilibrium exists, the firm with the higher service rate
or lower waiting-cost rate can charge a higher price and capture a larger
market share.

Cheng, Demirkan, and Koehler [160] (2003) independently consider
the model of [142]. They do not carry out a complete case analysis as [142],
however, they also consider the long-run version where capacity is a decision
variable. The authors present proven results and conjectures supported by a
numerical study. The main results are:

� As in [142], in the short run the firm with higher capacity charges a
higher price and enjoys a larger market share.

� In the long run, assuming fixed but heterogeneous marginal capacity
costs, the firm with a lower marginal capacity cost charges a higher
price and realizes a higher profit.

� An increase in customer delay cost increases profits in the short run but
reduces profits in the long run!

Touati, Dube, and Wynter [627] (2004) assume customers are char-
acterized by a parameter, α ∼ U[0,1] such that the utility of an α-customer
paying fee p and waiting w time units is αp + (1 − α)γw. The market has
two M/M/1 service suppliers with capacities µ1 and µ2 and prices p1 > p2. If
both suppliers are active, then clearly w1 must be less than w2. Consequently,
there is a threshold value such that only customers having α below the thresh-
old join supplier 1. Waiting times depend on arrival rates and hence on the
threshold value, giving a system of fixed-point equations. The main result is
that a solution to this system exists iff |λ−µ2| ¬ µ1. Moreover, the solution is
unique. The authors also analyze the sensitivity of the solution with respect
to capacity costs, price difference, and total arrival rate.

Chen and Wan [143] (2005) extend their short-run model of two ho-
mogeneous firms [142] by allowing the firms to choose their capacities. The



190 Rational Queueing

model assumes firms incur cost c per unit capacity, operating cost r per cus-
tomer, and fixed cost σ, all per time unit. Denote the optimal profit rate of a
monopoly firm as F (Λ). The authors find that:

� If F (Λ) < σ, no firm operates.

� If F (Λ/2) < σ ¬ F (Λ), there are two equilibria in which one firm
operates as a monopoly.

� If F (Λ/2) = σ, three equilibria exist: either of the firms operates as a
monopoly or both firms operate with identical market share (λ1 = λ2 =
Λ/2).

� If F (Λ/2) > σ, there exists a continuum of equilibria in which the firm
installing the higher capacity also sets a higher price, captures the larger
market share, and enjoys higher revenues.

� Consumer surplus is zero in all cases.

� Equilibria where both firms operate together are not SO, and each firm
sets lower capacity and higher price than when operating as a monopoly
(which is SO).1

Zhang, Dey and Tan [705] (2008)2 consider two identical M/G/1
servers competing in a market where customer service valuations v ∼ U[0,1]
are perfectly correlated with the waiting-time cost rate γv.
A delay guarantee d is exogenously dictated by market standards and

decision variables are the prices pj , j = 1, 2. The utility of a v-customer
selecting server j is v(1− γd)− pj , and arriving customers either select one of
the servers or balk.
Let p̄ be the price for which demand induces delay d when there is just

a single server. Let p
¯
be the price with the same property when demand is

equally divided between two servers. The authors argue that a price p defines
a symmetric equilibrium if (and only if) p

¯
¬ p ¬ p̄. The reason being that an

increase in price would reduce the firm’s demand to zero whereas decreasing
the price would attract the entire demand and increase the delay at that firm
above the standard d. The results are extended by allowing for two priority
classes and letting the delay guarantee be a decision variable.

Variations of [705] are treated by Zhang, Tan, and Dey [706] (2009). In

1It is interesting to compare the results of [142, 143] with those obtained by de Palma
and Leruth [515] for a static model where each member of a population of customers
chooses between joining one of two heterogeneous servers or balking, and expected wait-
ing time at a server is proportional to their workload. A unique equilibrium exists when
capacities are fixed. When firms choose capacities at a linear cost and customers are homo-
geneous, a unique and symmetric equilibrium exists. When customers have heterogeneous
waiting-cost rates, firms tend to offer differentiated capacities.
2Another part of this paper is described in §11.2.2.
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one such variation, each competitor chooses one of two service levels dL > dH .
It is shown that for thresholds ρ1 < ρ2 < ρ3, when ρ1 < ρ < ρ2 both providers
choose dH , when ρ > ρ3 both choose dL, otherwise they opt for differentiated
service. Another variation considers sequential (Stackelberg) price competition
where the leader chooses delay guarantee d1 and the follower chooses delay
guarantee d2. The authors show that for thresholds ρ4 < ρ5 < ρ6 the solution
is (dH , dL) if ρ ¬ ρ4, (dH , dH) if ρ4 < ρ < ρ5, (dL, dH) if ρ5 ¬ ρ ¬ ρ6, and
(dL, dL) if ρ > ρ6.

Fan, Kumar, and Whinston [231] (2009) consider competition be-
tween two profit-maximizing sellers with products having different implemen-
tation costs c1 > c2. Customers have heterogeneous sensitivities θ ∼ U[0,1] to
these costs, and the utility of a θ-customer obtaining the product from seller
i for price pi is V − pi − θci. Assuming p1 < p2, customers buying from seller
2 are those with θ > (p2 − p1)/(c1 − c2).
It is further assumed that while seller 1 supplies the product instanta-

neously upon demand, seller 2 is an MTO M/M/1 system. The sequence of
events is such that first the two sellers set prices and then seller 2 sets capac-
ity µ which guarantees an expected delay of no more than a given exogenous
standard, incurring capacity costs of γ0 + γ1µ per unit time.
The authors solve the equilibrium of this game. They also solve a variation

where γ1 is a Bernoulli random variable whose realization is known to seller
2 but not to seller 1 when they set prices.

Melo [483] (2014) derives sufficient conditions for a pure price equilib-
rium to exist in a directed acyclic network. The network has multiple origins,
each with a given demand rate and a common destination d. Links are owned
by profit-maximizing servers that set usage fees. Users are heterogeneous such
that the utility associated with using a link for a random customer is com-
posed of a random valuation minus the full cost associated with traversing
this link. The utility of traversing a path is the sum of link utilities and in
equilibrium users select utility-maximizing paths.
The author specifically treats a load-balancing special case with M/M/1

parallel servers. In this case, a pure strategy price equilibrium may fail to exist
in highly congested networks. When there is free entry of new firms (links of
the network), the number of firms exceeds the social optimum.

Sadat, Abouee-Mehrizi, and Carter [553] (2015) derive a utility

function Ui = Ci

(
1− rθ

µi−λi+rθ

)
− Pi, based on patients’ perceived quality

of life when selecting hospital i, i = 1, 2. In this expression r is a discount
rate, Pi is the admission price, and Ci and θ are constants. The hospitals are
modeled as M/M/1 queues.
The authors derive sufficient conditions for four equilibrium types: (i) each

hospital behaves as a monopoly; (ii) one hospital dominates the market; (iii)
high price competition and positive customer surplus; (iv) moderate price
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competition and zero customer utility. An example demonstrates the possibil-
ity that no equilibrium exists.

Do, Tran, Tran, Pham, Golam, Alam, and Hong [202] (2015)
consider competition between an M/M/1 public firm and an M/M/∞ cloud
broker.3 All servers have the same service rate. Customers minimize full costs
and firms maximize revenues. Numerical results indicate that the broker would
enjoy higher revenues if it plays the leader’s role in a Stackelberg game.

7.1.1 Cournot competition

See [576] for Cournot competition and partial cooperation.

Nam [496] (1997) examines duopoly Cournot competition between iden-
tical M/M/1 servers in a market where customers have heterogeneous service
valuations and homogeneous waiting-cost rates. Servers compete by setting
the rate of demand they are willing to serve which in turn determines prices
satisfying equilibrium conditions. The author provides sufficient conditions
that exclude the possibility of an asymmetric equilibrium.

Musacchio and Wu [489] (2008) consider Cournot competition be-
tween M/M/1 servers and with two types of price-sensitive customers: voice
traffic and web traffic. If service provider i offers voice customers service rate
yi and web customers service rate xi such that xi+yi ¬ µi, then the resulting
prices are pv(y) = ak− by and pw(x) = k− x, where y =

∑
yi and x =

∑
xi.

Social welfare is the sum of providers’ profits and consumer surplus, which is
simply kx− 0.5x2 + aky − 0.5by2. Two service architectures are analyzed:

� Priority architecture: Voice traffic arrives as a constant fluid at rate
y, while web traffic arrivals are Poisson and served as in an M/M/1
system with capacity µ−y. In this case there exists a unique equilibrium
and PoA¬ 43 .

� Shared architecture: Both customer types are queued together and
the expected delay of voice customers is constrained not to exceed an
upper bound Dmax. If yi = 0 the constraint is simply xi ¬ µi. The latter
exception induces a non-convex strategy space, and it remains unclear
whether an equilibrium will always exist. However, provided one does
exist, the authors prove that PoA¬ 2 and the bound is tight.

Afanasyev and Mendelson [8] (2010) consider a Cournot game be-
tween two M/G/1 servers. Customers are homogeneous except for service
valuations. Let V (λ) be the expected total value created for users per unit

3See [199, 628] for similar models.
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time when the effective arrival rate is λ.4 Servers announce capacities µj and
arrival rates λj , j = 1, 2. Customers then decide which server (if any) to join
and equilibrium prices adjust accordingly.5 The server incurs an operations
cost c per customer and a unit capacity cost gj .
A joining customer with service value U selects a server that maximizes

U−dWj−Pj , whereWj is expected waiting time at server j, d is waiting-cost
rate, and Pj the price. For given λj and µj , j = 1, 2, there will be a threshold
Ū such that only U -customers with U ­ Ū join. If only one server, say server
j, is active, then Pj is obtained from V ′(λj) = Pj + dWj . If both servers are
active customers must be indifferent between them and Pj = V ′(λ1+λ2)−dWj
for j = 1, 2.
The equilibrium may involve both, either, or neither servers being active

and multiple equilibria, possibly of different types, may exist.
In a more general setting the authors assume heterogeneous waiting costs

perfectly correlated with service valuations. In general, the qualitative differ-
ence between this case and the previous one is that the equilibrium segments
the market such that one server supplies fast service and serves customers with
higher waiting costs while the other serves customers with lower valuations.6

7.1.2 Investment incentives

Johari, Weintraub, and van Roy [375] (2010) assume each of N
service providers chooses price pj and investment level Ij . The congestion
cost incurred by a customer joining the jth server is a function lj(λj , Ij) of the
demand served λj and investment Ij . Customers have heterogeneous service
valuations and in equilibrium the marginal utility obtained by an additional
infinitesimal customer is equal to the full price pj + lj(λj , Ij) at every active
server.
The authors concentrate on models exhibiting nonincreasing returns on

investment. Let Kj(λj , Ij) = λj lj(λj , Ij) denote the total congestion cost at
j. Then for all α > 1, Kj(αλ, αI) ­ αKj(λ, I). This means that for a fixed
total investment the congestion cost associated with a single firm serving the
whole market is greater than the total cost of several firms equally splitting
the demand and the investment expenditures. Some of the main results are:

� Sufficient conditions for the existence of equilibrium. The simplest con-
dition is: If all lj functions are concave in λ, and the inverse demand
function P (λ) is concave, then an equilibrium exists.

� Suppose the congestion functions exhibit constant returns on investment

4The inverse demand function V ′(λj) is assumed to satisfy a condition that generalizes
linear (V ′ = α − βλ, α, β > 0) and constant elasticity (V ′ = kλ−β , k > 0, 0 < β < 1)
demand functions.
5The authors note that when prices are announced and demand reacts accordingly an

equilibrium may not exist, as shown in [118].
6This is similar to classic results by Levhari and Luski (1976, 1978), see [1] §7.1.1.
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(for example, the loss probability of an M/M/1/s system). If an equilib-
rium exists, then it is unique and the number of customers served will
be less than the SO level.

� Assume all firms have the same congestion cost functions l(λ, I). Define
the marginal rate of substitution MRS(λ, I) = −∂l(λ,I)/∂λ∂l(λ,l)/∂I and assume

that ∂∂IMRS(λ, I) ­
1
λ . Then, prices and investment levels in equilib-

rium are uniquely determined, demand is equally divided among active
servers, and total demand served is less than SO.

� When new firms can enter the market, and under additional assump-
tions on the model’s functions, the number of entering firms will exceed
the SO number. However, if the fixed cost of entry decreases to 0 the
resulting free-entry equilibrium will be asymptotically efficient.

DiPalantino, Johari, and Weintraub [197] (2011) consider a two-
stage setting. In the first stage, each firm chooses whether to offer it customers
a contract of price and investment level (P-IL) or price and service (i.e., delay
cost guarantee) level (P-SL). In the second stage, firm j chooses price pj , and
either investment Ij or delay-cost guarantee hj that conform with its commit-
ment. It is assumed that the delay-cost function exhibits constant returns on
investment, i.e., is a function hj(λj/Ij).
The equilibrium full price experienced by a customer served by firm j, fj =

pj + hj(λ/Ij), is equal for all active firms. The authors prove the uniqueness
of the equilibrium market full price.
The main results are:

� The market full price in the second-stage is lower when all firms choose
P-SL than when all choose P-IL (the latter case is investigated in [375]).
This result is interpreted as expressing more intense competition in the
P-SL game.

� If firms are identical, offering P-IL contracts is weakly dominant and the
only subgame-perfect equilibrium where all firms make positive profits
is when all offer P-IL contracts.

� In the asymmetric case, either all firms offer P-IL contracts or there is
a unique active firm that offers a P-SL contract.

7.2 Competition with exogenous demand functions

Cachon and Harker [118] (2002) consider two M/M/1 servers, i = 1, 2,
competing for homogeneous full-price sensitive customers. Full price amounts
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to fi = pi+gi, where pi is service fee and gi = (µi−λi)−1 is expected waiting
time. It is assumed the firm can reliably commit to full price level, which it
achieves by selecting the necessary service rate µi at a linear cost kiµi. Given
full prices f1 and f2, the demand rate for server i is λi(f1, f2). It follows that
optimal values pi and µi that achieve fi satisfy gi(fi) =

√
ki/λi(fi, fj), where

fj is the full price at the other server. This leads to the following expression
demonstrating scale economies of profit for server i:

πi(fi, fj) = (fi − ki)λi − 2
√
kiλi(fi, fj).

As a result, it is possible that operating is profitable for a firm only if
a minimum size of demand is secured. This increases price competition and
equilibrium does not always exist. The authors analyze different possibilities,
such as an equilibrium with both firms participating, an equilibrium where
only one firm participates, or no equilibrium. The authors also demonstrate
how outsourcing can mitigate competition, see §9.4.1.

Ilmakunnas [354] (2002) investigates investment decisions with two
competing profit-maximizing service providers. The competition has two
stages. In the first stage, firms choose their capacities; in the second they
select prices. Demand is a linear function of full price. Firm i incurs costs
λic1(µi) + c2(µi). In equilibrium both firms offer the same full price. A firm’s
investment in increasing capacity has two effects on its rival. For the given de-
mand level, the market share of firm i increases and that of its rival decreases
until the full prices re-balance. However, this decrease in the market full price
causes an increase in total demand which both firms enjoy.
The author proves that the resulting increase in the rival’s demand does

not compensate for the loss of market share. The main result is that firms
underinvest in capacity in this two-stage setting in comparison to the solution
obtained when they set price and capacity simultaneously. The explanation
provided for this result is that underinvestment commits firms to longer queues
and relaxes the second-stage price competition.

Allon and Federgruen [32] (2007) consider competition under the sep-
arable demand model

λi =

ai(θi)−∑
j 6=i

αij(θj)− bipi +
∑
j 6=i

βijpj

+ ,
where θi denotes service level, specifically θi = w̄ − wi where wi is expected
delay and w̄ a benchmark upper bound, pi denotes price, ai is increasing con-
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cave, and αij are nondecreasing functions.7,8,9 This demand model includes
two additional assumptions:

1. A uniform price increase by all firms cannot result in an increase in
demand volume for any firm, i.e., bi >

∑
j 6=i βij , i = 1, . . . , N .

2. A price increase by a firm cannot result in an increase in industry ag-
gregate demand, i.e., bi >

∑
j 6=i βji, i = 1, . . . , N.

Firm i selects service rate µ at a linear cost ci(µ) = γµ so as to guaran-
tee any given waiting-time standard between 0 and w̄. The authors consider
three types of competition differing in the way firms make strategic choices:
simultaneous competition (SC), where firms make all choices simultaneously,
service-level-first competition (SF), where firms initially choose waiting time
standards and then select prices in a second stage, and price-first competi-
tion (PF), where these choices are made in reverse order.10 In all three cases
an equilibrium pair of price and service-level vectors exists, and a numerical
study gives strong indications that the equilibrium is unique. It turns out that
equilibrium solutions are identical for the (SC) and (PF) cases and if prices
are fixed, then each firm’s equilibrium service level is independent of the ser-
vice levels adopted by its competitors. Prices and service levels under the (SF)
setting are higher than those under (SC) and (PF) competitions.

Allon and Federgruen [33] (2008) generalize their model [32] of
M/M/1 servers with linear capacity costs. The capacity cost required for sat-
isfying the delay goal θi = 1/wi for a given demand λi is denoted Ci(λi, θi).
Firm i maximizes πi = piλi − Ci(λi, θi).
The cost function has the form:

Ci(λi, θi) = B1λi +B2θi +
√
B3λ2i +B4λiθi +B

2
2θ
2
i .

The authors show that a wide range of queueing models can be captured,
exactly or approximately, by this cost function. For the M/M/1 model µi =
λi+(1/wi) and therefore Ci is affine. The authors show that the same property
holds when capacity is optimally allocated over the nodes of an open Jackson
network so as to maintain given θi and λi. Other examples include the M/G/1
queue and the well-known Kingman’s bound for the GI/GI/1 queue.
The authors present sufficient conditions for the existence of an equilibrium

in the three models considered.

Allon and Federgruen [34] (2009) examine a Markovian model of ser-
vice providers competing in a market with customer classes by setting prices,

7The authors describe an economic model that leads to this demand function. They also
show that it generalizes the full-price model, see p. 41 in [32].
8Part of [32], but with different notation, can also be found in [513].
9A similar model is independently discussed in [669].
10The second stage of “price only” and of “service only” are interesting on their own
account.
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capacities, and priority disciplines. Each class has its own demand function
according to the separable demand model of [32]. Information is symmetric,
so customer types are observable to the server.
The authors first solve the problem of a server facing demand rates λl,

l = 1, . . . , J and choosing the service discipline to fulfill the expected waiting
time guarantees wl, l = 1, . . . , J while using the minimum possible service
rate.
An equilibrium always exists when waiting-time standards are exogenous

and competition is only over price (price competition). The authors also give
sufficient conditions for the existence of an equilibrium when firms compete
over delay guarantees while prices are exogenously fixed (waiting-time com-
petition), and when competing over price and delay guarantees (simultaneous
competition).

Hong, Hsu, Wu, and Yeh [343] (2012) consider competition between
two M/M/1 servers in a market where customers have alternative ways of ob-
taining service at given values of price pM and lead-time tM . The arrival rate
to server 1 depends linearly on the price and lead-time differences t1 − tM ,
t1 − t2, p1 − pM , and p1 − p2, and similarly for server 2. The authors pro-
vide sufficient conditions for the existence and uniqueness of price equilibrium
allowing for heterogeneous service rates. In particular, a unique equilibrium
always exists when service rates are equal.

Kavurmacioglu, Alanyali, and Starobinski [394] (2015) consider
competition between M(n)/G/Ci/Ci service providers, i = 1, 2. Provider i
serves demand of primary users (PUs) arriving at rate λi and earns Ki per
served PU. The servers also offer service to secondary users (SUs) where
price is a decision variable. SUs demand rate is a decreasing function σ(p)
of p = min{p1, p2}. If p1 6= p2, the provider with the lowest price captures the
entire SU market.11 Otherwise, if p1 = p2, demand is divided between service
providers according to fixed exogenous proportions.
The authors compare the outcome of the competition under two scenarios:

� Coordinated access: The providers implement admission control on
SUs (assumed to have no effect on demand). The authors define the
break-even price pBE where immediate revenue balances the opportunity
cost of a secondary request. If p < pBEi , it is not profitable to admit SUs.
If pBE1 < pBE2 , competition results in provider 1 capturing the entire SU
market. If pBE1 = p

BE
2 , both providers will set prices to this value.

� Uncoordinated access: The providers cannot apply admission control
to SUs. In this case there is a continuum of equilibria that induce the
providers to share the SU market at a price above the break-even price.

11Cf. [705] where a similar assumption leads to a continuum of equilibria as obtained here
in the uncoordinated access case.
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7.3 Competition with limited cooperation

Competing firms often recognize that some degree of indirect cooperation
can serve their interests. In the context of queueing systems, servers may
compete for customers while at the same time cooperating to reduce over-
all balking, share fixed costs, or even outsource to each other when lacking
sufficient capacity.

Tan, Chiang, and Mookerjee [614] (2006) consider two profit-
maximizing M/M/1/1 servers with demand rates λi and service rates µi,
i = 1, 2. An arriving customer can be redirected from a busy server to one
that is idle.12 In the main model, servers gain a fixed amount (normalized
to 1) when a customer from their customer base is served. The decision vari-
ables are the price pi to charge the other server for redirected demand and
the probability qi of accepting demand redirected from the other server.
If q2 decreases, server 1 will respond by reducing q1 and reserving increased

capacity to satisfy its own demand. Therefore, we have an FTC case. The
authors prove that for given prices p1 and p2, the best response is a threshold
policy: qi = 0 if qj ¬ θ∗j , and qi = 1 when qj ­ θ∗j , for i 6= j. Therefore, there
can be three equilibrium solutions in general: {(0, 0), (θ∗1 , θ∗2), (1, 1)}. In other
cases there is a unique pure equilibrium, and the authors give a complete
characterization of the equilibria in the (p1, p2) space.
Given this characterization and assuming the dominant strategy (1, 1) pre-

vails when the equilibrium is not unique, the authors compute the best price
response. They conclude that (p1, p2) = (1, 1) is always an equilibrium (each
server charges the full price for serving demand from the other server), and
in some cases there is also an internal equilibrium. In particular, such an
equilibrium always exists if λ1 = λ2 and µ1 = µ2.

Shrimali [576] (2010) discusses a model with queueing examples where
delay costs are incurred by the service providers and represent queueing time
or loss probabilities. The author considers a two-stage Cournot competition
between two asymmetric service providers over price-sensitive customers. In
the first stage, each provider sets the size of its customer base and the amount
it charges customers belonging to the competitor’s customer base. The market
retail price is determined through an inverse demand function. In the second
stage, each server decides the fraction of demand to be outsourced to the
competing server. The providers are subject to nonlinear variable operating
costs and thus it may be profitable to enter the resource-sharing agreement.
The model results in a subgame-perfect equilibrium with both providers serv-

12See [195] for a related model.
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ing positively sized customer base, but with only one using the other server’s
resources.13

7.3.1 Marketplace competition

Allon, Bassamboo, and Çil [29] (2012) consider price competition in
a marketplace with many identical service providers. Customers are homoge-
neous, obtain a fixed reward R upon service completion, incur linear waiting
costs, and renege after an exponentially distributed time.
In the base model each server is modeled as an unobservable M/M/1 sys-

tem with exponential reneging. Servers announce prices and customers select
a server. A unique customer equilibrium choice exists for any price vector and
a unique symmetric price equilibrium exists if the reneging rate is high.
The base model assumes customers choose preferred prices, and that a

moderating firm informs them of the lowest price offered by an idle server. The
customer will join that server unless the offered price exceeds his preferred
price, in which case the customer joins a queue and waits until admitted
to a server with a price below the preferred price.14 The authors resort to
asymptotic analysis when the number of servers is very large. The queue
regime is not specified in the model and does not affect the asymptotic results.
The outcome depends on the size of the demand:

� A buyer’s market: Arrival rate is below aggregate service rate. In this
case, when the number of servers grows to infinity the symmetric equi-
librium price is zero. Thus, providing information on available servers
increases competition and decreases revenues.

� A seller’s market: Arrival rate exceeds service rate. In this case many
equilibrium prices may exist. The authors show that if nonbinding com-
munication among the servers is enabled, their equilibrium profit is
asymptotically maximal, they charge the maximum price p = R, and
customers incur no wait.

Allon, Bassamboo, and Çil [30] (2013) add skill and capacity man-
agement to their model [29]. There are two customer classes, A and B, and k
candidate servers. The values SA and SB that a server generates when serv-
ing an A or a B-customer are random variables with a given joint pdf. The
moderating firm runs two skill tests, exam A and exam B, and servers found
to have SI ­ ωI are eligible to serve I-customers, I ∈ {A,B}. Servers that
pass both exams are flexible and can choose the customer type they want to
serve. Customers know the server’s type and the expected skill level given this
information and obtain their expected net reward by subtracting the quoted

13This outcome can be contrasted with the inefficiency in [384], where both providers end
up serving customers from the competitor’s customer base.
14See [300] for similar behavior in a single-server system.
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price. Customers announce their preferred net rewards from the available se-
lection and, if no server offers this net reward, or a higher one, they wait in
queue.
By setting the exam thresholds ωI , the moderating firm controls the num-

ber and quality of eligible servers. The firm obtains a fixed share of revenue
generated in the marketplace and therefore sets the threshold pair (ωA, ωB)
to maximize the total system revenue. In particular, the higher the thresholds
the higher the service value but with less eligible servers.
The authors solve a fluid approximation of the model. The optimal solution

depends on the correlation between SA and SB . When skill levels are perfectly
correlated, capacity allocated to one class mainly affects the firm’s profit from
this class, and the firm sets low thresholds to use the potential capacity. In
contrast, when skill levels are independent variables, capacity allocated to one
class strongly affects the profit from the other class and the firm may need to
fail candidates in both exams to maximize profit.

7.3.2 Competition between firms sharing a server

Note the difference between the subject of this section and the models of
[75, 168] where two competing firms share a queue but have separate servers.

The first model of Le Cadre, Bouhtou, and Tuffin [429] (2009) con-
siders Stackelberg competition between two firms sharing an M/M/1 FCFS
service facility while operating in separate markets. Thus, the firms interact
through the use of a common facility, but they do not directly compete against
each other. Customer service valuations are uniformly distributed over [0,1].
The game has three stages. First, server 2 sets a price and chooses a level of
advertising investment used to decrease the perceived full cost in its market.
Then, server 1 sets a price. Finally, demand is determined by the equilibrium
conditions so customers with valuations greater than the perceived full cost
arrive. The authors prove that the third stage has a unique equilibrium and
offer to solve the whole game by means of backward induction.
The authors also characterize the equilibrium solution in a second model

where the servers compete for market share by operating separate facilities.
The entire capacity is initially owned by server 1 who leads the game by setting
a wholesale price for capacity to server 2. The servers set retail prices in the
second stage, and in the last stage customers select a server or balk.

Guijarro, Pla, and Tuffin [265] (2013) consider competition between
two operators using the same unobservable M/M/1 facility. The primary oper-
ator serves priority (class 1) customers. When there are no class 1 customers,
the secondary operator uses the same facility to serve non-priority (class 2)
customers. If the expected waiting time for class i is Ti and a i-customer
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pays for the service pi then his utility is cT−αi − pi, for constants c > 0 and
0 < α < 1.15

The model assumes service of a 2-customer cannot be preempted and there-
fore the primary operator’s profit declines following entry by the secondary
operator. The authors derive an explicit solution for the sequential game where
operators first determine their prices and the arrival rates of the two classes
are then determined by the equilibrium resulting from IO behavior of the
customers.

7.4 Multi-period competition

See §6.2.7 for multi-period pricing by a monopoly.

Chayet and Hopp [137] (2007) consider a two-period model: In the
first period, firm 1, the incumbent, acts as a monopoly setting capacity µ1
(at a linear cost) and price p0. Then, firm 2, the potential entrant, installs
capacity µ2 after observing µ1. Once installed, firms cannot alter capacity.
In the second period the firms set prices p1 and p2 according to a profit-
maximizing simultaneous subgame. Firm 1 maximizes total profits during the
two periods, whereas firm 2 operates only in the second period. Customer
demand rates in both periods are linearly decreasing in full price, which in
the second period equilibrium should be equal at both servers if both servers
are active.
In general, for a given capacity cost to any one firm the other firm is

profitable if its capacity cost is below a threshold. An interesting case occurs
when the capacity cost of the incumbent is 0 and thus installs infinite capacity.
The entrant can still be profitable if its capacity cost is below a threshold, and
then any price equilibrium will have p1 > p2.
To isolate the first-mover advantage, the firms are assumed to be identical,

in particular, having the same unit capacity cost c. The authors demonstrate
that the first-mover advantage, though partial, is strong. Specifically, there
are thresholds such that:

� When c ­ cu no firm is profitable. For cb ¬ c ¬ cu, the market is small
and can only bear one firm, and the incumbent acts as a monopoly.

� When cd ¬ c ¬ cb, the incumbent is still able to prevent entry by
installing additional capacity beyond the monopoly level as a deterrent.
The threat of entry in this region benefits customers and reduces the
incumbent’s profits.

15A similar utility function is assumed in [467].
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� When c < cd the incumbent cannot deter entry. The incumbent still
installs more capacity than a monopolist and substantially more than
the entrant. The entrant offers lower price and longer lead time while
capturing less demand and lower profits.

Guo and Hassin [274] (2013) consider a Stackelberg game between two
servers, which we describe in terms of servers operating at two different times.
Each server conducts an M/M/1 queue and waiting-cost rates are constant.
Customers in the first service period observe the price of server 1 and decide
whether to obtain service or wait until the second service period. In the second
period, server 2 announces a price and customers join the queue or balk. When
customers are homogeneous, the leader obtains, in equilibrium, a larger profit
than the follower and customer utility is zero. However, suppose server 2
can also announce a price in the first period and commit to it. In this case,
depending on system utilization, server 2 may be able to obtain a higher profit
than server 1 and customer utility may be positive.

