INTRODUCTION INTO RIGID ANALYTIC GEOMETRY

Course notes (in progress) for a course given at Tel Aviv University ${\rm in} \ {\rm Fall} \ 2006$

BY

Dan Haran

1. Valuation Theory

Only rank 1 valuation, that is, valuations with valuation group contained in \mathbb{R}^+ .

Exercise 1.1:

- (a) |-a| = |a|.
- (b) |a| < |b| implies |a + b| = |b|.

Proof: (a)
$$|-a|^2 = |(-a)^2| = |a|^2$$
, hence $|-a| = |a|$.

(b) On one hand $|a + b| \le \max(|a|, |b|) = |b|$. If |a + b| < |b|, then $|b| = |(a + b) + (-a)| \le \max(|a + b|, |a|) < |b|$, a contradiction.

Completion, definition of norm eqivalence of norms over complete fields, uniqueness of extension of valuations from complete fields to finite (and hence algebraic) extensions.

Definition 1.2: Let $(k, | \cdot |)$ be a valued field.

(a) $k^0 = \{a \in k \mid |a| \le 1\}$ is the **valuation ring** of $|\cdot|$.

It is a valuation subring of k, that is, for each $a \in k$ either $a \in k^0$ or $k^{-1} \in k^0$.

- (b) $k^{00} = \{a \in k \mid |a| < 1\}$ is the (unique) **maximal ideal** of k^0 , because
- (c) $U = k^0 \setminus k^{00} = \{a \in k \mid |a| = 1\} = (k^0)^{\times}.$
- (d) $\bar{k} = k^0/k^{00}$ is the **residue field** of | |.
- (e) $|k^{\times}| = \{|a| \mid a \in k^{\times}\}$ is the **value group** of $|\cdot|$.

EXERCISE 1.3: Compute the above objects for $k = \mathbb{Q}$ with p-adic valuation and for $k = k_0(t)$. (Notice that $|k^{\times}| \cong \mathbb{Z}$ - discrete valuation.)

Let k_v be the completion of k. Then $\overline{k_v} = \overline{k}$. Indeed, k is dense in k_v . Hence for each $b \in k_v$ with $|b| \le 1$ there is $a \in k$ with |b - a| < 1. In particular, $|a| \le 1$.

If | is discrete, then $|k_v^{\times}| = |k^{\times}|$. Indeed, if $\{a_n\}$ is a Cauchy sequence in k, then $\lim |a_n| = |a_m|$ for some m or $\lim |a_n| = 0$.

How does $k_v = \mathbb{Q}_p$ look like? Let $b \in k_v^0$. Then there is a unique $a_0 \in \{0, 1, \dots, p-1\}$ $\subseteq \mathbb{Z}$ such that $\bar{a}_0 = \bar{b} \in \bar{k}$, that is $|a_0 - b| < 1$. Thus $b = a_0 + pb_1$, where, $b_1 \in k_v^0$. Again, there is a unique $a_1 \in \{0, 1, \dots, p-1\}$ such that $|a_1 - b_1| < 1$. Thus $b = a_0 + pa_1 + p^2b_2$, where, $b_2 \in k_v^0$. By induction, $b = \sum_{n=0}^{\infty} a_n p^n$.

For a general $b \in \mathbb{Q}_p$ there is $m \geq 0$ such that $p^m b \in k_v^0$, that is, $b = p^{-m}b'$, where $b' \in k_v^0$. So $b = \sum_{n=N}^{\infty} a_n p^n$, where $N \in \mathbb{Z}$. (This is just like the usual p-adic expansion of numbers, only infinite; the addition and multiplication are the same.) Notice that $(k_v)^0 = \mathbb{Z}_p = \{\sum_{n=0}^{\infty} a_n p^n \mid a_n \in \{0, 1, \dots, p-1\}\}.$

Similarly, the completion of $k_0(t)$ is $k_0((t)) = \{\sum_{n=N}^{\infty} a_n t^n \mid a_n \in k_0, N \in \mathbb{Z}\}.$

2. Banach Spaces

(Some theorems that should be here are at the end of this section.)

Recall the following theorem

BAIRE CATEGORY THEOREM: Let X be a nonempty complete metric space, and let $\{X_i\}_{i=1}^{\infty}$ be a sequence of closed subsets of X such that $X = \bigcup_{i=1}^{\infty} X_i$. Then not each X_i has empty interior.

Proof: For $x \in X$ and for a positive number ε denote $B(x, \varepsilon) = \{x' \in X \mid d(x, x') < \varepsilon\}$, the open ball around x of radius ε .

Assume that each X_i has empty interior. Then for each $x \in X$, each $\varepsilon > 0$ and each i the point x is not in the interior of X_i and hence there is $x' \in B(x, \varepsilon)$ such that $x' \notin X_i$. As $B(x, \varepsilon)$ is open and X_i is closed, there is $\varepsilon' > 0$ such that $B(x', \varepsilon') \subseteq B(x, \varepsilon)$ and $B(x', \varepsilon') \cap X_i = \emptyset$.

Fix $x_0 \in X$ and $\varepsilon_0 > 0$. Use the preceding paragraph to construct, by induction, a sequence $x_1, x_2, \ldots \in X$ and a sequence of positive numbers $\varepsilon_1, \varepsilon_2, \ldots$ such that

- (a) $B(x_{i+1}, \varepsilon_{i+1}) \subseteq B(x_i, \varepsilon_i/2) \subseteq B(x_i, \varepsilon_i)$,
- (b) $B(x_{i+1}, \varepsilon_{i+1}) \cap X_i = \emptyset$,

By (a), $\{x_i\}_{i=1}^{\infty}$ is a Cauchy sequence in X, and hence converges to some $x \in X$. Let $i \geq 1$. As $x_j \in B(x_i, \varepsilon_i/2)$ for all j > i, this x is in the closure of $B(x_i, \varepsilon_i/2)$ and hence in $B(x_i, \varepsilon_i)$. By (b), $x \notin X_i$. This is a contradiction to $X = \bigcup_{i=1}^{\infty} X_i$.

The actions on a normed vector space (addition and multiplication with scalars) are continuous.

A complete vector space (over a complete field) is called a **Banach space**.

Banach Theorem 2.1: Let $T: V \to W$ be a surjective continuous linear map of Banach spaces over a complete field k. Then T is open.

Proof: Fix $\pi \in k$ with $0 < |\pi| < 1$.

Denote $V^0 = \{v \in V \mid ||v|| < 1\}$. This is an open subset of V; moreover, sets of the form $v + \pi^n V^0$ form a basis for the topology on V. Similarly put $W^0 = \{w \in W \mid ||w|| < 1\}$. We have to show that the image of every open basic set in V is open

in W. Since $T(v + \pi^n V^0) = T(v) + \pi^n T(V^0)$, it is enough to show that $U := T(V^0)$ is open in W. Equivalently, as U is an additive subgroup of W, show that 0 is an inner point of U.

CLAIM 1: 0 is an inner point of \bar{U} . Indeed, apply T to $V = \bigcup_{n=1}^{\infty} \pi^{-n} V^0$ to get $W = \bigcup_{n=1}^{\infty} \pi^{-n} U$ and hence $W = \bigcup_{n=1}^{\infty} \pi^{-n} \bar{U}$. By Baire's theorem there is n such that $\pi^{-n}\bar{U}$ has an inner point. Since $\pi^{-n}\bar{U}$ is homeomorphic to \bar{U} , also \bar{U} has an inner point u. Then 0 = u - u is an inner point of $\bar{U} - u = \bar{U}$.

Thus there is $m \in \mathbb{N}$ such that $\pi^m W^0 \subseteq \bar{U}$.

CLAIM 2: If $\pi^m W^0 \subseteq \bar{U}$, then $\pi^{m+1} W^0 \subseteq U$. Indeed, let $w \in \pi^{m+1} W^0$. We will construct a sequence $\{v_n\}_{n=1}^{\infty}$ in V^0 such that

(3)
$$w - \sum_{i=1}^{n} \pi^{i} T(v_{i}) \in \pi^{n+m+1} W^{0}.$$

Let $n \geq 1$. Suppose that we have already constructed $v_1, v_2, \ldots, v_{n-1} \in V^0$ such that $w - \sum_{i=1}^{n-1} \pi^i T(v_i) \in \pi^{n+m} W^0$. (For n = 1 this is the assumption $w \in \pi^{m+1} W^0$.) Thus there is $w' \in \pi^m W^0$ such that

(4)
$$w - \sum_{i=1}^{n-1} \pi^i T(v_i) = \pi^n w'.$$

But $w' \in \pi^m W^0 \subseteq \overline{U} = \overline{T(V^0)}$, hence there is $v_n \in V^0$ such that

(5)
$$w' - T(v_n) \in \pi^{m+1} W^0.$$

Multiply (5) by π^n and add it to (4) – and get (3).

Clearly, $\{\sum_{i=1}^n \pi^i v_i\}_{n=1}^\infty$ is a Cauchy sequence in V^0 . Let $v \in V^0$ be its limit. Then $\sum_{i=1}^n \pi^i T(v_i) = T(\sum_{i=1}^n \pi^i v_i)$ converges to $T(v) \in T(V^0) = U$. But by (3), $\sum_{i=1}^n \pi^i T(v_i)$ converges to w. Thus $w \in U$.

COROLLARY 2.2: There is C > 0 such that for every $w \in W$ there is $v \in V$ such that T(v) = w and $||v|| \le C||w||$.

Proof: By Banach Theorem, there is $0 < \delta < 1$ such that

$$\{w \in W \mid ||w|| < \delta\} \subseteq \{T(v) \mid v \in V, ||v|| < 1\}$$

That is, replacing w by $\frac{1}{a^r}w$, where $a \in k^{\times}$ and $r \in \mathbb{Z}$, we have:

(1) If $w \in W$ such that $||w|| < \delta |a^r|$, then there is $v \in V$ such that w = T(v) and $||v|| < |a^r|$.

Choose $a \in k$ such that |a| > 1. Put $C = \frac{|a|}{\delta}$. Let $w \in W$. Then there is a unique $r \in \mathbb{Z}$ such that

$$C^{-1}|a|^r = \delta|a|^{r-1} < ||w|| \le \delta|a|^r = \delta|a^r|.$$

By (1) there is $v \in V$ such that T(v) = w and

$$||v|| < |a|^r < C ||w||.$$

COROLLARY 2.3: Let $T: V \to W$ be a linear map of Banach spaces over a complete field k. Then T is continuous if and only if its graph $G = \{(v, T(v) \mid v \in V)\}$ is closed in $V \times W = V \oplus W$.

Proof: Every continuous map $T: V \to W$ into a Hausdorff space has a closed graph G. Indeed, let $(v, w) \in (V \times W) \setminus G$, that is $T(v) \neq w$. There are disjoint open neighbourhoods: W_1 of T(v) and W_2 of w. The neighbourhood $T^{-1}(W_1) \times W_2$ of $(v, w) \in V \times W$ does not meet G.

Conversely, assume that G is closed. Then it is a complete k-subspace of $V \times W$. The projection $V \times W \to V$ induces a bijective continuous linear map $G \to V$. By Banach Theorem it is also open. Hence its inverse $V \to G$ is also continuous, hence so is its composition with the projection $V \times W \to W$. But this is T.

Definition 2.4: Let k be a complete field. A **Banach algebra** over k is a Banach space A which is also a commutative ring containing k and ||1|| = 1 and $||ab|| = ||a|| \cdot ||b||$.

A Banach module over A is an A-module M with a norm || || such that M is a Banach space over k and $||am|| \le ||a|| \cdot ||m||$ for all $a \in A$ and $m \in M$.

THEOREM 2.5: Let M be a finitely generated Banach module over a Banach algebra A (over a complete field k). Assume that A is noetherian (every submodule of M is finitely generated). Then every submodule N of M is closed.

Proof: Let \tilde{N} be the closure of N in M; it is closed and hence complete. By the noetherianity, \tilde{N} has a finite set e_1, \ldots, e_n of generators. Define a norm on A^n by $||(a_1, \ldots, a_n)|| = \max(||a_1||, \ldots, ||a_n|)$. Then A^n is Banach A-module (also a Banach algebra - one can produce examples of Banach algebras this way). The map $A^n \to \tilde{N}$ given by $(a_1, \ldots, a_n) \mapsto \sum_{i=1}^n a_i e_i$ is an A-homomorphism (in particular k-linear), continuous and surjective. By Banach Theorem there is C > 0 such that every $x \in \tilde{N}$ can be written as $x = \sum_{i=1}^n a_i e_i$ with $||a_i|| \leq C||x||$. Wlog C > 1.

Choose $f_1, \ldots, f_n \in N$ such that $||f_i - e_i|| \leq \frac{1}{C^2}$.

CLAIM: $\hat{N} = \sum_{i=1}^{n} Af_i$ and hence $\hat{N} = N$.

Let $x \in \hat{N}$. We will construct, by induction, convergent series in A

$$a_1 = \sum_{k=1}^{\infty} a_{1k}, \quad a_2 = \sum_{k=1}^{\infty} a_{2k}, \quad , \dots, \quad a_n = \sum_{k=1}^{\infty} a_{nk},$$

such that $x = a_1 f_1 + \cdots + a_n f_n$. Suppose, by induction, that we have found a_{ik} for k < l such that

$$||x - \sum_{i=1}^{n} (\sum_{k=1}^{l-1} a_{ik}) f_i|| \le C||x||$$

(for l = 1 this is obvious). Then there are $a_{il} \in A$ such that

$$x - \sum_{i=1}^{n} (\sum_{k=1}^{l-1} a_{ik}) f_i = \sum_{i=1}^{n} a_{il} e_i$$

and

$$||a_{il}|| \le C||x - \sum_{i=1}^{n} (\sum_{k=1}^{l-1} a_{ik})|| \le C \frac{1}{C^{l-1}} ||x||$$

Hence

$$||\sum_{i=1}^{n} a_{il} e_i - \sum_{i=1}^{n} a_{il} f_i|| = ||\sum_{i=1}^{n} a_{il} (e_i - f_i)|| \le C \frac{1}{C^{l-1}} ||x|| \frac{1}{C^2} = \frac{1}{C^l} ||x||$$

Exercise 2.6: Let M be a finitely generated module over a noetherian Banach algebra A. Then M is a Banach module.

Proof: If $M = A^m$, put $||(a_1, ..., a_n)|| = \max_i ||a_i||$. In the general case there is a surjective A-homomorphism $s: A^n \to M$. Put $||s(x)|| = \inf\{||x-y|| \mid y \in \text{Ker}(s)\}$. Now

show that this is a norm on M (here we use that Ker(s) is closed in A^n) and M is complete w.r.t it.

COROLLARY 2.7: Every A-homomorphism of finitely generated Banach A-modules is continuous.

Proof: Let M, N be two A-modules and let $u: M \to N$ be an A-homomorphism. Suppose first M is a free A-module with basis e_1, \ldots, e_n and $||\sum a_i e_i|| = \max_i ||a_i||$. Then

$$||u(\sum a_i e_i)|| = ||\sum a_i u(e_i)|| \le \max ||a_i u(e_i)|| \le \max ||a_i|| \cdot \max ||u(e_i)||.$$

In the general case there is a surjective map $s: A^n \to M$. By the previous case s and $u \circ s$ are continuous. By Banach theorem s is open. It follows that u is continuous. (Take $U \subseteq N$ open; then $u^{-1}(U) = s(s^{-1}(u^{-1}(U))) = s(u \circ s)^{-1}(U)$ is open.)

Definition 2.11: Let V be a vector space over a complete field k. Norm on a E is a function $|| \ || : E \to \mathbb{R}$ such that for all $v, v' \in V$ and all $a \in k$

- (a) $||v|| \ge 0$.
- (b) ||v|| = 0 implies v = 0.
- (c) $||av|| = |a| \cdot ||v||$.
- (d) $||v + v'|| \le \max(||v||.||v'||)$.

Excluding requirement (b) we get a **semi-norm**.

Two norms $||\ ||_1, ||\ ||_2$ on V are **equivalent norms** if there are positive constants C_1, C_2 such that $C_1||v||_1 \le ||v||_2 \le C_2||v||_1$ for all $v \in V$.

Example 2.12: If dim $V = n < \infty$, and v_1, \ldots, v_n is its basis,

$$||\sum_{i=1}^{n} a_i v_i|| = \max_i |a_i|$$

defines a norm on V.

LEMMA 2.13: Let V be a vector space over a complete field k, let $v_1, \ldots, v_n \in V$ be linearly independent, and let $v^{(i)} = \sum_{j=1}^n a_j^{(i)} v_j$, for $j=1,2,\ldots$ be a Cauchy sequence in V. Then $\{a_j^{(i)}\}_{i=1}^{\infty}$ is a Cauchy sequence in k, for every $1 \leq j \leq n$.

Proof: By induction on n.

COROLLAY 2.13: In the above lemma,

$$v^{(i)} \to 0 \leftrightarrow a_j^{(i)} \to 0 \text{ for all } 1 \le j \le n.$$

THEOREM 2.14: Let V be a finite dimensional vector space over a complete field k. Then any two norms on V are equivalent: There are positive constants C_1, C_2 such that for every $v \in V$

$$C_1||v||_1 \le ||v||_2 \le C_2||v||_1.$$

COROLLAY 2.15: Let E be an algebraic extension of a complete field k. Then the valuation $| \ |$ of k uniquely extends to a valuation of E. Moreover, if E/k is finite, then E is complete.

Proof: We do not prove the existence of the extension. We proved the completeness and the uniqueness. (Missing.)

3. Affinoids in the projective line

Let K be an algebraically closed valued field wrt to a non-archimedian (multiplicative) valuation $| \cdot |$. Notice that $|K^{\times}|$ is dense in $[0, \infty)$.

Let $\mathbb{P} = \mathbb{P}^1(K) = (K \times K \setminus \{(0,0)\}) / \sim$ where $(x_0, x_1) \sim (y_0, y_1)$ if there is $a \in K^{\times}$ such that $y_0 = ax_0$ and $y_1 = ax_1$.

Denote the equivalence class of (x_0, x_1) in \mathbb{P} by $(x_0 : x_1)$ and write z = (z : 1) and $\infty = (1 : 0)$. If $x_1 \neq 0$, then $(x_0 : x_1) = (\frac{x_0}{x_1} : 1) = \frac{x_0}{x_1}$. If $x_1 = 0$, then $x_0 \neq 0$, and hence $(x_0 : x_1) = (1 : 0) = \infty$. Thus $\mathbb{P} = \mathbb{P}^1(K) = K \cup \{\infty\}$. We call \mathbb{P} the projective line.

Definition 3.1: A map $\varphi \colon \mathbb{P} \to \mathbb{P}$ is called an **automorphism** of \mathbb{P} if there exists a matrix $A \in \mathrm{Gl}_2(K)$ such that $\varphi(\mathbf{x}) = A\mathbf{x}$.

EXERCISE 3.2: The set of automorphisms of \mathbb{P} is a group, isomorphic to $GPl_2(K)$.

Given distinct $z_1, z_2, z_3 \in \mathbb{P}$ and distinct $z'_1, z'_2, z'_3 \in \mathbb{P}$, there is a unique automorphism φ of \mathbb{P} such that $\varphi(z_i) = z'_i$, for i = 1, 2, 3.

Definition 3.3: A subset D of \mathbb{P} is a **closed** [**open**] **disk** if there are $a \in K$ and $\rho \in |K^{\times}|$ such that

$$D = \{z \in K \mid |z - a| \leq \ [<] \ \rho\} \qquad \text{or} \qquad D = \{z \in K \mid |z - a| \geq \ [>] \ \rho\} \cup \{\infty\}.$$

Exercise 3.4: (i) Let $D=\{z\in\mathbb{P}\,|\,|z-a|<\rho\}$. If $b\in D$, then $D=\{z\in\mathbb{P}\,|\,|z-b|<\rho\}$.

- $\text{(ii) } Let \ D=\{z\in\mathbb{P} \, | \ |z-a|>\rho\}. \ If \ b\notin D, \ then \ D=\{z\in\mathbb{P} \, | \ |z-b|>\rho\}.$
- (iii) Analogous statements hold for closed disks.

LEMMA 3.5: Let D be an open (closed) disk, and let T be an automorphism of \mathbb{P} . Then T(D) is an open (closed) disk.

Proof: Every automorphism of \mathbb{P} is the product of stretchings $(z \mapsto az \text{ with } a \in K^{\times})$, translations $(z \mapsto z + b \text{ with } b \in K)$, and the inversion $(z \mapsto z^{-1})$. (These maps are defined by elementary matrices over K, and every elementary matrix over K is of one

of these types, except for $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$. But $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$). Thus we may assume that T is one of these three types.

If T is either stretching or translation, the assertion is obvious. Assume therefore that T is $z \mapsto z^{-1}$. We may also assume that $\infty \notin D$. Otherwise $\mathbb{P} \setminus D$ is a closed (open) disk that does not contain ∞ . If $T(\mathbb{P} \setminus D) = \mathbb{P} \setminus T(D)$ is a closed (open) disk, then T(D) will be an open (closed) disk.

This leaves us with four cases. Let \triangleleft be one of the symbols $<, \le$, and let \triangleleft' be the other one. This notation allows us to deal with a pair of cases simultaneously.

- (1) $D = \{z \in \mathbb{P} \mid |z a| \triangleleft \rho\}$ and $|a| \triangleleft \rho$. Then $0 \in D$, and hence by Exercise 3.4, $D = \{z \in \mathbb{P} \mid |z| \triangleleft \rho\}$. In this case $T(D) = \{w \mid \frac{1}{\rho} \triangleleft |w|\}$, a disk.
- (2) $D = \{z \in \mathbb{P} \mid |z a| \triangleleft \rho\}$ and $\rho \triangleleft' |a|$. Then every $z \in D$ satisfies |z a| < |a|, and hence |z| = |a|. Put $D' = \{w \mid |w \frac{1}{a}| \triangleleft \frac{\rho}{|a|^2}\}$. As $\frac{\rho}{|a|^2} \triangleleft' |\frac{1}{a}|$, every $w \in D'$ satisfies $|w \frac{1}{a}| < \frac{1}{|a|}$, and hence $|w| = \frac{1}{|a|}$. Therefore

$$\begin{split} T(D) = & \{ w \, | \, \, |\frac{1}{w} - a| \triangleleft \rho, \, \, |\frac{1}{w}| = |a| \} = \{ w \, | \, \, |w - \frac{1}{a}| \triangleleft \frac{\rho}{|a|} |w|, \, \, |w| = \frac{1}{|a|} \} = \\ & \{ w \, | \, \, |w - \frac{1}{a}| \triangleleft \frac{\rho}{|a|^2}, \, \, |w| = \frac{1}{|a|} \} = D'. \end{split}$$

LEMMA 3.6: Let D_1, D_2 be two disks (open or closed, not necessarily of the same type!) such that $D_1 \cap D_2 \neq \emptyset$ and $D_1 \cup D_2 \neq \mathbb{P}$. Then either $D_1 \subseteq D_2$ or $D_2 \subseteq D_1$.

Proof: Using an autormorphism of \mathbb{P} we may assume that $\infty \notin D_1, D_2$. Thus

$$D_i = \{ z \in \mathbb{P} \mid |z - a_i| < \rho_i \}$$
 or $D_i = \{ z \in \mathbb{P} \mid |z - a_i| \le \rho_i \}, \quad i = 1, 2.$

Let $a \in D_1 \cap D_2$. By Exercise 3.4, wlog $a_1 = a_2 = a$. The assertion follows. (If $\rho_i < \rho_j$, then $D_i \subseteq D_j$; if $\rho_i = \rho_j$, and D_i is open or D_j closed, then $D_i \subseteq D_j$.)

COROLLARY 3.7: Let $F' \neq \mathbb{P}$ be the union of finitely many disks. Then F' is the union of finitely many disjoint disks.

Proof: Let C_1, \ldots, C_m be disks such that $F' = \bigcup_{j=1}^m C_j$. Let D_1, \ldots, D_r be the maximal among C_1, \ldots, C_m (with respect to inclusion of sets). Then $F' = \bigcup_{i=1}^r D_i$. For $i \neq j$, neither $D_i \subseteq D_j$ nor $D_j \subseteq D_i$, and $D_i \cup D_j \neq \mathbb{P}$. Therefore, by Lemma 3.6, $D_i \cap D_j = \emptyset$.

Definition 3.8:

- (a) A non-empty subset of \mathbb{P} is called a **connected affinoid**, if it is the intersection of finitely many closed disks. Equivalently, the set is the complement of the union of finitely many open disks and the union is not \mathbb{P} .
- (b) An **affinoid** is the union of finitely many connected affinoids.