7.5 Hotelling-type models

Kwasnica and Stavrulaki [423] (2008) add competition to [204] as-
suming now that price is exogenously given and the shipping delay incurred
by a customer located a distance s from the server is a linear function
g(s) = G0 + G · s where G0 ­ 0 and G > 0. With these simplifications,
the authors obtain a closed-form solution for the optimal capacities and ser-
vice semirange SM in the monopolistic case, i.e., the server locates itself at a
point x and serves all customers in x± SM .
The main part of the paper considers a two-stage duopoly competition

where in the first stage firms choose capacity and in the second they choose
location.16 The authors show, in general, that each firm serves a smaller inter-
val than the monopoly and selects a lower capacity. They characterize several
types of subgame-perfect equilibria depending on the relation of the capacity
unit cost c and the other parameters (demand rate per unit distance, price,
shipping cost, fixed and variable coefficients, waiting cost rate, and service
value):

� Assume the monopolist does not serve the entire interval.

– For large c, the servers will act as local monopolists, locating them-
selves sufficiently apart from each other and applying the monop-
olistic solution.

16Alternative models are described by Pangburn and Stavrulaki [516] (2005).
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– For medium c, the solution is a constrained local monopoly. The
servers serve the entire interval but install exactly the minimum
capacity so no customer can obtain positive utility from both.

– For small c, a constrained competition arises and despite the re-
duced benefit of capacity investment associated with it, both firms
invest in additional capacity. In equilibrium each firm still serves
only half of the interval, but the increased capacity discourages the
competitor from expanding any further.

� Assume the monopolist serves the entire interval.

– For p ¬ 2c, capacity costs are sufficiently high so a symmetric
subgame-perfect equilibrium will involve co-location (both firms are
located at the middle of the interval). Firms then have no incentive
to continue investing in capacity to gain a larger market share.

– For p > 2c, each firm has a unilateral incentive to purchase ad-
ditional capacity and no symmetric pure-strategy subgame-perfect
equilibrium exists.

Gallay and Hongler [241] (2008) assume observable M/G/1 queues
with average service rates µ1 and µ2 located at points x1, x2 ∈ Ω = [−∆,+∆].
Customers arrive at rate Λ from locations uniformly distributed over Ω. An
arriving customer located at x chooses which server to join by comparing the
expected utilities Ui(x) from joining the ith queue, i = 1, 2:

Ui(x) = a− pi − ct|x− xi| − cwE(Wi|Ni),

where a is service value, Ni is queue length and pi is service fee at server i, ct
is transportation cost per unit distance (though travel is instantaneous), cw
is waiting-cost rate, and Wi is expected sojourn time at i.
Given the fixed parameters x1 < x2, a, ct, cw, and the state variables N1

and N2, there exists a break-off point Y such that arrivals at x < Y join
server 1, while those at x > Y join server 2. Because the state (N1, N2) is a
random variable, Y is a random variable as well. The main focus of the paper
is to characterize the probability distribution of Y . The authors restrict the
analysis to heavy traffic, that is, Λ is only slightly smaller than µ1+µ2. They
first consider the symmetric version where x1 = −x2 = L/2, p1 = p2 = p,
and µ1 = µ2. An important dimensionless parameter in this case is γ = cw

µLct
,

which quantifies the relative importance of the costs. The authors demonstrate
through an example that when γ →∞ the density of Y has two peaks at ±∆,
whereas when γ → 0 there is just one peak at 0. Thus, for high values of γ
(associated with high waiting costs) the main concern of customers is queue
length, whereas for low values (associated with high transportation costs)
the main concern is the distance from the server. The authors emphasize the
existence of the phase transition between these two modes. They analyze types
of asymmetry emerging from heterogeneous servers or from non-symmetric
locations and prices of the two servers.
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7.5.1 Product assortment

An assortment problem involves determining which of the possible varia-
tions of a product should be stocked when it is not possible or desirable to
stock them all. See §6.7 for similar models in monopolistic markets.

Mendelson and Parlaktürk [486] (2008) consider a Hotelling-type
model where customer preferences over product space are expressed by pa-
rameter θ ∈ [0, 1] and there is a linear misfit disutility relative to the ideal
choice. Two modes of operation are considered. A mass-customizing (MC)
firm is modeled as an unobservable M/M/1 system that supplies exactly the
desired type θ. This firm sets a uniform unit price and incurs a unit production
cost. A traditional firm holds an assorted inventory of products, outsources
production to a supplier with a given deterministic lead time, and applies
continuous inventory review. The traditional firm decides on unit pricing, po-
sitioning of available products, and on an inventory replenishment policy. It
incurs a fixed cost per order, unit purchase costs, and linear inventory hold-
ing costs. The inventory positions of the traditional firm are unobservable to
customers who base their choices on the expected waiting time at the MC,
the expected waiting time for each product type at the traditional firm, and
the relevant prices.
The equilibrium solution determines for each product supplied by the tra-

ditional firm a market segment of customers who prefer buying this item over
other standard products and over waiting at theMC firm. The authors obtain
several interesting and unexpected results. Among them:

� A traditional monopolistic firm will reduce product variety when the
MC firm enters the market.

� If one firm buys the other, thus becoming a monopoly, the variety of
product may increase or decrease.

� The effect of market size on the MC firm’s profit is not monotone.

� Speeding up service by the MC firm may lead to a decrease in profits
as a result of the competitor’s response.

� The traditional firm does not necessarily benefit from improving replen-
ishment lead times and decreasing unit holding costs.

7.6 Customer loyalty

This section covers models in which current demand is a function of past
service. Within that theme, some papers consider the monopoly case whereas
others consider competition.
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See [582] where customers are sensitive to promised delay, and customer
loyalty depends on a weighted average of past tardiness values.

Sobel [585] (1973) models customer loyalty in a market with homo-
geneous customers and heterogeneous service providers. Let W1, . . . ,Wt be
successive waiting times experienced by a customer at a given server. It is as-
sumed that successive service requests from a given customer are sufficiently
dispersed so that successive waiting times are considered independent. The
weighted average waiting time is Ut+1 = αUt+(1−α)Wt+1, with U0 = 0, and
0 < α < 1. For some constant m, if Ut ¬ m customers remain loyal to their
server, but if this condition is violated they will randomly select another server.
Assuming waiting time at server j has a cdf of the form Gj(x) = 1− aje−θjx
for x ­ 0 (for example, M/M/c or G/M/1 queues), the author derives market
share approximations for the cases of perfect competition (i.e., many servers)
and duopoly.

Hall and Porteus [299] (2000) consider a finite time horizon dynamic
multi-period model of two competing M/G/1/1 firms. Service price and unit
capacity costs are fixed, and time periods are long enough so queues act close
to their steady-state behavior. At the end of the time horizon the firms ob-
tain a reward proportional to market share. A blocked customer switches to
the other firm in the next period with an exogenous probability (the firm’s
loyalty coefficients) independent of any other information or past experience
the customer may have accumulated. This is a form of bounded rationality.
The firm’s goal is to maximize expected present value by means of setting the
capacity level in each period. The authors obtain an explicit solution to the
unique subgame-perfect equilibrium of this game.

Sankaranarayanan, Larsen, van Ackere, and Delgado [558, 559]
(2009, 2010) describe a behavioral multi-period model of a queueing system
with identical parallel servers and N customers. In each period, each customer
chooses a queue based on waiting-time expectations. Customers are connected
according to a neighborhood graph and neighboring customers share informa-
tion on their experiences in these queues in each period. Customers apply a
specific weighing scheme to their own and their neighbors’ experiences in an
attempt to identify the queue with the minimal waiting time to join in their
next visit. A numerical example seems to show convergence to a uniform selec-
tion of server. A variation of the model in which customers are risk averse and
update the variance of their estimates in a similar way is treated by Delgado,
van Ackere, and Larsen [191] (2011).

Filliger and Hongler [237] (2005) and Gallay and Hongler [242]
(2009) consider simple queueing networks with feedback loops and intelligent
customers. These customers are not strategic in the sense of acting to achieve
a specific goal, but use queue information in making decisions. The authors



206 Rational Queueing

characterize the evolution of the queue using deterministic approximations
and hydrodynamic analogues. They consider several variations and show in-
teresting stable temporal oscillations corresponding to delayed responses to
queue length in such systems.
In the simplest model, analyzed in [237], there is a single queue and each

customer possesses an impatience factor P . As long as customer waiting time
falls below P customers remain loyal and will line up to be served once more.
If the waiting time exceeds P customers leave the system.
Two extensions are provided in [242]. The first considers two parallel

servers with separate queues. Several variations are discussed, one of which
assumes only one queue is observable.17 New arrivals join the observable queue
if its length is below a threshold, or otherwise join the unobservable queue.
At the end of a service customers either leave or return to the same server for
an additional service. In another variation both queues are observable.
The second extension considers a closed two-server network.
If the time it takes for service completion is at most P the customer will

return to the same queue. Otherwise, the customer will switch to the other
queue.

Afèche, Araghi, and Baron [13] (2015) do not explicitly model com-
petition, but their model deals with customer loyalty towards a given firm,
and the existence of competition is implicit. An M/M/s firm must invest a
convex increasing amount S(λn) to achieve a flow of new customers with rate
λn. The firm also serves multiple types of base customers characterized by
their calling (visit) rates, service rates, call-dependent and call-independent
profits, and their loyalty parameters. The base customers revisit the server an
exponentially distributed time after previous service (the expected length of
this time interval is of a higher order of magnitude than the expected service
time). Customers renege after an exponentially distributed time. A fixed frac-
tion of new customers receiving service join the customer base while a fixed
fraction of the base who reneged will leave. In addition to promotion (adver-
tising) expenses the firm incurs a fixed cost per time unit per server. The firm
maximizes profit, setting the number of servers, promotion expenditures, and
the priority policy.
The authors characterize optimal controls based on a deterministic fluid

approximation and validate these analytic prescriptions through a simulation
study for medium and large call centers. They define new performance metrics
to guide the firm’s decisions. For example, the optimal policy prioritizes base
customers in decreasing order of their weighted one-time service value (the
value of serving a new customer’s current request but not any of his future
requests) and gives new customers the priority level that maximizes their value
per unit of processing time.

17This scenario resembles that of [304] except here the feedback loop is added.



Chapter 8

Routing in queueing networks

Queues can be formed at the nodes of a network or on its arcs. The simplest
form of a queueing network is a set of parallel servers supplying substitutable
services. An arriving customer selects one of these queues, or balks. In the case
of a central planner, customers are routed to the servers. Another simple topol-
ogy is that of serial or tandem queues. In this case services are complementary
and customers typically need all of them. More complicated topologies involve
selection of substitutable routes with each supplying complementary services.
Further complications arise when routes have different source and destination
nodes. For example, it is possible for customers to leave a serial network at
any node. In the case of complementary services some variations dictate a
given order while others don’t.
In the case of a very large number of users, the common equilibrium

concept is the Wardrop equilibrium: all routes used between a given source-
destination pair have the same delay, which is not larger than the delay across
any unused route between these nodes. When the number of users is not very
large, the regular Nash equilibrium applies. These differences are explained in
[47] §2.4.

207
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The literature on routing in telecommunication networks is extensive and
we cover here only papers explicitly referring to delay functions resulting from
queueing models. For a broader survey on the subject see [47].
As pointed out in [45] (see §V there), expected delay under light traffic

can often be approximated by a linear demand function. This approximation
means that results on routing when delay is a polynomial or a linear function
of demand also have some relevance to queueing systems. However, we do not
include such models in this survey.
See §2.6.4 for throughput maximization by dynamic pricing in a network,

§9.3 for related models on demand allocation to suppliers in a supply chain,
[60, 483] for price competition in networks, and [557] for demand allocation
in a network under bounded rationality.
Models of competition often include a subgame where customers choose

among parallel servers. These models are mainly surveyed in Chapter 7, while
Chapter 5.7.3 contains cooperative routing games.

8.1 Parallel servers

The problem of optimally routing demand to (unobservable/observable)
parallel servers providing substitutable services is often referred to as load
balancing.
Research on routing customers to parallel servers is mostly devoted to

unobservable queues. The pioneering work was done by Bell and Stidham [85]
(1983) where the equilibrium and SO routing in an unobservable model with
non-atomic demand is computed assuming M/M/1 latencies. This material
and extensions of it can be found in [1] §3.7 and [594]. Specifically, Chapter
§6 of [594] includes models of equilibrium, social-welfare optimization, and
competition for extensions where arrival rates are decision variables, utility is
a nonlinear function of throughput, waiting costs are nonlinear, total demand
is fixed or variable, service rates are fixed or variable with their sum being
fixed (capacity allocation models) or variable.

8.1.1 Equilibrium routing

See [46] where customers route demand to parallel servers under the power
criterion, and [572] on equilibrium routing decisions in a system with break-
downs.

Economides and Silvester [213] (1991) consider two users, α and
β, who probabilistically route Poisson demands of rates λα and λβ to two
unobservable M/M/1 servers. Requests of user α that find the server busy
join a queue, but those of user β are blocked and lost. The two users have
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different goals concerning their requests. User α’s goal is to minimize expected
waiting time while user β’s is to minimize the probability of being blocked.
The authors prove the existence of a unique equilibrium and give a detailed
case analysis of the solution types.

Orda, Rom, and Shimkin [506] (1993) extend Lee and Cohen (1985)
(see [1] §3.7.3) allowing for heterogeneous service facilities and general convex
delay-cost functions and prove sufficient conditions for uniqueness of equi-
librium routing of demand to parallel queues by a finite number of users.
Richman and Shimkin [549] (2007) extend the uniqueness result to a
family of nearly parallel networks.

Libman and Orda [444] (2001) study routing of unsplittable demand
by n customers (each user directs demand to a single server) and prove the
existence of an equilibrium under the M/M/1 delay function. The solution can
be achieved through a simple algorithm in which users sequentially update
their routing choice (in arbitrary order) and the total number of updates is
bounded by n(n + 1)/2. The authors also provide an algorithm that checks
whether the solution is unique.

El Azouzi and Altman [223] (2003) study a constrained game of cus-
tomer routing decisions subject to coupling constraints, like, for example, a
bound on the total demand sent to a server. They show that an equilibrium
still exists in such cases but multiple solutions are also possible.

Sahin and Simaan [554] (2006) consider equilibrium routing of demand
to parallel M/M/1 servers with heterogeneous service rates µj . Waiting-cost
rates cij and service value Rij depend on both user i and server j. Routing
as well as total user demand are decision variables. The authors show that a
unique internal equilibrium (i.e., all users send positive flows to all servers)
exists if Rij ­ cijµj for every user i and server j.

Kumar and Krishnamurthy [421] (2008) report the results of a series
of experimental studies on the way risk-averse customers choose a server in an
unobservable multiserver system. The system has two service providers hav-
ing similar expected service durations and levels of congestion, but different
variability of service durations. Customer sojourn time is the sum of service
duration (supply-side) and queueing time (demand-side).
The study first verifies that with exogenous data on expectation and vari-

ability, the participants consider the variability at least as important as the ex-
pected values. Then, the following conclusions are reached in the main model:

� The presence of the demand-side risk associated with congestion reduces
the risk aversion associated with the supply-side uncertainty. A manage-
rial implication of this finding is that gains from reduction in service time
variability may be limited.
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� When customers are informed that the overall level of congestion in the
market is expected to differ from normal levels, they focus more on the
service process and shift to low-uncertainty service providers.

Penmatsa and Chronopoulos [527] (2011) consider n M/M/1 servers
and m users. Initially, demand at rate φij that belongs to user j reaches server
i. Users can redirect their demand so that eventually server i serves rate βij
of user j’s demand. All redirected demand is processed by an M/M/1 commu-
nication subsystem, and users minimize the total delay of their demand (in-
cluding communication delays). The authors use the following fairness index
for measuring the equality of the equilibrium solution: [

∑
Cj ]
2
/
[
m
∑
C2j
]
,

where Cj is the expected delay of user j’s jobs. This measure is 1 when delay
is equal for all servers and decreases as the differences increase.
Experimental results indicate that the equilibrium solution is not much

lower in efficiency but provides more fairness relative to the SO solution.

Cardellini, de Nitto Personé, Di Valerio, Facchinei, Grassi, Lo
Presti, and Piccialli [129] (2015) consider delay-sensitive atomic cus-
tomers allocating demand in a three-tier network consisting of a local tier,
a middle tier with M/G/1 EPS queues, and a remote tier with an M/G/∞
queue. The processing rate of a job and the energy required depend on the
customer and on the chosen tier. Customers minimize their expected response
time subject to energy and utilization constraints. Thus both the objective
and the strategy sets of a customer depend on the strategies of other players.
The authors prove the existence of a generalized Nash equilibrium and present
a distributed algorithm for its computation.

8.1.2 Cooperation

See §5.7.3 for cooperative routing games.

Customers’ perceived utility is a weighted sum of their utilities and those of
their peers. The degree of cooperation is measured according to these weights.
In particular, non-cooperative customers assign zero weight to others, altruists
assign zero weight to their own delay costs, and equally cooperative customers
allocate weights uniformly.

Azad, Altman, and El Azouzi [77] (2010) consider routing decisions
under partial degrees of cooperation. The authors consider two simple exam-
ples. One has two customers and two parallel servers. The other example has
two customers, each associated with a server, and if one customer routes de-
mand to the other server this customer incurs M/M/1 communication costs
(similar to [384]). The authors numerically demonstrate the following possi-
bilities:

� The equilibrium need not be unique. This result is of interest because
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a unique equilibrium exists when there is no cooperation, as proved in
[506].

� A unilateral increase in a user’s degree of cooperation (which affects
other users’ strategies) may induce a new equilibrium associated with a
smaller actual cost to that user.

Blocq and Orda [93] (2014) consider routing games with malicious
players. The following example is illustrative. There are two servers with unit
service rate and two users, a selfish user S with demand rate λS = 1 and a
malicious user M. The goal of S is to minimize the expected delay WS of its
demand, while M’s objective is to maximize WS . It is easy to see that there
is no pure equilibrium in this game: S must send demand at rate ­ 0.5 to at
least one of the servers, and by sending all of λM to this serverM can induce
WS = ∞. However, given a routing choice by M, it is always possible for S
to reroute its demand and guarantee WS <∞.
The authors analyze a cooperative version of the game. Atomic customers

wish to minimize expected waiting costs and route demand to parallel M/M/1
servers. The cost of a coalition is defined from a worst case perspective as-
suming the other users act as a malicious leader M in a Stackelberg game
and distribute their demand to maximize costs to the coalition. In response,
the members of the coalition route their demands so as to minimize aggregate
average cost.

� The authors show that in this game M acts as a continuum of self-
optimizing nonatomic users. They use this finding to investigate solution
concepts such as the Nash bargaining point, the inner core and the
nucleolus.

� In [92] the authors show that if the disagreement point is the (unique)
Nash equilibrium point and customers have homogeneous costs, then
the Nash bargaining point is also SO.

Koutsopoulos, Tassiulas, and Gkatzikis [415] (2014) investigate a
peer-to-peer network of parallel servers where each server (peer) also acts as
a customer and routes demand to other servers. In addition, each server de-
termines an absolute priority ordering for the other demands. Peers cannot
directly affect delay of their own requests, but they can do it indirectly by
affecting the behavior of those they serve, and consequently the equilibrium
behavior.
The authors derive conditions for equilibrium under fixed priority rules

(including FCFS). They suggest best-response heuristics for updating priority
orders and provide numerical results for various degrees of cooperation.

8.1.3 Welfare maximization

See §5.8 forPoA analysis of competition associated with routing to parallel
servers.
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Chen, Zhang, and Huang [146] (2008) (also [145]) consider a Marko-
vian multiserver model with heterogeneous quality of service and nonlinear
waiting costs. Specifically, v1 < v2 < · · · < vn denote service values ob-
tained from servers 1, . . . , n, respectively, and the cost of waiting W time
units is θT (W ). T (W ) is convex and common to all customers and customers’
waiting-cost rate is θ ∼ U[θmin, θmax]. An arriving customer joins the queue
that provides maximum expected net utility if it is positive, or otherwise balks.
The system incurs a service cost cv per service and a lost-sale penalty cp for
each balking customer. Customer type is private information.

� The SO solution has thresholds θmin ≡ θn+1 ¬ θn < · · · < θ1 ¬ θmax
such that customers with θ > θ1 balk, and those with θi+1 < θ <
θi choose server i.1 These threshold values have the property of the
intervals (θi+1, θi) having increasing lengths. Thus, better servers obtain
higher portions of the demand with rates λi = Λ(θi − θi+1), impatient
customers are routed to lower quality servers, and the most impatient
balk.

� A similar structure of the solution results when the system is controlled
by a profit-maximizing firm. The firm applies IC prices that achieve the
desired assignment.

� Prices inducing the SO solution are numerically compared with the
monopoly’s prices for n = 2. When the market potential Λ is low the
two solutions are identical. However when Λ is high, the SO price of the
high-value server is lower than that set by the profit-maximizing firm
and is higher for the low-value server.

Sun, Tian, and Li [610] (2010) solve equilibrium and SO routing in
the parallel servers model of [85] when time is discrete and service duration
is geometrically distributed. The qualitative results are preserved under this
variation.

Gupta, Jukic, Stahl, and Whinston, [289] (2011) apply simulation
to a model with a finite number of users routing service requests to par-
allel M/G/1 service providers each offering a subset of services. Customers
are heterogeneous in service valuations and waiting-cost rates. Servers have
heterogeneous unit capacity costs. The authors consider the long-run prob-
lem of setting SO capacities. They conclude from numerical experiments that
congestion-based pricing can result in more capacity investment relative to
the no-price equilibrium if the relative cost of capacity is high compared to
service value.

Bodas and Manjunath [97] (2011) compute SO routing in a system
with two customer classes having heterogeneous waiting-cost rates and two

1The solution resembles Ghanem’s (1975) partition into priority classes according to the
impatience factor, see [1] §4.4.1.
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servers having heterogeneous service rates and admission fees. They then con-
sider the equilibrium outcomes in three models: (i) both classes consist of
nonatomic noncooperative customers, (ii) both classes act as atomic customers
(equivalently, they consist of nonatomic customers who cooperate to maximize
the aggregate class welfare), and (iii) a mixed model with one atomic customer
and one class of nonatomic customers.

Filippini, Cesana, and Malanchini [236] (2013) demonstrate how to
compute SO and equilibrium routing of customers to N M/G/1 servers with
heterogeneous service rates.2 The performance measure is the average sojourn
time of a customer. Numerical results are given for the PoA for N = 2.

Bodas, Ganesh, and Manjunath [96] (2014) consider customer classes
i = 1, . . . ,M with heterogeneous waiting-cost rates β1 > · · · > βM . The
waiting time at server j is a convex increasing function Dj(γj) where γj =∑
i λij is the total arrival rate to server j.
The SO solution is characterized by numbers n1 ¬ · · · ¬ nM such that

the routing functions satisfy λij = 0 for j 6∈ {ni−1, . . . , ni} and λij > 0 for
the internal indices of this interval. Thus, each customer class uses a nearly
dedicated set of queues with overlap possible only at the ends of the intervals.
The equilibrium routing is similarly characterized but arrival rates at the in-
ternally indexed queues are not necessarily positive. Lastly, the authors prove
that the system can be coordinated by charging admission fees corresponding
to externalities associated with joining the queues.

8.1.4 Profit

See [630] for profit-maximizing routing and pricing with parallel servers
and independent breakdowns.

Lee and Lui [432] (2008) consider Internet service providers (ISPs)
that route demand through direct links and also through profit-maximizing
higher tier ISPs. All links are modeled as M/M/1 queues. The benefit ISP i
obtains from sending flow xij , from i to j, directly or through the higher tier,
is wij log(1+xij). ISPs also incur delay costs and fees for transmission through
the higher tier ISPs. The delay-cost rate incurred by ISP i for transmitting
flow yij through the direct link with capacity cij is assumed to be γ/(cij−yij),3
and similarly for transmitting through the higher tier.
The authors provide necessary conditions for an internal routing equilib-

rium to exist when the transmission costs and capacities of the links leading to
higher tier ISPs are fixed. They also present an algorithm for determining the

2The authors compute and use the extended service time resulting from arrivals of pri-
mary users. A primary user preempts service of a regular customer and interrupted service
must be repeated.
3Rather than yij times this quantity, see [674] for a similar assumption.
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profit-maximizing solution when these parameters are the higher tier ISPs’
decision variables.

Tran, Le, Ren, Han, and Hong [629] (2015) examine a service
provider controlling M/G/1 facilities with expected service durations χ̄1 <
· · · < χ̄L.4 There are K customer classes with potential arrival rates
Λ1, . . . ,ΛK and waiting cost rates θ1 < · · · < θK . Customer service valu-
ations are uniformly distributed over [0, 1]. The provider announces class-
independent prices pl and routing probabilities sl, l = 1, . . . , L; customers
decide between joining the server to which they were routed or balking.
The authors characterize equilibrium thresholds such that a k-customer

with valuation α agrees to join facility l iff α ­ αk,l. Revenue-maximizing
prices and routing probabilities induce positive joining rates for servers k =
1, . . .K∗ and classes l = 1, . . . , L∗ for some K∗ ¬ K and L∗ ¬ L.
The authors also consider a variation where customers are routed to one of

two systems. The first system is as described above but with a single price p1,
and the second system is an M/G/∞ system with price p2. Customers assigned
to the first system choose between joining or balking before they know the
M/G/1 facility to which they will be routed. Algorithms are provided for two
versions of this setting, both when the systems are jointly owned and when
they compete with each other.

8.1.5 Capacity allocation

Korilis, Lazar, and Orda [411] (1997) consider a system with a finite
number of users, each wishing to minimize the expected delay of its own
demand by dividing it among a set of parallel heterogeneous M/M/1 servers.
By [506], this system has a unique equilibrium. Suppose the manager has extra
capacity to allocate among the servers.
The authors prove that adding capacity to any server does not hurt any of

the users (there is no Braess paradox behavior here). The minimum total wait
for system users is obtained by allocating the additional capacity exclusively
to the server initially having the highest capacity. Some of these results are
generalized by Altman, El Azouzi, and Pourtallier [48] (2003) and by
Abbad, El Azouzi, and El Kamili [2] (2006).

Libman and Orda [443] (1999) consider unsplittable routing of atomic
customers to parallel heterogeneous servers. Some of their main results are:

� A formula for the SO solution.

� Construction of a “natural” equilibrium routing and an algorithm that
checks whether other equilibria exist.

4The authors start with a system having ON-OFF transitions and transform it into an
equivalent system without interruptions where service time now represents the original total
service time including interruptions.
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� An example of a Braess-like paradox when an increase in server’s capac-
ity results in poorer system performance.

� A characterization of the optimal allocation of additional capacity when
the goal is to minimize the maximum expected waiting time at a server.5

Chao, Liu, and Zheng [134] (2003) consider N M/M/1 service stations
with dedicated demand streams at rates λ1 ¬ λ2 ¬ · · · ¬ λN . In addition,
there is a stream of non-dedicated (flexible) demand that can be served at
any station. A fixed amount of capacity is available for allocation among the
stations. The problem is to compute SO capacity allocation and probabilistic
routing of flexible customers to minimize average waiting time in the system.
The optimal solution, which the authors denote as one big and many small,
assigns all flexible demand to the N ’s facility, and waiting times under optimal
capacity allocation satisfy W1 ­ W2 ­ · · · ­ WN . Consequently, routing
flexible demand to the N -th server is IC and will result when customers are
strategic.6

Menache and Shimkin [484] (2008) consider a manager allocating
service capacities among service stations with the purpose of achieving given
ratios between the respective queueing delays. The system has a finite number
of users with heterogeneous waiting-cost rates, service fees, and utility func-
tions of total demand rates. Users maximize net utilities by determining their
rates of demand for each server. The authors prove that for a family of delay
functions, including M/M/1 delay, there exists a unique equilibrium in this
users-manager game. They also present two adaptive algorithms for capacity
allocation that converge to equilibrium in the case of two servers.

Conforto, Priscoli, and Facchinei [172] (2010) consider atomic cus-
tomers with linear waiting costs routing demand to a collection of M/M/1
servers. Servers are clustered, each with an initial capacity, and each cluster
has an extra amount of capacity to allocate to its servers. Clusters act inde-
pendently to minimize the average delay for their servers. The authors prove
that an equilibrium exists and present an example where it is not unique.

8.2 Queues with different regimes

This section considers customer choice between different type of queues
as reflected by their service discipline or available information. See §8.7 for

5See [412] for another model of capacity allocation associated with the Braess paradox.
6The authors also extend the queueing model to non M/M/1 systems such as M/G/1 and

M/M/s. The flexible demand is still routed to the loaded server, but incentive compatibility
is not proved.
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models where customers choose between two queues, one of which provides
bulk service. See [199, 202, 628] on selection between competing M/G/1 and
M/G/∞ firms.

Altman, Jiménez, Núñez-Queija, and Yechiali [50] (2004) consider
a Markovian model in which customers choose between an observable queue
Qo and an unobservable queue Qu. They extend Hassin’s (1996) “gas sta-
tions” model (see [1] §7.6) by assuming heterogeneous service rates. Arriving
customers estimate the expected queue length at Qu based on the length of
Qo. The paper investigates the existence of equilibrium threshold strategies.
If others were to increase thresholds then, for any given length at Qo, one
would intuitively expect a shorter queue length at Qu. Therefore this is an
ATC model and we would expect a unique mixed equilibrium. A proof of this
intuition turns out to be difficult and the authors obtain related results:

� The joint probability distribution of the states of congestion in both
queues for a given threshold strategy.

� A threshold minimizing a weighted sum of the mean queue lengths in
both queues.

� Conditions for the best response to a pure threshold strategy to be again
a (possibly different) threshold strategy.