The value group $|K^{\times}|$ is not discrete, and hence it has infinitely many values between ρ_1 and ρ_2 . Therefore R is infinite.

LEMMA 3.9: Let D_0, \ldots, D_n be disks. If $D_i \cup D_j \neq \mathbb{P}$ for all i, j, then $\bigcup_{i=0}^n D_i \neq \mathbb{P}$; moreover, $\mathbb{P} \setminus \bigcup_{i=0}^n D_i$ is an infinite set.

Proof: Replace D_0, \ldots, D_n by the maximal disks among them to assume that there are no inclusion among them. By Lemma 3.6, D_0, \ldots, D_n are disjoint. By Lemma 3.5 we may assume that either $D_0 = \{z \in \mathbb{P} \mid |z| \geq 1\}$ or $D_0 = \{z \in \mathbb{P} \mid |z| > 1\}$. Let $1 \leq i \leq n$. As $D_0 \cap D_i = \emptyset$, we have $D_i = \{z \in K \mid |z - a_i| \triangleleft_i \rho_i\}$, where \triangleleft_i is either < or \leq .

PART A: $D_0 = \{z \in \mathbb{P} \mid |z| \ge 1\}$. Let $1 \le i \le n$. As $D_0 \cap D_i = \emptyset$, we have $|a_i| < 1$. As $D_0 \cup D_i \ne \mathbb{P}$, also $\rho_i < 1$. Thus $\pi := \max_{1 \le i \le n} (|a_i|, \rho_i)$ is smaller than 1, and hence $\{z \in K \mid \pi < |z| < 1\}$ is contained in $\mathbb{P} \setminus \bigcup_{i=0}^n D_i$.

PART B: $D_0 = \{z \in \mathbb{P} \mid |z| > 1\}$. Let $1 \le i \le n$. As $D_0 \cap D_i = \emptyset$, we have $|a_i|, \rho_i \le 1$. However, if $\rho_i = 1$ and \triangleleft_i is \le , then $D_i = \{z \in K \mid |z| \le 1\}$, which gives the contradiction $D_0 \cup D_i = \mathbb{P}$. Therefore either $\rho_i \le 1$ or \triangleleft_i is <, and hence $D_i \subseteq \{z \in K \mid |z - a_i| < 1\}$. Thus $\mathbb{P} \setminus \bigcup_{i=0}^n D_i$ contains the set

$$U := \{ z \in K \mid |z| = 1, |z - a_i| = 1, 1 \le i \le n \}$$
$$= \{ z \in K^0 \mid \bar{z} \ne 0, \bar{a}_1, \dots, \bar{a}_r \}$$

which is infinite, since \bar{K} is infinite.

COROLLARY 3.10: Let D_1, \ldots, D_n and C_1, \ldots, C_m be disks.

- (a) If $D_i \cap D_j \neq \emptyset$ for all i, j, then $\bigcap_{i=1}^n D_i \neq \emptyset$.
- (b) If $\emptyset \neq \bigcap_{i=1}^n D_i \subseteq \bigcup_{j=1}^m C_j \neq \mathbb{P}$, then there are i and j such that $D_i \subseteq C_j$.

- (c) If D_1, \ldots, D_n are disjoint, of the same type (closed or open), then \mathbb{P} is not their disjoint union.
- (d) If $\bigcup_{i=1}^n D_i = \bigcup_{j=1}^m C_j \neq \mathbb{P}$, and there are no inclusions among the D_i and no inclusions among the C_j , then n=m and, up to a permutation, $D_i=C_i$, for $i=1,\ldots,m$.

Proof: (a) Apply Lemma 3.9 to the disks $\mathbb{P} \setminus D_1, \dots, \mathbb{P} \setminus D_1$.

- (b) If $\bigcap_{i=1}^n D_i \subseteq \bigcup_{j=1}^m C_j$, then $\mathbb{P} = \bigcup_{i=1}^n (\mathbb{P} \setminus D_i) \cup \bigcup_{j=1}^m C_j$. By Lemma 3.9 either $(\mathbb{P} \setminus D_i) \cup (\mathbb{P} \setminus D_{i'}) = \mathbb{P}$ for some i, i', or $C_j \cup C_{j'} = \mathbb{P}$ for some j, j', or $(\mathbb{P} \setminus D_i) \cup C_j = \mathbb{P}$ for some i, j. The first option gives $D_i \cap D_{i'} = \emptyset$, a contradiction to $\emptyset \neq \bigcap_{i=1}^n D_i$. The second option contradicts $\bigcup_{j=1}^m C_j \neq \mathbb{P}$. The third option gives $D_i \subseteq C_j$.
- (c) We have $D_i \cup D_k \neq \mathbb{P}$ for all i, k (otherwise $D_i = D_k^c$ are of the same type). Apply Lemma 3.9.
- (d) Fix $1 \leq i \leq m$. As $\emptyset \neq D_i \subseteq \bigcup_{j=1}^n C_j \neq \mathbb{P}$, by (b) there is $1 \leq j \leq n$ such that $D_i \subseteq C_j$. Similarly, there is $1 \leq i' \leq m$ such that $C_j \subseteq D_{i'}$. Thus $D_i \subseteq D_{i'}$. By assumption, this implies that i = i'. Hence $D_i = C_j$.

PROPOSITION 3.11: Let F be a connected affinoid, and let F_1, \ldots, F_m be disjoint connected affinoids, $m \geq 2$. Then $F \neq \bigcup_{i=1}^m F_i$.

Proof: Write F as $F = \mathbb{P} \setminus \bigcup_{j=1}^p C_j$, where C_j are disjoint open disks, and $p \geq 0$.

Similarly, for each $1 \leq i \leq m$ we have $F_i = \mathbb{P} \setminus \bigcup_{t_i=1}^{n_i} D_{it_i}$, where the D_{it_i} are open disks.

Assume that $F = \bigcup_{i=1}^m F_i$. Let $\mathbf{T} = \{\mathbf{t} = (t_1, \dots, t_m) \mid 1 \le t_i \le n_i\}$. Then

(3)
$$\mathbb{P} \neq \bigcup_{j=1}^{p} C_j = (\bigcup_{t_1=1}^{n_1} D_{1t_1}) \cap \cdots \cap (\bigcup_{t_m=1}^{n_m} D_{mt_m}) = \bigcup_{\mathbf{t} \in \mathbf{T}} D_{\mathbf{t}},$$

where $D_{\mathbf{t}} = D_{1t_1} \cap \cdots \cap D_{mt_m}$, for each $\mathbf{t} \in \mathbf{T}$.

PART A: If $D_{\mathbf{t}} \neq \emptyset$, then there is $1 \leq k \leq m$ such that $D_{kt_k} \subseteq D_{it_i}$ for all $1 \leq i \leq m$ and hence $D_{\mathbf{t}} = D_{kt_k}$.

Indeed, $D_{\mathbf{t}} \subseteq \bigcup_{j} C_{j} \neq \mathbb{P}$, so by Corollary 3.10(b) there are $1 \leq k \leq m$ and $1 \leq j \leq p$ such that $D_{kt_{k}} \subseteq C_{j}$. In particular, $D_{\mathbf{t}} \subseteq C_{j}$. As C_{1}, \ldots, C_{p} are disjoint, this

j is uniquely determined by \mathbf{t} . Let $1 \leq i \leq m$. As $F_i \subseteq F$ and hence $C_j \subseteq \bigcup_{s_i=1}^{n_i} D_{is_i}$, by Corollary 3.10(b) there is (a unique) s_i such that $C_j \subseteq D_{is_i}$. Thus there is a unique $\mathbf{s} = (s_1, \ldots, s_m) \in \mathbf{T}$ such that $C_j \subseteq D_{\mathbf{s}}$. We get $D_{\mathbf{t}} \subseteq D_{kt_k} \subseteq C_j \subseteq D_{\mathbf{s}}$. But $\mathbf{t} = \mathbf{s}$, since $D_{\mathbf{t}} \cap D_{\mathbf{s}} \neq \emptyset$. Therefore $D_{\mathbf{t}} = D_{kt_k}$, which proves the claim.

PART B: For all $1 \leq i < j \leq m$ there are t_i and t_j such that $D_{it_i} \cup D_{jt_j} = \mathbb{P}$. Indeed, $F_i \cap F_j = \emptyset$, that is, $\bigcup_{t_i=1}^{n_i} D_{it_i} \cup \bigcup_{t_j=1}^{n_j} D_{jt_j} = \mathbb{P}$. By Lemma 3.9, \mathbb{P} is the union of two of the disks on the left handed side. As $\bigcup_{t_i=1}^{n_i} D_{it_i}, \bigcup_{t_j=1}^{n_j} D_{jt_j} \neq \mathbb{P}$, one of the two disks is of the form D_{it_i} and the other one of the form D_{jt_j} .

PART C: Construction of a special $\mathbf{t} \in T$. By Part B there are t_1 and t_2 such that $D_{1t_1} \cup D_{2t_2} = \mathbb{P}$. Choose such t_1 . For $2 \le i \le m$ choose t_i in the following way:

- (a) If there exists t_i such that $D_{1t_1} \cup D_{it_i} = \mathbb{P}$, choose such t_i .
- (b) Otherwise, by Part B, there are $t'_1 \neq t_1$ and t_i such that $D_{1t'_1} \cup D_{it_i} = \mathbb{P}$. Choose such t_i . As $D_{1t_1} \cap D_{1t'_1} = \emptyset$, we have $D_{1t_1} \subseteq D^c_{1t'_1} \subseteq D_{it_i}$. Thus we have chosen t_i such that $D_{1t_1} \subseteq D_{it_i}$.

PART D: There is no i such that $D_{it_i} \subseteq D_{1t_1}, \ldots, D_{mt_m}$. Observe that (a) applies to i = 2, that is, $D_{1t_1} \cup D_{2t_2} = \mathbb{P}$. Thus $D_{1t_1} \not\subseteq D_{2t_2}$. It follows that if i has been chosen by (b), then also $D_{it_i} \not\subseteq D_{2t_2}$. If i has been chosen by (a), then $D_{it_i} \not\subseteq D_{1t_1}$.

PART E: $D_{\mathbf{t}} \neq \emptyset$. By Corollary 3.10(a) it suffices to show for $1 \leq i, j \leq m$ that $D_{it_i} \cap D_{jt_j} \neq \emptyset$. Suppose first j = 1. If t_i has been chosen by (a), then $D_{1t_1} \cup D_{it_i} = \mathbb{P}$, and hence $D_{1t_1} \cap D_{it_i} \neq \emptyset$. If t_i has been chosen by (b), then $D_{1t_1} \subseteq D_{it_i}$, and hence $D_{1t_1} \cap D_{it_i} \neq \emptyset$.

Now the general case: If t_i has been chosen by (b), then $D_{1t_1} \subseteq D_{it_i}$, hence by the previous case $D_{it_i} \cap D_{jt_j} \neq \emptyset$. Similarly if t_j has been chosen by (b). If both t_i and t_j have been chosen by (a), then $D_{1t_1} \cup D_{it_i} = \mathbb{P} = D_{1t_1} \cup D_{jt_j}$, and hence $\emptyset \neq \mathbb{P} \setminus D_{1t_1} \subseteq D_{it_i} \cap D_{jt_j}$.

EXERCISE 3.12: Let F_1, F_2 be connected affinoids, $F_1 \cap F_2 \neq \emptyset$. Then both $F_1 \cap F_2$ and $F_1 \cup F_2$ are connected affinoids.

Proof: The first assertion is trivial. As for the second one, write $\mathbb{P} \setminus F_1$ and $\mathbb{P} \setminus F_2$ as

unions of open disks, say, $\mathbb{P} \setminus F_1 = \bigcup_i D_i$ and $\mathbb{P} \setminus F_2 = \bigcup_j E_j$. Then

$$\mathbb{P} \setminus (F_1 \cup F_2) = (\mathbb{P} \setminus F_1) \cap (\mathbb{P} \setminus F_2) = \bigcup_{ij} D_i \cap E_j.$$

The assumption $F_1 \cap F_2 \neq \emptyset$ implies that $D_i \cup E_j \neq \mathbb{P}$, for all i, j. By Lemma 3.6, $D_i \cap E_j$ is either empty or an open disk.

THEOREM 3.13: Let $F \neq \mathbb{P}$ be an affinoid. There are unique connected affinoids F_1, \ldots, F_m such that $F = \bigcup_{i=1}^m F_i$.

PROOF: Existence. Write F as the union of connected affinoids F_1, \ldots, F_m . If there are $1 \leq i, j \leq m$ such that $F_i \cap F_j \neq \emptyset$, then $F_i \cup F_j$ is a connected affinoid itself, by Exercise 3.12. Proceed by induction on m.

Uniqueness. Suppose that $F = \bigcup_{i=1}^m F_i = \bigcup_{j=1}^n G_j$, where F_i, G_j are connected affinoids. Then $F_i = \bigcup_{j=1}^n F_i \cap G_j$. By Exercise 3.12, each $F_m \cap G_j$ is either empty or a connected affinoid. Therefore, by Proposition 3.11, there is (a unique) j such that $F_m = F_m \cap G_j$, that is, $F_m \subseteq G_j$. Wlog j = n. By a similar argument there is a unique i' such that $G_j \subseteq F_{i'}$. As the F_i are disjoint, i' = m. Therefore $F_m = G_n$. Thus $\bigcup_{i=1}^{m-1} F_i = \bigcup_{j=1}^{n-1} G_j$. It follows by induction on $\min(m, n)$ that m = n, and $F_i = G_i$, for $i = 1, \ldots, m$, up to a permutation.

EXERCISE 3.14: Assume that K is algebraically closed. Let $f \in K(z)$ be a rational function, and let $\rho \in |K^{\times}|$. Then $F = \{z \mid |f(z)| \leq \rho\}$ is an affinoid.

Proof: Write f as $c \prod_{i=1}^{s} (z - a_i)^{n_i}$, where $a_i \neq a_j$ for $i \neq j$, and $n_i \in \mathbb{Z} \setminus \{0\}$. Let $n = \deg(f) = \sum_i n_i$. Replacing ρ by $\frac{\rho}{|c|}$ we may assume that c = 1.

Part A: s = 1. In this case

$$F = \{z \mid |z - a_1|^{n_1} \le \rho\} = \begin{cases} \{z \mid |z - a_1| \le \rho^{\frac{1}{n_1}}\} & \text{if } n_1 > 0; \\ \{z \mid |z - a_1| \ge \rho^{\frac{1}{n_1}}\} & \text{if } n_1 < 0. \end{cases}$$

This is a closed disk.

PART B: Reduction. Assume $s \ge 2$. Let T be an automorphism of \mathbb{P} . As T^{-1} maps affinoids onto affinoids, it suffices to show that $F' = \{z \mid |f(T(z))| \le \rho\}$ is an affinoid.

For instance, if T is $z \mapsto az$, where $a \in K^{\times}$, then

$$F' = \{z \mid \prod_{i=1}^{s} |az - a_i|^{n_i} \le \rho\} = \{z \mid \prod_{i=1}^{s} |z - \frac{a_i}{a}|^{n_i} \le \frac{\rho}{|a|^n}\}$$

Replacing a_i by $\frac{a_i}{a}$ we may assume that

(i) $\max_{i \neq j} |a_i - a_j| = 1$.

If T is $z \mapsto z + a$, where $a \in K$, then $F' = \{z \mid \prod_{i=1}^s |z - a_i'|^{n_i} \leq \rho\}$, where $a_i' = a_i - a$. Hence we may replace a_i by a_i' . (Observe that $a_i' - a_j' = a_i - a_j$, so that (i) is preserved.)

Apply this with $a=a_1+u$, where $u\in K$ such that |u|=1 but $\overline{a_i-a_1}\neq \bar{u}$. We have $|a_i'|\leq \max(|a_i-a_1|,|u|)\leq 1$, but $a_i'=a_i-a_1-u$ together with $\bar{a}_i-\bar{a}_1\neq \bar{u}$ implies that but $|a_i'|\not < 1$, otherwise $\bar{a}_i-\bar{a}_1=\bar{u}$, a contradiction. Replacing a_i by a_i' we may assume that

(ii) $|a_i| = 1$ for each i = 1, ..., s.

PART C: Assume that $|a_i - a_j| = 1$ for all $i \neq j$. We have $F = F_0 \cup \bigcup_{i=1}^s F_i$, where

$$F_0 = \{ z \mid \bigwedge_{j=1}^s |z - a_j| \ge 1 \land |f(z)| \le \rho \}, \quad F_i = \{ z \mid |z - a_i| < 1 \land |f(z)| \le \rho \}, \ 1 \le i \le s.$$

Let $z \in F_0$. Then $|z - a_i| = |z - a_j|$ for all $i \neq j$. Indeed, if $|z - a_i| > 1$ for some i, this follows from the above assumption; otherwise $|z - a_i| = 1 = |z - a_j|$. Therefore $F_0 = \{z \mid \bigwedge_{j=1}^s |z - a_j| \ge 1 \land |z - a_i|^n \le \rho\}$ is an affinoid (an intersection of s+1 closed disks, by Part A).

Let $1 \le i \le s$ and let $z \in F_i$. Then $|z - a_i| < 1$. By the above assumption $|z - a_j| = 1$ for all $j \ne i$. Therefore

$$F_{i} = \{z \mid |z - a_{i}| < 1 \land |z - a_{i}|^{n_{i}} \le \rho\} =$$

$$= \begin{cases} \{z \mid |z - a_{i}| \le \rho^{\frac{1}{n_{i}}}\} & \text{if } \rho < 1 \text{ and } n_{i} > 0; \\ \emptyset & \text{if } \rho \le 1 \text{ and } n_{i} < 0; \\ \{z \mid \bigwedge_{j \neq i} |z - a_{j}| = 1 \land |z - a_{i}| < 1\} & \text{if } \rho \ge 1 \text{ and } n_{i} > 0; \\ \{z \mid \bigwedge_{j \neq i} |z - a_{j}| = 1 \land \rho^{\frac{1}{n_{i}}} \le |z - a_{i}| < 1\} & \text{if } \rho > 1 \text{ and } n_{i} < 0. \end{cases}$$

It suffices to show that $F_0 \cup F_i$ is an affinoid. By Part A, F_0 is an affinoid. In the first two cases also F_i is an affinoid (possibly empty). Let $U = \{z \mid \bigwedge_{j=1}^s |z - a_j| = 1\}$. In

the last two cases $F_i \cup U$ is an affinoid; but now $\rho \geq 1$, and hence $U \subseteq F_0$. Therefore $F_0 \cup F_i = F_0 \cup (U \cup F_i)$ is an affinoid.

PART D: Assume that $|a_1 - a_2| \neq 1$. There is k such that $|a_1 - a_k| = 1$, otherwise $|a_1 - a_k| < 1$ for all k = 2, ..., s, whence $|a_i - a_j| < 1$ for all $i \neq j$, a contradiction to (i). Whose there is 2 < t < s and $\alpha \in |K^{\times}|$ such that $\alpha < 1$ and $|a_1 - a_i| < \alpha < 1$ for i = 1, ..., t and $\alpha < |a_1 - a_i| = 1$ for i = t + 1, ..., s.

If $|z - a_1| \le \alpha$, then $|z - a_i| = 1$ for $i = t + 1, \ldots, s$. If $|z - a_1| \ge \alpha$, then $|z - a_i| = |z - a_1|$ for $i = 1, \ldots, t$. Therefore $F = F_1 \cup F_2$, where

$$F_1 = \{ z \mid |z - a_1| \le \alpha \land |f(z)| \le \rho \} = \{ z \mid |z - a_1| \le \alpha \land \prod_{i=1}^t |z - a_i|^{n_i} \le \rho \}$$

and

$$F_2 = \{ z \mid |z - a_1| \ge \alpha \land |f(z)| \le \rho \}$$

$$= \{ z \mid |z - a_1| \ge \alpha \land |z - a_1|^{n_1 + \dots + n_t} \prod_{i=t+1}^s |z - a_i|^{n_i} \le \rho \}$$

Both F_0 and F_1 are affinoids, by induction on s.

LEMMA 3.15: Let F_1, F_2, \ldots, F_r be disjoint connected affinoids.

- (a) If $r \geq 2$, there are disjoint closed disks E_1, E_2 such that $F_1 \subseteq E_1, F_2 \subseteq E_2, F_3, \ldots, F_r \subseteq E_1 \cup E_2$.
- (b) Suppose $F_1 = \bigcap_{j=1}^s D_j$, where D_j are closed disks with disjoint complements. Then $D_1 \cup F_2 \cup \cdots \cup F_r \neq \mathbb{P}$.

Proof: (a) By induction on the number m of non-disks among F_1, \ldots, F_r . If m = 0, that is, F_1, \ldots, F_r are disjoint closed disks, this is Corollary 3.10(c). Suppose $m \geq 1$. Then there is t such that F_t is not a disk, and hence F_t is the complement of the disjoint union of open disks $\bigcup_{j=1}^s C_j$. For each $i \neq t$ we have $F_i \subseteq \bigcup_{j=1}^s C_j$, and hence, by Corollary 3.10(b), $F_i \subseteq C_j$, for some (unique) j.

If t = 1, wlog $F_2 \subseteq C_1$. Apply the induction hypothesis to $(C_1^c, F_2, \{F_i \mid i \ge 3, F_i \subseteq C_1\})$ to get the required assertion. (In detail: the elements of this sequence are disjoint connected affinoids and the number of non-disks among them is < m (we have

replaced at least F_1 by a disk C_1^c). So there are disjoint closed disks E_1, E_2 such that $C_1^c \subseteq E_1$ (and hence $F_1 \subseteq E_1$ and $F_i \subseteq E_1$ if $F_i \not\subseteq C_1$), $F_2 \subseteq E_2$, and $F_i \subseteq E_1 \cup E_2$, whenever $i \geq 3$ and $F_i \subseteq C_1$.)

Similarly if t = 2.

If $t \neq 1, 2$, wlog t = r > 2 and $F_1 \subseteq C_1$. Apply the induction hypothesis to

$$\begin{cases} (F_1, F_2, \{F_i \mid i \ge 3, F_i \subseteq C_1\}, C_1^c) & \text{if } F_2 \subseteq C_1 \\ (F_1, \{F_i \mid i \ge 3, F_i \subseteq C_1\}, C_1^c) & \text{if } F_2 \not\subseteq C_1 \end{cases}$$

to get the required assertion. (In detail: the elements of this sequence are disjoint connected affinoids and the number of non-disks among them is < m (we have replaced at least F_r by a disk C_1^c). So there are disjoint closed disks E_1, E_2 such that $F_1 \subseteq E_1$, each F_i is contained in $E_1 \cup E_2$ —either by assumption or because $F_i \subseteq C_1^c \subseteq E_1 \cup E_2$ —and $F_2 \subseteq E_2$ —either by assumption or because $F_2 \subseteq C_1^c \subseteq E_1 \cup E_2$ —.)

(b) First assume r=2 and F_2 is a closed disk. Then $\bigcap_{j=1}^s D_j \cap F_2 = \emptyset$. By Corollary 3.10(a) there is j such that $D_j \cap F_2 = \emptyset$. Hence if j=1, we have $D_1 \cup F_2 \neq \mathbb{P}$ by an exercise (the union of two disjoint closed disks is not \mathbb{P}). If $j \neq 1$, then D_j^c, D_1^c are disjoint, and hence $F_2 \subseteq D_j^c \subseteq D_1$, whence $F_2 \cup D_1 = D_1 \neq \mathbb{P}$.

By induction on the number m of non-disks among F_2, \ldots, F_r . If m = 0, that is, F_2, \ldots, F_r are disjoint closed disks, by an exercise $F_i \cup F_j \neq P$ for $i \neq j$ and $F_i \cup D_1 \neq P$ by the preceding special case. Hence $D_1 \cup F_2 \cup \cdots \cup F_r \neq \mathbb{P}$ by Lemma 3.9.

Suppose $m \geq 1$. Then $r \geq 2$ and wlog F_r is not a disk. Hence F_r is the complement of the disjoint union of open disks $\bigcup_{j=1}^s C_j$. For each $i \neq r$ we have $F_i \subseteq \bigcup_{j=1}^s C_j$, and hence, by Corollary 3.10(b), $F_i \subseteq C_j$, for some (unique) j. Wlog $F_1 \subseteq C_1$. Apply the induction hypothesis to $(F_1, \{F_i \mid i \geq 2, F_i \subseteq C_1\}, C_1^c)$ (which produces a larger union) to get the required assertion.