The question of whether the model is indeed ATC remains open.7,8

Hassin [306] (2009) considers a Poisson stream of customers choosing
between joining one of two servers with identical exponential service but with
different queue disciplines. One server conducts an FCFS regime while the
other randomly selects the next customer to be served (SIRO regime). The
two queues are observable and jockeying is not allowed. Since the expected
waiting time at the SIRO server depends on the joining strategy adopted by
other customers (in particular, future arrivals), our interest is in the result-
ing equilibrium and the associated queue performance variables, such as the
average joining rate to each of the queues. A (mixed) equilibrium switching
curve strategy defines a threshold xf = nf + pf at the SIRO queue where
nf is a nonnegative integer and pf ∈ [0, 1), for every possible queue length f
at the FCFS server. The resulting behavior is that an arrival who observes f

7Footnote 10 in §7.6.1 of [1] is based on an earlier version of [50] and is incorrect.
8Situations where customers choose between joining a queue now or in the next period

can also involve a choice between observable and unobservable queues, see §6.2.7 and §7.4.
Pazgal and Radas [524] (2008) conducted a computerized laboratory experiment in
which players choose between joining an observable M/M/1 queue or balking to return
the next day. In the second day there is no balking option and players must wait until
they are served. Thus, also in their experiment, a player sees one observable queue and
chooses between joining it or joining another unobservable queue. However, the length of
the latter queue is assumed to be independent of the former one and as a consequence the
cost associated with balking is independent of the strategies of the other players.
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customers at the FCFS server and r customers at the SIRO server joins the
SIRO server with probability 1 if r < nf , and with probability pf if r = nf .
Otherwise the customer joins the FCFS queue. The strategy is thus defined
by an infinite-length vector of thresholds. It is assumed that arrivals to an
empty system select each queue with equal probability.9 A nice feature of the
model is that the input data consists of a single parameter, namely the system
utilization ρ = λ/(2µ).
The paper opens with a static version of the model in which a finite number

of customers choose their server according to a predetermined order and no
new arrivals are expected. In equilibrium, the SIRO server obtains two thirds
of the demand! This raises the question of whether the SIRO server would
obtain a higher share of the demand in the dynamic case as well. The dynamic
model is solved numerically giving for any given ρ the vector of thresholds and
the resulting average joining rate for the SIRO server. The main results are:

� The market share of the SIRO server is always less than that of the
FCFS server.

� If identical servers compete by choosing is between FCFS and SIRO,
then the only equilibrium in this game is when both employ FCFS.

The difference between the results of the static and dynamic models can be
explained by observing that the last customer to join the random queue in
the static models is guaranteed an expected wait for the service of half of the
customers in that queue. In the dynamic model this is not true because of
the possibility of future customers joining the queue. However, for the FCFS
queue there is no difference between the static and dynamic cases.

Kardeş [389] (2012) simplifies the model of [306] by assuming the choice
is between an FCFS server and an egalitarian processor sharing (EPS) system
where capacity is equally shared by present customers. In particular, there
is no need in this version of the model to define an arbitrary decision of a
customer arriving when both servers are free. The author also shows in this
case that when the servers have identical capacities a higher market share is
obtained by the FCFS server. The author also considers servers with different
capacities and concludes that the EPS firm must be at least 15% faster than
its competitor to guarantee a minimum market share of 50%.

Hayel, Quadri, Jiménez, and Brotcorne [332] (2015) assume cus-
tomers choose between an unobservable M/M/s/s queue and an unobservable
M/D/1 queue. Time spent in the M/M/s/s system is not costly, but a cus-
tomer selecting it must pay an entry fee and incur a blocking cost if all servers
are busy. Joining the M/D/1 queue does not require a payment, but there is
a constant unit-time cost while waiting. Balking is not allowed. The authors

9It is demonstrated that giving preference to one of the servers when both are free
significantly changes the outcome.
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compute the equilibrium probability pe ∈ (0, 1] of selecting the M/M/s/s
queue. Since this is an ATC situation, pe is unique.
The authors also suggest a variation in which customers select the queue

according to a logit function. Specifically, let c1(p) and c2(p) be the expected
costs associated with the two options. Then, the equilibrium probability for

joining the first queue is the unique solution to p =
e−γc1(p)

e−γc1(p) + e−γc2(p)
, where

γ > 0 is a parameter such that 1/γ represents the degree of irrationality. The
authors present an example where customer welfare can increase or decrease
with γ.

Bodas, Ali, and Manjunath [95] (2014) consider Poisson arrivals of
customers with heterogeneous waiting-cost rates and general service time dis-
tribution. Arriving customers choose between two unobservable queues with
heterogeneous service rates: a cost-free FCFS queue and a nonpreemptive
highest-bidder-first (HBF) queue. Balking is not allowed. The strategy profile
consists of a pair (p(θ), X(θ)) consisting of a probability p(θ) that a customer
with waiting cost rate θ joins the FCFS queue with the bid X(θ) if the cus-
tomer joins the HBF queue. The main results are:

� In equilibrium, customers choosing the HBF option are those with θ
value above a threshold.

� Suppose both servers are owned by a monopoly having a fixed amount
of capacity. Revenue can be higher if some of the capacity is allocated
to the FCFS server.10

� Adding a cost-free FCFS server to an existing HBF server does not
increase revenue (but this property does not always hold when balking
is allowed).

8.3 Complementary services

When service value is conditioned upon completing a series of services we
say these services are complementary. When the order of receiving service
is predetermined we have tandem queues. As a network, tandem queues are
represented by a directed path.
See [290] for tandem queues consisting of a first MTS stage and a second

MTO stage, [716] for the Down-Thomson paradox in a system of tandem
queues, and [28] for a model where delay information is provided to customers

10This behavior conforms with Myrdal’s claim, see §6.6.4, that slowing down service at
an HBF system can increase revenue.
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after completing service at the first queue and before starting service at the
second.

8.3.1 Equilibrium

Parlaktürk and Kumar [520] (2004) consider a system with two
servers, two-stage deterministic service, and a random arrival process. The
first stage of service takes time mf , and the second takes ms, regardless of
the server involved. Both servers can perform both stages, however the two
service parts for any given customer must be carried out by different servers.
Servers have separate queues and the service discipline can discriminate be-
tween customers seeking to obtain their first stage of service and those arriving
for their second stage of service.11 A customer’s decision of which queue to
join first depends on observable queue lengths and residual service times for
both servers. The queue manager decides on the priority rule at the queues,
distinguishing between first-stage and second-stage customers.
Since the priority rule allows for overtaking, an arriving customer’s decision

also depends on the strategies of future arrivals, and hence the authors investi-
gate (pure) equilibrium customer strategies and priority rules that yield good
(social) performance in equilibrium. Two natural priority rules are shown to
be unsatisfying in this respect: giving priority to second-stage customers, and
first-in-system first-out. However, the authors develop a workload-regulating
rule that induces arrivals to split evenly and avoids server idleness. The rule
generally gives priority to second-stage customers. But when the number of
stage-two customers in one of the queues is small, priority is given to first-
stage customers in the other queue. It is shown that expected queue lengths
under this rule are not much longer than a theoretically derived lower bound.

D’Auria and Kanta [182] (2015) consider threshold joining strategies
in a Markovian model of two tandem queues with homogeneous customers.
The first server serves at rate µ1 and the second at rate µ2. Service value is
R and waiting at queue i costs Ci per unit time. The decision of whether to
join or balk is taken upon arrival and reneging is not possible.
The authors compute the equilibrium joining threshold assuming cus-

tomers know the total number of customers in the system but not in each
of the queues. They find that the probability of the first queue having a given
length conditioned on the known total length of the queues is independent of
the customers’ threshold. This property leads to a proof for the existence of
a dominant threshold strategy.

Burnetas [114] (2013) investigates a network of N multiserver tandem
queues. Staying in the nth queue costs Cn per unit time and obtaining service
there is associated with reward Rn. Customers decide, before joining, which

11The model is simplified by allowing a server with an empty queue to give second-stage
service while the first stage is still processed by the other server.
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set, 1 to n, of consecutive queues they will attend. A strategy is therefore
characterized by a vector (x1, . . . , xN ) where xn is the probability the customer
joins queues 1 to at least n. Clearly 1 ­ x1 ­ · · · ­ xN ­ 0. The author proves
that a unique symmetric equilibrium (xe1, . . . , x

e
N ) exists. Compared with the

SO strategy (x∗1, . . . , x
∗
N ) it is shown that x

∗
n ¬ xen for n = 1, . . . , N .

Arlotto, Frazelle, and Wei [64] (2015) consider variations of the fol-
lowing scenario. Customers need service from two stations, A and B, but are
free to choose the order in which to visit the stations. Arrivals are Poisson,
service is deterministic, and the arrival and service rates satisfy µB > µA and
λ ­ µA. The latter assumption means the queue is overloaded, but the anal-
ysis applies to any given state of the system. Arriving customers observe the
workload at the two stations before deciding whether first to join queue A or
B aiming to minimize waiting time. The authors prove that the strategy visit
station A first independently of the system state is an equilibrium.

8.3.2 Monopoly

Başar and Srikant [80] (2002) examine a network of N tandem M/M/1
queues supplying different kinds of services to users of N +1 types. There are
nk k-customers k = 1, . . . , N , that only need the service of server k, and there
are n0 0-customers who need all the N services. The network is owned by
a profit-maximizing firm that sets one price p for a unit demand served by
any of the servers. The utility of a k-customer, k > 0, submitting demand at
rate x is ak log(1 + x) − px −Wk, where Wk is the expected delay at server
k.12 Similarly, for a 0-customer the utility is a0 log(1 + x) − Npx −

∑
Wk.

Customers react to price p by selecting utility-maximizing demand rates.
The authors prove that for any fixed p there is a unique customer equilib-

rium. They derive the optimal price for a restricted case as well as profit and
customer net utilities when the number of customers is very large.

Ching, Choi, Li, and Leung [164] (2009) describe a queueing system
with n customer classes and two service stages. The first stage consists of an
M/M/s queue; the second consists of n independent M/M/1 queues, one for
each class. The demand function for class i is linearly decreasing in the price Pi
imposed on this class. Note that Pi is a nominal price and not the full price, so
customers are not time sensitive. Instead, there is a uniform exogenous upper
bound on the expected waiting time for each class. The authors provide an
explicit solution for the profit-maximizing price when n = 1.

Caro and Simchi-Levi [130] (2012) consider a multiclass loss system
where the service of a k-customer requires a specialized server from a pool of
Nk dedicated servers and another server from a pool of N general servers. An

12As in [81], Wk is not multiplied by x.
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arriving customer enters service if there are free servers of both types or is oth-
erwise lost.13,14 The arrival of k-customers is Poisson with a price-dependent
rate (sojourn time consists only of service time which is not controlled and
hence demand is not delay-dependent). The authors characterize the revenue-
maximizing class-dependent prices in this system.

8.3.3 Competition

Veltman and Hassin [635] (2005) study a profit maximization model
of two servers: an unobservable M/M/1 service provider charging a flat price
for service and a parking provider providing a complementary service for the
time the customer spends at the service provider. A fixed reward is received
after obtaining both services, but no benefit is received from obtaining just one
service. Waiting costs are linear. In contrast to competition between servers
providing substitutable services, here an increase in the price charged by one
of the servers reduces the profit of the other server since it reduces the common
customer-equilibrium arrival rate. Some of the main observations are:

� Suppose the parking provider charges a price proportional to usage time.
If potential demand exceeds a given critical value then the price equilib-
rium is unique and the service provider’s profits will be higher than the
parking provider’s. Otherwise, there is a continuum of price equilibria.

� When potential demand increases, both service provider and parking
provider respond by lowering prices (to compensate for the increase in
expected waiting time).

� When the two servers cooperate and act as a monopoly, they charge SO
prices (the monopoly gains all customer welfare, for the same reason
as in E&H). However, competitive equilibrium prices are higher than
socially desired, thus resulting in lower congestion.

� The parking provider can increase profits by charging a fixed price in-
dependent of usage time (in which case it can be considered as a seller
of a complementary product).

� It is sufficient for the social planner to control one of the servers to
achieve social optimality. This is done by setting a zero price at the
controlled facility and letting the other server act as a monopoly.

� Sun, Li, Tian and Zhang [609] (2009) extend [635] by considering
the arrival of batches that share the parking cost. They also add the
(somewhat uncommon) possibility for both servers to charge a fee pro-
portional to usage time. The extension to batch arrivals does not change

13Note that admission control could be used to further increase profits.
14Services supplied by the dedicated and general servers are complementary services but,
unlike other models of this type, these services are given simultaneously.
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the qualitative results, and the new mode of payment is undesired both
socially and by the service provider.

Badrabadi and Tarokh [78] (2010) consider a Stackelberg game
with three M/G/1 service providers: Two identical substitutable competing
providers and a monopolistic server providing a complementary service.15 Cus-
tomers differ in service valuations and waiting-cost rates, which are uniformly
distributed and perfectly correlated. Each server can choose one of two ex-
ogenous service levels (expected lead times) dL or dH . The monopolist acts
as leader, selecting service level and price. The competing servers follow by
simultaneously selecting service levels and prices. The composite lead time
incurred by a customer is the maximum expected lead time offered by the
two servers serving this customer.16 There are six possible cases: the leader
chooses one of dL and dH , and the followers either both choose dL, both choose
dH , or choose different levels. In comparing the six solutions the authors con-
clude that in low-traffic intensity competitors will differentiate themselves by
choosing different service levels while in high traffic they may choose the same
levels.

Afèche [11] (2013) considers a tandem network of two M/M/1 servers,
each operated by a different profit-maximizing service provider. The network
serves three customer types: Cross-traffic customers requiring service from
both servers, and local-traffic customers requiring service from only one of the
two servers. For each customer type the value generated from serving demand
rate λ is proportional to λ1−α/(1−α) for some α ∈ [0, 1) and waiting-cost rates
are perfectly correlated (affinely) with service valuations. The main results are:

� Optimal prices also maximize social welfare. In the absence of local
traffic, decentralized price competition leads to a higher total price and
a smaller demand rate (undercongestion).17 However, the presence of
time-sensitive local traffic improves performance of the decentralized
operation.

� Suppose service capacities can be optimized at a linear cost and there
is no local traffic. In the resulting price and capacity competition game,
firms invest in capacity only if α < 0.5. The total cross-traffic price is
greater than that of a centralized monopoly which is greater than the
SO total price. The capacities and demand rates satisfy the reversed
inequalities.

15The general model assumes there are also customers interested in just one of these
services.
16A possible interpretation is that services are provided simultaneously and the expected
maximum of the two random waiting times is approximated by the maximum of their
expected waiting times.
17As in [635].
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� Peering: Suppose each server has a dedicated arrival process. Suppose
also the servers and arrival processes are symmetric and each server
agrees to serve the other’s demand without charge. This arrangement
results in a lower total price and a higher arrival rate than the monopo-
listic solution (overcongestion), which is contrary to the outcome under
decentralized price competition.

� In the same setting as the peering model, the monopolistic solution can
be achieved by an adequate price transfer agreement between servers.

Melnik [482] (2015) considers a Markovian model of profit-maximizing
servers i = 1, . . . ,m, each providing service at n points on a linear route.
Customers of type j arrive at rate λj and require service at points 1, . . . , j.
Servers compete by setting prices c(i)j . If the rate of j-customers selecting

provider i is λ(i)j , then j-customers’ full cost is c
(i)
j +

∑j
k=1 a

(i)
k where a

(i)
k =(

µ−
∑n
s=k λ

(i)
s

)−1
is the expected waiting time at server i’s queue at point

k. The author computes a symmetric price-equilibrium assuming all servers
provide identical full prices to each customer type and all customers evenly
split their demands among all servers.

8.4 Partial control

An intermediate case between the equilibrium and SO solutions is reached
when the social planner controls a fraction of the customer population. The
planner first dictates routing behavior for the controlled fraction, thus affect-
ing the individually optimal decisions of the uncontrolled fraction and the
resulting equilibrium. It is common to refer to such games as Stackelberg rout-
ing games.
See [253] for partial control in a single-server queue.

Korilis, Lazar, and Orda [410] (1997) consider the model of [411] but
assume part of the demand is controlled by a manager wishing to reduce the
overall average system delay. The manager leads by announcing the routing
of the controlled demand, presumably to some of the slower servers, and un-
controlled customers then follow. Assuming the M/M/1 latency function, the
authors prove that:

� In the case of a single selfish user, the manager can always enforce the
system optimum.

� There exists a threshold α0 for the controlled portion of demand and,
if exceeded, the manager can induce an equilibrium maximizing social
welfare (minimizing average delay).
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� In a heavily loaded system α0 is small and it is easier to enforce the
optimum.

� Kaporis, Kirousis, Politopoulou, and Spirakis [387] (2005) con-
sider a simpler algorithm for the problem. The algorithm assigns the con-
trolled demand giving priority to servers that would receive at least some
demand optimally but receive no demand in equilibrium. The increased
welfare obtained by the central planner’s allocation is demonstrated in
numerical experiments. Unexpectedly, for M/M/1 latency functions, α0
is smaller when the algorithm is applied to instances with higher PoA,
i.e., those where the role of the manager is important.

Kaporis and Spirakis [388] (2009) present algorithms for computing
the fraction of demand necessary to be controlled by the system manager
to induce the SO network routing when all other demand belongs to self-
optimizing non-atomic customers. We describe the case of m parallel queues
with general latency functions. Let (o1, . . . , om) and (n1, . . . , nm) be the total
assignment of demand to servers 1, . . . ,m in the optimal and equilibrium
solutions, respectively. The algorithm initially assigns controlled demand of
size oi to servers having ni < oi, i.e., the (slower) servers which are less
attractive to the users. It then discards these servers and continues recursively
until encountering a system where the equilibrium solution is also optimal.

8.5 Routing with transportation costs

This section includes queueing models with customers traveling to receive
service and thus incurring transportation costs. Similar models may include
communication costs. Customers wish to minimize the sum of travel, waiting,
and admission costs, and we extend the usual definition of full price to include
this sum.

Related Hotelling-type models are reviewed in §7.5. See [225, 384] and
[406] on inefficiency analyses of routing models with transportation costs. See
§11.2.3 for games of location that incorporate transportation costs.

Heinhold [337] (1978) proves the existence and uniqueness of an equilib-
rium routing of demand to service facilities in a system where customers and
multiserver facilities are spatially distributed. Customers are homogeneous ex-
cept for their locations and each customer location produces Poisson demand.
Balking is not allowed. In equilibrium, customers visit a facility with the mini-
mal expected sum of traveling and waiting time. Results of an empirical study
back up the theoretical predictions.
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Brandeau and Chiu [106] (1994) derive an O(n2) algorithm for solv-
ing a Stackelberg location game between two servers on a tree network with n
nodes. Customers are located at the nodes and incur transportation and con-
gestion costs. Congestion cost at a facility is a nonnegative increasing convex
function of its served demand. Competing servers choose locations (on nodes
or edges of the tree) aiming to maximize their market share. This and earlier
works on strategic facility location are surveyed by Owen and Daskin [507]
(1998). In particular, section §4.1.2 of their survey contains queueing models.

Brandeau and Chiu [107] (1994) consider locating service facilities on
the nodes or edges of a tree network to minimize social cost. Customers are
located at the nodes and can split their demand among facilities. They incur
waiting and transportation costs, and act independently. For given facility
locations it is shown that customer equilibrium is unique. The authors then
consider the location of two facilities with given (possibly different) capacities.
They prove that there exists an optimal solution such that at least one facility
be located at a node and use this property to derive an O(n3) algorithm.

Grossman and Brandeau [261] (2002) consider social optimization in
a variation of [337]. They show that it is possible to induce an equilibrium
with the SO routing of demand by charging appropriate (possibly negative)
tolls at the servers. Optimal toll values are not unique. For example, tolls
charged by subsets of servers that do not share potential demand from a
common customer location can be changed by a constant without affecting
the equilibrium. This flexibility can be exploited in setting tolls with desired
properties, such as revenue-neutral tolls.

Zhang, Berman, and Verter [702] (2009) develop a heuristic for the
following model: There are n sites, each producing a stream of requests, and a
finite set of potential locations for M/M/1 service facilities. Given a subset of
locations of operating facilities, let Ti be the minimum i-customers’ full cost
(travel and congestion cost) over all operating facilities. The model requires
that all i-customers select a common facility which achieves the full cost Ti.
The demand rate λi is a linearly decreasing function of Ti. The goal is to find
a set of locations for the service facilities that maximizes total served demand
subject to a requirement that facilities cannot be operated unless they serve
a given minimum demand rate.

Zhang, Berman, Marcotte, and Verter [701] (2010) extend [702] in
two ways. First, they allow i-customers to split demand among several facilities
that achieve the minimum full cost Ti. Second, each facility is modeled as an
M/M/s queue and the central planner has a given number of servers to allocate
to the operating facilities. The authors develop a solution method and use it
to analyze an illustrative case.

Rabieyan and Seifbarghy [539] (2010) apply heuristics to compute
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SO locations at the nodes of a network for a given number of service centers.
The benefit of serving a customer from node i at location j is exogenous for
every i, j. For a given choice of service-center locations customers choose cen-
ters using a logit function of distances from the centers. The selected locations
are constrained such that the resulting utilization of each center is at most a
given constant.

Aboolian, Berman, and Krass [4] (2012) design algorithms for com-
puting profit-maximizing location, capacity, and customer routing to service
facilities. Service price is exogenous. Each customer has upper bounds specify-
ing maximum travel distance and waiting time. These bounds are independent
random variables. Demand from a given location i must be routed to a com-
mon facility j.
Then, all i-customers who can both travel the distance dij between lo-

cations i and j and wait the expected waiting time Wj at facility j will be
served. Decision variables are the routing rule and either the number of servers
in an M/M/s queue with a fixed capacity or the capacity in an M/M/1 queue
at each location. In most instances of a computational study, the generated
solutions assigned customers to their utility-maximizing facility, creating no
conflict with individual preferences.

8.6 Braess-type paradoxes

The Braess paradox occurs when increasing the capacity of a link or a
server degrades overall system performance. Examples of the Braess para-
dox in unobservable queueing networks can be found in Cohen and Jeffries
[171] (1997), Kameda, Altman, Kozawa, and Hosokawa [383] (2000), and in
Kameda, Hosokawa, and Pourtallier [385] (2001). A simple 3-server setting for
the paradox is given in [1] §3.8.1. Other related “paradoxes” associated with
equilibrium routing decisions in networks are reported by Zhang, Kameda,
and Shimizu [700] (1991). Specifically, the mean sojourn time, in both equi-
librium and SO solutions, may decrease when arrival rates or communication
costs increase.
See [443] for an additional example of a Braess-type paradox.

Korilis, Lazar and Orda [412] (1999) consider a (directed) network
where links are associated with M/M/1 queues and a given additional ca-
pacity is available for allocation. All users enter the network at a common
source and leave at a common destination. The authors prove that the follow-
ing allocations avoid the Braess paradox and hence decrease the equilibrium
expected time in the system: Either augment the capacities of all servers by
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the same factor, or only augment links that directly connect the source to the
destination.

Kameda and Hosokawa [384] (2000) (see also [382]) provide a very
simple and insightful example with two identical M/M/1 servers each having
a dedicated user with demand rate λ. Each user incurs initially an expected
waiting time of 1

µ−λ . Suppose users are allowed to send any part of their de-
mand to the alternative server and that this requires a communication (or
travel) cost t > 0 per unit demand. The authors prove that if t < λ

(µ−λ)2 , a
unique symmetric equilibrium exists in which each user sends a positive frac-
tion of demand to the alternative server.18 Expected waiting time at the server
does not change, but both users are now worse off because they incur com-
munication costs. Indeed, the cost degradation (and the PoA in the system
where communication is allowed) is unbounded.

Kameda and Pourtallier [386] (2002) derive general results and pro-
vide a queueing example (Example 1 on page 427 in [386]) generalizing the
example of [384].

El-Zoghdy, Kameda, and Li [225] (2006) consider multiple M/M/1
servers with a user at each server location. Users decide how much demand to
process at their location and how to route remaining demand to other servers.
Routing is associated with communication time, which is either constant, de-
pends on the total amount of routed demand, or only depends on the amount
of demand sent between locations. The authors investigate the possible cost
degradation when communication capacity is increased. A numerical study
demonstrates that it is maximal under complete symmetry.

8.7 The Downs-Thomson paradox

The Downs-Thomson paradox occurs when a road is expanded, customers
are drawn away from public transit, and in the new equilibrium the road
becomes more congested and the fare of public transit is raised to compensate
for the loss of demand, resulting in all travelers being worse off.

Calvert [125] (1997) considers a Markovian system where new customers
choose between a single-server queue and a facility with an infinite number
of servers serving batches of size N > 1. In addition to this primary arrival

18The bound on t is exactly the externality, i.e., the waiting time saved when a customer
balks (see §1.8.1). If the communication cost is lower, it is worth diverting some demand to
the other server.
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process of customers, there is also a secondary arrival process dedicated to
the bulk-service facility. This assumption assures that the batch fills up with
probability 1 regardless of the behavior of the primary customers.19,20 The
Downs-Thomson effect in this context means that an increase in service rate
from the single server may cause an increase in the equilibrium expected time
customers spend in the system. The author demonstrates that this effect is
possible in both observable and unobservable versions of the model.

Full solutions of the models considered in [125] are given by
Afimeimounga, Solomon and Ziedens [20, 21] (2005, 2010).
In [20] the authors treat the unobservable version. They use the term

Road (R) when referring to the single server service and Train (T) when
referring to the bulk service, and an arriving customer chooses these services
with probabilities pR and pT . A nice feature of this model is that the R-
system is ATC while the T-system is FTC. Thus, an increase in customer
tendency towards selecting the R-server will increase the expected wait at the
R-server but also, by decreasing the arrival rate to the T-server, will increase
the expected wait there.
The authors show that the difference between expected waiting times at

the two systems is a quadratic function of pR. The roots in (0,1) define mixed
equilibria. Additional candidates are pR = 0 and pR = 1. However, four
equilibria are not possible because when the quadratic function has two roots
it has the same sign at both pR = 0 and pR = 1 so only one is an equilibrium.
The authors give details of all possible sets of equilibria and specify which
of these are stable. An interesting result is that this richness of equilibria is
actually possible only when N = 2. When N > 2, the equilibrium is unique
and pT is smaller than the SO value.
In [21] the authors solve the model for observable queues. The equilibrium

strategy gives rise to a switching curve which defines for every queue length
at one of the facilities a threshold value on the queue length of the other.
This threshold separates the states that dictate joining the former from those
that dictate joining the latter. The authors prove a unique equilibrium exists
and that it defines a monotone switching curve. The authors provide exam-
ples where state-dependent routing mitigates the Downs-Thomson effect of
the unobservable case. They find that for most parameter values the delay
is less, and sometimes considerably less, for the observable model than for
the unobservable model with the same parameter values. However, they also
present examples where delays in the observable model are slightly greater
than those in the unobservable version.

19See [111] for a similar assumption.
20The shuttle model of [308] and [1] §1.5 resembles this model, but with important differ-
ences. The cost alternative to bulk service is independent of customer strategy. Furthermore,
no dedicated demand is assumed and therefore never joining the bulk server is always an
equilibrium in the unobservable version.
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Ziedins [716] (2007) considers a system with K identical observable
tandem queues. The ith stage of each queue can hold at most Ci customers, i =
1, 2. An arriving customer can either join a queue with less than C1 customers
in the first stage, or balk. If first-stage service for a customer terminates and
the second stage already is full with C2 customers, the customer is rejected.
Balking costs the customer d1 and rejection from the second stage costs d2.
Note that there is no waiting cost in this model. Customers are only interested
in the probability of successful service and may prefer one queue over another
having fewer queueing customers.
The author compares the IO and SO joining policies in a small example

(with C1 = C2 = 2) by considering the six possible strategies for various
cost values. The Downs-Thomson paradox in this model is demonstrated by
showing that for d2 > d1 the IO strategy may result in a higher total cost to
the system when the service rate increases at the second stage.

Nobel and Stolwijk [504] (2011) consider customer choice between an
M/G/s system representing a taxi stand and a bulk service M/G/∞ system
representing public transportation. They consider the observable and unob-
servable versions and compute the equilibrium and SO solutions. The Downs-
Thomson paradox can occur in both cases: an increase in service rate or in the
number of servers in the M/G/s queue may cause an increase in the average
system waiting time. The effect of bounded rationality on customer welfare
is also discussed by computing system performance when customers employ
heuristics rather than performing exact computations.

Chen, Holmes, and Ziedins [156] (2012) extend [125] assuming both
queues provide bulk service. The batch size at the ith queue is Ni, service rate
is µi, and there is a dedicated Poisson(σi) stream of customers, i = 1, 2. In
addition, a Poisson(λ) stream of flexible customers select one of the queues
with the minimum expected waiting time. The authors show that the results of
[20, 21] on existence and uniqueness of the equilibrium are maintained under
this extension as well. In particular, when the queue is observable the expected
delay is in most cases smaller than when it is unobservable, but the reverse
inequality is also possible.





Chapter 9

Supply chains, outsourcing, and
contracting

This chapter surveys models where a service or a product is supplied by
agents having conflicting goals while at the same time sharing common in-
terests in the efficiency of the system. These models combine elements from
models on complementary services and on cooperation, which are separately
discussed elsewhere in this survey.
This book is about queueing games, but it seems that the models in the

concluding section of this chapter especially merit this title. These models
describe games between two agents with opposing objectives, each controlling
a different component of a queue. These models resemble supply chains but
the emphasis is on the equilibrium rather than on system control.

� In most supply-chain models, the main game is between buyers and sup-
pliers. Customers neither obtain an explicit value nor incur costs. They
either behave in a non-strategic way, or their behavior is summarized
through a demand function.

� Outsourcing models consider firms that profit by letting another firm
(supplier) serve their demand. Often the originator firm can also serve
its demand in-house but less efficiently. In such a case, even a single
supplier has incomplete monopolistic power.

� In most cases, the purpose of the research is to induce cooperation be-
tween the supply-chain’s agents through contracts designed to increase
system profit and distribute added revenue. Of particular interest are
contracts which coordinate the system, i.e., they induce decisions that
maximize the efficiency of the supply chain.

� It is common to (implicitly) assume a contract is for a fixed term and
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performance is evaluated at the end of the term to settle the contract. It
is also common to use the steady-state distribution of waiting time for
design and analysis of the contract. This is a reasonable approximation
when the contract term is for a sufficiently long period, but a long-term
contract also allows for good estimations of variables that cannot be
directly observed, such as the service rate, and assumptions concerning
asymmetric information may be hard to justify.

� Ren and Zhou [548] (2008) distinguish between inventory supply chains
and service supply chains. In inventory supply chains there is a flow of
physical storable goods and the seller obtains the revenue directly from
the customer. In service supply chains, such as call centers, the server
usually does not earn direct revenue but is compensated for investment
and effort by the user company. Moreover, the servers are invisible to the
customer who does not distinguish between them and the user company,
and any costs incurred during service (waiting, unsatisfying service) will
be imposed on the user company rather than on the server.