Remark 3.16: There are disjoint connected affinoids F_1, F_2, F_3 for which do not exist disjoint closed disks E_1, E_2 such that $F_1 \subseteq E_1$ and $F_2, F_3 \subseteq E_2$. Indeed, let $F_1 = (C_1 \cup C_2)^c$, where $C_1 = \{z \mid |z| < 1\}$ and $C_2 = \{z \mid |z-1| < 1\}$, and let $F_i \subseteq C_i$ be a closed disk, containing 0,1 respectively. If such E_1, E_2 existed, then $0, 1 \in E_1$ and $\infty \notin E_1$. Hence $E_1 = \{z \mid |z| \le \rho\}$ for some $\rho \in |K^\times|$ and $\rho \ge 1$. But there is $0, 1 \ne \bar{z} \in \bar{K}$. Lift it to $z \in K^o$; then $z \in E_1$ and $z \in F_1$, a contradiction/

LEMMA 3.17: Let F be a connected affinoid such that $\infty \notin F$. Then either F is a closed disk or a finite union of sets of the form

$$C_{r,r'} = \{ z \in K \mid r < |z - a_0| < r' \},$$

 $C_r = \{ z \in K \mid |z - a_0| = \dots = |z - a_n| = r \},$

where $r, r' \in |K^{\times}|, a_0, \ldots, a_n \in K$ such that $|a_i - a_j| = r$.

Proof: If F is not a closed disk, then it is the intersection of $n+1 \geq 2$ closed disks D_0, \ldots, D_{n+1} , such that their complements are disjoint. As $\infty \in F^c = \bigcup_{i=0}^{n+1} D_i^c$, wlog $\infty \in D_{n+1}^c$. Thus

$$D_i = \{z \mid |z - a_i| \ge \pi_i\}, \quad i = 0, \dots, n,$$
 and $D_{n+1} = \{z \mid |z - a_{n+1}| \le \pi_{n+1}\}.$

Put

$$F_k = \{z \in F \mid |z - a_k| \le |z - a_i|, i = 0, ..., n\}, k = 0, ..., n.$$

Then $F = \bigcup_{k=0}^{n} F_k$. (By an exercise each F_k is a connected affinoid, but we will not use this.) Thus it suffices to present each F_k as a finite union of sets of the form $C_{r,r'}$ and C_r . Wlog k = 0.

As translations move $C_{r,r'}$ and C_r into sets of the same form, we may assume that $a_0 = 0$. Then $0 = a_0 \in D_0^c \subseteq D_{n+1}$; by Exercise 3.4, wlog $a_{n+1} = 0$. Thus

$$D_0 = \{z \mid |z| \ge \pi_0\}, \ D_i = \{z \mid |z - a_i| \ge \pi_i\}, \ i = 1, \dots, n, \quad D_{n+1} = \{z \mid |z| \le \pi_{n+1}\}$$

and

$$F_0 = \{ z \in F \mid |z| \le |z - a_i|, i = 1, \dots, n \}.$$

The disjointness of D_0^c, \ldots, D_{n+1}^c implies, in particular,

$$\pi_0 \le |a_i| \le \pi_{n+1}, \quad i = 1, \dots, n,$$

 $\pi_i \le |a_i|, \quad i = 1, \dots, n.$

(Indeed, $a_i \in D_i^c \subseteq D_0, D_{n+1}$, hence $|a_i| \ge \pi_0$, $|a_i| \le \pi_{n+1}$. Further, $0 \in D_0^c \subseteq D_i$, hence $|a_i| \ge \pi_i$.)

Let $\pi_0 = r_0 < r_1 < \cdots < r_s = \pi_{n+1}$ be all the distinct numbers in the set $\{\pi_0, |a_1|, \ldots, |a_n|, \pi_{n+1}\}$. Then

$$F_0 = \cup_{t=1}^s \{ z \in F_0 \mid r_{t-1} < |z| < r_t \} \cup \cup_{t=1}^s \{ z \in F_0 \mid |z| = r_t \}.$$

But if $r_{t-1} < |z| < r_t$, then $\pi_0 \le |z| \le \pi_{n+1}$, and for every $1 \le i \le n$

$$|z - a_i| = \begin{cases} |z| > r_{t-1} \ge |a_i| & \text{if } |a_i| \le r_{t-1}; \\ |a_i| \ge r_t > |z| & \text{if } |a_i| > r_{t-1}, \text{ and hence } |a_i| \ge r_t. \end{cases}$$

In both cases, $|z - a_i| \ge |z|$ and $|z - a_i| \ge |a_i| \ge \pi_i$. Hence $z \in F_0$. Thus

$${z \in F_0 \mid r_{t-1} < |z| < r_t} = {z \in K \mid r_{t-1} < |z| < r_t} = Cr_{t-1}, r_t.$$

Similarly if $|z| = r_t$, then $\pi_0 \le |z| \le \pi_{n+1}$, and for every $1 \le i \le n$

$$|z - a_i| = \begin{cases} |z| = r_t > |a_i| & \text{if } |a_i| < r_t; \\ \le r_t & \text{if } |a_i| = r_t; \\ |a_i| > r_t = |z| & \text{if } |a_i| > r_t. \end{cases}$$

Thus if $|a_i| \neq r_t$, then $|z - a_i| \geq |z| = r_t$ and $|z - a_i| \geq |a_i| \geq \pi_i$. If $|a_i| = r_t$, then $|z - a_i| \geq |z| = r_t$, $\pi_i \leftrightarrow |z - a_i| = r_t (= |a_i| \geq \pi_i)$. Hence

$$\begin{aligned} \{z \in F_0 \,|\, |z| = r_t\} &= \{z \in K \,|\, |z| = r_t, \pi_0 \le |z| \le \pi_{n+1}, \bigwedge_{\stackrel{i=1}{|a_i| = r_t}}^n |z - a_i| \ge r_t, \pi_i\} \\ &= \{z \in K \,|\, |z| = r_t \bigwedge_{\stackrel{i=1}{|a_i| = r_t}}^n |z - a_i| \ge r_t, \pi_i\} \\ &= \{z \in K \,|\, |z| = r_t, \bigwedge_{\stackrel{i=1}{|a_i| = r_t}}^n |z - a_i| = r_t\}, \end{aligned}$$

The last set is of the form C_r . Indeed, if for $1 \le i < j \le n$ we have $|a_i| = |a_j| = r_t$, then $|a_i - a_j| \le r_t$. If $|a_i - a_j| < r_t$, then from $|z - a_i| = r_t$ follows $|z - a_j| = r_t$. Therefore we may throw away the condition $|z - a_j| = r_t$. Thus wlog $|a_i - a_j| = r_t$ for all i < j.

4. Holomorphic functions

Let (K, | |) be an algebraically closed **complete** non-archimedian valued field. Recall that K^o is its valuation ring and K^{oo} is its maximal ideal.

Let F be a subset of $\mathbb{P} = \mathbb{P}(K)$. For a function $f \colon F \to K$ define the **norm** $||f|| = ||f||_F := \sup_{z \in F} |f(z)| \in K$. Observe that

- $(1) \ ||f+g|| \leq \max(||f||,||g||);$
- (2) $||fg|| \le ||f|| \cdot ||g||$;
- (3) $||cf|| = |c| \cdot ||f||$, for every $c \in K^{\times}$.

Let $F \subset \mathbb{P}$ be an affinoid.

Definition 4.1: A function $f: F \to K$ is **holomorphic** if for every $\varepsilon \in |K^{\times}|$ there is a rational function $g \in K(z)$ without poles in F such that $||f - g||_F < \varepsilon$.

We set:

- (i) $\mathcal{O}(F)$ = the set of K-holomorphic functions on F.
- (ii) $\mathcal{O}^{o}(F) = \{ f \in \mathcal{O}(F) \mid ||f|| \le 1 \};$
- (iii) $\mathcal{O}^{oo}(F) = \{ f \in \mathcal{O}(F) \mid ||f|| < 1 \};$
- (iv) $\overline{\mathcal{O}(F)} = \mathcal{O}^o(F)/\mathcal{O}^{oo}(F)$.

EXERCISE 4.2: Let $g \in K(z)$ be without poles in F. Show that $||g||_F < \infty$. Deduce that $||f||_F < \infty$ for every holomorphic function f on F.

Proof: As K is algebraically closed, g is the product of a constant function, linear functions z - c, with $c \in K$, and the inverses of linear functions, all of them without poles in F. Thus we may assume that g is one of them. In particular, g has only one pole in \mathbb{P} . As F is the union of connected affinoids, we may assume that F is connected. But then F is the intersection of closed disks, and the single pole of g is not in all of them. Therefore we may assume that F is a disk. In this case the assertion is easy.

LEMMA 4.3:

(a) $\mathcal{O}(F)$ is complete.

(b) $\mathcal{O}(F)$ is a K-algebra, $\mathcal{O}^o(F)$ is a K^o -algebra, $\mathcal{O}^{oo}(F)$ is an ideal of it, and $\overline{\mathcal{O}(F)}$ is an algebra over $\overline{K} = K^o/K^{oo}$.

Proof: (a) Let $\{f_n\}$ be a Cauchy sequence in $\mathcal{O}(F)$. Let $z \in F$. Obviously, $\{f_n(z)\}$ is a Cauchy sequence in K. As K is complete, this sequence has a limit, say, $f(z) \in K$. This yields a function $f: F \to K$.

Let $\varepsilon > 0$. There is N such that for all $n, m \geq N$ and each $z \in F$ we have $|f_n(z) - f_m(z)| \leq ||f_n - f_m|| < \varepsilon$. In particular, $|f_n(z) - f(z)| \leq \varepsilon$ for all $n \geq N$ and each $z \in F$. Hence $||f_n - f|| \leq \varepsilon$ for all $n \geq N$. Thus $f_n \to f$.

Finally, for each $\varepsilon > 0$ there is f_n such that $||f_n - f|| < \varepsilon$ and there is $g \in K(z)$ without poles in F such that $||f_n - g|| < \varepsilon$. Then $||f - g|| < \varepsilon$.

Proposition 4.4: Let $D = \{z \in K \mid |z| \le 1\}$.

- (a) $\mathcal{O}(D) = \{\sum_{n=0}^{\infty} a_n z^n \mid a_n \in K \text{ and } \lim_{n \to \infty} a_n = 0\} =: \mathcal{O}.$
- (b) $\mathcal{O}(D)^o = \{ \sum_{n=0}^{\infty} a_n z^n \mid a_n \in K^o \text{ and } \lim_{n \to \infty} a_n = 0 \}.$
- (c) $\mathcal{O}(D)^{oo} = \{ \sum_{n=0}^{\infty} a_n z^n \mid a_n \in K^{oo} \text{ and } \lim_{n \to \infty} a_n = 0 \}.$
- (d) $\overline{\mathcal{O}} = \overline{K}[\overline{z}]$, the ring of polynomials in one variable over \overline{K} .
- (e) Let $f, g \in \mathcal{O}$. Then $||fg|| = ||f|| \cdot ||g||$.
- (f) If $\sum_{n=0}^{\infty} a_n z^n \in \mathcal{O}$, then $||\sum_{n=0}^{\infty} a_n z^n||_D = \max |a_n|$. Moreover, there is $c \in D$ such that $|\sum_{n=0}^{\infty} a_n c^n| = \max |a_n|$.

Proof:

PART A: First part of (a). Let us denote the right handed side by \mathcal{O} . Its elements are convergent sequences of powers of z, hence $\mathcal{O} \subseteq \mathcal{O}(D)$.

Part B: Proof of (f).

If $\sum_{n=0}^{\infty} a_n z^n \in \mathcal{O}$, then clearly $||\sum_{n=0}^{\infty} a_n z^n||_D \leq \max |a_n|$. To show "=", we may assume, by (3), that $\max ||a_n|| = 1$, and we have to show that there is $z \in D$ such that |f(z)| = 1. Let $\bar{f} := \sum_{n=0}^{\infty} \bar{a}_n Z^n$. This is a nonzero polynomial over \bar{K} . Thus there is $\bar{z} \in \bar{K}$ such that $\bar{f}(\bar{z}) \neq 0$. It is the residue of some $z \in K^o = D$. Then $\overline{f(z)} = \bar{f}(\bar{z}) \neq 0$. This means that |f(z)| = 1.