� The comprehensive surveys by Gans, Koole and Mandelbaum [245]
(2003), and Akşin, Armony, and Mehrotra [25] (2007) indicate that al-
most all literature on call centers deals with non-strategic customers.
Strategic models are briefly mentioned in §7 of [245] along with other
directions for future research. Literature on queueing models motivated
by staffing problems in call centers is surveyed in [422]. These models
typically assume a system with many servers. Such systems can operate
at high utilization, while still providing good service. This, and the fact
that the stochastic system is in most cases not tractable, naturally leads
to asymptotic approximations based on heavy-traffic theories.

� Agents in a supply chain provide services that are complementary, in
the sense that benefit is generated only when all stages are completed.
However, this differs from complementary service models described in
§8.3, where customers wishing to enjoy the outcome of a service must
visit a set of servers providing the different component parts of the
service.

� Supply chains are also discussed in §5.5 with the focus on decentralized
decision making. See also [518] for a study of a supply chain facing
customer bounded rationality.

9.1 Inventory supply chains

Cachon [116] (1999) considers an M/M/1 supplier with a fixed unit-
production cost that sells to a retailer at an exogenous wholesale unit price.
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The retailer in turn sells to customers at an exogenous retail unit price. Both
supplier and retailer hold inventory and incur the same fixed unit holding-cost
rate. Demand cannot be backordered and there is a system penalty for lost
customers which the two agents share in predetermined parts. The supplier
implements base-stock level Ss and the retailer implements base-stock level
Sr. These base-stock variables are the only decision variables in the model.
The inventory of the system can be described by a single variable: if it is
at most Sr then all the inventory is held by the retailer. The supplier can
have positive inventory only when the retailer’s inventory is Sr. Naturally, the
supplier benefits from this arrangement.
The author investigates both theoretically and numerically the properties

of the best-response functions when Ss and Sr are approximated as continuous
functions, paying particular interest to the prevalence of multiple equilibria
(which appear to be rare) and loss to the system due to competition (which
can be large). The author considers several coordination schemes including
subsidies and sharing of costs. The most effective method combines inventory
sharing with a transfer payment for expected lost sales.

Plambeck and Zenios [533] (2003) consider a supply chain where the
service rate is dynamically controlled by a supplier and cannot be observed by
the retailer. The retailer’s objective is to determine a payment scheme that
minimizes discounted costs of inventory, backordering, and transfer payments
to the supplier. The supplier incurs convex capacity costs and plans consump-
tion over time to maximize a discounted value of an additive exponential utility
function. The optimal incentive scheme combines time-dependent payments
per completed job and inventory penalties, both decreasing as inventory is
depleted and increasing when inventory approaches a desired base-stock level.
This scheme coordinates the systems (achieves the production policy the re-
tailer would choose in a centralized setting) if the supplier is risk neutral, but
not when risk averse. The authors investigate the performance degradation
caused by factors such as discounting rate, risk aversion, and convexity of the
capacity costs.

Caldentey and Wein [122] (2003) consider a supply chain with ex-
ogenous price and demand. A supplier sets capacity µ and pays cost cµ; a
retailer sets a base-stock level s and incurs holding costs. The system also
incurs backorder costs which the retailer and the supplier share in exogenous
proportions α and 1 − α, respectively. The authors simplify the analysis by
applying exponential approximation to the geometric distribution of the sup-
plier’s M/M/1 queue length. They prove that a unique equilibrium exists, for
which they obtain a closed-form expression.
Naturally, the equilibrium does not minimize aggregate system costs. The

authors derive the PoA which depends on the ratio of backorder to holding
unit costs and the fraction α, but is independent of the unit capacity cost c.
If backorder unit cost exceeds unit holding cost, PoA is minimized when the
backorder cost is shared approximately evenly, that is, near α = 0.5.
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The authors also propose a contract that coordinates the chain by linear
transfer payments such that the objectives of both agents become scaled ver-
sions of the centralized one. They conclude by solving two Stackelberg games,
each with a different leader.

Cachon and Zhang [119] (2006) add contract design and asymmetric
information to the model of [122]. Customers arrive to purchase a product
from a buyer. The buyer acquires the product from an MTO supplier chosen
from a pool of n ­ 1 suppliers. The chosen supplier will have to build up
capacity µ at a cost bµ, where b is a realization of a random variable with a
known log-concave cdf F on an interval [bl, bh]. The realization b is unknown
to the buyer. Once a unit production is completed it is delivered to the buyer.
The buyer incurs inventory holding costs and backorder penalties, and uses a
base-stock policy.
A procuring mechanism is a process where in response to the capacity cost

announced by the supplier, the buyer announces the price he is willing to pay
and the capacity the supplier is required to provide. If the buyer can choose
from multiple suppliers, the mechanism also includes the probability of each
supplier being chosen as a function of their announced capacity costs. It is re-
quired that the announced price is such that even a supplier having the highest
possible cost bh accepts the offer. The authors identify the optimal mecha-
nism for the buyer and also propose simpler alternatives which are effective
with regard to both the buyer’s total cost and the supply chain’s total cost.
Specifically:

� Late-fee mechanism: The buyer pays the supplier a fixed price per
unit and charges the supplier a fixed price per unit time for an outstand-
ing order.

� Lead-time mechanism: The buyer pays a fixed price per unit and
informs the supplier the lead time that must be satisfied (equivalent to
the capacity the supplier must provide).

� Reverse auction: If the buyer can choose from a pool of suppliers, the
unit price is set through an auction in which suppliers bid for the right
to sell to the buyer.

An interesting property of these mechanisms is that the supplier retains most
of the benefits of having a low production cost.

Gupta and Weerawat [290] (2006) consider a Markovian tandem sys-
tem consisting of an MTS supplier S that produces raw components according
to a base-stock level b and an MTO manufacturerM that uses them to satisfy
demand. When no component is in stock, demand requests queue at S before
proceeding to M’s queue. Because the arrival of raw material to M is not
a renewal process, the delay is approximated by assuming both parts of the
system are M/M/1 queues.
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In the base model, the manufacturer’s revenue from the sale of a unit is
π(b) = p0 − βL̄(b), where p0 and β are parameters of the model, and L̄ is the
expected total delay for a customer. Each of S and M incur unit production
and inventory holding costs.
Let b0 be the value of b that maximizes combined profit ofM and S. The

authors investigate three incentive mechanisms for motivating S to adopt b0:

� Fixed markup contract: S sells each unit to M at a price (1 + γ)
times its average per-unit production and inventory cost. For any γ > 0,
this mechanism results in a base-stock level smaller than b0.

� Simple revenue sharing scheme: This is a Stackelberg game in
which M commits to sharing a fraction α of its revenues with S and S
reacts by setting base-stock level b. Again, for any α < 1, this mechanism
results in a base-stock level smaller than b0.

� Two-part revenue-sharing: If S chooses b < b0 then M shares the
same fraction of revenues as in the simple revenue-sharing scheme, or a
certain higher fraction α otherwise. There exists an interval of α values
that induce b0; the added profit is eventually allocated according to the
relative bargaining strength of the two parties.

Liu, Parlar, and Zhu [451] (2007) assume demand to be a linear func-
tion of the retail price pr and PDT l. These variables are determined through
a Stackelberg game where an MTO supplier sets l and supply price ps, and
a retailer responds with pr. The supplier incurs linear holding and tardiness
costs. The main results are:

� The authors obtain a closed-form solution for an M/M/1 supplier. The
solution is also extended to the case where the service rate is determined
by the supplier.

� In more general cases, the authors consider a combination model where
the delay is composed of g1(λ)X + g2(λ), where λ is the effective arrival
rate and X is service time.1 Under this structure they characterize the
unique Stackelberg equilibrium. A good rule for quoting a lead time is
to define it as a linear function of expected delay.

� The system-wide expected profit rate under decentralized and central-
ized settings are compared. The centralized solution has a greater PDT,
a smaller retail price pr, greater demand rate, and PoA¬ 2.

Gui and Ma [264] (2007) follow the economic model of [545] in a supply
chain where a retailer sets lead time L and capacity level µ, and incurs the
capacity cost while production is carried out by a supplier setting the supply

1The authors mention that this model includes (approximately) the case of an M/G/1
supplier.
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price T . The authors show the supplier should encourage the retailer to invest
more in capacity by offering a share in the resulting increased profit.

Jemäı and Karaesmen [363] (2007) treat a version of [116] with back-
orders (rather than lost sales). The supplier and retailer choose individual
base-stock levels to minimize their (heterogeneous) linear holding and back-
order costs. These levels are always less than desired to optimize total system
costs (though, a numerical study reveals that PoA is quite small in common
scenarios). Sharing some inventory costs can encourage higher inventory lev-
els, and the authors derive a variety of sharing contracts that coordinate the
system.

Hennet and Arda [340] (2008) propose a supply-chain model with lin-
ear adjustment contracts between a customer and an M/M/1 MTS producer,
and between this producer and a supplier. The utilities (per time unit) of the
agents are:

πc = (a− p)λ+ ηL− φ(L) for the customer
πp = (p− cp)λ− hI − (b+ η)L− T for the producer
πs = T − cvλ− cµµ for the supplier,

where:
a is unit value of the product for the customer
p is unit price paid by the customer
h is unit holding cost
b is delay cost directly incurred by the producer
cp and cv are unit production costs
cµ is unit capacity cost
η is compensation paid by the producer to the customer
φ(L) is the customer convex delay-cost function
L = L(λ, µ, S) is expected amount of backorders
I = I(λ, µ, S) is average inventory level held by the producer
S is the producer’s base-stock level
T = T (λ, µ) is the price paid by the producer to the supplier.

The producer-customer contract is a pair (p, η) set through a negotia-
tion between the two sides. The producer-supplier contract is a pair (r, k)
determined in a Stackelberg game where the producer acts as leader and
T =

(
r − k

µ−λ

)
λ. Decision variables in the producer-customer game are λ

for the customer and p, η, and S for the producer. Decision variables in the
producer-supplier game are r and k for the producer and µ for the supplier.

Arda and Hennet [63] (2008) consider a tandem system, similar to
[363], with two MTS M/M/1 stages and symmetric information. A supplier
produces components that are processed in the second stage by amanufacturer
and sold at a given market price. The supplier’s decision variable is its base-
stock level (treated as a continuous variable). The manufacturer determines
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its own base-stock level and designs a contract (p, b), where p is the price it
pays the supplier per component unit and b is a per unit time and unit backlog
penalty imposed on the supplier. Both agents incur fixed unit production and
inventory costs, and the manufacturer also incurs backorder costs. The authors
solve the Stackelberg game in which the manufacturer leads, and conclude that
the solution globally optimizes system performance.

Xiao, Yang and Shen [668] (2011) consider a supply chain where an
M/M/1 manufacturer quotes wholesale price and lead time and a retailer
sets retail price. The manufacturer incurs a fixed unit manufacturing cost.
Customers are delay sensitive, and those obtaining a defective product return
the defective product to the manufacturer for remanufacturing at no additional
charge. This affects the customers’ utility and the manufacturer’s total cost.
Customer valuations are uniformly distributed and only those with values
above a threshold join the queue. These assumptions lead to a linear demand
function of retail price and delay. The authors obtain the following results:

� A closed-form solution in the centralized setting.

� A solution of the manufacturer-retailer game.

� A revenue-sharing mechanism for coordinating the system, and a neces-
sary and sufficient condition for both agents to be better off under this
mechanism.

Xiao and Shi [667] (2012) consider a manufacturer and a retailer that
differentiate the market by operating two facilities producing substitutable
products with different retail prices and lead times. Demand is linear in price
and delay with substitution effects. The manufacturer chooses service rates
µi costing Aiµi, and also sets wholesale prices wi, i = 1, 2. The retailer sets
retail prices.
The authors consider Stackelberg games where each of the two agents can

be the leader. Lead times are initially assumed to be determined according
to exogenous standards, but the effect of letting the manufacturer set the
lead time in the faster facility is also investigated. In all cases, the authors
characterize the solution and conduct sensitivity analyses.

Xiao and Qi [666] (2012) consider a supplier incurring a fixed unit pro-
duction cost and setting a wholesale price for an M/M/1 manufacturer. The
manufacturer reacts by setting retail price and lead-time. Demand is linear in
terms of these variables.2 The manufacturer incurs a fixed unit cost in addi-
tion to the wholesale price. The authors suggest a mechanism for coordinating
the system by splitting profit according to a predetermined ratio. The mech-
anism sets an appropriate wholesale price if the demand rate is at least the

2The demand function contains a term γs where s denotes reliability level, but s is not
a decision variable in the base model.
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centralized optimal rate, or sets a sufficiently high wholesale price otherwise,
i.e., an all-unit quantity discount mechanism is adopted.

Li, Huang, Cheng, Zheng, and Ji [435] (2014) examine after-sales
service provided by a retailer to customers. Retail price is exogenous and
includes the after-sales service. The model assumes the following sequence
of events: (i) a manufacturer determines a wholesale price while the retailer
quotes a lead-time guarantee; (ii) given these values, the retailer sets order size
q and capacity µ0; (iii) demand D is realized according to a demand function
composed of a random part and a deterministic part that linearly decreases
in the quoted lead time; (iv) actual sales are min(q,D), and the demand rate
for after-sales service is a given fraction ψ of sales; (v) the queue for after-
sales service is modeled as an M/M/1 system with demand rate φmin(q,D),
and if µ0 is not sufficiently large to serve the demand and satisfy the delay
commitment, the retailer outsources additional capacity.3

The authors solve centralized and decentralized versions of this model
with and without the outsourcing option. They find, for example, that the
outsourcing option leads to lower lead times, lower wholesale prices, and higher
sales. Sharing the capacity costs can be used as a way to increase profits of
both parties. The authors also investigate a variation where the retailer is risk
averse and the outsourcing price is a random variable.

Zhu [714] (2015) considers a Stackelberg game in a supply chain where
an M/M/1 MTO supplier leads by setting capacity µ and wholesale price ps,
and a retailer follows setting retail price pr and PDT l. The resulting demand
rate is λ0 − αpr − βl, where α, β > 0. The retailer incurs linear holding costs
on early completion and linear tardiness costs, the supplier incurs capacity
costs c0µ. The author finds that:

� Compared to the solution obtained when capacity is exogenous, the
supplier always benefits from the ability to set the capacity level while
the retailer benefits only when the supplier decides to increase capacity
(i.e., the exogenous value is smaller than the equilibrium value).

� A revenue-sharing contract can be used to coordinate the system.

9.1.1 Co-production

Co-production can be considered as partially outsourcing production to
customers. We describe below models of co-production where the level of cus-
tomer contribution is set by the firm. See §4.7 for similar models but with the
level of customer contribution set by the customer. See [618] where the firm
sets the level of contribution of an MTS stage producing semi-finished items.

3This is similar to delivery expedition, see §1.8.9.
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Xue and Harker [675] (2003) study a Markovian model of co-
production where the firm determines the fraction ρ of self-service and per-
forms the remaining fraction (1−ρ). Fraction ρ of self-service takes an expected
amount of s = ρe time units, and the expected system time for service com-
pletion is g =

(
µ
1−ρ − λ

)−1
, where µ > e (the firm produces at a faster rate

than the customer does). This gives the relation µ = (g−1 + λ)(1− ρ).
Demand λ(f) depends on full price f , and capacity µ costs the server

n · µ. When price is p, profit π = p · λ − n(g−1 + λ)(1 − ρ) is maximized at
g =

√
n(1− ρ)/λ. Profit is convex in ρ and therefore the optimal fraction is

ρ ∈ {0, 1}, meaning either full service or self-service only.
Consider now two identical firms competing with nominal prices pi and

service fractions ρi, i = 1, 2. Firm i’s demand λi = a− b(fi− f3−i), i = 1, 2, is
a linear function of the full prices f1 and f2. The authors show there are three
cases to be considered: both firms set ρ = 0; both set ρ = 1; or one sets ρ = 0
while the other sets ρ = 1. In addition, they give conditions for each of these
possibilities to be maintained in equilibrium. In particular, the interesting
solution where one firm applies self-service only and the other applies full
service only is possible when customer efficiency, as reflected by the parameter
e, is within a certain intermediate range. If customers act highly efficiently
then both firms will choose in equilibrium the self-service only option and,
contrarily, if customers act highly inefficiently both will choose full service.

9.2 Service supply chains

Ren and Zhou [548] (2008) consider contracts coordinating a service
supply chain with a user company and a call center under asymmetric informa-
tion. Demand and service rates are fixed. The call center’s decision variables
are the number of servers and effort level. Given an effort level e, a portion p(e)
of calls are satisfactorily resolved. The user gains from resolved calls, and the
call center incurs costs associated with staffing and effort. The main problem
is to incentivize the call center to exert effort, which is not contractible.
The authors consider a fluid model and suggest coordinating the system

through a partnership contract.

Hasija, Pinker, and Shumsky [301] (2008) apply diffusion approxi-
mation in a model of a service supply chain consisting of a client that hires a
vendor to provide call-center support. The client obtains a fixed revenue per
completed service and incurs a penalty per unit time of customer waiting. The
vendor incurs a fixed cost per server and selects the number of servers N . The
client maximizes profit by designing a contract that coordinates the system,
i.e., induces the vendor to employ the supply chain profit-maximizing capac-
ity N∗. The client allocates profits so the vendor earns its reservation value.
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Customers are not strategic; their arrival and reneging rates are exogenously
fixed.
Two basic contract types are considered: payment per served customer

(PPC) and payment per unit of service time (PPT). Contracts include a ser-
vice level agreement that commits the vendor to a given delay standard with
a penalty charged if the commitment is not satisfied. It is shown that both
contract types can be used to maximize client profits under symmetric infor-
mation conditions and fixed service rates.
The authors consider a model with asymmetric information in which the

service rate of all servers employed by the vendor is either µH or µL, with
µH > µL. The client offers a pair of H and L contracts designed so that the
H-contract (L-contract) will be selected if µ = µH (µ = µL). Optimality can
be achieved in a variety of ways such as offering an H-contract with PPC and
an L-contract with PPT. Such combinations enable “screening” the types of
servers. The results are also extended to arbitrary probability distributions of
service rate, but in this case contracts that maximize supply-chain profits do
not maximize client profits, as the vendor captures some information rents.

Ren and Zhang [547] (2009) consider a supply chain with an outsourcer
and a supplier (service provider). The supplier’s type is a random variable and
private information. The supplier’s decision variables are the service rate µ
and the satisfaction probability or quality q. The cost function associated with
these variables is separable, type-dependent, and correlated. The outsourcer’s
cost is cwL(µ) + cgλ(1− q), where L is average queue length.
The authors solve the outsourcer’s optimal contract and discuss the way

positive and negative correlation between the two parts of the supplier’s cost
function affect contract performance.

Akan, Ata, and Lariviere [22] (2011) consider contracting between
originator and service provider under asymmetric information. The service
provider operates an M/M/s queue in the Halfin-Whitt QED regime, and
customers renege at a constant rate.
Two types of originators are distinguished by demand rate, which is pri-

vate information and can only be observed after contracting. The originator
earns a fixed amount from each customer served and incurs loss of revenue
from customers who renege. The originator also has the option, although less
efficiently, of handling the service in-house.
The provider decides on the level of initial capacity investment and incurs

additional costs if there is a need to increase capacity to satisfy demand. The
provider also incurs operating costs.
Providing service costs C(α, λ) = c1λ + c2

√
λβ(α, λ) where λ is realized

arrival rate, α denotes service level (for example, the fraction of lost calls), and
β is a standardized excess capacity assumed to be increasing and convex. The
provider proposes contracts (α, p) where p is the fee paid by the originator.
The cost of a contract aimed for a given originator’s type should not exceed
in-house cost (IR) or the cost of the alternative contract (IC).
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The authors obtain the following main results:

� Standardized excess capacity is independent of originator type and is
greater than the value that would be chosen by the originator for in-
house operation.

� The service provider can obtain the expected profits it would obtain
under full information by offering one contract with a per-service fee in-
tended for low-demand originators, and one with a flat rate independent
of the realized λ, intended for high-demand originators. The intuition
lies in the economies of scale, which enable separating the two types of
originators. For a low-demand originator it would cost less to pay per
service, while the opposite would apply to a high-demand originator.

9.2.1 Marketing effort

See §6.8 where monopolistic firms search for customers.

Jiang and Seidmann [366] (2011) consider an M/M/1 system owned
by an owner and operated by a manager. Service price p is exogenous and the
owner incurs a delay cost of τ per customer per unit time. Customer arrival
rate is λ = θ + kα, where α is the manager’s marketing effort level, θ is the
expected base demand, and k > 0 is a constant. The manager decides on the
effort level α, but the capacity µ is set by the owner at a cost of F (µ), which
is increasing and convex. The effort α is the manager’s private information
and the contract rewards the manager based on realized demand during the
contract period.
The owner’s objective is to maximize expected profit consisting of revenue

λp minus delay costs λτW (W denotes expected waiting time), compensation
s to the manager, and investment in capacity. The manager’s net utility is
U(s) − V (α), where U is increasing concave and V is increasing concave. To
obtain explicit formulas for the optimal contract the authors further assume
U(s) = 2

√
s and V (α) = mαt with t ­ 1.5.

The owner’s problem is to set capacity and design a compensation contract
that will induce the desired effort from the manager. The contract must satisfy
IR and IC constraints to assure the manager agrees to exert the desired effort
level.
The authors derive comparative statics analytically and numerically. For

example, they prove that an increase in the base demand θ results in a lower
optimal level of effort.

Jiang and Seidmann [367] (2014) extend [366] assuming an exogenous
requirement that expected waiting time does not exceed a given service stan-
dard. The base demand θ is a random variable obtaining the value θh with
probability q, and θl < θh otherwise. Both α and θ are the manager’s private
information. It is further assumed that t = 2, F (µ) = cµ, and U(s) = s. The
sequence of events is as follows:
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1. The firm announces a set of contracts and capacity levels.

2. The manager observes θ and selects a contract.

3. The firm sets capacity according to the contract.

4. The manager spends on marketing effort.

5. Demand is realized and the firm compensates the manager accordingly.
If the service standard is not met the firm incurs a penalty.

By the revelation principle, it is sufficient to consider a menu of two con-
tracts intended for the two possible realizations of the base demand. The
authors propose contracts in which compensation is a linear function of real-
ized demand. They compare the optimal menu with the first-best symmetric-
information solution and show that information asymmetry reduces the firm’s
profit and increases the manager’s expected net benefit.
The authors also suggest an alternative charge-back approach in which the

contract delegates all the decision rights, including the capacity investment
decision, to the manager. They provide an explicit formula for the optimal
contract and prove that it induces the first-best effort levels. Of course the
manager is able to exploit the information asymmetry in this case as well. A
comparison of the two approaches shows that the firm can realize a higher
expected profit by offering the alternative contract iff q < 0.5.

9.2.2 Value creation

See [364] for another model where the firm combines service and advertising
profits.

Güneş and Akşin [267] (2004) define a value creationmodel with asym-
metric information. A firm employs a server to serve its demand. Customers
can be given regular or extended service. A customer is associated with prob-
ability p̂ that an extended service will yield revenue. The probability p̂ is a
realization of a random variable with cdf F (p). The server observes p̂ but the
firm only knows F (p). For a critical value θ, the market is segmented and only
customers with p̂ > θ are given extended service.
The server sets the critical value θ which maximizes payments w obtained

from the firm minus a fixed cost associated with providing extended service.
The firm’s goal is to design a payment scheme that maximizes net profit
(revenues minus payments to the server and holding costs).
Extended service takes longer on average, but the firm doesn’t know

whether a particular lack of generated revenue followed regular or extended
service. The authors propose a payment scheme in which the firm pays the
server a fee per customer that depends linearly on service duration x1 and
revenue generated x2: w = α1x1 + α2x2.
The proposed incentive mechanism is quite restricted. For example, the
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server is not delay sensitive and consequently implements a strategy indepen-
dent of queue length. Of course the first-best strategy for the firm would be a
dynamic one.
The authors focus on the case where p̂ ∈ {pL, pH}, pH > pL. In this

case, even under the restriction of a queue-length independent strategy, the
optimal segmentation for the firm will, in general, correspond to a mixed
strategy including either a fraction of the H-customers, or all of them plus
a fraction of the L-customers. However, the server’s strategy is clearly pure:
providing extended service to all customers, only to H-customers, or not at
all.

Gurvich, Armony, and Maglaras [294] (2009) consider a call center
serving a multiclass population.4 Customer classes differ in the probability
distribution of their service value and in their willingness to listen to cross-
selling offers. Once regular service of a customer is completed, the customer
either leaves the system or enters a cross-selling phase handled by the same
server. The probability the customer agrees to enter this phase is an exogenous
decreasing function of queueing time. In the cross-selling phase, customers are
offered a purchase depending on their type, which is accepted if the associated
value is greater than the offered price. The firm decides on the number of
servers, whether to attempt cross-selling to a customer, and the offered price.
The analysis is asymptotic, leading to a simple heuristic solution which the
authors numerically compare with the non-asymptotic Markovian case. The
solution suggests cross-selling should only be offered to the most profitable
customer classes and only when the system is not overly congested.

9.2.3 Outsourcing two-level services

This subject has some similarity to that of expert systems (see §6.3), but
the focus there is on asymmetric information regarding customer type.

Lee, Pinker, and Shumsky [431] (2012) examine a two-level Marko-
vian service process where the first level assesses (diagnoses) the complexity
of the request. There are two types of servers, gatekeepers and experts. Gate-
keepers can perform the diagnosis and either refer the job to an expert or treat
it themselves, but the probability of success strictly decreases with job com-
plexity. Experts are more expensive to employ, but perform the service with
guaranteed success. Costs are associated with employing gatekeepers and ex-
perts, failed treatment, and customer system time. Customers are not strate-
gic, do not balk, and incur no costs. The firm, denoted as the client, faces four
outsourcing options to an external service provider called the vendor: (i) out-
sourcing the first level; (ii) outsourcing the second level; (iii) outsourcing both
levels; (iv) eliminating the first level and outsourcing the second. The decision

4This value-creation model is placed here even though it is not about a supply chain.
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variables consist of the number of servers of each type, and a threshold for
diagnosed complexity above which customers are referred to an expert. While
outsourcing, the firm has no control over the number of servers employed or
the threshold.
The authors make simplifying and approximation assumptions which turn

the two stages into independent M/M/s systems, and apply the Halfin-Whitt
QED regime of the asymptotic Halfin-Whitt model. The suggested contracts
are based on variables that can be observed by the client, including the num-
ber of customers handled by the vendor, customer waiting time, and whether
a customer has been satisfactorily served by the vendor. It is shown that the
first-best solution can be achieved except when the two levels are outsourced.
A numerical study demonstrates that the solution obtained under the approx-
imation is close to optimal (an average error of 0.5%) for systems with load
above 50.

9.3 Allocation of demand to suppliers

This section deals with demand allocation in supply chains. A different
type of demand allocation is considered in Chapter 8, where strategic cus-
tomers allocate demand among providers of substitutable services. The dis-
tinguishing assumption of this section is that there is just a single firm (or
customer) allocating demand and trying to induce the desired suppliers’ be-
havior.
Some of the models described here assume asymmetric information. The

buyer cannot observe relevant variables, usually the service rates, and there-
fore these variables are not contractible. The buyer designs allocation mech-
anisms encouraging potential suppliers to provide fast service. Unlike when
customers possess private information, here the buyer and supplier engage for
a long period, and the buyer can accurately estimate service rates by observ-
ing the system. Yet, the contract may have to be signed at the beginning of
the period and, in any case, achieving desired supplier behavior without the
need for statistical monitoring is advantageous.
Other models assume symmetric information and allocations depend on

the values set by the suppliers. Knowing the service rates, the buyer can
easily design contracts inducing suppliers to select the desired rates subject to
IR constraints. The authors focus, however, on allocations that are “smooth”
in the way they penalize deviations from the desired capacity.

Gilbert and Weng [252] (1998) consider a Markovian model with ex-
ogenously fixed demand where a coordinating agency (the firm) hires two
identical servers to serve this demand and pays them for service. The firm’s
goal is to achieve a given delay standard at minimum expense. The servers
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choose capacities to maximize profits while incurring convex capacity costs
c(µ). The firm determines the amount it pays per customer served and the
rule to allocate users to servers can be one of the following:

1. KKR allocation: This allocation, introduced by Kalai, Kamien and
Rubinovitch (1992) (see [1] §8.7) maintains a single FCFS queue. Server
heterogeneity is ignored and an arriving customer randomly selects a
free server, never waiting for a faster server to become free.5

2. Balanced allocation: A separate unobservable queue is maintained for
each server. Customers are assumed to be strategic, and in equilibrium
demand is divided between servers so the expected waiting times for
each server are identical.6

The servers choose identical rates in equilibrium under both allocation op-
tions, and these rates are larger in the case of balanced allocation. The authors
characterize the cases in which the firm incurs lower costs under balanced al-
location. In particular, if c(µ) = aµ2, with a > 0, then despite the well-known
inefficiency associated with separate queues, the firm incurs lower costs with
separate queues for any given delay standard.

Grosu and Chronopoulos [262] (2004) consider demand allocation
to n M/M/1 servers with heterogeneous service rates which are private in-
formation. Server i maximizes Pi − ρi, where Pi is compensation obtained
from the system manager and ρi = λi/µi. The authors propose a price
and demand-allocation mechanism where servers report their expected ser-
vice times. Given reports b = (b1, . . . , bn), server i receives a compensation
Pi(b) = biλi(b) +

∫∞
bi
λi(b−i, x)dx. 7 Demand is allocated according to the

Bell-Stidham allocation [85] (see [1] §3.7.1.2, [594] §1.5) assuming µi = 1/bi
for i = 1, . . . , n. The authors show that the proposed mechanism induces
truthful reports and SO demand allocation.