PART C: \mathcal{O} is complete. Let $\{\sum_{n=0}^{\infty} a_n^{(i)} z^n\}_{i=1}^{\infty}$ be a Cauchy sequence. By the above formula for the norm $\{a_n^{(i)}\}_{i=1}^{\infty}$ is a Cauchy sequence for each $n \geq 0$. Hence it converges to some $a_n \in K$. It is easy to see that $\lim_{n\to\infty} a_n = 0$ and $\sum_{n=0}^{\infty} a_n^{(i)} z^n \to \sum_{n=0}^{\infty} a_n z^n$. (Indeed, let $\varepsilon > 0$. There is i such that if $j \geq i$, then $|a_n^{(i)} - a_n^{(j)}| \leq \varepsilon$ for all n; hence $|a_n^{(i)} - a_n| \leq \varepsilon$ for all n. There is also N such that if $n \geq N$ then $|a_n^{(i)}| \leq \varepsilon$. Thus $|a_n| \leq \varepsilon$ for all $n \geq N$.)

PART D: Second part of (a). As \mathcal{O} is complete, to show that $\mathcal{O}(D) \subseteq \mathcal{O}$, it suffices to show that every rational function $f \in K(z)$ with no poles in D is in \mathcal{O} . As \mathcal{O} is a K-algebra (check!), we may assume that f is either a polynomial over K (whence $f \in \mathcal{O}$) or $f = \frac{1}{z-b}$, where $b \notin D$, that is, |b| > 1, whence $\frac{1}{z-b} = \frac{1}{-b} \frac{1}{1-\frac{1}{b}z} = \frac{1}{-b} \sum_{n=0}^{\infty} \frac{1}{b^n} z^n = \sum_{n=0}^{\infty} -\frac{1}{b^{n+1}} z^n \in \mathcal{O}$.

- (b),(c) clear.
- (d) Let \bar{z} be a variable over \bar{K} . The map $\sum_{n=0}^{\infty} a_n z^n \mapsto \sum_{n=0}^{\infty} \overline{a_n} \bar{z}^n$ is a well defined homomorphism $\mathcal{O}^o \to \bar{K}[\bar{z}]$. The sequence $0 \to \mathcal{O}^{oo} \to \mathcal{O}^o \to \bar{K}[\bar{z}] \to 0$ is exact. Hence $\mathcal{O}^o/\mathcal{O}^{oo} \cong \bar{K}[\bar{z}]$.
- (e) Clearly $||fg|| \le ||f|| \cdot ||g||$. Wlog ||f|| = ||g|| = 1, and we have to show that ||fg|| = 1. That is, $\bar{f}, \bar{g} \ne 0$, and we have to show that $\overline{fg} = \bar{f}\bar{g} \ne 0$. This follows from (d), since $\bar{K}[\bar{z}]$ is an integral domain.

EXERCISE 4.5: Let φ be an automorphism of \mathbb{P} . Let F be an affinoid. Show that $f \mapsto f \circ \varphi$ is an isomorphism $\mathcal{O}(\varphi(F)) \to \mathcal{O}(F)$ of K-algebras that preserves the norm.

Exercise 4.6: Let $c \in K$ and $\pi \in K^{\times}$.

(a) Let $F = \{z \mid |z - c| \le |\pi|\}$. Then

$$\mathcal{O}(F) = \{ \sum_{n=0}^{\infty} a_n (z - c)^n \mid a_n \in K \text{ and } \lim_{n \to \infty} a_n \pi^n = 0 \}$$
$$= \{ \sum_{n=0}^{\infty} b_n (\frac{z - c}{\pi})^n \mid b_n \in K \text{ and } \lim_{n \to \infty} b_n = 0 \}$$

and
$$||\sum_{n=0}^{\infty} a_n (z-c)^n||_F = \max |a_n||\pi|^n = \max |b_n|$$
.

(b) Let $F = \{z \mid |z - c| \ge |\pi|\}$. Then

$$\mathcal{O}(F) = \{ \sum_{n=0}^{\infty} a_n (z - c)^{-n} \mid a_n \in K \text{ and } \lim_{n \to \infty} a_n \pi^{-n} = 0 \}$$
$$= \{ \sum_{n=0}^{\infty} b_n (\frac{\pi}{z - c})^n \mid b_n \in K \text{ and } \lim_{n \to \infty} b_n = 0 \}$$

and
$$||\sum_{n=0}^{\infty} a_n (z-c)^n||_F = \max |a_n||\pi|^{-n} = \max |b_n|.$$

Proof: An application of Exercise 4.5 to Proposition 4.4:

- (a) The automorphism $z\mapsto \frac{z-c}{\pi}$ maps F onto the unit disk.
- (b) The automorphism $z \mapsto \frac{\pi}{z-c}$ maps F onto the unit disk.

For an affinoid F adopt the following notation: For $c \in F$ let $\mathcal{O}(F)_c = \{f \in \mathcal{O}(F) \mid f(c) = 0\}$. Furthermore, let $\mathcal{C}(F)$ be the algebra of constant K-holomorphic functions on F. Clearly $\mathcal{C}(F) \cong K$.

PROPOSITION 4.7 (Decomposition of Mittag-Leffler): Let D_1, \ldots, D_m be m disjoint open disks. Let F_i be the complement of D_i and let $F = \bigcap_{i=1}^m F_i$. Let $c \in F$. Then

- (a) $\mathcal{O}(F) = \mathcal{C}(F) \oplus \bigoplus_{i=1}^{m} \mathcal{O}(F_i)_c$.
- (b) Let $f_0 \in \mathcal{C}(F)$ and let $f_i \in \mathcal{O}(F_i)_c$, for i = 1, ..., m. Then $||\sum_{i=0}^m f_i||_F = \max ||f_i||_{F_i}$. Moreover, there is $z \in F$ such that $|\sum_{i=0}^m f_i(z)| = \max ||f_i||_{F_i}$.

Proof: (b) We may assume that $||f_0||_F \leq \max_{1\leq i\leq m} ||f_i||_{F_i}$, otherwise for every $z\in F$ we have $|\sum_{i=0}^m f_i(z)| = |f_0(z)|$. Using (3) we may normalize the f_i to assume that $\max_{1\leq i\leq m} ||f_i||_{F_i} = 1 \geq ||f_0||_F$, and we have to show that there is $z\in F$ such that $|\sum_{i=0}^m f_i(z)| = 1$.

By Exercise 4.5 we may assume that $c = \infty$. Hence $F_i = \{z \mid |z - a_i| \ge |\pi_i|\}$, for each i.

Reordering F_1, \ldots, F_m we may assume that

- (i) there is $1 \leq s \leq m$ such that $||f_i||_{F_i} = 1$ for $i = 1, \ldots, s$ and $||f_i||_{F_i} < 1$ for $i = s + 1, \ldots, m$;
- (ii) $|\pi_1| \ge |\pi_i|$ for i = 1, ..., s.

By Exercise 4.5 we may assume that $a_1 = 0$ and $|\pi_1| = 1$.

Let $2 \leq i$. As $D_1 \cap D_i = \emptyset$ and hence $a_i \notin D_1$ and $a_1 = 0 \notin D_i$,

- (x) $|a_i| \ge |\pi_1|, |\pi_i|, \text{ for } 2 \le i \le m.$
 - Therefore, reordering F_2, \ldots, F_s we may assume that
- (iii) there is $1 \leq r \leq s$ such that $|a_i| = |\pi_1|$ for i = 2, ..., r and $|a_i| > |\pi_1|$ for i = r + 1, ..., s.

Put $I = \{1\} \cup \{2 \le i \le m \mid |a_i| = |\pi_1|\}$ and

$$G = \bigcap_{i \in I} \{ z \in K \mid |z - a_i| = |\pi_1| \}.$$

We claim that

- (iv) $G \subseteq F$;
- (v) every $z \in G$ satisfies $|f_i(z)| < 1$ for i = r + 1, ..., m; and
- (vi) there is $z \in G$ such that $|\sum_{i=0}^r f_i(z)| = 1$.

It then follows that there is $z \in F$ such that $|\sum_{i=1}^m f_i(z)| = 1$, whence $||\sum_{i=1}^m f_i|| = 1$.

- (iv) Let $z \in G$ and let $1 \le i \le m$. If i = 1, then $|z| = |\pi_1|$, and hence $z \in F_1$. If $i \ge 2$ and $i \in I$, then $|a_i| = |\pi_1|$, so $|z a_i| = |\pi_1| = |a_i| \ge |\pi_i|$, by (x), whence $z \in F_i$. If $i \notin I$, then $i \ge 2$ and $|a_i| > |\pi_1| = |z|$, hence $|z a_i| = |a_i| \ge |\pi_i|$, by (x), whence $z \in F_i$. Thus $z \in \bigcap_{i=1}^m F_i = F$.
- (v) For $s < i \le m$ this follows from (i). If $r < i \le s$ we have $|z| = |\pi_1|$ and $|a_i| > |\pi_1|$, hence $|z a_i| = |a_i| > |\pi_1|$.
- (vi) Let $1 \leq i \leq r$. Recall that $||f_i||_{F_i} = 1$. Hence by Exercise 4.6(b), $f_i = \sum_{n=1}^{\infty} b_n^{(i)} (\frac{\pi_i}{z-a_i})^n$, where $b_n^{(i)} \in K^o$, not all in K^{oo} , $|\pi_i| \leq 1$, and $|a_i| = 1$. Therefore $\overline{f_i} = \sum_{n=1}^{\infty} \overline{b_n^{(i)}} (\frac{\overline{\pi_i}}{\overline{z}-\overline{a_i}})^n \in K(\overline{z})$. Moreover, $\overline{f_1} \neq 0$ (as $||f_1|| = 1$), and has a pole in $\overline{z} = \overline{a_1} = 0$, whereas $\overline{f_i}$, for $i = 2, \ldots, r$, has a pole in $\overline{a_i} \neq \overline{a_1} = 0$ (or $\overline{f_i} = 0$), and f_0 has no poles. Therefore $\sum_{i=0}^r \overline{f_i}$ has a pole in 0. In particular, $\sum_{i=0}^r \overline{f_i} \neq 0$. Hence there is $\overline{z} \in \overline{K}$ such that $|\sum_{i=0}^r \overline{f_i}(\overline{z})| \neq 0$ and $\overline{z} \neq \overline{a_i}$, for each $i \in I$. Lift \overline{z} to an element $z \in K$ with |z| = 1. Then $z \in G$ and $|\sum_{i=0}^r f_i(z)| = 1$.
- (a) Again, we may assume that $c = \infty$. We have to show that for every $f \in \mathcal{O}(F)_{\infty}$ there are unique $f_i \in \mathcal{O}(F_i)_{\infty}$, i = 1, ..., m, such that $f = \sum_{i=1}^m f_i$. The uniqueness follows from (b): If $0 = \sum_{i=1}^m f_i$, where $f_i \in \mathcal{O}(F_i)_{\infty}$, then $0 = \max(||f_1||_{F_1}, ..., ||f_m||_{F_m})$, and hence $f_1 = \cdots = f_m = 0$.

To show the existences, it suffices to assume that f is rational. (Why?) As K is algebraically closed, f can be written as a finite sum of the form

(6)
$$f = \sum_{b} \sum_{k} \frac{a_{k,b}}{(z-b)^k},$$

where $k \geq 1$, and $b \in K \setminus F$ and $a_{k,b} \in K$. Put

(7)
$$f_i = \sum_{b \in D_i} \sum_k \frac{a_{k,b}}{(z-b)^k}.$$

Then $f = \sum_{i=1}^{m} f_i$ and $f_i \in \mathcal{O}(F_i)_{\infty}$.

Example 4.8: Let $0 < r_1 \le r_2$ and let $F = \{z \mid r_1 \le |z| \le r_2\}$. For each $n \in \mathbb{Z}$ put $\tilde{r}_n = \begin{cases} r_1 & \text{if } n < 0 \\ 1 & \text{if } n = 0 \end{cases}$. Then $r_2 & \text{if } n > 0$

(a) $\mathcal{O}(F) = \{\sum_{n=-\infty}^{\infty} a_n z^n \mid a_n \in K \text{ and } \lim_{n \to \pm \infty} |a_n| \tilde{r}_n^n = 0 \}.$

(b)
$$||\sum_{n=-\infty}^{\infty} a_n z^n||_F = \max |a_n|\tilde{r}_n^n$$
.

Proof: We have $F = D_1 \cap D_2$, where $D_1 = \{z \in \mathbb{P} \mid r_1 \leq |z|\}$ and $D_2 = \{z \in \mathbb{P} \mid |z| \leq r_2\}$. Let $f \in \mathcal{O}(F)$. Choose $c \in F$. By Mittag-Leffler there are $f_0 \in K$ (a constant function), $f_1 \in \mathcal{O}(D_1)_c$, $f_2 \in \mathcal{O}(D_2)_c$, such that $f = f_0 + \operatorname{res}_F f_1 + \operatorname{res}_F f_2$, and $||f||_F = \max(|f_0|, ||f_1||_{D_1}, ||f_2||_{D_2})$.