Cachon and Zhang [120] (2007) consider a Markovian model with a
buyer and two identical servers. The buyer’s demand λ and price per service
R are exogenous. The cost to a server for establishing capacity µ is a convex
function c(µ), and the capacities are observed by the buyer. The buyer wishes
to reduce the system average lead time by announcing an allocation scheme.
The servers set capacities in a noncooperative way, maximizing profits

πi(µ1, µ2) = Rλi(µ1, µ2) − c(µi), i = 1, 2. The allocation scheme affects ex-
pected lead time in two ways. First, by encouraging the servers to increase ca-
pacities towards the maximal profitable rate µ̄, where c(µ̄) = Rλ/2.8 Second,

5This bounded rationality assumption reduces the servers’ incentive to increase capacity.
6The model may have no server equilibrium, see [120] p. 412.
7The vector (b−i, x) is obtained from b by substituting bi = x.
8The authors mention it is either optimal for the system to have one server allocated all

jobs or two servers allocated half of the jobs. They consider the latter case.
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by achieving efficiency for any given pair of capacities. These goals are shown
to be contradictory. (i) Bell-Stidham allocation [85, 262], which minimizes
the buyer’s lead time for any choice of capacities does not guarantee maximal
capacities and an equilibrium may even fail to exist. (ii)Balanced allocation
[252], where the active servers’ lead times are equal (this is the outcome when
the queues are unobservable and non-atomic customers act independently).
This allocation does not guarantee maximal capacities and an equilibrium
may fail to exist. (iii) Linear allocation, which is a two-parameter alloca-
tion, and more than one choice of parameter values can be used to induce
an equilibrium with the maximal capacities. (iv) Proportional allocation,
where there is a single parameter allocation with a unique choice that induces
an equilibrium with optimal capacities if R is sufficiently large and c(µ) is
quadratic.
The authors show examples where linear allocation results in the smallest

lead time among these options. They also consider state-dependent alloca-
tions. Here, in addition to achieving desired capacity levels, allocation can
take advantage of queue-length information so a server is not kept idle when
the queue is not empty.
Choi, Huang, and Ching [166] (2012) extend the model of [120] to

multiple servers and prove that the main results still hold.

Benjaafar, Elahi, and Donohue [86] (2007) consider a general model
with a buyer wishing to outsource a fixed demand rate to N identical suppliers.
Supplier i commits to a service level si which is a contractible variable and
can be observed by the buyer. The buyer’s goal is to maximize the expected
service level. Revenue realized by a supplier per served unit is exogenous and
the supplier’s goal is to offer a service level maximizing expected profits after
deducting variable and fixed costs associated with the offered service level.
A supplier allocation scheme (SA) announces a criterion for allocat-

ing demand among suppliers, allocating greater portions αi to those offering
higher service levels si. A supplier selection scheme (SS) allocates the
entire demand to supplier i with probability αi which increases in si.
The authors focus on proportional allocation functions of the form

αi(s1, . . . , sN ) = si/
∑
sj , and prove the existence of a unique equilibrium.

We describe here the two special cases of their model where each supplier
behaves as an M/M/1 queue.

� Make-to-order suppliers: The service level is defined as the probabil-
ity of fulfilling a service request within a given lead time τ , si =Pr(Wi ¬
τ) = 1 − e−(µi−αiλ)τ , which can be translated to a commitment on
µi. For example, under the SS scheme, supplier i commits to µi =
λ + ln[1/(1 − si)]/τ . There exists a unique and symmetric equilibrium
for both SA and SS, and the service level will be higher under the SS
scheme.

� Make-to-stock suppliers. In this model, suppliers maintain a fixed
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target utilization level ρi, so the supplier sets capacity to µi = αiλ/ρi.
The service level is defined as the fill rate which is the probability of
fulfilling an order from on-hand inventory. The supplier incurs variable
production costs, capacity costs, and inventory costs, and decides on
a base-stock level bi, which is determined by service level 1 − ρbi , or
equivalently, bi(si) = ln(1 − si)/ ln(ρ). The analysis and insights are
similar to those in the MTO example.

Ching, Choi, and Huang [163] (2011) enhance the model of [86] by
adding the option of imposing penalties on suppliers when they fail to satisfy
promised levels of service. Such penalties induce suppliers to establish higher
capacity levels.

Ozdaglar [509] (2008) considers a single user submitting service requests
at rates xi to parallel servers with heterogeneous delay functions li(xi). Servers
maximize profits by setting prices pi; the user reacts by setting net-utility max-
imizing demand rates xi. The user’s utility from service u(

∑
xi) has negative

second and third derivatives.9 The author shows that PoA¬ 1.5. Dube and
Jain [208] (2014) provide conditions for the existence of an equilibrium in
this model with two users assuming that in addition to price, servers decide
on splitting their capacity between the two users. As in the single-user case,
also here PoA¬ 1.5.

Ching, Choi, and Huang, [162] (2010) provide a multiserver extension
to the KKR model (see [252]), and Ching, Huang, Choi, and Huang [167]
(2012) apply this extension to the separate queues model of [252]. An inter-
esting result is that an increase in the number of servers induces higher service
capacities for both common and separate queues. This results from more in-
tense competition, though the same demand is split among more servers. The
authors also find that separate queues induce higher service capacities than a
single queue.

Gong, Wang, Deng, Murthy, and Cai [258] (2010) consider a model
similar to [120].
They suggest a residual proportional allocation (RPA) in which sup-

pliers’ market shares are proportional to (µi − λαi)β , where (µi − λαi) is the
residual capacity of supplier i. When β = 1 a proportional allocation results,
and when β →∞, it converges to the balanced allocation. The main result of
this study is that RPA stimulates high equilibrium capacity when balanced
allocation does not have a Nash equilibrium.

Wee and Iyer [657] (2011) consider allocation of holding costs to two
competing servers with convex capacity costs, a fixed revenue R per completed
service, and a constant holding-cost rate per unit of demand. The goal of the

9We refer to §5 in [509] that allows li(0) > 0.
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allocation is to motivate the servers to select the highest service rate that
gives them nonnegative profits.
Two variations of demand allocation are examined. Split allocations,

where arriving jobs are immediately allocated to servers, and pooled alloca-
tions, where there is a single queue and jobs are assigned to the first server
that becomes free. The authors suggest a holding-cost allocation policy that
achieves the maximum possible service rate for both split and pooled systems.
Interestingly, depending on the model’s parameters. the holding costs charged
to a server may increase or decrease with selected capacity

Toktaş-Palut and Ülengin [624] (2011) consider a supply chain with
a single MTO manufacturer and n heterogeneous MTS M/M/1 suppliers each
supplying a different component. Demand is Poisson. When demand occurs
the manufacturer can start the production of a unit only after receiving all
components. The authors model the manufacturer as a GI/M/1 queue and
derive an approximation for its coefficient of variation. Suppliers incur hold-
ing and backorder costs. The manufacturer incurs backorder costs on finished
products and holding costs on components while waiting for missing compo-
nents to arrive.
The authors consider three types of contracts: (i) a backorder (holding)

cost subsidies contract to adjust the base-stock levels when they are smaller
(greater) than the optimal ones; (ii) a transfer payment contract based on
Pareto improvement (i.e., after payment the suppliers are at least as well-off as
they would be under the decentralized solution); (iii) a cost sharing contract.
All these contracts coordinate the chain and improve supplier welfare relative
to the decentralized solution where each supplier independently minimizes
costs, but only the third guarantees that all members of the supply chain
participate in the contract.

Jin and Ryan [369] (2012) consider a buyer allocating demand to
MTS suppliers, similar to [86], but with the important difference that the
assumed-fixed price in [86] is now a decision variable. The authors use an ex-
ponential score function a(si, pi) = esi−αpi , where pi and si are price and
service level (fill rate) at supplier i. The buyer applies proportional allo-
cation and outsources each unit of demand to supplier i with probability
βi = a(si, pi)/

∑
a(sj , pj). The buyer’s goal is to minimize a weighted sum

of backorder costs and transfer payments to the suppliers. An advantage of
this strategy is that the buyer has only one single control parameter, α, which
measures the relative weight of price to service level. Some of the qualitative
conclusions are:

� The equilibrium price and service level both increase as the number of
suppliers increases.

� The buyer’s cost increases in the number of suppliers. Thus, the buyer
prefers fewer suppliers!
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� Single sourcing, in which the buyer is the Stackelberg leader, outper-
forms multisourcing.

� If the buyer owns the suppliers, the optimal service level would be higher
than in the decentralized model.

Elahi [222] (2013) assumes a single buyer allocating demand to a group
of MTS M/M/1 suppliers. The buyer’s goal is to maximize the average fill rate
(the probability of fulfilling demand from on-hand inventory). Price is exoge-
nous and the buyer’s decision is the allocation mechanism. Suppliers incur
linear holding, production, and capacity costs. Their only decision variable is
the base-stock level. They participate in the competition only when they can
earn a nonnegative expected profit.
Let si denote fill rate and zi base-stock level at supplier i. In service com-

petition, supplier i is allocated a proportion si/
∑
sj of the buyer’s demand,

while in inventory competition the proportion is zi/
∑
zj . The author shows

that:

� If the buyer controls the suppliers’ strategy it allocates the entire de-
mand to a single supplier. This is the buyer’s first-best solution.

� In both types of competition there exists a unique equilibrium.

� Inventory competition always results in a higher average service level.

� When suppliers are homogeneous,

– the equilibrium allocation is explicitly computed and

– the buyer prefers fewer suppliers.

� If demand is allocated proportionally to a measure combining service and
base-stock levels, which the author names optimal competition, then the
competition results in the buyer’s first-best average service level.

Gopalakrishnan, Doroudi, Ward, and Wierman [260] (2014) inves-
tigate dispatching rules and server workload incentives in a large multiserver
system where strategic servers value idle time. Servers are homogeneous, with
utility composed of the fraction of time idle minus a convex increasing ca-
pacity cost. Service capacities µi chosen by the servers are observable by the
dispatcher, whose objective is to minimize the system’s linear staffing and
expected delay costs. Customers are not strategic and, in particular, are not
delay sensitive.
An r-routing policy assigns a new arrival to server i ∈ I with probability

(µi)r/
∑
j∈I(µj)

r, where I denotes the set of idle servers. Some special cases
are noteworthy: When r = 0 we obtain a random strategy; with r → ∞ we
obtain the fastest-server-first (FSF) strategy; and with r → −∞ we obtain
the slowest-server-first (SSF) strategy.
Another interesting class consists of idle-time-based policies: Longest idle
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server first (LISF), shortest idle server first (SISF), and the random policy
are examples of this class. The authors prove the remarkable property that
all idle-time-based policies result in the same unique symmetric equilibrium.
Since the random policy belongs to both classes, idle-time-based policies do
not give better results than the best r-routing policy. For the latter, assum-
ing an M/M/2 system, the authors provide conditions for the existence of a
symmetric equilibrium.

Zhan and Ward [693] (2015) consider a firm assigning customers to
strategic servers in an M/M/N queue with customer abandonments. Servers
choose service rates from a given finite interval. The probability of successful
service is a decreasing function p(µ), where µp(µ) is strictly concave. The firm
pays PS for every completed service and penalizes the servers PF for each failed
service. When a customer arrives to more than one idle server, the customer is
sent to the server that has been idle the longest (longest-idle-server-first rule).
The authors characterize the symmetric equilibrium service rate and pro-

vide an approximate equilibrium solution when N and λ are large. These
results are used to solve the firm’s cost-minimization problem, assuming fixed
costs per customer abandonment and per failed service in addition to pay-
ments to the servers. The decision variables are N , PS and PF , and must
satisfy IR constraints. The authors leave for future research the interesting
extension of the model where the firm can also control the routing policy.

9.3.1 Quality inspection and rework

Lu, Van Mieghem, and Savaskan [458] (2009) consider a principal
hiring two servers and setting a quality inspection precision p ∈ [0, 1], which
is the probability of identifying a bad output. Each server selects a first-pass
mean service time t ­ t

¯
. The probability of producing good quality is an

increasing concave function F (t), with F (t
¯
) = 0 and F (∞) = 1. Output

diagnosed as bad is sent to rework, which always generates a good output
and takes less time than the minimum first-pass effort, t

¯
. The probability of

a good output at the end of the process is Q = F (t) + [1 − F (t)]p. Rework
is routed according to one of the following schemes: (i) Self-routing; rework
by the agent who generated the bad output. (ii) Dedicated routing; one server
does all first-pass work and the other does the rework. (iii) Cross-routing; each
server reworks the bad output from the other.
The principal earns a fixed value from a good output and incurs costs

related to failed jobs. Each server incurs a fixed cost per unit time of work
(first-pass and rework) and earns a wage rate w with an additional fee b
when completing a good output. The server’s decision variable is t and the
principal’s decision variables are w, b and p. Note that the amount of first-pass
demand routed to the servers is assumed to be independent of their choice of
t.
The model is formulated in terms of queueing network routing, but with
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no delay or holding costs. The variable t is interpreted as mean service time,
but delay is actually not part of the model and queues are explicitly treated
only in the cross-routing scheme. The authors note that waiting costs reduce
the principal’s incentives for quality effort because it leads to longer delays.
Let V FB denote first-best profit under self-routing when the principal also

controls t. Let V S , V D and V C denote the profits under self routing, dedicated
routing, or cross routing, respectively.
The authors show that:

� In the case of limited demand, where all demand can be served, V FB =
V D = V C > V S .

� In the case of unlimited demand, the throughput of the system depends
on the agents’ decisions and the servers are continuously busy (except
for the rework server in the dedicated scheme). First-best profits cannot
be achieved by any of the three routing schemes. The first-pass service
times and resulting quality performance are greatest under cross-routing,
but this doesn’t necessarily imply that maximum profit is also achieved
under this scheme, and the ranking depends on the parameters.

9.4 Competition

Bernstein and de Véricourt [89] (2008) consider competition between
two M/M/1 MTS suppliers with heterogeneous service rates in a market with
n buyers. Unit price pk and rate of demand λk for buyer k are exogenous. Each
supplier quotes each buyer a contract specifying a unit backorder penalty per
unit time of delay. Buyers interest is in product availability and therefore
each buyer selects the supplier with the highest quoted penalty (or randomly
selects a supplier if the backorder penalty quotes are equal).10 The supplier
also decides on a supply strategy. For instance, backordering current demand
permits the supplier to reserve current stock for future demands associated
with higher backorder penalties.
The state of the system consists of on-hand inventory and backorders. The

suppliers adopt a multi-threshold policy which dictates when to produce and
when to supply an order submitted by a given buyer. It is shown that selecting
the supplier with the higher backorder penalty quote does not mean selecting
the supplier with the shortest average lead time, rather it is equivalent to
choosing the one with the highest percentage of on-time deliveries, i.e., the
maximum fill rate..
The authors dedicate special attention to the case of two buyers. Because

10The buyer does not enjoy the backorder penalty directly but it serves as an indication
(or signal) of supplier incentive for on-time delivery.
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a slight change in the penalty offered by a supplier may fundamentally change
the choice of the buyers and prevent the existence of an equilibrium, the
authors define a game with a lower bound on the smallest possible change in
the quote. The solution is obtained at the limit when this bound goes to zero.
Suppose that µ1 > µ2 and λ1 ­ λ2. Then there exists µ∗ such that:

� If µ2 < µ∗, then in the unique equilibrium supplier 1 establishes con-
tracts with both buyers.

� If µ2 > µ∗, then in the unique equilibrium supplier i establishes a con-
tract with buyer i, i = 1, 2.

Tang and Chen [617] (2014) consider a supply chain with heteroge-
neous service providers hiring homogeneous servers from a firm that sets a
unit price p and incurs a fixed unit cost. Provider i decides on the number
ni of servers and the demand rate λi to serve, establishing ni M/M/1 service
facilities each serving demand λi/ni, such that the delay in each facility is
at most an exogenous standard di. The provider’s profit consists of utility
vi log(1 + λi) minus linear holding and capacity costs.
The authors solve the equilibrium in this game assuming all providers are

active. They also consider an extension of the model where several homoge-
neous firms compete, and characterize conditions for the existence of a unique
equilibrium.

Hong, Xu, and Zhang [344] (2015) solve the following Stackelberg
game in a two-stage network. Two service providers with dedicated demand
λi compete for capacity allocated by a facility provider owning K units of
capacity. The authors consider delays at both stages as M/M/1 delays, such
that if capacity Ki is allocated to service provider i then the i-customers’
expected delay is ti = (Ki − µi)−1 + (µi − λi)−1. Thus, an increase of µi has
the opposite effect on ti, increasing at the first stage and decreasing at the
second.
The demand of i-customers is a function λi = Ai(1−θiti). Note that λi also

appears in the right-hand side of the equation as part of ti. Given Ki, service
provider i sets µi to maximize λi. The facility provider allocates capacities
Ki, K1 +K2 = K, to maximize aggregate demand λ1 + λ2. The outcome is
compared to that obtained in a pooling version where Ki = K − µ3−i for
i = 1, 2 and also to the centralized solution.

9.4.1 Outsourcing under competition

Cachon and Harker [118] (2002) suggest that outsourcing can miti-
gate competition resulting from the economies of scale inherent in their model
(see §7.1). To make this point they consider two firms having the option of
outsourcing to a single supplier. The firms and supplier possess the same tech-
nology, and the supplier establishes dedicated capacity for each outsourcing
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firm. Thus, the supplier cannot pool demand to gain efficiency. The game
consists of two stages. In the first stage, each firm can sign a contract with
the supplier given by a fee the firm pays for each customer processed and the
average waiting time the supplier guarantees for the firm’s clients. A contract
must be profitable for both the firm (that has the option of insourcing) and
the supplier. The second stage is price competition, where demand depends
on the full prices of the two firms.
The authors do not analyze the negotiation process between the firms and

supplier but focus on showing that although the supplier is not more efficient
than the firm, there exists a set of outsourcing contracts that generates more
profits to both firms and positive profit to the supplier. Thus, the firms may
profit when they both outsource as compared to the case where they both
insource. However, as in the prisoner’s dilemma game, this does not mean
that in equilibrium both firms outsource.

Allon and Federgruen [35] (2011) assume each of N competing retail-
ers quotes price pi and expected delivery time wi. Serving a customer in-house
costs ci and unit capacity costs γi per unit time. Alternatively, the retailers
have the option of outsourcing to a common outside supplier incurring costs c0
and γ0. The demand for retailer i is according to the separable demand model
(see [32]). Two factors give advantage to outsourcing. First, pooled service at
the outside supplier reflects economies of scope. That is, the capacity required
to satisfy the demand and waiting time of each of the outsourcing retailers
is smaller than the aggregate service rate required to perform these tasks by
dedicated servers. Second, outside suppliers can be more efficient and operate
at lower rates.
The authors consider a two-stage game. In the first stage, each retailer

decides whether to outsource or process in-house, and in the second stage the
aggregate profits earned by the service chain are shared according to the Nash
bargaining solution. The disagreement point is exogenous for the supplier, and
for each retailer it is the profit value when all serve in-house. Some of the main
results are:

� Different from [118], firms do not necessarily benefit from outsourcing.
This difference arises because the number of firms outsourcing rather
than providing in-house service is endogenized, and the contract is de-
termined using a Nash bargaining solution.

� The supply chain may be unstable, i.e., it may not be immune to defec-
tion, even when all firms benefit from collective outsourcing.

� The authors demonstrate how the benefits and stability of the supply
chain depend on the number of firms and the demand function.
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9.4.2 Competition between supply chains

Pekgün, Griffin, and Keskinocak [526] (2015) examine competition
between two M/M/1 firms facing linear demand functions

λi = [ai − bipi − ciLi + βijpj + γijLj ]+ j 6= i,

where p is price and L is lead-time. The price-competition intensity is mea-
sured by the ratio of cross-effect to own-effect coefficients βij/bj and, similarly,
the intensity of lead-time competition is γij/cj . Firms choose whether to oper-
ate in a centralized or decentralized way. In the decentralized case, marketing
first sets the price to maximize income while ignoring the unit production
costs, and then production quotes the best lead time that can be satisfied.
The main conclusions are:

� When price competition is less intense than lead-time competition, de-
centralization can be an equilibrium strategy leading to higher profits
for both firms.

� When firms have identical parameters except for capacity, decentraliza-
tion can greatly reduce profits under high capacity or against a com-
petitor with higher capacity.

� When firms are identical, if production also sets capacity at a constant
unit cost, not only can decentralization lead to a significantly more prof-
itable equilibrium than a centralized one but in addition competition
may no longer imply lower prices or longer lead-times for a decentral-
ized firm. This applies even when price competition is more intense than
lead-time competition

� An example demonstrates that in equilibrium identical firms may choose
the centralized option, though both could profit from decentralization,
analogous to the prisoner’s dilemma.

Narenji, Fathian, Teimoury, and Jalali [498] (2013) consider two
competing supply chains, each consisting of an M/M/1 manufacturer and
a distributor. Each firm first decides whether to operate in a centralized or
decentralized way. In the decentralized case, the manufacturer quotes a delay
guarantee and sets a unit price to the distributor, who in turn determines
the unit price to the customers. The manufacturer incurs unit manufacturing
and capacity costs and the distributor incurs unit distribution costs. In the
centralized case, the decisions on delay and price are made by the chain’s
manager. The demand rate for each firm is determined by a linear demand
function of prices delay at both firms. The authors compute the best response
functions when each firm conducts a centralized or decentralized regime and
an example is numerically solved under each scenario.11

11An interesting question, which the authors do not treat, concerns what scenario should
be expected in the game of choosing the regime played between the chains, as in [526].



Supply chains, outsourcing, and contracting 255

Fathian, Narenji, Teimoury, and Jalali [232] (2013) obtain closed-
form solutions to a Stackelberg version of [498] where the manufacturers ad-
ditionally incur holding and tardiness penalties.

9.5 Internet service provision

Demirkan, Cheng, and Bandyopadhyay [193] (2010) consider a sup-
ply chain consisting of an infrastructure provider (IP) supplying capacity to an
M/M/1 Internet service provider (ISP) at unit price w. The ISP sells service
to consumers at price p. The model involves two exogenous functions. The
IP’s cost of supplying capacity µ is cµ + eµ2, and the marginal service value
of a customer when demand is λ is k/

√
λ, where c, e and k are constants. In

equilibrium, this marginal value is equal to the full price p+ ν/(µ−λ), where
ν is the waiting cost rate. The decision variable of the IP is the capacity price
w whereas the ISP determines the service fee p and capacity µ.
Four scenarios are considered and compared:

� Overall coordination: The IP and ISP cooperate to maximize joint
profits.

� The IP leads by setting w, then the ISP sets p and µ to maximize
profit.

� The ISP leads by quoting a price-capacity schedule (i.e., w as a func-
tion of µ) from which the IP selects its profit-maximizing combination,
and the ISP then optimally sets its profit-maximizing p.

� Aligned coordination: For a given w, the IP chooses its profit-
maximizing µ and the ISP chooses its profit-maximizing µ and p. The
authors the existence of a unique w such that these µ values are equal,
and this w is mutually agreeable.

The authors report on computational experiments with several interesting
conclusions. In particular, aligned coordination generates the same total sur-
plus for the IP and ISP as does overall coordination. In the other two scenarios,
the leader receives a higher profit than if the other party were leading.

Cheng, Bandyopadhyay, and Guo [159] (2011) introduce a queueing
model of net neutrality, while Choi and Kim [165] (2010) use the same
framework but make some changes that result in less clear-cut conclusions.
A single monopolistic Internet Service Provider (ISP) and two content

providers (CPs) located at the ends of the unit interval provide complementary
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services.12 The ISP is modeled as an M/M/1 queue. Customers have a common
service value and, as in the Hotelling model, are uniformly distributed over
the unit interval and incur linear travel and waiting costs. CPs do not charge
a fee for service but gain a fixed revenue (rk for CPk, k = 1, 2, and w.l.o.g.,
r1 ­ r2) per customer from external sources (advertising). The ISP can charge
customers an access fee F , subject to the constraint that the market is covered,
i.e., every customer can obtain nonnegative net utility by selecting one of the
CPs.
The central topic of this research deals with the effects of net neutrality

regulation on investment incentives of a monopolistic ISP and the CPs:

� Neutrality: Suppose the regime must be FCFS. By symmetry, cus-
tomers located at x < 0.5 prefer CP1, while those with x > 0.5 select
CP2. The constraint on F is v−C/(µ−λ)− t/2−F ­ 0, where t is the
unit distance transportation cost.

� Discriminatory solution: The ISP charges an optimal access fee and
price for priority, subject to IR and IC constraints. Two outcomes are
possible. If r1 is significantly greater than r2, only CP1 buys priority.
Otherwise, both will purchase.13

� In the short run, allowing non-neutrality implies that social welfare and
consumer surplus would either increase or remain unchanged; CPs are
usually worse off, whereas the ISP would be better off.

� In the long run, the ISP may invest less in capacity in a non-neutral set-
ting because expanding capacity reduces the CPs’ willingness to pay for
prioritized service.14 The ISP invests at the SO level under net neutral-
ity, but may overinvest or underinvest when discrimination is allowed.

� If capacity choices for the ISP are discrete (as opposed to continuous),
the ISP will always underinvest in the long run when discrimination is
allowed.15

Guo, Cheng, Bandyopadhyay, and Yang [271] (2010) consider the
possibility of integration between the ISP and one of the CPs. As a result
of such an integration, social welfare may increase or decrease. In some cases
the ISP may prefer to prioritize the competing CP when maximizing its own
revenues.

12The model resembles that of [635]. The ISP acts similar to the parking provider and
delay is generated at the CPs queues. However here the CPs’ profits come from an external
source and not from customer payments.
13This is a case of rent dissipation. See [1] §4.2 for another strategic priority-queue model
that leads to a similar result. This option is not allowed in [165].
14Cf. Myrdal’s claim§6.6.4.
15Private communication with H. Cheng.
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Krämer and Wiewiorra [416] (2012) study market-expansion effects
caused by a discriminatory regime. Their model is without competition and
every CP is visited by every customer.
Potential CPs are characterized by a parameter θ ∼ U[0,1]. Revenue per

customer received by an active θ-CP with expected waiting time w is λr(1−
θw), where λ is the demand rate produced by each customer for all CPs, and
r is the unit revenue (from advertisements).
The CP’s decisions are whether to be active and also whether to purchase

priority from the ISP in the discriminatory case. Buying priority reduces the
waiting time offered by the CP and increases revenue.
The active CPs are those with θ smaller than a threshold θ̄ and therefore

total demand handled by the ISP is Λ = λθ̄. In the discriminatory case there
is an additional threshold θ̃ ¬ θ̄ that distinguishes between CPs that buy
priority and those that do not.
A monopolistic M/M/1 ISP processes the demand of the whole system.

Revenue consists of fees collected from customers and also payments from CPs
that buy priority in the discriminatory case. The ISP’s decision variables are
price, and, in the long run, also capacity, for which it incurs a convex cost
c(µ).
Customer utility equals U = b+vθ̄−Cw−a, where θ̄ is the mass of active

CPs, w is average waiting time, and a is the price charged by the ISP. Clearly,
the profit-maximizing price satisfies U = 0. This provides the ISP with an
incentive to invest in capacity and reduce w. The authors find that:

� In the short run, while discrimination has no effect on the number of
active CPs (called here content variety), it increases ISP’s profits and
social welfare.

� In the long run, discrimination increases investment in capacity and con-
tent variety. This result holds when θ is uniformly distributed, and also
for general distributions of θ unless there are “too many” congestion-
sensitive CPs waiting to enter the market when priority becomes avail-
able.

Reggiani and Valletti [546] (2012) assume CPs pay the ISP a connec-
tion fee independent of traffic volumes. A continuum of non-atomic CPs are
distributed along a line. The ISP is located at 0. A CP located at x > 0 pays
transportation costs proportional to x. Additionally, one large CP supplying
several applications pays the ISP a fee per application. The arrival rate to the
ISP’s M/M/1 queue consists of the mass of small CPs entering the market
and the mass of applications by the large CP.
A novel assumption of this model is that differences in congestion and pri-

ority affect the profitability of advertising. With this assumption, the authors
give conditions under which prioritization increases capacity investment as
well as user welfare.
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Bourreau, Kourandi, and Valletti [103] (2015) extend [416] by as-
suming two competing M/M/1 ISPs. There is a continuum of CPs distin-
guished by waiting costs h ∈ [0,∞). A CP of type h that connects to ISP i
gains advertising revenue of aλxi(1−hwi), where xi is the number of end users
subscribing to ISP i, λ is the rate of service requests per user, and wi is the
congestion at ISP i. The profit of an ISP charging price pi, serving demand
xi, and building capacity µi is pixi−C(µi) where C is increasing and convex.
Users are uniformly distributed over [0,1] and the two ISPs are located at the
ends of the interval. The utility of a user subscribing to an ISP at distance x
from its location is R+vh̄+ dw −p− tx, where h̄ is the mass of CPs connected
to this ISP, w is waiting time (so 1/w represents speed of service), and p is
price. A user subscribes to a single ISP. CPs can connect to two, one, or no
ISPs. ISPs set price and capacity, and when discrimination of CPs is allowed
(no net neutrality) also set priority fees. The results include:

� Allowing discrimination increases investment in capacity, decreases con-
gestion, and increases social welfare (the sum of firms’ profits and users’
utility).

� ISP’s profits can be higher under net neutrality, but a prisoner’s dilemma
situation may occur where both prefer net neutrality but each has a
unilateral incentive to switch to the discriminatory regime.

Guo, Cheng, and Bandyopadhyay [269] (2012) utilize the Hotelling
demand model. The ISP selects from among four options: selling priority to
one of two CPs, to neither of them, or to both (at the same price). In each
case the ISP selects the optimal fixed price for customers and priority fee for
CPs. The main results are: in some cases the ISP will subsidize the customer
fixed fee to expand the market and increase income obtained from CPs. The
option of priority selling to CPs increases the ISP’s profits, but usually hurts
the CPs and never decreases customer surplus or social welfare. However, it
may drive the less effective CP out of the market and thus reduce competition.

Guo, Cheng, and Bandyopadhyay [270] (2013) expand [269] by
adding the option of priority selling to customers. There is an M/M/1 ISP
with fixed capacity and two CPs, Y and G, with revenue rG > rY per unit
demand. There are two customer types: H and L, with different service values.
H-customers constitute a fraction α < 0.5 of the customer population. H- and
L-customers generate demand at rates λH > λL, where αλH > (1−α)λL. The
server charges customers a fixed fee per unit demand. Customer preferences
of both types are uniformly distributed on the unit interval where Y and G
are located at the ends. Customers incur “transportation costs” to their CP
in addition to nominal and delay costs. Each selects the CP that maximizes
his utility.
The authors solve eight variations of the model depending on CP discrimi-

nation (neither buy priority, both, G, or Y) and customer discrimination (both
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types pay the same fixed fee and obtain equal priority, or H-customers pay a
higher fee and obtain priority). CP priority dominates customer priority. De-
pending on (rY , rG), profit-maximizing is achieved in the four options where
G buys priority. Social welfare also requires one of these options (in different
(rY , rG) regions), but is indifferent when both CPs or neither buy priority and
whether H-customers obtain priority.