Choose ρ_1, ρ_2 such that $|\rho_i| = r_i$. By Exercise 4.6(a), $f_2(z) = \alpha_2 + \sum_{n=1}^{\infty} a_n z^n$, where $\lim_{n\to\infty} |a_n| r_2^n = 0$. As $f_2(c) = 0$, we have $\alpha_2 = -\sum_{n=1}^{\infty} a_n c^n$.

Similarly, by Exercise 4.6(b), changing n to -n, we have $f_1(z) = \alpha_1 + \sum_{n=-1}^{-\infty} a_n z^n$, where $\lim_{n \to -\infty} |a_n| r_1^n = 0$. As $f_1(c) = 0$, we have $\alpha_1 = -\sum_{n=-1}^{-\infty} a_n c^n$.

Thus $f(z) = f_0 + f_1(z) + f_2(z) = \sum_{n=-\infty}^{\infty} a_n z^n$, where $a_0 = f_0 - \alpha_1 - \alpha_2$ and $\lim_{n \to -\infty} |a_n| r_1^n = 0$ and $\lim_{n \to \infty} |a_n| r_2^n = 0$.

(The a_n as above are unique; this follows from (b).)

(b) Observe that $|\alpha_1| \leq \max_{n < 0} (|a_n| \tilde{r}_n^n)$ and $|\alpha_2| \leq \max_{n > 0} (|a_n| \tilde{r}_n^n)$. Therefore

$$||f||_F = \max(|f_0|, ||f_1||_{D_1}, ||f_2||_{D_2}) = \max_{n \neq 0} (|f_0|, |\alpha_1|, |\alpha_2|, |a_n|\tilde{r}_n^n) = \max_{n \neq 0} (|f_0|, |a_n|\tilde{r}_n^n).$$

We have to show that this is M, where $M = \max_{n \neq 0} (|f_0 - \alpha_1 - \alpha_2|, |a_n|\tilde{r}_n^n)$. Clearly $M \leq ||f||_F$. Also, if $|f_0| \leq \max_{n \neq 0} (|a_n|\tilde{r}_n^n)$, then $||f||_F \leq M$. If $|f_0| > \max_{n \neq 0} (|a_n|\tilde{r}_n^n)$, then $|f_0 - \alpha_1 - \alpha_2| = |f_0|$, so $M = ||f||_F$.

LEMMA 4.9: Let F_1, \ldots, F_r be disjoint connected affinoids in \mathbb{P} . Put $F = \bigcup_{i=1}^r F_i$. Then $\mathcal{O}(F) \cong \prod_{i=1}^r \mathcal{O}(F_i)$, via $f \mapsto (\operatorname{res}_{F_1} f, \ldots, \operatorname{res}_{F_r})$.

Proof: Wlog $r \geq 2$.

The map res: $\mathcal{O}(F) \to \prod_{i=1}^r \mathcal{O}(F_i)$ is clearly injective. Each $(f_1, \ldots, f_r) \in \prod_{i=1}^r \mathcal{O}(F_i)$ is the sum of elements of the form $(0, \ldots, 0, f_k, 0, \ldots, 0)$, where $1 \le k \le r$ and $f_k \in \mathcal{O}(F_k)$. Therefore it suffices to show that the latter element is in the image of res. Wlog k = 1.

PART A: $f_1(z) = 1$ for all $z \in F_1$. Let $1 \le l \le r$ such that $l \ne 1$. By Lemma 3.15(a) there are two disjoint closed disks D' and D'' such that $F \subseteq D' \cup D''$ and $F_1 \subseteq D'$ and $F_1 \subseteq D''$.

Wlog $D' = \{z \mid |z| \leq \rho'\}$ and $D'' = \{z \mid |z| \geq \rho''\}$, where $\rho' < 1 < \rho''$. The sequence $g_n(z) = \frac{1}{z^n+1}$ (of rational functions without poles in $D' \cup D''$) converges (uniformly!) to 1 on D' and to 0 on D''. Its restriction to F is a function $f_{1,l} \in \mathcal{O}(F)$ that is 1 on F_1 and 0 on F_l .

Let
$$f = \prod_{l \neq l} f_{1,l}$$
. Then $f \in \mathcal{O}(F)$, and $\text{res} f = (1, 0, \dots, 0)$.

PART B: Arbitrary $f_1 \in \mathcal{O}(F_1)$. Write F_1 as $\bigcap_{i=1}^s D_i$, where D_1, \ldots, D_s are closed disks such that $\mathbb{P} \setminus F_1 = \bigcup_{j=1}^s D_j^c$. By Mittag-Leffler-Decomposition, $f_1 = g_0 + g_1 + \cdots + g_s$, where g_0 is constant and $g_l \in \mathcal{O}(F)$ extends to a function $g_l \in \mathcal{O}(D_l)$, for each $1 \leq l \leq s$. Wlog $f_1 = g_l$ for some l and wlog l = 1.

Apply an automorphism of \mathbb{P} to Lemma 3.15(b) to assume that $0 \in D_1$ and $\infty \notin D_l \cup F_2 \cup \cdots \cup F_r$. Then wlog D_1 is the unit disk.

We can write $f_1 \in \mathcal{O}(D_1)$ as $f_1(z) = \sum_{n=1}^{\infty} a_n z^n$, where $|a_n| \to 0$. For each N the function $f_1^{(N)} = \sum_{n=1}^{\infty} a_n z^n$ has a pole only in ∞ , and hence $f_1^{(N)} \in \mathcal{O}(F)$. By Part A there is $g \in \mathcal{O}(F)$ such that g is 1 on F_1 and 0 on the rest. Then $\{gf_1^{(N)}\}_{N=1}^{\infty} \subseteq \mathcal{O}(F)$ is a Cauchy sequence. Its limit $f \in \mathcal{O}(F)$ satisfies the required conditions.

LEMMA 4.10: Let F be a connected affinoid, and let D be a closed disk contained in F. Let $0 \neq f \in \mathcal{O}(F)$. Then $\operatorname{res}_D f \neq 0$.

Proof: Write F as the intersection of r closed disks D_1, \ldots, D_r such that their complements D_1^c, \ldots, D_r^c are disjoint. Wlog $\infty \in D$ and $0 \notin D$. Thus

$$D_k = \{z \mid |z - a_k| \ge |\pi_k|\}, \text{ for } k = 1, \dots, r, \text{ and } D = \{z \mid |z| \ge |\rho|\}.$$

Wlog $||f||_F = 1$. If $f(\infty) \neq 0$, the assertion is trivial. So assume that $f(\infty) = 0$. By Mittag-Leffler there are unique $f_1 \in \mathcal{O}(D_1), \ldots, f_r \in \mathcal{O}(D_r)$ vanishing at ∞ , such that $f = \operatorname{res}_F f_1 + \cdots + \operatorname{res}_F f_r$. As $1 = ||f||_F = \max_k ||f_k||_{D_k}$, we have $||f_k||_{D_k} \leq 1$ for each k, and there is k with $||f_k||_{D_k} = 1$.

PART A: r = 1. We may assume that $a_1 = 0$ and $\pi_1 = 1$. Thus $D_1 = \{z \mid |z| \ge 1\}$, and $D = \{z \mid |z| \ge |\rho|\}$, where $|\rho| \ge 1$. Then $f(z) = \sum_{i=0}^{\infty} b_i (\frac{1}{z})^i$, where $\max(|b_i|) = ||f||_F > 0$. Thus not all b_i are 0. Now, $\operatorname{res}_D f(z) = \sum_{i=0}^{\infty} \frac{b_i}{\rho^i} (\frac{\rho}{z})^i$, and $||f||_D = \max(|\frac{b_i}{\rho^i}|)$. Hence $||f||_D > 0$.

Assume, by induction, that $r \geq 2$ and that the assertion is true for less than r disks.

PART B: Reductions. Wlog (apply the automorphism $z \mapsto \frac{z}{\pi}$ of \mathbb{P}) max $(|a_k - a_l|) = 1$. For distinct $1 \le k, l \le r$ we have $D_k^c \cap D_l^c = \emptyset$, and hence $|a_k - a_l| \ge |\pi_k|, |\pi_l|$. Thus

$$(1) |\pi_1|, \ldots, |\pi_r| \le 1.$$

Furthermore, wlog $|\rho|$ is very large, say

(2)
$$|\rho| > 1, |a_k|, |\pi_k|, k = 1, \dots, r.$$

Indeed, let $|\rho'| \ge |\rho|$ and let $D' = \{z \mid |z| \ge |\rho'|\}$. Then $D' \subseteq D \subseteq F$. If $\operatorname{res}_{D'} f \ne 0$, then also $\operatorname{res}_D f \ne 0$.

PART C: Reduction to $|a_k - a_l| = 1$ and $\pi_k = 1$ for all $k \neq l$. By Mittag-Leffler there are unique $f_1 \in \mathcal{O}(D_1), \ldots, f_r \in \mathcal{O}(D_r)$ vanishing at ∞ , such that $f = \operatorname{res}_F f_1 + \cdots + \operatorname{res}_F f_r$. As $f \neq 0$, not all f_k are 0.

For each $1 \leq k \leq r$ let $D'_k = \{z \mid |z - a_k| \geq 1\}$. By Part C, $D \subseteq D'_k$. By (1), $D'_k \subseteq D_k$. Some of the disks in the sequence D'_1, \ldots, D'_r may coincide (see below). Let E_1, \ldots, E_s be the distinct elements of this sequence, and for each $1 \leq j \leq s$ let $\mathcal{K}(j) = \{k \mid D'_k = E_j\}$.

More precisely, if $|a_k - a_l| < 1$, then $D'_k = D'_l$. If, on the other hand, $|a_k - a_l| = 1$, then the complements of D'_k and D'_l are disjoint, and hence $D'_k \neq D'_l$. As there are k, l such that $|a_k - a_l| = 1$, not all the disks in the sequence D'_1, \ldots, D'_r are equal. Thus $2 \leq s$ and $\#\mathcal{K}(j) < r$ for each $1 \leq j \leq s$. Furthermore, the complements of E_1, \ldots, E_s are disjoint.

Put $G = \bigcap_{j=1}^{s} E_{j}$. This is a connected affinoid. We claim that $\operatorname{res}_{G} f \neq 0$. Indeed, for each $1 \leq j \leq s$ let $g_{j} = \sum_{k \in \mathcal{K}(j)} \operatorname{res}_{E_{j}} f_{k} \in \mathcal{O}(E_{j})$. Then $\operatorname{res}_{G} f = \sum_{j=1}^{s} \operatorname{res}_{G} g_{j}$. Therefore this is the Mittag-Leffler decomposition of $\operatorname{res}_{G} f$. Hence it suffices to show that there is j such that $g_{j} \neq 0$.

There is k_0 such that $f_{k_0} \neq 0$. Let j be such that $k_0 \in \mathcal{K}(j)$. Now, $F_j = \bigcap_{k \in \mathcal{K}(j)} D_k$ is the intersection of $\#\mathcal{K}(j) < r$ closed disks with disjoint complements. Put $g'_j = \sum_{k \in \mathcal{K}(j)} \operatorname{res}_{F_j} f_k \in \mathcal{O}(F_j)$. This is the Mittag-Leffler decomposition of g'_j . Therefore, as $f_{k_0} \neq 0$, also $g'_j \neq 0$. But $g_j = \operatorname{res}_{E_j} g'_j$. As $\#\mathcal{K}(j) < r$, by the induction hypothesis we have $g_j \neq 0$. This shows that $\operatorname{res}_G f \neq 0$.

Now, either s < r or or s = r. In the first case, by the induction hypothesis (applied to $D \subseteq G = \bigcap_{j=1}^s E_j$) res $_D f \neq 0$. In the second case we may replace F with G (and D_k with D'_k for each k) and thus assume that $|a_k - a_l| = 1$ and $\pi_k = 1$ for all $k \neq l$.

PART D: Assume that $|a_k - a_l| = 1$ for all $k \neq l$ and $|\pi_i| = 1 \leq \rho$ for all i. Write f_k as $\sum_{j=1}^{\infty} b_j^{(k)} (\frac{1}{z-a_k})^j$.