Krämer, Wiewiorra, and Weinhardt [417] (2013) survey literature
concerning the net-neutrality debate.

9.6 Queueing games

We describe here games with two agents controlling different components
of the queue.

Yao [682] (1995) investigates the convergence of an algorithm for com-
puting equilibria in S-modular games that exhibit both ATC and FTC be-
haviors. The paper contains interesting queueing applications including the
following two:16

� Consider an M/M/1 queue jointly managed by two profit-maximizing
agents, A1 and A2. A1 sets the arrival rate λ ¬ u and A2 sets the
service capacity µ ¬ u where the upper bound u is exogenous. When λ <
µ, A1’s profit is p1λ− gL where L = λ/(µ− λ) is the expected number

16These are Examples 2.4 and 2.7 in [682]. The terminology used by the author in Example
2.4 differs from ours. We denote (λ, µ) what the author denotes (µ1, µ2).
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of customers in the system, A2’s profit is p2λ − c2µ − gL. Otherwise,
profits are 0. Thus, the agents split profits and share waiting costs, but
capacity cost is incurred only by A2. The best-response functions are
monotone increasing and therefore this is an FTC case. λ = µ = 0 is
always an equilibrium, and if u is large enough there are also two other
solutions: (λ, µ) =

[
gc2

(p1−c2)2 ,
gp1

(p1−c2)2

]
, and (λ, µ) =

[
u−

√
gu
p1
, u
]
.

� Suppose two users send jobs at rates λ1 and λ2 to an M/M/s/s loss
system. Let B(λ) be the blocking probability, where λ = λ1 + λ2. User
i maximizes a payoff function fi = riλi − ciλB(λ). Thus, the two users
share the cost of lost traffic of both job types. In this case we have ATC
behavior with a unique equilibrium.

Altman [41] (1996) considers two queueing games.
The first game has N parallel M/M/1/Li queues, i = 1, . . . , N , with homo-

geneous service rates but heterogeneous buffer sizes. The system is controlled
by two cost-minimizing players. One player, the controller, dynamically dis-
tributes a given amount of extra service rate among the queues. The second
player, the router, directs every new arrival to one of the queues. The author
provides sufficient conditions on the state-dependent cost functions of the two
players such that the following pair of strategies define an equilibrium:

� Route a new arrival to the shortest non-full queue.

� Fully allocate the extra rate to the shortest non-empty queue.

The second game assumes a discrete-time model of an observable queueing
system operated by two players. Once service ends and the queue is empty,
the server starts a vacation and a service controller S decides when to resume
serving. During the active server phase an admission controller A decides
whether to accept new arrivals. All arrivals are admitted during the vacation
phase. Waiting costs incurred during active phases are paid by A whereas
those incurred during vacations are paid by S. A obtains a reward for each
unit time of the active phases (equivalently, for every served customer) and S
pays a setup cost whenever service restarts.
The service controller S wishes to reduce the number of setups, but also

has an incentive to terminate the vacation when the queue becomes long.
However, S ignores the externalities that long queues have on A when service
restarts. These considerations make the resulting game interesting. The author
proves that an equilibrium exists with both agents applying (mixed) threshold
strategies.

Guo and Hernández-Lerma [288] (2005) consider two-person zero-
sum games defined on continuous-time Markov chains with discounted pay-
offs. They illustrate their findings using the following single-server queueing
example.
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The basic arrival and service rates with i customers in the system are iλ
and iµ. Player 1, representing the demand side, selects an action a ∈ A(i)
and player 2, representing the server’s side, selects an action b ∈ B(i). Then,
the service rate is changed by u(a), the arrival rate changes by v(b), and
player 1 pays an amount c1(a)− c2(b) to player 2 (all of these quantities can
be negative). In addition, player 2 pays a usage fee of i · p to player 1. The
authors derive conditions for the existence of a pair of optimal stationary
strategies.

Kardeş, Ordóñez, and Hall [390] (2011) consider a general model of
discounted stochastic games where players assign values to certain parameters
but different values may be realized. The authors consider the equilibrium ob-
tained when each player’s strategy is a min-max best response to the other
players’ strategies. In other words, each player responds assuming the worst
possible realized parameter values. The authors give conditions for the exis-
tence of such an equilibrium and demonstrate the applicability of their findings
using the following zero-sum M/M/1 queueing game.
A service provider dynamically controls the service rate and a router dy-

namically controls the arrival rate. The payments transferred between router
and provider are determined by exogenous functions of queue length and the
realized arrival and service rates. The authors compute and examine the equi-
librium through a numerical example.





Chapter 10

Vacations

This chapter is about queueing systems with strategic customers and server
vacations. We start by defining the various types of vacations.

� Planned vs. forced vacations: Server vacations may be strategically
planned, like for scheduled maintenance. Strategic (planned) vacations
typically start when the server becomes idle. In other cases vacations
are forced as a result of random events, for example breakdowns caused
by mechanical failure, or when the server is reassigned higher priority
customers, called primary users (PUs), whereas customers in the model
are considered secondary users (SUs). These terms, primary and sec-
ondary users, are especially popular in the literature on cognitive radio
networks.

� Single vs. multiple vacations: A vacation model assumes a vacation
lasts a predetermined (stochastic) duration. In the case of multiple va-
cations, if there are no customers in the queue when the vacation ends
a new vacation starts.

� Active vs. independent breakdowns: It is useful to distinguish
between two types of forced vacations. Active breakdowns (or simply,
breakdowns) can occur only when the server is busy. Independent or
accidental breakdowns can occur at any time and correspond to the
system oscillating between ON and OFF (or up and down) states. In
particular, systems where vacations are forced by the appearance of

263
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primary customers having preemptive priority over regular (secondary)
customers, experience independent breakdowns.

� Setup periods: Restarting service after a time of idleness may require a
setup period. If the duration of the vacation is exponentially distributed,
multiple vacations would be equivalent to a setup time that starts upon
arrival of a customer to an empty system.

� N-policy: More generally, the system may follow an N -policy, meaning
work is resumed when the queue length reaches a threshold, N .

� Working vacations and breakdowns: During working vacations or
working breakdowns service is not completely shut down but rather is
still provided at a lower rate.

� Information: The system state is often a two-dimensional vector (n, I)
where n = 0, 1, . . . denotes the number of customers in the system, I = 0
if the server is on vacation and I = 1 otherwise. We use the terminology
of [115]: The system is (fully) observable if the state is observable, almost
observable when n but not I is observable, almost unobservable when
only I is observable, and (fully) unobservable when neither n and I are
known to customers.

� Base stock: Vacation models generalize common idleness of the server
when the queue empties in an MTO system or reaches the base-stock
level in an MTS model. See [356] for an MTS generalization of the
N -policy that also requires a setup period before production can be
resumed.

� Reneging: Observable and almost-unobservable models assume cus-
tomers know the state of the server. Assuming this information is also
available after joining, a rational customer who joined when the server
was active may wish to renege should a breakdown occur. The mod-
els with breakdowns we discuss assume customers cannot renege when
breakdowns occur. Allowing for reneging would make the model more
realistic.1

� Capacity control: Working vacations can be regarded as a special
case of dynamic capacity control. For example, the models of [196] and
[440], where service slows down when queue length is below a threshold
bear similarities to working vacations.

� Probabilistic joining: Several papers on queueing vacation models
consider customers with exogenous probabilistic joining functions. As
mentioned in §1.2, such models that are otherwise non-strategic are not

1See [19] for an observable queue where low priority can renege upon arrival of a high-
priority customer.
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included in this survey. See [447] for a recent representative of this lit-
erature, including a detailed bibliography.

� See [24, 401] for observable models of vacation queues, and [602, 608]
for multiple-vacation models with uncertain service rates.

10.1 Strategic vacations

10.1.1 N-policy

See [41] for anN -policy queue with two controllers, one controls admissions
when the server is active and the other sets N . See [552] for a system applying
N -policy under bounded rationality.

Dellaert [192] (1991) describes a Markovian queue employing N -policy
with the server’s decision variables being N and a PDT d. Customer behavior
is given by the following rule: As long as d is below a threshold dmax, the
customer joining probability is 1 − d/dmax and therefore the arrival rate is
λ(d) = λ(1 − d/dmax). The server earns a fixed amount per served customer
and incurs a fixed setup cost. If service ends before the PDT, the server
incurs a holding cost, and if service concludes after the PDT the server incurs
a tardiness cost.
The author provides an example showing considerable difference in maxi-

mum profits when the PDTmust be constant or allowed to be state-dependent.

Guo and Hassin [272] (2011) consider an M/M/1 queue operating
according to N -policy. Customers have heterogeneous service valuations and
linear waiting costs. When the server is idle, in contrast to a regular queue,
a customer’s decision to join influences both those who will arrive later and
previous arrivals. Hence, a new customer should consider future arrivals and
also the current state of the queue. In fact, joining the queue is also associated
with positive externalities by helping to postpone and shorten vacations.

� The unobservable case: A customer may be more inclined to enter
the system when seeing more customers do the same, leading to FTC
behavior and multiple equilibrium arrival rates. Obviously, “all balk”
is always an equilibrium strategy, and there exist at most two positive
equilibrium arrival rates. As opposed to a regular queue, the SO arrival
rate may be larger than some of the equilibrium arrival rates.

� The observable case: If conditions are satisfied for the server to be
active a positive fraction of the time, there exists a unique equilibrium
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threshold joining strategy. A uniform fee may not be sufficient to co-
ordinate the system. Furthermore, in the SO solution, some customers
should join the queue even though incurring negative utility.

� N is a decision variable: Suppose the system incurs a fixed operating-
cost rate when the server is busy, but there are no start-up or shut-down
costs. In the unobservable case with a arrival rate the SO decision is to
have the server active at all times (N = 1), while with heavy traffic, N
should be as large as possible. In the case of an observable queue, N = 1
is always SO.

� Tian, Yue, and Yue [622] (2015) generalize the results of [272] for the
unobservable case to general service distributions. They also solve the
almost-unobservable model obtaining the SO and equilibrium joining
probabilities when the server is busy. When the server is on vacation,
the SO strategy dictates always joining, and there are at most two
positive equilibrium joining threshold strategies.

� Sun, Li, and E [606] (2015) consider a variation where an idle server
reviews the queue at intervals of exp(θ) length and reactivates when ob-
serving at least N customers. The authors demonstrate that decreasing
θ (less frequent reviews) has similar effects on equilibrium and social
welfare as does increasing N .

� Chen, Zhou, and Zhou [152] (2015) generalize both [115] and [272]
by assuming a setup period starts when the system has N customers
and the server is reactivated only when it ends. The qualitative results
of this model resemble those of [272].

Guo and Hassin [273] (2012) introduce customer delay-cost hetero-
geneity into the model of [272]. When the queue is unobservable and there
are two customer types the number of equilibrium solutions can be at most
five, but when the delay sensitivity distribution is continuous the number of
solutions may be unbounded and even uncountable. The authors give explicit
solutions when the distribution is uniform on [0,1]. Analogous results are de-
rived when the queue is observable. In contrast to results in the same models
but without vacations, the equilibrium joining rates may be smaller than the
SO rates.

Guo and Zhang [283] (2013) study strategic customer behavior in a
Markovian model where customers choose between a public facility with c
servers and free service, or obtaining the service elsewhere at a private facility
for a full price τ . For some constants n < c,N , when the number of customers
in the public system falls to n, it inactivates c − n servers. The servers are
reactivated when the number of customers reaches N .

� The observable case: The authors solve an example where ATC
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behavior with a unique equilibrium arrival rate exists in light traffic,
FTC behavior with three equilibria in moderate traffic, and again ATC
behavior in heavy traffic.

� The almost-unobservable case: Equilibrium is characterized by two
arrival rates, one when all servers are active, and the other when some
are inactive. Again, FTC behavior and multiplicity of equilibria exist.
If N ¬ c it is possible that the number of equilibria is not bounded or
even countable. If N > c there are at most three solutions.

� Comparison: Information can significantly degrade system perfor-
mance because of customers ignoring both positive and negative ex-
ternalities associated with their actions.

� System cost: The authors define system cost as the sum of customer
waiting costs, activation costs, stuffing costs, and full price costs at the
private server, and investigate its sensitivity to changes in τ and N . An
interesting finding is that a slight drop in τ can drastically increase the
use of the private facility and significantly increase system cost.

Guo and Li [278] (2013) complement [272] by considering two partial-
information variations of the N -policy model:

� Almost unobservable case: When the server is busy, the situation
is ATC and a unique equilibrium arrival rate exists. When the server
is idle, the situation is FTC and multiple equilibria are possible. As
in the unobservable case [272], “all customers balk when observing an
idle server” is always an equilibrium and there can be 0,1, or 2 positive
equilibrium arrival rates. When the server is busy and N is small, the
equilibrium arrival rate is larger than the SO rate and a tax can coor-
dinate the system. In all other cases, the arrival rate is smaller than the
SO rate and a subsidy is needed to coordinate the system.

� Almost observable case: “All customers balk” is always an equilib-
rium, and the authors give necessary and sufficient conditions for the
existence of other threshold equilibria.

� Value of information: A comparison of maximal social welfare under
observable and almost-observable cases finds that the value of informa-
tion decreases with Rµ/C (customers are less patient).

Ioannidis, Jouini, Economopoulos, and Kouikoglou [356] (2013)
consider two Markovian models, but we only describe the one with more strate-
gic behavior, which they identify as Model B.2

2Model A is similar but has arbitrary probabilistic joining, reneging and is without setup.
A similar model is also considered by Economopoulos, Kouikoglou, and Grigoroudis
[214] (2011).
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Model B considers an observable M/M/1 production system where cus-
tomers have random due times and a customer places an order iff the proba-
bility of missing the due time, given the current queue length, is less than some
common value. A customer who places an order cannot renege even when the
order is delayed beyond the due time.
The system operates according to a joint base-stock / base-backlog (BS-BB)

policy defined by three thresholds (c, s, σ):

� When the backorder level reaches c new orders are rejected.

� When the inventory level reaches s production is stopped.

� When the inventory level drops to σ < s the system is reactivated and
commences a costly setup process of an exponentially distributed dura-
tion.

Thus, the state of the system is defined by the state of the machine (working,
idle, or setup) and the inventory/backlog size. A final feature of the model is
that items kept in stock have exponential lifetimes.
The authors derive expressions for the system steady-state performance

measures and use them to compute cost-minimizing threshold levels.

10.1.2 Multiple vacations

Burnetas and Economou [115] (2007) characterize customer equi-
librium join-or-balk strategies in an M/M/1 system with multiple vacations
under various levels of information. Denote by N(t) the number of customers
in the system at time t.

� The observable case: There exists a unique (pure) equilibrium switch-
ing curve strategy (one threshold for each state of the server) which is
also dominant.

� The almost-observable case: This is an FTC case because for any
given N(t) the probability the server is in an active state is higher when
the threshold used by others is higher. Therefore, there exists an inter-
val {nL, . . . , nU} of (pure) equilibrium threshold strategies and a mixed
equilibrium between each pair of consecutive integers.

� The unobservable and almost unobservable cases: In contrast
to the E&H benchmark model, it is not a priori clear here if the unob-
servable model is ATC type. A small joining probability may lead to a
shorter queue when the server is active, but may also increase the prob-
ability the server is on vacation. However, the authors show that in both
cases there exists a unique mixed equilibrium strategy.

� Numerical analysis shows:
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– If N(t) is observable, customers are more likely to join the system
when the arrival rate is higher.

– If N(t) is unobservable, a higher arrival rate implies the system is
more loaded and customers are less likely to join.

� Huang, Wang, and Fu [350] (2012) prove analogous results assum-
ing a two-phase Erlang service distribution.

� Ma, Liu, and Li [461] (2013) solve a discrete-time version of this
model. For the almost-unobservable case these authors only compute
the pure equilibria. Liu, Ma, and Zhang [455] (2015) complete the
analysis by computing the mixed solutions.

� Zhang, Wang, and Liu [695] (2013) generalize [115] by consider-
ing working vacations. For each of the four information scenarios, the
authors either derive an explicit solution for the balking threshold or
provide an algorithm for its computation.

� Sun and Li [605] (2014) consider the same working-vacations model
as in [695] for the observable, unobservable, and almost-unobservable
cases. The authors present examples where equilibrium solutions lead to
overcongestion relative to the SO solutions.3

� Yang, Hou, Wu, and Liu [677] (2014) consider the observable, un-
observable, and almost unobservable versions of the Geo/Geo/1 queue
with multiple working vacations. For each case the authors present an
example with SO and equilibrium strategies.

� See [153] for an extension of [115] combining breakdowns and multiple
vacations.

Sun, Guo, and Tian [601] (2010) consider a Markovian system where
if the queue is empty when service ends the system enters a closedown period.
If a customer arrives during this period service starts immediately. Otherwise,
a setup period begins upon arrival of a new customer prior to starting service.
Customer behavior in the observable case is straightforward and is defined

by two thresholds, one for active periods and one for setup periods, such that
an arrival joins if queue length does not exceed the relevant threshold.
In the almost-observable case there is single threshold. The authors derive

the probabilities for the system being in a setup period given queue length
and use them to derive an interval of pure threshold equilibrium strategies.
The model has an FTC spirit as the threshold increases in the arrival rate –
the higher the arrival rate the more likely the server is active for any given
queue length. However, there is no proof that the best response to the thresh-
old adopted by the others is monotone increasing. The authors numerically
demonstrate several interesting properties:

3As in [272], the model has a mixture of positive and negative externalities which could
lead to the opposite outcome.
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� The equilibrium threshold lies between the two thresholds of the observ-
able case.

� Social welfare is a unimodal function of the arrival rate with a single
maximum.

� Information about the state of the server need not increase social welfare
in equilibrium.

The authors also solve a variation of the observable model where the close-
down period is not interrupted with a new arrival and must be carried on to
conclusion once started.

Economou, Gómez-Corral, and Kanta [215] (2011) consider a
single-server queue with multiple vacations, Poisson arrivals, and general ser-
vice and vacation time distributions.4 Customers receive a constant reward
when completing service and incur linear waiting costs.

� The unobservable case: The equilibrium strategy is the probability
qe of joining. As in [115], it is not a priori clear this is an ATC model. The
authors prove that the expected benefit from joining decreases when the
joining probability of the others increases, and hence the case is indeed
ATC. They derive an explicit formula for this probability, depending
on the expectations E[RB ] and E[RV ] of the stationary versions of the
residual service and vacation time, respectively. They also derive the
SO joining probability qs and show that qs ¬ qe. This inequality is
not as obvious as in [221], since an arriving customer generates both
positive externalities (activating the server) and negative externalities
(increasing the queue length), with the negative externalities stronger.

� The almost-unobservable case: The equilibrium strategy is a pair
of joining probabilities; qe(0) when the server is on vacation and qe(1)
when the server is active.

– The authors prove the uniqueness of the equilibrium strategy re-
cursively.5 The probability qe(0) can be determined first because
the joining decision during a vacation period is independent of the
strategy customers adopt when the server is active, which clearly is
an ATC case. In contrast, when the server is active the decision to
join depends on the probability of customers joining an idle server,
because the queue formed during the vacation remains when the
vacation ends. However, for a given qe(0) we obtain another ATC
situation with respect to joining an active server. Hence, there is a
unique solution, for which the authors derive an explicit solution.

4If vacation time is exponential it is equivalent to assuming it starts with the first arrival.
Hence, this model generalizes [115].
5Similar to [324].
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The authors also derive the SO strategy, which turns out to be
more complicated.

– In general, the intuitive expectation that qe(0) ¬ qe(1) fails to
hold. The reason is that with long vacations (or short service time)
a customer may prefer joining a busy server to joining an idle one.
An interesting property, shown numerically, is that the value of qe
in the unobservable case is always between qe(0) and qe(1).6

– qe(1) exhibits interesting behavior when E[RV ] increases: first de-
creasing to zero, staying there for a while, and then increasing. This
is explained as follows: increasing E[RV ] yields a more congested
system only if qe(0) is large enough. Then, when E[RV ] further in-
creases, qe(0) becomes smaller and almost all customers arriving to
a server on vacation balk, service will start with a short queue, and
customers who find an active server are more willing to join.

Sun, Wang, and Tian [612] (2012) compute equilibrium, SO, and
profit-maximizing arrival rates in an unobservable Markovian model with
closedown and setup periods (similar to [601]). The authors consider three
variations:7

1. Interruptible setup/closedown policy: If a customer arrives during close-
down, service immediately starts. Otherwise, the setup phase starts at
the instant of the first arrival.

2. Skippable setup/closedown policy: An arrival during a closedown period
cannot be served before the end of the period, but in this case setup is
not necessary.

3. Insusceptible setup/closedown policy: Once closedown starts, the server’s
vacation cannot be interrupted until both closedown and setup are com-
pleted.

Zhang, Wang, and Liu [696] (2013) extend [115] and present recursive
algorithms for computing the equilibrium joining strategies in an M/G/1 sys-
tem having generally distributed setup times. The authors consider both the
observable and almost-observable cases. In general, the equilibrium strategy is
not of the threshold type. The joining strategy consists of a joining probability
for each queue length in the almost-observable case, and two such vectors in
the observable case, one for each possible state of the server. For both cases,
the authors provide algorithms that identify the equilibrium joining strategies.

6This is similar to the result of [601] for the observable models.
7It is interesting to note that in all three cases the authors prove that the equilibrium

arrival rate in their version is unique, so ATC behavior prevails even though the model
exhibits both ATC and FTC behavior (see [115]).
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10.1.3 Single vacation

Tian and Yue [620, 621] (2011, 2012) solve the single-vacation vari-
ation of [115] for the (fully and almost) observable and unobservable cases,
respectively. The qualitative results derived are similar to [115]. Note that in
this model the server can be in one of three possible states: busy, on vacation,
or idle. However, the decision a customer makes while observing an idle server
is straightforward and the solution consists of only two thresholds.

Liu, Ma, and Li [453] (2012) solve the single-vacation variation of [115]
for the observable and almost-observable cases with similar qualitative results.
The authors also consider a discrete-time version of the model. For the almost-
observable case these authors consider only pure strategies, while Liu, Ma,
and Zhang [455] (2015) complete the analysis for the discrete-time version
by computing the mixed solutions.

Yue, Tian, Yue, and Qin [690] (2013) solve the observable single-
vacation model with closedown and setup periods. The solution consists of
three thresholds corresponding to the possible states of the server. The authors
also consider the unobservable version, but the possibility of multiple equilibria
in this case remains unsettled.

Wang, Wang, and Zhang [641] (2014) derive the equilibrium join-
ing probability (threshold strategy) in the unobservable (observable) model
assuming a Geo/Geo/1 model with a single working vacation.

Sun, Li, and Li [607] (2014) compute equilibrium solutions in an
M/M/1 system in which a single two-stage working vacation starts when a
server becomes idle. Each stage is exponential with the same parameter. Ser-
vice rates in the two stages can be different, but both are lower than the regular
service rate. The authors numerically find a uniqueness of the equilibrium in
the observable, unobservable and almost-unobservable cases. In the almost-
unobservable case the equilibrium joining probabilities during vacations are
not necessarily smaller than in the regular busy state.

10.2 Forced vacations, breakdowns and catastrophes

10.2.1 Independent breakdowns

See [644] for a system with ON-OFF states and retrials, and [199] for
routing decisions when firms oscillate between ON-OFF states.
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Cheng [157] (1997) considers independent breakdowns in an unobserv-
able M/M/1 system with heterogeneous service valuations given by the ag-
gregate value function V (λ) (see §1.5). The durations of ON and OFF peri-
ods are exponentially distributed with rates η and γ, respectively, such that
η, γ � λ, µ. This assumption enables a simple and accurate approximation
formula for expected sojourn time. Given a price p, the equilibrium λ satisfies
V ′(λ) = p + vT (λ, µ), where T is expected waiting time and v is unit-time
cost. The author derives formulas for the SO price both in the short-run prob-
lem where µ is fixed and in the long-run problem where µ can be changed at
a linear cost. An extension of the long-run model allows for backup capac-
ity at a higher than regular unit cost. Backup capacity can be used while the
main server is down, resulting in a system with working breakdowns. The main
results are:

� The firm should equate backup and main capacities and their optimal
size is determined by the sum of their marginal capacity costs.

� The firm should charge users the total marginal capacity costs of main
and backup capacities.

Cheng [158] (1999) compares two systems with the same breakdown
and repair parameters. The twin system maintains an M/M/2 queue with
identical independent servers, each operating at rate µ. In the event of failure
in one server, the other server continues serving. The consolidated (pooled)
system has a single server with capacity 2µ. Capacity is a decision variable
having a constant marginal unit cost. The author numerically computes the
SO service price in the two systems assuming demand is isoelastic, i.e., V (λ) =
Aλ1−α/(1− α) with 0 < α < 1, or V (λ) = A lnλ in the case of unit elasticity
(α = 1). The conclusion is that:

� In general, the twin system induces higher welfare, larger arrival rates,
larger capacity, and lower pricing than in the pooled system.

� The difference between the systems becomes more meaningful as delay
costs increase.

Capar and Jondral [128] (2004) suggest an observable M/M/1 queue
with independent breakdowns. The queue is managed by a profit-maximizing
firm that dynamically sets entry prices; the demand rate is a negative expo-
nential function of the product of price and delay.

Economou and Kanta [219] (2008) solve a Markovian extension of
Naor’s model where the queue alternates between ON and OFF periods. They
consider two information settings:

� The observable case: As in Naor’s model, customer welfare, given the
state of the system, is independent of decisions made by later arrivals and
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there exists a dominant pure threshold strategy for which the authors
derive an explicit solution.8

� The almost-observable case: Queue length also serves as a signal
about the state of the server. The authors prove this is an FTC situation.
Consequently, there can be multiple equilibrium solutions and the pure
equilibrium thresholds constitute an interval of integers with a mixed
equilibrium between every two consecutive pure solutions.9

� Li and Han [436] (2011) consider a discrete-time almost-observable
version of [219]. They derive the solution for the equilibrium joining
threshold and show how to compute the SO threshold. As expected,
given the negative externalities associated with joining, also here self-
optimization leads to excessive joining.

� Do, Tran, Nguyen, Hong, and Lee [201] (2012) consider the un-
observable version of [219], and Li, Wang, and Zhang [441] (2014)
derive a closed-form solution to the equilibrium joining probability.

� Do, Hong, and Hong [198] (2012), and Do, Tran, Hong, and
Lee [200] (2012) extend previous analyses of the unobservable and
observable cases, respectively, by allowing for working breakdowns.

� Yang, Wang, and Zhang [681] (2014) consider a discrete-time ver-
sion of [219]. The joining threshold in the observable case is as in the
continuous-time version solved in [219] but with a modified service pa-
rameter. The authors also solve the equilibrium joining probability in
the unobservable case and conduct sensitivity analysis.

Shiang and van der Schaar [572] (2008) examine a model where
N users with pre-assigned priorities route demand to heterogeneous M/G/1
servers with independent breakdowns. User i’s request is lost if delayed more
than di time units, and the user’s goal is to minimize his loss probability. The
authors suggest a dynamic strategy learning algorithm for routing demand,
while allowing probabilistic jockeying from a longer queue to a shorter one.

Wang, Zhang, and Tong [649] (2010) consider N servers each asso-
ciated with a primary user (PU). PUs experience independent transitions of
exponentially distributed duration between ON and OFF states. A PU gener-
ates deterministic demand at a given rate when the state is ON and no demand

8This solution is reproduced in [645].
9The cause for FTC behavior is different from that observed in [272] for the N -policy

model. In [272], when the server is on vacation arriving customers have a higher tendency
to join if they expect a higher future arrival rate that would bring the server quickly back
to operating mode. In contrast, here the vacation’s duration is independent of the arrival
process. The cause for FTC behavior is that the probability the server is down at a given
queue length can be higher if it is at maximum possible length. Thus, a higher threshold
encourages joining at higher queue lengths.
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otherwise. There areM secondary users (SUs), each maintaining a queue with
Poisson arrivals of service requests. At each period, each SU whose queue is
not empty randomly chooses a server; if the server is idle the SU sends a unit
demand to that server, i.e., it contends, with a state-independent probability
p. The unit is served if it is the only request sent to the server in that period.
If more than a single SU sends a request to the server there is a collision and
no service is granted. SUs cannot observe queue lengths, including their own.
The research question is to compute a contention probability p that minimizes
the mean queue length.10

Wang and Zhang [646] (2011) generalize [219] by assuming that repair
time consists of two exponential phases. They investigate two cases:

� The observable case: The state of the server is w (working), d
(delay – first stage of repair), or r (repair – second stage). The au-
thors provide explicit formulas for the respective equilibrium thresholds,
(n(w) > n(r) > n(d)).

� The almost-observable case: The authors solve the steady-state
probabilities in terms of the roots of a polynomial equation, and char-
acterize an interval of integer equilibrium thresholds. They observe that
these thresholds are between n(d) and n(w).

Jagannathan, Menache, Modiano, and Zussman [357] (2012) con-
sider an almost-unobservable version of the model of [219].11 Customers choose
between joining the queue or obtaining service by a different service provider
at a fixed full price. The strategy is a pair (p, q) where p denotes the probabil-
ity of joining when the server is ON and q denotes the probability of joining
when the server is OFF. The authors obtain a closed-form solution for the
unique equilibrium strategy.
An interesting addition to the model emerges when it is assumed the al-

ternative service provider sets the service fee to maximize profits. The authors
provide an explicit solution for this variation.
The same model is also independently solved, but with different techniques,

by Li, Wang, and Zhang [441] (2014).

Li, Wang, and Zhang [437] (2013) consider a Markovian single-server
model with independent working breakdowns. In the observable case cus-
tomers follow a threshold strategy for each of the two possible server states.
The authors provide a closed-form solution but do not discuss uniqueness. In
the unobservable case, the strategy consists of a joining probability which the
authors prove to be unique, as expected, because the situation is ATC.

10An interesting variation not considered in this paper is the equilibrium outcome derived
when SUs act strategically knowing their own queue lengths.
11The same model is considered in [692], however their equation (21) giving the equilib-
rium joining probability deviates from the solution in equation (17) in [357].
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Tran, Tran, Le, Han, and Hong [630] (2014) examine multiple
M/G/1 servers with independent breakdowns. Customers of class k have
waiting-cost rates θk and uniformly distributed valuations α per unit qual-
ity of service. Servers are also heterogeneous, having different service quality
levels and different service distributions. Thus, the utility of a (θk, α)-customer
who waits W units of time to obtain service from server l charging price pl
and having quality r is αr − θkW − pl. Decision variables are prices pl and
the load balancing vector s that specifies the probability sl that a new arrival
is routed to server l. Customers are informed about these values and decide
whether to arrive based on their type. The authors propose an algorithm for
computing the profit-maximizing solution.

Zhao, Jin, and Yue [708] (2015) consider a Markovian discrete-time
unobservable queueing model with ON-OFF transitions, dynamic service-rate
control, and a finite buffer of size K.12 Service rate is proportional to the
number of customers in the system. In each period there can be at most one
event of any given type (e.g., a state transition and an arrival of a customer).
Customers attempting to join the system incur a cost T , are accepted if the
buffer is not full, and gain a fixed amount R upon service completion. There-
fore, the expected utility for a customer attempting to join is εR − T where
ε is the probability that an attempting customer is admitted and successfully
completes service. As in the E&H model, the behavior is ATC and there is
a unique equilibrium attempting probability. The authors numerically solve
examples and compute the admission fee that coordinates the system.

Economou and Manou [217] (2016) consider a semi-deterministic
model with independent working breakdowns. While transitions between fast
and slow service modes are governed by a Markovian continuous-time process,
the input-output process is modeled as a continuous fluid queue. The authors
compute the unique subgame-perfect equilibrium in the observable game, con-
sisting of a threshold for each of the two server states. A similar result is de-
rived for the almost-observable case, where the threshold’s dependence on the
arrival rate is restricted to whether it is smaller than the slower service rate,
higher than the fast service rate, or between the two. The authors also study
the problem of social optimization and quantify the discrepancy between the
equilibrium and socially optimal strategies.

10.2.2 Active breakdowns

See [683] for a system with breakdowns that involve setup costs and in-
stantaneous repairs (i.e., there are no vacations).

12Transition to the OFF state occurs in this model due to an arrival of a prioritized
primary user, so when an ON-to-OFF transition occurs while the buffer is full the customer
queueing at the tail of the buffer is expelled.
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Zhang, Wang, and Liu [694] (2012) extend earlier results on M/G/1/1
retrial queues ([1] §6.4) by incorporating breakdowns and delayed vacations.
Each time the server completes a service or vacation, a random amount of time
is reserved before another vacation can be taken if there is no new arrival.
Random breakdowns occur during server’s activity. Customers finding the
server busy or down retry after a random time. These customers are not
informed of the system state. The duration of vacations and repair times
follow general distributions, while reserved times, retrial times and time to
a breakdown are exponentially distributed. Customers are homogeneous and
incur waiting and retrial costs.
The authors obtain closed-form solutions for the equilibrium and SO re-

trial rates and show the former to be greater than the latter. The system can
be coordinated by an appropriate retrial toll.13

Zhang, Wang, and Zhang [703] (2014) consider a Markovian system
with active breakdowns under the following assumptions. (i) When a break-
down occurs the customer whose service is interrupted stays at the service
area until service is restored. (ii) Customers arriving to an idle server always
join. Customers arriving to a busy server either balk or join an FCFS orbit
queue. (iii) The customer at the head of the orbit queue, and only this cus-
tomer, keeps retrying at exponentially distributed intervals until finding the
server idle. (iv) Customers arriving when the server is broken always balk. The
only decision is whether a new customer reaching a busy server balks or joins
the orbit queue. The main results are:

� As in Naor’s model, when the orbit queue is observable the SO threshold
is at most that of the IO threshold and at least as large as the profit-
maximizing threshold.

� The same relations hold for joining probabilities when the orbit queue
is unobservable.

� Wang, Wang, and Zhang [642] (2015) obtain similar results assum-
ing the served customer leaves the system when a breakdown occurs.

Wang and Zhang [643] (2015) consider a Markovian variation of [694],
where customers arriving when the server is not available decide whether to
pay an entry fee and retry at a later time. All customers have the same service
value and linear waiting costs.
The authors derive a closed-form solution for the joining probability in the

unique symmetric equilibrium for a given fee as well as the SO joining prob-
ability. They also present a procedure for computing the profit-maximizing
fee and conduct sensitivity analyses. For example, they find that an increase

13Excessive equilibrium retrial rate was already observed by Hassin and Haviv (1996) and
explained in [1] §6.4.3. These authors also suggested partial compensation for waiting as an
alternative to retrial tolls.
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in µ (or a decrease in λ) has opposite effects on the profit-maximizing and
SO prices. The profit-maximizing price increases while the the SO price is
non-increasing. This property is similar to that observed in [141].

Chen and Zhou [153] (2015) consider a Markovian model combining
breakdowns and multiple vacations. Breakdowns occur when the server is busy
and vacations start when the system becomes empty. Customers cannot join
the system during repair times although they can join when the server is on
vacation. The authors provide solutions for the equilibrium thresholds and
joining probabilities in the observable, almost observable, and unobservable
cases.

10.2.3 Duopoly competition under independent breakdowns

Tran, Hong, Han, and Lee [628] (2013) consider price competition
between two facilities. The first has a single server that becomes unavailable
during intervals of random lengths while providing service to higher-priority
“primary customers.” The second facility has an infinite number of servers and
offers each customer an exclusive dedicated server. The service distribution of
all servers is the same (general) distribution. Customers have homogeneous
service valuations and heterogeneous uniformly distributed delay-cost rates.
A customer can join one of the facilities or balk. In general, customers with
low delay sensitivity join the shared facility, those with intermediate delay
sensitivity choose a dedicated server, and highly sensitive customers balk.
The authors prove that for fixed prices, there is a unique customer equilib-

rium. Moreover, there exists a unique price equilibrium for which the authors
provide an explicit formula. They also derive a function u(c) such that coex-
istence of the two firms in the market is possible only if the price c2 set by
the infinite-server firm and the price c1 set by the single-server firm satisfy
c1 < c2 < u(c1).

Do, Tran, Han, Le, Lee, and Hong [199] (2014) consider an unob-
servable system with independent breakdowns, which they model as an M/G/1
facility. They compute the first two moments of the service distribution and
derive the customer joining probability in equilibrium. The authors then solve
a duopoly in this market, both when the firms compete and when they co-
operate. Equilibrium arrival rates are determined so customers are indifferent
between joining either of the firms or balking. The authors also consider a
variation where one of the firms offers a dedicated server to each customer
(similar to [628]). In both cases, the Nash bargaining solution is derived (with
an exogenous agreement point) and compared to the best non-cooperative
price equilibrium.
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10.2.4 Catastrophes

Boudali and Economou [100] (2012) consider an M/M/1 queue sub-
ject to catastrophes which occur according to a Poisson process with rate ξ.14

When a catastrophe occurs, all customers abandon the system without be-
ing served. Recovery time is exponential and arrivals are not accepted during
recovery. Customers obtain reward Rs upon service completion or obtain com-
pensation Rf if forced to abandon the system due to a catastrophe, and incur
waiting cost C per unit time.
The observable version generalizes Naor’s model. The main qualitative dif-

ference is that if Rf ­ Cξ then the unique dominant strategy is always to enter.
When the queue is very long the motivation to enter is based on the expec-
tation of getting the compensation Rf . Similarly, the unobservable version
generalizes E&H with a new possibility, that if Rf is sufficiently large all cus-
tomers join regardless of potential demand. As in the above-mentioned special
cases, the SO threshold in the observable case and the joining probability in
the unobservable case are smaller than their equilibrium counterparts due to
negative externalities.
The authors question whether informing customers as to the state of the

queue is socially desired. They find that in most such models, social welfare is
greater when customers are informed as opposed to when they are uninformed,
even when behaving selfishly when they are informed and according to the SO
way when they are uninformed.

Boudali and Economou [101] (2013) solve a variation of [100] allowing
for arrivals when the server is unavailable. The main results are:

� The observable case: The joining strategy for customers finding a
functioning server is always a threshold strategy. However, depending
on the relative value of service reward and mean repair waiting cost, the
equilibrium strategy of those finding the server down may be either a
threshold or a reverse-threshold strategy. The latter means joining if the
number of customers in the system exceeds a certain threshold.

� The unobservable case: The main difference with respect to [100]
is that when compensation to customers experiencing a catastrophe is
high, there is FTC behavior which results in three equilibrium solu-
tions (pure balking, pure joining, or a mixed strategy equilibrium). The
authors indicate some counterintuitive situations. For example, the equi-
librium joining probability is not necessarily increasing with the service
reward and not necessarily decreasing with the waiting cost.

14Some of these results are reproduced in [133].
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10.3 Clearing systems

Economou and Manou [216] (2013) consider M/M/1 clearing sys-
tems in an alternating environment. The model, motivated by transportation
applications, assumes all present customers are removed at the completion of
service. In other words, this is bulk service with infinite batch size. The system
alternates between two environments according to a continuous-time Markov
chain. Environment i is characterized by arrival rate λi and service rate µi.
Customers receive a reward R from service and incur waiting costs C per unit
time. Their decision is whether to join or balk. Let E(t) and N(t) denote
the environment and queue length at customer arrival time t. There are four
information cases in which E(t) and N(t) can be observable or unobservable.
While E(t) is directly relevant to customer decisions, N(t) only serves as

a signal providing information about E(t) so its importance is indirect. When
E(t) is observable, N(t) is not relevant and consequently analysis is relatively
straightforward except for in the almost-observable case where N(t) is known
and E(t) is not:

� Suppose (µ1 − µ2)(ρ1 − ρ2) < 0, where ρi = λi/µi. This means the slow
service environment is more congested and a short queue is a sign of
fast service. In such a case customers prefer to join short queues and
it is natural to consider threshold joining strategies. Consider a tagged
customer, and suppose that all others increase their thresholds. As a
result, the signal associated with a short queue becomes even stronger
and the tagged customer’s best response threshold tends to increase (cf.
[218]). Hence this is an FTC situation. The authors provide a complete
characterization of the interval of integer equilibrium thresholds and the
associated mixed thresholds.

� Suppose (µ1 − µ2)(ρ1 − ρ2) > 0. The above arguments are reversed and
customers prefer to join long queues. The authors in this case analyze
threshold balking strategies. This case leads to an ATC situation with a
unique equilibrium.

Manou, Economou, and Karaesmen [469] (2014) consider a stochas-
tic clearing system model allowing for generally distributed inter-service times
and varying capacity. Customers are homogeneous with a common service
value and linear waiting costs and arrive according to a Poisson process. At
any instant of service, the number of served customers is limited by the (ran-
dom) capacity at that instant and all unserved customers balk. Arriving cus-
tomers have no information on the time elapsed since the last service instant
and cannot renege.
In the observable case, arriving customers base join-or-balk decisions on

the number of waiting customers which signals how much time has elapsed
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since the last service instant (similar to [49, 324, 397]). The authors con-
duct a probabilistic analysis which completely characterizes the equilibrium
solutions and demonstrates the possibility of both ATC and FTC behavior
depending on the nature of the underlying inter-visit time distribution. In
particular, multiple solutions are possible. The unobservable case is ATC and
the authors compute the unique equilibrium. Specific solutions are given for
the case of exponential inter-service times, where the observable case leads
to a unique threshold strategy. An interesting insight is that the equilibrium
in the observable case threshold is SO in contrast to the unobservable case
where, in general, it exceeds the SO threshold.





Chapter 11

Bounded rationality

Strategic queueing models often include elements of bounded rationality.
Several authors explicitly mention this fact, for example when the outcomes
of lab studies differ from theoretical rational equilibrium. Others leave this
fact implicit, for example the KKR model [252].
This chapter describes three groups of models exhibiting bounded ratio-

nality behavior. The first pertains to heuristic strategies used when the purely
rational strategy turns out to be complex. The second group includes attrac-
tion models where customers select inferior options with a positive probability.
This behavior can also be attributed to factors not included in the model, such
as heterogeneity of customers and service options. Models in the third group
assume firms manipulate customers by promises that customers accept at face
value rather than deducing correct information from them. This behavior can
be attributed to an inability to make the required deduction, psychological
reasons, or customer naivety. Some of these models exhibit another type of
bounded rationality, assuming promises are state dependent but this informa-
tion is ignored by customers.

283
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11.1 Heuristic strategies

Heuristic strategies simplify the computational effort and reduce the
amount of required information. Decision makers may use simplifying assump-
tions on the others’ strategies or ignore past information that could be used
to better estimate relevant variables.

Sanders [557] (1988) assumes user i, i = 1, . . . , N , sends demand at rate
λi along a given path of a network.1 The entire demand flowing through link l
is served by an M/M/1 server with service rate µl. User i has utility function
hi(λi,Wi) when submitting demand at rate λi and the total of the expected
waiting times along the links of its path isWi. The author suggests an iterative
process where at each iteration every user i is asked to declare the values of ∂hi∂λi
and ∂hi∂Wi , where (λi,Wi) are the values associated with the current demand
vector and the demand rate allocation (λ1, . . . , λN ) is modified according to
a gradient hill-climbing scheme aiming to maximize aggregate utility.
Supposing the utility functions are private information, the author suggests

a mechanism with side payments to induce truthful reporting by the customers
under the following myopic bounded-rationality assumption: At each moment
a user attempts to maximize the change in his utility while acting as if the
current iteration is the last one. Under the proposed payment scheme every
user will state the true gradient with respect to the rate vector regardless of
whether other users will or will not report truthfully, that is, reporting the
truth is a dominant strategy.

Chakravorti [132] (1994) considers the single link model of [557] where
the utility ui(λi,W ) of user i is a function of arrival rate λi and expected
delay W . This function is private information. The manager controls arrival
rates with the objective of generating a Pareto optimal solution subject to
a balanced-budget constraint. The proposed solution requires each user i to
continuously report the ratio αi =

∂ui/∂W
∂ui/∂λi

where λi and W are the current
arrival rate and system delay. This information is used by the queue manager
to control arrival rates, and it is shown that under the myopic assumption (or
local incentive compatibility) the proposed mechanism converges to a Pareto
optimal solution and induces truthful reporting.

Ruelas-Gonzalez, Limon-Robles, and Smith-Cornejo [552] (2010)
consider a system with one server continuously active and another server ac-
tivated according to an N -policy. An arrival observing n customers in the
system considers the average number of customers per active server np (that

1The author considered the single-link special case in an earlier paper, see [1] §4.6.
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can be either n or n/2) and joins with probability
[(np
N

)α
+ 1
]−1
, for con-

stants ν and α. 2 The authors solve a case study, estimate the parameters ν
and α, and use them to compute the value of N that minimizes lost sales and
operations costs.

Li, Jiang, and Liu [438] (2012) consider price and capacity competition
between two observable M/M/1 queues with capacity costs ci(µi), i = 1, 2.
Customers cannot balk, but there is an upper bound P̄ on price. Servers know
each other’s service rate but customers do not know these values. When they
observe queue length ni and price pi they estimate full price at pi + βni.
Customers apply this approximation when choosing a server upon arrival and
when jockeying. When server i completes a service, the last customer in the
other queue can costlessly jockey to the end of this queue, thus limiting the
difference in queue lengths to |p1 − p2|/β.

� The authors give an explicit expression for the unique symmetric price
and capacity equilibrium when ci(µi) = cµ2i and 2λc < P̄ . In particular,
equilibrium prices are p1 = p2 = P̄ .

� Results for the asymmetric case, ci(µi) = ciµ2i , are obtained numerically.

These results are compared with the two following models:

� The model of Lee and Li (1994) (see [1] §7.3) is similar, but with cus-
tomers knowing the service rates. It turns out that the lack of informa-
tion and bounded rationality of the customers is exploited by the servers
to obtain higher profits.

� In the symmetric capacity cost case the servers build less capacity but
earn higher profits as compared to So [584] (2000), where it is assumed
the queue is unobservable but service rates are known and jockeying
is not allowed. Thus, servers prefer that customers be irrational and
informed rather than rational and uninformed.

Manjrekar, Ramaswamy, and Shakkottai [468] (2014) consider the
following discrete-time queueing game with N servers and N ·M customers:

� At each period all customers are randomly assigned to servers.

� Customers incur convex holding costs.

� A random workload is added to the customer’s workload at the beginning
of the period.

2While customers rationally consider the number of active servers (unlike in [459]), those
arriving to a single active server ignore the possibility that another server will be activated
at a later time.
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� Auctions are held by every server with winners obtaining one unit of
service. Customers bid to minimize the expected sum of holding and
service costs.

The authors use the idea of mean field approximation assuming customers
ignore how their actions affect the behavior of others. Under this simplified
model, a customer’s best response turns out to be monotone increasing in
his workload, and therefore the customer who obtains service has the maxi-
mal workload in the queue. For a large number of customers, the mean field
equilibrium is an accurate approximation of the perfectly rational equilibrium.

Huang and Chen [352] (2015) consider a variation of the E&H model
where customers do not know the service rate and base decisions to join on
anecdotal reasoning. Specifically, time is divided into generations which are
long enough allowing for the system to approximately attain steady state. An
arriving customer acquires information about realized system timeW from one
former customer chosen from a past generation, but with recent generations
having higher probabilities of being sampled. The customer joins if the net
utility of the sampled customer was positive.
Unlike in the rational E&H model, the profit-maximizing price is not SO.

The authors also prove, contrary to the Chen and Frank observation (§6.2.1),
that:

� In the short run, with µ fixed and λ sufficiently close to µ, the profit-
maximizing price increases in λ.

� If service rate is a decision variable associated with a linear cost to the
firm, and if λ is sufficiently small, an increase in λ results in a lower
price.

11.2 Quantal response and attraction demand functions

See [342, 567] where delay-standard sensitivity is combined with logit
choice.

11.2.1 A single server

Liu, Methapatara, and Wynter [452] (2010) consider a profit-
maximizing M/M/1 firm operating during N periods with demand rates λt
t = 1, . . . , N . The firm offers multiple service classes and allocates a frac-
tion φ(s, k) of capacity µ for serving class k customers in period s. The
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resulting delay for these customers is z(s, k). The price charged to cus-
tomers arriving in period t, joining service class k, and wishing to be served
in period s ­ t is r(t, s, k). The resulting utility for these customers is
U(t, s, k) = vt − r(t, s, k) − ηtz(s, k) − ζt · (s − t). Given these utility val-
ues and the utility associated with balking, t-customers randomly choose s
and k, or balk, according to a logit function.
The authors provide numerical evidence the firm can increase profits by

providing customers sufficient incentive to shift demand to off-peak periods
and maintaining more than one service class.

Huang, Allon, and Bassamboo [351] (2013) investigate the effect of
irrationality in an M/M/1 queue, assuming that when the expected benefit of
joining is b and the benefit of balking is 0, the probability a customer joins
is exp(b/β)
1+exp(b/β) (1 represents e

0). The parameter β > 0 measures the degree
of irrationality; β → 0 refers to rational behavior, and the probability of
choosing worse options increases as β grows. The authors consider Naor’s
observable model and the E&H unobservable model under equilibrium, social
optimization, and profit maximization, and find the following fundamental
differences:

� In the unobservable model, the equilibrium is mixed, in general, and
therefore with adequate pricing (which may be negative when β is high)
it is possible to optimally regulate the queue. This is not possible in the
observable case because the optimal equilibrium is pure and any price
will still lead to a mixed outcome.

� In general, high irrationality reduces social welfare, but can be used by
the firm to increase revenues.

� An interesting result in the unobservable model (with β > 0) is that
higher arrival rates always lead to higher optimal revenue, unlike in the
E&H model.

11.2.2 Competition

So [584] (2000) considers price competition among M/M/1 service
providers in a market of fixed size λ, where the demand rate λi of firm i
is determined by an attraction model

λi = λ

(
Lip
−a
i t−bi∑

Ljp
−a
j t−bj

)
,

where pi is price, ti is delay, and Li, a, and b are constants. Firm i has capacity
µi and operating cost γi, per customer. The author proves the existence of
a unique equilibrium and presents an iterative procedure that leads to it.
Additional qualitative features of the model are:
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� With a monopolistic firm, higher capacity increases profit, as expected.
However, when identical firms compete, higher capacity for all competi-
tors leads to lower pricing and lower profits.

� When the number of competing firms increases while total capacity re-
mains fixed, the result is a lower price and a longer delay.

� All other factors being equal, a firm with higher capacity exploits this
advantage by offering a shorter delay and charging a higher price. In
contrast, a firm with a lower operating cost offers a lower price and a
longer time guarantee. When two firms compete, a firm having both
higher capacity and lower operating costs would offer both shorter delay
and lower price. However, this is not necessarily true when more than
two firms compete.

Gallego, Huh, Kang, and Phillips [243] (2006) derive sufficient con-
ditions for the existence of a unique equilibrium in a general price-competition
model with an (asymmetric) attraction model of demand. In particular, the
assumptions are satisfied for the logit, Cobb-Douglas, and linear attraction
functions (see §1.5.2) of the price vector, and for the following two queueing
examples:

� Firm i is an M/M/1/κi system incurring a fixed operating cost per
customer and a fixed penalty per lost (rejected) customer.

� An M/D/1 special case of the G/G/1 model of [33].

Zhang, Dey and Tan [705] (2008)3 consider two competing servers
with heterogeneous Poisson demand. Customer service valuations v ∼ U[0,1]
are perfectly correlated with the waiting-time cost rate γv. Each server offers
two priority classes, j = 1, 2. The decision variables of server i are delay
guarantee di and prices pij . Demand and balking rates are determined by a
logit demand function where the probability a v-customer buys priority i from
provider j is

Pr(i, j, v) =
e(v−pij−γvdi)/∆

1 +
∑2
k=1

∑2
m=1 e

(v−pkm−γvdk)/∆

and the probability of balking is
[
1 +

∑2
k=1

∑2
m=1 e

(v−pkm−γvdk)/∆
]−1
, where

∆ is a parameter.4 The authors (numerically) solve the price equilibrium in
the duopoly model and compare it to the monopolistic solution. They conclude
that:

3The first part of this paper is summarized in §7.1.
4The authors observe that when ∆ → 0 customers join a given class if both IR and

IC conditions hold and the continuous demand function subsumes the traditional discrete
form.
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� A monopoly provider charges a higher price but provides a lower delay
relative to the duopoly equilibrium.

� Customers gain from the competition only under low traffic.

� Competition reduces social welfare.

Allon and Federgruen [33] (2008) examine the attraction model
λi = Mvi(pi, θi)/ (v0 +

∑
vj(pj , θj)) , where pi is price, θi is service level,

vi(pi, θi) is the firm’s attractiveness function, and M and v0 are positive con-
stants. The authors assume a uniform price increase by all firms cannot result
in an increase in demand volume to any firm, which translates into

vi
v0 +

∑
vj

<
∂vi/∂pi∑
∂vj/∂pj

.

The capacity cost Ci(λ, θ) associated with providing service level θ when
firm i faces demand at rate λ is convex in λ. The authors show that an equi-
librium exists both in price competition and in service (delay) competition.

Allon and Gurvich [37] (2010) consider a many-server heavy-traffic
model of competition where service providers set price and the number of
servers they employ. Demand faced by each firm depends on price and service
level offered by all firms in the market, with additional assumptions that are
satisfied, for example, by the multinomial logit and Cobb-Douglas models.
An equilibrium does not exist, in general, in this model and therefore

the authors relax the requirements and deal with ε-equilibria. They examine
two types of approximations, a deterministic fluid model and a more refined
stochastic diffusion model. The main results include:

� The firms can be fairly close to optimality by first solving the price-
competition game, assuming customers are insensitive to delay, and then
setting the optimal number of servers given this price vector.

� Conditions for QED and ED regimes to emerge in the competitive
equilibrium.

� Bounds on quality of fluid and diffusion approximations.

Allon, Federgruen, and Pierson [36] (2011) study a model of com-
petition among servers using data from the fast-food industry. Their model
assumes a linear relation between customer utility and price, waiting time,
chain identity, and demographic factors. The market share of servers and
balking probability are determined through a multinomial logit model. Each
server’s costs are assumed to be linearly dependent on demand rate and the
reciprocal of expected waiting time. (The latter dependence is also applied
and justified in [33].)
The authors estimate the impact of various factors on price equilibrium
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and associated demand. In particular, they estimate how sales of a certain firm
are affected by price and waiting time of all service providers. These estimates
indicate customers attribute a very high cost to the time and therefore firms
can often significantly improve their absolute and relative market shares by
modestly reducing waiting times.

Li, Guo, and Lian [442] (2015) model duopoly competition among ser-
vice providers where server selection (and balking) is determined by the logit
choice model. The probability of selecting server i is eUi/β/

(
1 +

∑
eUj/β

)
,

where β > 0 measures the degree of irrationality and Ui = Vb + α(µb − µi)−
p − C

µi−λi . In this expression, Vb and µb are benchmark service value and
service rate, price p is exogenous, and service rate µi is a decision variable.
The authors prove that:

� When customer utility is required to be non-negative, the welfare-
maximizing price is lower than the competitive price, which, in turn,
is less than the monopoly revenue-maximizing price.

� When customer utility is allowed to be negative, the welfare-maximizing
price can be larger than the other two prices in a large-size market. In
this case firms do not benefit from a higher level of bounded rationality.

Blake and Elahi [91] (2015) experimentally investigate the theoretical
model of [222], with a single buyer and two suppliers. The authors explain
observed differences between laboratory experiments and theoretical results by
relaxing the model’s rationality assumptions. Gamesmanship behavior occurs
when players use the profit of their competitors as a benchmark and direct
their decisions according to the difference between this and their own profit.
The authors obtain the following results:

� In most cases, empirical average base-stock levels are greater than the
corresponding equilibrium values but smaller than the gamesmanship
equilibrium. This suggests that subjects maximize their own profit while
at the same time try to beat out their competitors.

� To explain their experimental findings the authors use a logit quantal
response equilibrium. For i = 1, 2, let EUi(z) be a weighted sum of the
expected profit of supplier i and the difference (representing gamesman-
ship) between that profit and that of his competitor’s when supplier i
chooses base-stock level z and expectation is taken over the random de-
cisions made by his competitor. Let Ωi be the set of possible decisions
for supplier i. Then, for every z ∈ Ωi the probability of supplier i choos-
ing base-stock level z is Pr(z) = exp(EUi(z)/β)/

∑
ω∈Ωi exp(EUi(ω)/β).

The authors examine the weights on gamesmanship and identify condi-
tions where their influence are significant.
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11.2.3 Location

Marianov, Rı́os, and Icaza [472] (2008) consider a firm establish-
ing a given number of new M/M/s/K facilities on a network while facing
competition from existing facilities. Given a complete set M of established
facilities, travel times (tij) for customer i to location j ∈ M , and equilib-
rium expected waiting time wj at j, customer i’s cost of selecting j ∈ M is
cij = αtij+(1−α)wj for a fixed α ∈ [0, 1]. The probability customer i chooses
service from the facility at location j is assumed to be e−γcij/

∑
k∈M e−γcik .

The authors propose a heuristic algorithm for locating new facilities to
maximize market share.

Saidi-Mehrabad, Teimoury, and Pahlavani [556] (2010) suggest a
model of competition among M/M/s/K service facilities. The full cost in-
curred by a customer from location i traveling to facility j for service is
cij = pij + f(tij + wj), where pij is price, tij is travel time, and wj is ex-
pected waiting time. Customers choose a facility according to a logit model.
The authors consider a process where customers learn the values wj from ex-
perience. They also consider variations where customers have the option of
veering (similar to jockeying).

Pahlavani and Saidi-Mehrabad [512] (2011) develop a model for
a firm’s profit-maximizing pricing given the fixed prices of its competitors.
The locations of all facilities are fixed; demand is routed according to a logit
function of full price (the sum of price and transportation costs). Customers
balk from the selected facility with a probability that linearly increases in
queue length. Balking customers choose (only once) a different firm according
to a logit function depending on price differences and transportation costs. The
problem is formulated as a mathematical program and a heuristic is offered.

Zarrinpoor and Seifbarghy [691] (2011) propose heuristics for a vari-
ation of [472] including facility installation costs, customer waiting costs and
transportation costs. The firm minimizes combined costs to the firm and its
customers subject to a constraint that the firm serves a given market share.

Abouee-Mehrizi, Babri, Berman, and Shavandi [5] (2011) com-
pute profit-maximizing locations for a given number of M/M/1 facilities.
Fixed costs associated with establishing a facility and linear capacity costs
are location-dependent. Service capacity and common price p at all facilities
are decision variables. Demand for service is set in three steps. (i) Customers
at location i select facility j with probability Pij = e−dij/

∑
k e
−dik , where

dij denotes distance. (ii) Arrival rate to facility j is
∑
i wiPije

−αjp where wi
is the demand rate originating at i. (iii) Queues are observable and customers
join only if queue length is below an exogenous threshold.
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11.3 Quotation sensitivity

This section describes models where a firm quotes an unreliable promised
delivery time (PDT) and customers react as if it were reliable. In these models
it is the firm that incurs penalties when the realized delivery time deviates
from the one promised. These costs usually consist of tardiness (lateness) costs
for late delivery and often also holding (earliness) costs for early delivery.
Section 11.3.3 is devoted to another type of quotation sensitivity where the
firm manipulates customers by the way it presents information, even though
the information is reliable.
PDT sensitivity is commonly assumed in the context of supply chains

[451, 714], decentralized systems [228], and server vacations [192]. Sensitivity
to PDT is also assumed in models with strategic delays, see §2.6.2.

11.3.1 PDT sensitivity

Weng [659] (1996) considers a profit-maximizing M/M/1 server han-
dling two customer classes. P-customers agree to pay price PP independent
of waiting time while L-customers are sensitive to PDT. When an L-customer
is quoted PDT LL and price PL and actual delivery time is x, profit gener-
ated by an L-customer is PL − bLLL − Cwx − Ct(x − LL)+ − Ce(LL − x)+.
Profit generated by a P-customer under these conditions is simply PP −Cwx.
It is assumed, ignoring penalties, that L-customers are more profitable to the
server (i.e., PL−bLLL > PP ), and therefore obtain preemptive priority. Server
decision variables are arrival rates λL and λP and PDT LL.
The author presents a closed-form solution to the profit-maximizing values

of the decision variables.

Hatoum and Chang [317] (1997) consider a multiclass M/M/1 queue
with class demands that linearly decrease in price and PDT. The server incurs
class-dependent production, holding, and tardiness costs. The authors numer-
ically investigate the sensitivity of the profit-maximizing solution to the cost
parameters and conclude that tardiness costs constitute a more influential
component than holding costs.

Palaka, Erlebacher, and Kropp [514] (1998) consider an M/M/1
system with linear demand function λ(p, l) = a− b1p− b2l of price p and PDT
l. The server incurs linear earliness and tardiness penalties. PDT is measured
as the s fractile of the waiting-time distribution, where s is an exogenous
reliability level.
The server maximizes profits by setting l and p (and in the long-run ver-

sion also µ). The server can also control demand by rejecting arrivals, but the
authors prove this never to be optimal. The paper contains extensive compar-
ative statics with some interesting conclusions. For example:
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� When reliability level s increases, the firm defends itself against incurring
higher penalties and acts in two ways, increasing the PDT and also
decreasing the expected lead time.

� When the tardiness penalty increases from small to large values, the
firm first reacts by limiting arrival rate and increasing price, and then
by increasing PDT to avoid tardiness penalties and reducing price.

� It is possible that when delay cost, lateness penalty, or demand lead-
time sensitivity increase, the firm achieves a shorter lead time by both
decreasing arrival rate and increasing capacity.

Chatterjee, Slotnick, and Sobel [135] (2002) consider a firm that
cannot observe queue length and sets PDT based on the known service dura-
tion of the current job. A customer offered PDT l (excluding service) remains
for processing with probability e−ξl where ξ is a constant. A job of duration s
has revenue r(s) and a unit time tardiness penalty τ(s). The firm maximizes
profit (revenue minus tardiness costs).
The authors prove the optimal PDT function L(s) in the M/M/1 model is

log-linear: L(s) = max {a− b ln[r(s)/τ(s)], 0}.. When revenue net of process-
ing costs increases in proportion to processing time, there is a critical value
above which all jobs should be assigned a zero PDT. If the unit tardiness
penalty depends on processing time, and revenue is nonlinear with respect
to processing time, then a job with a longer processing time should receive a
longer PDT.

Armony and Maglaras [65, 66] (2004) consider an M/M/s firm offer-
ing two service classes, Q1 and Q2, to a continuum of customer types. A PDT
D2 is quoted for class Q2 customers. A τ -customer has two utility functions: a
delay-sensitive function uτ1(W1) for choosing Q1 when expected waiting time is
W1, and a PDT-sensitive function uτ2(D2) for choosing Q2.

5 The example used
by the authors has uτ1 = R

τ
1−C1W1 and uτ2 = Rτ2−C2D2.6 The utility associ-

ated with balking is 0. Customers select a server or balk, either by employing
the utility-maximizing option or according to a multinomial logit function. In
the unobservable case [65] W1 is based on the long-run information, while in
the observable case [66] it is based on state-dependent information.
The firm dynamically allocates servers to the two service classes. For a

given D2, the firm’s goal is to minimizeW1 while maintaining its commitment
to Q2-customers.
The authors focus on asymptotic analysis. They consider the Halfin-Whitt

5The authors recognize in [65] that this behavior reflects bounded rationality saying, “In
principle, the utility may depend on the entire distributions of W1 and W2, however, this
does not appear to be very realistic (due to bounded rationality arguments).” However,
they also note in [66] that the quoted lead time turns out to be asymptotically exact.
6The class Q2 is motivated by a call center’s call-back option, and therefore the numerical

examples assume C2 � C1.
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regime and derive approximations for the expected value and variance of wait-
ing time for both queues. This leads to insights on the trade-off between the
performance measures of the two service classes and enables computing the
optimal value of D2 and the minimum number of servers N for desired per-
formance.

Slotnick and Sobel [583] (2005) characterize the optimal policy in a
model where customers know their service time upon arrival,7 but not the
service times of those already in the queue. The service provider has the
complete information which it uses to quote PDTs to new arrivals. Customers
do not deduce this information from the quote and balk with a probability that
depends on their service time and the PDT. The firm’s goal is to maximize
expected revenue minus tardiness penalties. Special attention is given to the
case where revenue is proportional to processing time, the tardiness penalty is
proportional to lateness, and balking probability is an exponential function of
PDT. Under these conditions, profit decreases as queue length increases, and
increases as processing time increases; a PDT increases as backlog increases
and decreases as processing time increases. The results are extended to classes
of heterogeneous customers.

Hong and Lee [345] (2013) introduce unreliable PDTs into the model of
[104]. The authors consider both the capacity allocation problem of dividing
a given capacity µ between the two servers and the variation where total
capacity becomes a decision variable.
The price for regular service is exogenous while the price for express service

is a decision variable. The server incurs penalty Ri whenever the service dura-
tion of an i-customer exceeds Li. This penalty is independent of the duration
of the delay. Numerical results demonstrate the advantage of segmenting the
market. Similar to [104], the sensitivity of the solution with respect to guar-
antees L1 and L2 depends on the market sensitivity to price and expected
service time differences.

11.3.2 Dynamic PDT quotation

We describe here models where the PDT quoted by the firm is state-
dependent. These models usually assume that customers’ reaction follows an
exogenous probabilistic joining function of the PDT. Rational customers can,
however, use dynamic (state-dependent) PDTs to deduce relevant information
on the system state. Ignoring this information may be attributed to bounded
rationality. Dynamic PDT quotation is also discussed in [192] in a model with
strategic server vacations.

7A similar assumption appears in [322], while in [135] it is assumed the server knows the
customer’s service time.
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Duenyas [209] (1995) considers an M/M/1 multiclass system with func-
tions pi(a) for the probability of an i-customer joining when quoted PDT a.
Revenue from serving an i-customer is Ri. If an order is x units of time late,
the firm incurs a class-independent penalty cx. PDTs are class dependent and
dynamically adjusted to the state of the system. The author proves structural
properties of profit-maximizing PDTs when the service order is FCFS and
when the firm is free to sequence orders. In the latter case it is optimal to
follow the earliest due date rule (EDD). Duenyas and Hopp [210] (1995)
solve single-class variations of this model.

Savaşaneril, Griffin, and Keskinocak [562] (2010) consider profit-
maximizing PDTs in an M/M/1 MTS system. The probability that a customer
receiving a PDT quote d will place an order is an exogenous decreasing func-
tion f(d). The firm earns a fixed revenue per customer and incurs linear tardi-
ness and holding costs. The firm’s decision variables are the state-dependent
PDT and the base-stock level.
The main results are:

� The profit-maximizing base-stock level increases as customer PDT-
sensitivity increases.

� When the optimal base-stock level is positive, optimal PDTs in states
with zero on-hand inventory are higher as compared to the MTO system
where the firm cannot hold inventory.

� Increasing the base-stock level does not necessarily decrease the expected
number of customers waiting in the system.

� If the firm rejects arriving customers when necessary, quoting lead times
with lower precision will only marginally affect profits. However, if all
customers must be accepted the negative impact on profits can be high.

Feng, Liu, and Liu [234] (2011) examine dynamic price and lead-
time quotes in a G/M/1 system with heterogeneous service valuations. When
a customer arrives, the server quotes state-dependent price p and PDT l.
The cost a customer associates with the PDT is a convex function x(l); the
customer joins the queue if his service value exceeds the full price p + x(l).
The server incurs a fixed cost when a customer balks and a cost per unit
time of tardiness, and obtains a fixed revenue per customer served. The main
finding is that the profit-maximizing solution is obtained when, sequentially,
the server first determines the PDT by maximizing the profit from the current
customer and then determines the price while taking into consideration the
effect of the current customer’s joining on future arrivals.

Slotnick [581] (2011) considers a multiclass service system where service
requests are characterized by size a and type g. A g-customer promised lead
time l accepts the offer with probability e−ξ(g)l and balks otherwise. Joining
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requests are grouped according to type. When the total group size reaches a
given value the group joins a second M/M/1 queue as a single batch. Termi-
nation of processing an (a, g)-request rewards the system by w(g) · a. If the
order is tardy the firm incurs a fixed tardiness penalty.
The author applies dynamic programming to a finite-horizon version of this

model, and also suggests a faster heuristic algorithm. A computational study
indicates that optimal PDT is a decreasing function of the size of the group
of g-requests waiting to reach the minimum group size, and also a decreasing
function of the arrival rate for group g.8

Kaman, Savaşaneril, and Serin [380] (2013) consider an M/M/1 MTS
manufacturer obtaining a fixed revenue per served customer and incurring
constant penalty rates for holding inventory and late delivery. A decreasing
exogenous function f(d) gives the probability of a customer placing an order
when quoted a PDT of d. The manufacturer has imperfect information on
the state of the system (the number of orders in the queue or the number of
items in stock), and this is expressed by probabilities that the manufacturer
observes signals i′ when the actual state is i. The manufacturer maximizes
profits by setting base-stock level and dynamic PDTs.9

The authors conduct a numerical study and investigate the value of perfect
information. They conclude, for example, that imperfect information is likely
to increase the stock level in the system and that the value of information is
likely to be higher under high holding cost and low traffic.

Slotnick [582] (2014) assumes customers are sensitive to the firm’s rep-
utation for on-time delivery, presented as a weighted average of past tardiness
values. The probability a customer quoted PDT L places an order is e−(ξL+γT ),
where T is the firm’s reputation at the time of decision. Jobs have heteroge-
neous sizes, price per unit size is exogenous and the quoted PDT depends
on job size, queue length, and reputation of the firm at present. Processing
time is proportional to job size and job arrivals are Poisson. The problem is
to determine a PDT quotation policy maximizing the firm’s discounted prof-
its (revenue minus linear tardiness costs). Results of a computational study
include:

� PDT is longer when the shop workload (including the current job) is
large, but this relation does not necessarily hold with respect to job size
alone.

� If the firm has a poor reputation for on-time delivery, it should quote
a shorter PDT so customers will be more likely to stay (rather than

8Note the similarities in this situation, the model in [125], and the shuttle model in [308]
and [1] §1.5.
9The actions prescribed by the policy depend on the observed state, but are independent

of historical data which could be used to obtain improved predictions on the current state.
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quoting a longer lead time to improve its reputation for on-time delivery
in the future).

� For a customer who is more sensitive to reputation or length of PDT,
the firm should quote a longer PDT.

Savaşaneril and Sayin [563] (2015) consider a profit-maximizing
M/M/1 MTS firm facing n customer classes with heterogeneous arrival rates,
revenue potential, and distribution of maximal accepted PDT. The system
incurs class-independent holding and tardiness penalties, and the queue dis-
cipline is FCFS. The authors characterize the profit-maximizing dynamic ad-
mission and lead-time quote policy.
The main results are as follows:

� A lower-than-optimal base-stock level increases expected waiting time
but does not necessarily increase expected tardiness. A higher-than-
optimal base-stock level may or may not improve expected tardiness.

� Deviations from the optimal quotation scheme, e.g., a static quotation
scheme, result in higher stock levels.

� In a two-customer class setting, a single server MTS queue is contrasted
with a system of two MTS queues each dedicated to a demand class.
Total server capacity is identical in both systems. The increase in the
profit due to resource pooling can be considerably high when server
utilization is close to 100%. Interestingly, when the utilization is very
low and customer class unit revenues significantly differ pooling may
harm the firm.

� The benefit of pooling is lower in the presence of an effective lead time
quotation policy.

11.3.3 Sensitivity to delay guarantee and reliability level

Consider a queue with known arrival and service distributions except that
the service rate parameter µ is a decision variable which cannot be directly
observed by customers. The firm may commit to serving customers within
lead time l with probability s. Note that l and s are sufficient information for
deducing µ. Moreover, assuming a fixed µ, for every l there is a corresponding
reliability level s(l) and the choice of the particular pair (l, s(l)) to be quoted
is arbitrary and should not affect the demand of rational customers. This
section concerns models where the firm manipulates non-rational customers
by the selection of the pair (l, s).10

10Customer behavior can be related to the anchoring effect described by A. Tversky and
D. Kahneman, “Judgment under uncertainty: heuristics and biases,” Science 185 (1974)
1124-1131.
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Ho and Zheng [342] (2004) consider competition where m servers max-
imize market share. Each server i announces delay guarantee Ti and reli-
ability level Qi, and the utility of a customer joining this server is Ui =
β0−βTTi+βQQi. A customer selects server i with probability Si = eUi/

∑
eUj .

Suppose utilities at servers j 6= i are fixed, and server i announces Ti.
For any arrival rate λi to server i there are corresponding Qi(Ti, λi) and Ui.
In equilibrium the resulting selection probability satisfies λi = SiΛ, where
Λ is market size. The authors prove that for any given Ti there is a unique
equilibrium λi(Ti) and provide an algorithm for computing the best response
T ∗i that maximizes λi(T

∗
i ). The authors also consider duopoly competition,

prove an equilibrium (T1, T2) exists, and present a prisoner’s dilemma type
example when capacity can be added at a cost.

Boyaci and Ray [105] (2006) extend the model of [104] by considering
the following demand function:

λi = a− βppi + θp(pj − pi)− βα(1− αi) + θα(αi − αj)− βLLi + θL(Lj − Li),

where the lead time Li is the αi-fractile of the waiting-time distribution at
server i, αi is the corresponding reliability level, and j is the other server. Since
the waiting-time distribution can be represented by different L and α values,
this means that customers are affected by the way in which the information
is presented.
The authors show that optimal solutions qualitatively depend on whether

demand is more sensitive to price or to delay, and whether demand is more
sensitive to lead time or to reliability.

Shang and Liu [567] (2011) extend [342] by discussing competition in
delay quotation and capacity. Servers have heterogeneous revenue from serving
a customer and unit capacity costs, and maximize profits. The game has two
stages. In the first stage the firms compete in terms of capacities and in the
second they compete in terms of delay quotations. The results include:

� A proof of the equilibrium’s uniqueness in the second phase.

� Sufficient conditions for the existence of an interior equilibrium and a
characterization of boundary equilibria in the first phase.

� An example with two competing firms where, as already observed in
[342], a uniform capacity cost reduction harms both firms by intensifying
the competition between them.

Jouini, Akşin, and Dallery [377] (2011) analyze a Markovian multi-
server model combining probabilistic joining and exponential reneging. A cus-
tomer arriving when all servers are busy and there are n queueing customers
is informed of the β-fractile dn of his waiting-time distribution. The customer
joins the queue iff dn ¬ t where t ∼ exp(γ) represents the customer’s patience.
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Customers who decide to join update their patience to a value θt+(1−θ)dn11
and use the updated patience to set a reneging time if service doesn’t start by
then. The authors show how the queue manager can influence the trade-off
between balking and reneging by controlling β.

Park and Hong [518] (2014) consider a Stackelberg game in a supply
chain. The leader is an M/M/1 supplier setting guaranteed lead time l, relia-
bility level s, and capacity µ. The follower is a retailer setting retail price p.
The supplier gains (ws−m)λ−Aµ, where λ = λ(p, l, s) = a−bp−cl+gs is the
demand function, ws is an exogenous wholesale price, m is unit production
cost, and A is unit capacity cost. The retailer gains p− ws per customer.
The authors prove a unique subgame-perfect equilibrium exists and present

a numerical example.

11.4 Joining and reneging

The first attempt to formulate a rational decision model of reneging was
by Haight [295] (1959). This model does not explicitly involve cost or value
parameters, and, moreover, customers do not take into account the reneging
strategies of others. Customers have a maximal tolerable waiting time W , the
queue is observable, but the customer does not have prior knowledge of the
service process. Consider a customer who arrives at time 0, and let n(t) be
the number of customers queueing in front of him at time t. The reneging
decision is guided by a nondecreasing function Φ(t) such that the customer
reneges when Φ(t) = n(t). The initial function is a hyperbola with asymptotes
t = 0 and n = n(0)/W (the minimum attrition rate necessary to keep waiting
time below W ), and the customer periodically revises it according to the
observed departures from the queue.

Parkan and Warren [519] (1978) and Martin and Pankoff [473]
(1982) consider reneging decisions in an observable G/M/1 queue with an
unknown service rate. A customer’s prior belief about the value of µ is a
random variable with a gamma distribution. Upon arrival and at any service
termination customers compute their conditional expected utility and renege
if it is negative. The model reflects several aspects of bounded rationality.
Customers assume those ahead of them will not renege. Customers ignore
the option value of inspecting more service terminations and reneging later
(the customer behaves as if the reneging option exists only at the current
time of decision). In their estimation of µ, customers ignore the behavior of
those who arrived earlier and possess more information. Specifically, the model

11The parameter θ is not restricted to [0,1].



300 Rational Queueing

allows customers ahead in the queue to renege, but the customer in question
ignores the signals that such behavior transmits.

Shimkin and Mandelbaum [573] (2004) assume customers of an
M/M/s system differ in two functions. They differ in the utility R(t) ob-
tained when starting service t units of time after arrival, and in the nonlinear
cost C(t) of queueing t units of time. The queue is unobservable but cus-
tomers know when service starts. Customers decide on reneging time while
maximizing expected value from service minus waiting cost.
The authors develop conditions on the waiting cost function guaranteeing

the existence and uniqueness of an equilibrium. They also give broader condi-
tions for a different concept of myopic equilibrium. This new concept assumes
customers adopt a myopic decision rule choosing the abandonment time as
the first (weak) local maximum of the utility function (rather than choosing
a global maximum). The authors provide two justifications for this rule:

� It is natural when abandonment decisions are taken based on the cus-
tomer’s assessment of the current situation and the utility of further
waiting.

� Often customers lack information regarding the waiting-time distribu-
tion for long waiting.

Turhan, Alanyali, and Starobinski [632] (2012) consider an M/M/C/C
loss system with two customer types, primary users (PUs) and secondary
users (SUs). PUs have preemptive priority over SUs. The system state (x, y)
consists of the number of users of each type in the system. SUs pay a price
u(x, y) upon arrival. When preempted by a PU, an SU receives a compensation
K > maxu(x, y) and leaves the system. PUs have a fixed demand rate of λ1,
while that of SUs is λ2(u), which depends on the current price but not on the
probability of eventually obtaining service. This behavior reflects bounded
rationality. The server’s goal is to maximize profit from SUs payments by
selecting an appropriate dynamic pricing policy.
The authors prove the optimal price depends solely on the total number

of customers in the system, x+ y, and that it is increasing in this variable.



Bibliography

[1] Hassin, Refael and Moshe Haviv, To Queue or Not to Queue: Equilibrium
Behavior in Queueing Systems Kluwer Academic Publishers, 2003. Also
available online: http://www.math.tau.ac.il/∼hassin/book.html.
Errata related to the printed version can be found in
http://www.math.tau.ac.il/∼hassin/errata.pdf. (Cited on
page 1, 2, 5, 6, 11, 13, 14, 24, 26, 28, 29, 30, 31, 33, 38, 41, 44, 54, 56,
59, 66, 84, 88, 90, 92, 93, 94, 97, 100, 108, 110, 112, 113, 115, 119, 122,
133, 137, 140, 141, 143, 165, 169, 170, 172, 177, 178, 187, 193, 208, 209,
212, 216, 226, 228, 245, 256, 277, 284, 285, and 296.)

[2] Abbad, Mohammed, Rachid El Azouzi, and Mohamed El Kamili, “The
problem of capacity addition in multi-user elastic demand communication
networks,” Mathematical Methods of Operations Research 63 (2006) 461-
471. (Cited on page 214.)

[3] Abhishek, Vineet, Ian A. Kash, and Peter Key, “Fixed and market pricing
for cloud services,” INFOCOM (2012).(Cited on page 178.)

[4] Aboolian, Robert, Oded Berman, and Dmitry Krass, “Profit maximizing
distributed service system design with congestion and elastic demand,”
Transportation Science 46(2) (2012) 247-261. (Cited on page 226.)

[5] Abouee-Mehrizi, Hossein, Sahar Babri, Oded Berman, and Hassan Sha-
vandi, “Optimizing capacity, pricing and location decisions on a congested
network with balking,” Mathematical Methods of Operations Research 74
(2011) 233-255. (Cited on page 291.)

[6] Acemoglu, Daron and Asuman Ozdaglar, “Competition and efficiency in
congested markets,” Mathematics of Operations Research 32(1) (2007)
1-31. (Cited on page 134.)

[7] Adler, Ilan and Pinhas (Paul) Naor, “Social optimization versus self-
optimization in waiting lines,” (1969). (Cited on page 26.)

[8] Afanasyev, Maxim and Haim Mendelson, “Service provider competition:
delay cost structure, segmentation, and cost advantage,” Management
Science 12(2) (2010) 213-235. (Cited on page 192.)

301



302 Rational Queueing
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[380] Kaman, Cumhur, Seçil Savaşaneril, and Yasemin Serin, “Production and
lead time quotation under imperfect shop floor information,” Interna-
tional Journal of Production Economics 144 (2013) 422-431. (Cited on
page 77 and 296.)

[381] Kameda, Hisao, “Coincident cost improvement vs. degradation by
adding connections to noncooperative networks and distributed systems,”
Networks and Spatial Economics 9 (2009) 269-287. (Cited on page 11.)

[382] Kameda, Hisao, “Models of paradoxical coincident cost degrada-
tion in noncooperative networks,” in Game Theory Relaunched Hardy
Hanappi (ed.), 2013. http://www.intechopen.com/books/game-theory-
relaunched. (Cited on page 11 and 227.)

[383] Kameda, Hisao, Eitan Altman, Takayuki Kozawa, and Yoshihisa
Hosokawa, “Braess-like paradoxes in distributed computer systems,”
IEEE Transactions on Automatic Control 45 (2000) 1687-1691. (Cited
on page 226.)

[384] Kameda, Hisao and Yoshihisa Hosokawa, “A paradox in distributed op-
timization of performance,” unpublished manuscript (2000). (Cited on
page 199, 210, 224, and 227.)

[385] Kameda, Hisao, Yoshihisa Hosokawa, and Odile Pourtallier, “Effects
of symmetry on Braess-like paradoxes in distributed computer systems:
a numerical study,” 40th IEEE Conference on Decisions and Control
(2001). (Cited on page 226.)

[386] Kameda, Hisao and Odile Pourtallier, “Paradoxes in distributed deci-
sions on optimal load balancing for networks of homogeneous computers,”
Journal of the Association for Computing Machinery 49(3) (2002) 407-
433. (Cited on page 227.)



334 Rational Queueing

[387] Kaporis, Alexis C., Lefteris M. Kirousis, E.I. Politopoulou, and Paul. G.
Spirakis, WEA 2005. (Cited on page 224.)

[388] Kaporis, Alexis C. and Paul G. Spirakis, “The price of optimum in
Stackelberg games on arbitrary single commodity networks and latency
functions,” Theoretical Computer Science 410 (2009) 745-755. (Cited on
page 224.)
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[417] Krämer, Jan, Lukas Wiewiorra, and Christof Weinhardt, “Network neu-
trality: a progress report,” Telecommunications Policy 37 (2013) 794-813.
(Cited on page 259.)

[418] Kremer, Mirko and Laurens Debo, “Inferring quality from wait time,”
Management Science forthcoming. (Cited on page 64.)

[419] [∗ ∗ ∗] Kulkarni, Vidyadhar, “A game theoretic model for two types
of customers competing for service,” Operations Research Letters 2(3)
(1983) 119-122. (Cited on page 90.)

[420] Kumar, Chetan, Kemal Altinkemer, and Prabuddha De, “A mechanism
for pricing and resource allocation in peer-to-peer networks,” Electronic
Commerce Research and Applications 10 (2011) 26-37. (Cited on page 6.)

[421] Kumar, Piyush and Parthasarathy Krishnamurthy, “The impact of
service-time uncertainty and anticipated congestion on customers’ wait-
ing time decisions,” Journal of Service Research 10(3) (2008) 282-292.
(Cited on page 209.)

[422] Kumar, Sunil and Ramandeep S. Randhawa, “Exploiting market size
in service systems,” Manufacturing & Service Operations Management
12(3) (2010) 511-526. (Cited on page 15, 148, 184, and 232.)



Bibliography 337

[423] Kwasnica, Anthony M. and Euthemia Stavrulaki, “Competitive location
and capacity decisions for firms serving time-sensitive customers,” Naval
Research Logistics 55(7) (2008) 704-721. (Cited on page 202.)

[424] La, Richard J., and Venkat Anantharam, “Optimal routing control: re-
peated game approach,” IEEE Transactions on Automatic Control 47(3)
(2002) 437-450. (Cited on page 131.)
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tion for market capture when users rank facilities by shorter travel and
waiting times,” European Journal of Operational Research 191 (2008)
32-44. (Cited on page 291.)

[473] Martin, Glen E. and Lyn D. Pankoff, “Reneging in queues revisited,”
Decision Sciences 13(2) (1982) 340-347. (Cited on page 28 and 299.)

[474] Maoui, Idriss, Hayriye Ayhan, and Robert D. Foley, “Congestion-
dependent pricing in a stochastic service system,” Advances in Applied
Probability 39(4) (2007) 898-921. (Cited on page 46 and 141.)

[475] Maoui, Idriss, Hayriye Ayhan, and Robert D. Foley, “Optimal static
pricing for a service with holding costs,” European Journal of Operational
Research 197 (2009) 912-923. (Cited on page 141 and 152.)

[476] Masarani, F. and S. Sadik Gokturk, “Price setting policies for service
systems in case of uncertain demand and service time,” Zeitschrift Oper-
ations Research 31 (1987) B97-B113. (Cited on page 152 and 187.)

[477] Masuda, Yasushi and Seungjin Whang, “On the optimality of fixed-up-
to tariff for telecommunications service,” Information Systems Research
17(3) (2006) 247-253. (Cited on page 161.)

[478] Mazalov, Vladimir V., and Julia V. Chuiko, “Nash equilibrium in opti-
mal arrival time problem,” ISDG (2006). (Cited on page 89.)

[479] Mazalov, Vladimir, Burkhard Monien, Florian Schoppmann, and
Karsten Tiemann, “Wardrop equilibria and price of stability for bottle-
neck games with splittable traffic,” WINE (2006). (Cited on page 134.)

[480] Mazumdar, Ravi, Lorne G. Mason, and Christos Douligeris, “Fairness in
network optimal flow control: optimality of product forms,” IEEE Trans-
actions on Communications 39(5) (1991) 775-782. (Cited on page 130.)

[481] McCain, Roger A., Game Theory: A Non-Technical Introductionź to the
Analysis of Strategy, Drexel University 2010. (Cited on page 85.)

[482] Melnik, Anna V., “Equilibrium in transportation games,” Automation
and Remote Control 76(5) (2015) 909-918. (Cited on page 223.)

[483] Melo, Emerson, “Price competition, free entry, and welfare in congested
markets,” Games and Economic Behavior 83 (2014) 53-72. (Cited on
page 191 and 208.)



342 Rational Queueing

[484] Menache, Ishai and Nahum Shimkin, “Capacity management and equi-
librium for proportional QoS,” IEEE/ACM Transactions on Networking
16(5) (2008) 1025-1037. (Cited on page 215.)
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Başar, Tamer, 107, 150, 220
Bassamboo, Achal, 72, 79, 80, 199,

287
Bayram, I., 55
Bearden, J. Neil, 93
Bell, Colin, 84, 85, 133, 208
Bell, David, 8
Ben-Shahar, Israel, 98
Benjaafar, Saif, 129, 246
Berman, Oded, 225, 226, 291
Bernstein, Fernando, 251

367



368 Rational Queueing

Berry, Randall, 172
Besbes, Omar, 52
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Author index 371

Herrero, Carmen, 125
Hildebrand, David, 5
Hillier, Frederick, 5
Ho, Teck-Hua, 298
Holmes, Mar, 229
Holt, Charles Jr., 84, 93
Hong, Choong, 192, 214, 276
Hong, Choong Seon, 274, 278
Hong, I-Hsuan, 197
Hong, Jeff, 252
Hong, Jinpyo, 274
Hong, Ki-sung, 294, 299
Hongler, Max-Olivier, 203, 205
Honnappa, Harsha, 88
Hopp, Wallace, 201, 295
Hörner, Johannes, 62
Hosokawa, Yoshihisa, 226, 227
Hotelling model, 123, 144, 180
Hou, Zhenting, 269
Hsiao, Man-Tung, 56
Hsu, Hsi-Mei, 197
Hsu, Vernon, 113
Hu, Ming, 60
Huang, Fengfeng, 238
Huang, Min, 247
Huang, Ping, 269
Huang, Shuo, 146, 212
Huang, Tingliang, 286, 287
Huang, Weixiang, 177
Huang, Ximin, 246, 247
Huberman, Bernardo, 92
Huh, Woonghee, 288
Hwang, Hark, 108
Hwang, Johye, 39

Ikuta, Seizo, 182
Ilmakunnas, Pekka, 195
Inoie, 107
Ioannidis, Stratos, 267
Ismail, Muhammad, 55
Iyer, Ananth, 247

Jagannathan, Krishna, 275
Jahnke, Hermann, 142
Jain, Rahul, 86, 88, 247

Jalali, Gholamreze, 254, 255
Jang, Wooseung, 39
Janssen, Maarten, 153
Jayaraman, Rajshri, 178
Jayaswal, Sachin, 166
Jeffries, Clark, 226
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José Icaza, Manuel, 291
Jouini, Oualid, 38, 88, 267, 298
Jukic, Boris, 113, 212
Juneja, Sandeep, 86

Kahneman, Daniel, 297
Kalai, Ehud, 245
Kaman, Cumhur, 296
Kameda, Hisao, 107, 226, 227
Kamien, Morton, 245
Kang, Wanmo, 288
Kanta, Spyridoula, 71, 183, 219,

270, 273
Kapoor, Sanjiv, 117
Kaporis, Alexis, 224
Karaesmen, Fikri, 47, 77, 236, 280
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Sürücü, Oktay, 17
Sycara, Katia, 121, 156

Tai, Allen, 48
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