Then

- (i) $|a_k|, |b_j^{(k)}| \leq 1$ for all j and k; in particular, $\overline{a_k}, \overline{b_j^{(k)}} \in \overline{K}$ are defined.
- (ii) $\overline{a_1}, \dots, \overline{a_r}$ are distinct;
- (iii) There are j and k such that $|b_j^{(k)}| = 1$; that is, not all $\overline{b_j^{(k)}}$ are 0. Furthermore, $|b_j^{(k)}| \to 0$, for each $1 \le k \le r$. Therefore

(iv) there is m such that $\overline{b_j^{(k)}} = 0$ for all k and all $j \ge m$.

It follows that $\bar{f}(t) = \sum_{k=1}^r \sum_{j=1}^\infty \overline{b_j^{(k)}} (\frac{1}{t-\overline{a_k}})^j \neq 0$ is a non-trivial rational function over \bar{K} . Therefore there is $\bar{c} \neq 0$ in (the algebraic closure of) \bar{K} such that $\bar{f}(\bar{c}) \neq 0$.

Thus there is c in the algebraic closure of K such that |c|=1 and $f(c)\neq 0$. In particular, the restriction of f to $D'=\{z\mid |z|\geq 1\}$ is not trivial. Since $|\rho|\geq 1$, we have $D\subseteq D'$. Hence by Part A also $\operatorname{res}_D f\neq 0$.

5. Factorization

The aim of this section is to prove the following

THEOREM 5.1: Let F be a connected affinoid in \mathbb{P} such that $\infty \notin F$. Let $0 \neq f(z)$.

- (a) f has finitely many zeroes in F. Moreover, there are $c_1, \ldots, c_m \in F$ such that $f(z) = g(z) \prod_{i=1}^m (z c_i)$, where $g \in \mathcal{O}(F)$ has no zeroes in F.
- (b) The following are equivalent:
 - (i) $f \in \mathcal{O}(F)^{\times}$;
 - (ii) f has no zeros in F;
 - (iii) There is $\theta > 0$ such that $|f(z)| > \theta$ for all $z \in F$.
- (b) The ring $\mathcal{O}(F)$ is a principal ideal domain; its maximal ideals are $(z-c)\mathcal{O}(F)$, where $c \in F$.

We prove this in several steps:

LEMMA 5.2 (Factorization): Let F be an affinoid in \mathbb{P} . Let $\infty \neq c \in F$ and let $f \in \mathcal{O}(F)$ such that f(c) = 0. Then there is a unique $g \in \mathcal{O}(F)$ such that f(z) = (z - c)g(z) on $F \setminus \{\infty\}$.

Proof: To show the uniqueness, it suffices to prove that if $0 \neq g \in \mathcal{O}(F)$, then $(z - c) \cdot g(z) \neq 0$. There is $a \in F$ such that $g(a) \neq 0$. As g is continuous (it is the limit of rational functions, which are continuous on F), we may assume that $a \neq c, \infty$. (There is $0 \neq d \in K$ with |d| sufficiently small; then $g(a+d) \neq 0$ and $a+d \neq c, \infty$.) Then $(a-c) \cdot g(a) \neq 0$.

PART A: Reduction to a connected affinoid. Write F as the disjoint union of connected affinoids F_1, \ldots, F_r . Wlog $c \in F_1$. For $2 \le i \le r$ we have $c \notin F_i$ and hence $(z - c)^{-1} \in \mathcal{O}(F_i)$, whence $g_i := (z - c)^{-1} f_i \in \mathcal{O}(F_i)$ satisfies $\operatorname{res}_{F_i} f = (z - c) g_i(z)$. Suppose there is $g_1 \in \mathcal{O}(F_1)$ such that $\operatorname{res}_{F_1} f = (z - c) g_1(z)$. Then by Lemma 4.9 there is a unique $g \in \mathcal{O}(F)$ such that $\operatorname{res}_{F_i} g = g_i$. Clearly f(z) = (z - c) g(z).

PART B: Reduction to a closed disk. Write F as the intersection of closed disks $\bigcap_{j=1}^{s} D_{j}$. By Mittag-Leffler, $f = \sum f_{i}$, where $f_{i} \in \mathcal{O}(F)_{c}$ extends to a holomorphic

function on D_i . It suffices to prove the assertion for each f_i . Therefore wlog f extends to a holomorphic function on D_i . So wlog $F = D_i$.

PART C: f is the restriction of an automorphism of \mathbb{P} to F. Say, $f(z) = \frac{\alpha z + \beta}{\gamma z + \delta}$, where $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{Gl}_2(K)$. Since f(c) = 0, we have $\alpha c + \beta = 0$. Thus $f(z) = \frac{\alpha(z-c)}{\gamma z + \delta} = (z-c) \cdot \frac{\alpha}{\gamma z + \delta}$.

PART D: F is the unit disk. Suppose that $F = U := \{z \mid |z| \le 1\}$ and c = 0. By Proposition 4.4, $f(z) = \sum_{n=0}^{\infty} a_n z^n$, where $a_n \to 0$. As f(c) = 0, we have $a_0 = 0$. Moreover, $h(z) := \sum_{n=1}^{\infty} a_n z^{n-1} \in \mathcal{O}(U)$. Therefore f(z) = zh(z).

PART D: The general case. There is an automorphism φ of \mathbb{P} such that $\varphi(F) = U$ and $\varphi(c) = 0$. There is $f_1 \in \mathcal{O}(U)_0$ such that $f(z) = f_1(\varphi(z))$. By Part D, $f_1 = z \cdot g_1$, where $g_1 \in \mathcal{O}(U)$. Thus $f = f_1(\varphi(z)) = \varphi(z) \cdot g_1(\varphi(z))$, and $g_1(\varphi(z)) \in \mathcal{O}(F)$. By Part C, $\varphi(z) = (z - c)g_2(z)$ for some $g_2 \in \mathcal{O}(F)$. So $f = (z - c)g_1(z)g_2(z)$.

The main tool is a lemma we already proved:

LEMMA 3.17: Let F be a connected affinoid such that $\infty \notin F$. Then either F is a closed disk or a finite union of sets of the form

$$C_{r,r'} = \{ z \in K \mid r < |z - a_0| < r' \},$$

 $C_r = \{ z \in K \mid |z - a_0| = \dots = |z - a_n| = r \},$

where $r, r' \in |K^{\times}|, a_0, \ldots, a_n \in K$ such that $|a_i - a_j| = r$.

LEMMA 5.3: Let $D = \{z \mid |z| \le 1\}$ be a closed disk. Let $0 \ne f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{O}(D)$, and let $m = \max(n \mid |a_n| = ||f||_D)$.

- (a) If $m \ge 1$, then f has a zero in D; more precisely –
- (b) There are $c_1, \ldots, c_m \in D$ and $g \in \mathcal{O}(D)$ with no zeros in D such that $f(z) = g(z) \prod_{i=1}^m (z c_i)$.
- (c) The following are equivalent:
 - (i) $f \in \mathcal{O}(D)^{\times}$;
 - (ii) f has no zeros in D;
 - (iii) f = c(1+s), where $c \in K^{\times}$ and $s \in \mathcal{O}^{oo}(D)$ (that is, m = 0);

(iv) $|f(z)| = ||f||_D$ for each $z \in D$.

Proof: Wlog $a_m = 1$. Hence $f \in \mathcal{O}^o(D)$.

(a) For $k \ge m$ let $f_k(z) = \sum_{n=0}^k a_n z^n$. Then

$$\bar{f}(z) = \bar{f}_k(z) = z^m + \bar{a}_{m-1}z^{m-1} + \dots + \bar{a}_0.$$

Write f_k as

$$f_k(z) = \lambda' \prod_{i=1}^s (z - c_{ik}) \prod_{j=1}^t (z - d_{jk}),$$

where $|c_{ik}| \leq 1$ and $|d_{jk}| > 1$. Put $\lambda = \lambda'(-d_{1k}) \cdots (-d_{tk})$ (and λ' is the leading coefficient of f_k , which is not necessarily a_k , because the latter could be 0). Then we can write the preceding equation as

$$f_k(z) = \lambda \prod_{i=1}^{s} (z - c_{ik}) \prod_{j=1}^{t} (1 - d_{jk}^{-1} z).$$

Comparing norms on both sides we get $|\lambda|=1$. Taking bar on both sides we see that

$$z^m + \bar{a}_{m-1}z^{m-1} + \dots + \bar{a}_0 = \bar{f}_k(z) = \bar{\lambda} \prod_{i=1}^s (z - \bar{c}_{ik}).$$

Hence $\bar{\lambda} = 1$ and m = s.

For each k put $Z_k = \{c_{1k}, \ldots, c_{mk}\}$. Then $\#Z_k \leq m$.

Fix k and let $c_{k+1} \in Z_{k+1}$. Then

$$\prod_{i=1}^{m} |c_{k+1} - c_{ik}| = |f_k(c_{k+1})| = |f_k(c_{k+1}) - f_{k+1}(c_{k+1})| \le ||f_k - f_{k+1}||.$$

Hence there is $c_k = c_{ik} \in Z_k$ such that $|c_{k+1} - c_k| \le ||f_k - f_{k+1}||^{\frac{1}{m}}$. Choose this $c_k \in Z_k$; this defines a map $: Z_{k+1} \to Z_k$ by $c_{k+1} \mapsto c_k$. Now, $\varprojlim Z_n \ne \emptyset$, so there is a sequence $\{c_k\}_k \subseteq D$ such that $f_k(c_k) = 0$ and $|c_{k+1} - c_k| \le ||f_k - f_{k+1}||^{\frac{1}{m}}$ for every k. Thus $\{c_k\}_k$ is a Cauchy sequence. Hence its limit $c \in D$ is a zero of f.

- (c) (i) \Rightarrow (ii) clear.
- (ii) \Rightarrow (iii): If f has no zeros in D, then by (a), m = 0. Hence $f = a_0 + s = 1 + s$, where $s = \sum_{n=1}^{\infty} a_n z_n$ satisfies $||s||_D < 1$.

- (iii) \Rightarrow (iv): Let $z \in D$. Then $|s(z)| \leq ||s||_D < 1$, hence |1 + s(z)| = 1.
- (iv) \Rightarrow (i): Write f as the limit of a sequence of rational functions f_k without poles in D (for instance, the partial sums $f_k(z) = \sum_{n=0}^k a_n z^n$). We may assume that $||f_k f|| < 1$ for each k, and hence f_k has no zeros in D; in fact, for every $z \in D$ we have $|f_k(z) f(z)| < 1$, but |f(z)| = 1, whence $|f_k(z)| = 1$. Thus $\frac{1}{f_k}$ is a sequence of rational functions with no poles in D. Check that $\frac{1}{f_k} \to \frac{1}{f}$.
- (b) By induction on m. Assume first that m=0. Then ||1-f||<1, hence by (c), $f\in \mathcal{O}(D)^{\times}$.

Assume that $m \geq 1$. By (a), f has a zero $c \in D$. Then f can be written as $f(z) = \sum_{n=0}^{\infty} b_n (z-c)^n$, where $|b_n| \leq 1$. As f(c) = 0, we have $b_0 = 0$. Thus f(z) = (z-c)h(z), where $h(z) = \sum_{n=1}^{\infty} b_n (z-c)^n \in \mathcal{O}^o(D)$. Write h(z) as $h(z) = \sum_{n=0}^{\infty} a'_n z^n$, and put $m' = \max(n \mid |a'_n| = 1)$. From $\bar{f}(z) = (z - \bar{c})\bar{h}(z)$ we see that m' = m - 1. By the induction hypothesis $h(z) = g(z) \prod_{i=1}^{m-1} (z-c_i)$, where $c_1, \ldots, c_{m-1} \in K$ and $g \in \mathcal{O}(D)$ has no zeros in D. Put $c = c_m$. Then $f(z) = g(z) \prod_{i=1}^m (z-c_i)g(z)$.

REMARK 5.4: Let C be a subset of an affinoid F, and let $f, q \in \mathcal{O}(F)$ such that $||f-q||_C < ||f||_C$. Then

- (i) $||f||_C = ||q||_C$.
- (ii) If $z \in C$ and $|f(z)| = ||f||_C$, then |f(z)| = |q(z)|.

 $\begin{aligned} & \text{Proof:} \quad \text{Let } C' = \{z \in C \, | \, |f(z)| > ||f-q||_C \}. \text{ As } \sup_{z \in C} |f(z)| = ||f||_C > ||f-q||_C, \\ & \text{the set } C' \text{ is not empty. Hence } C' \text{ contains all } z \in C \text{ with } |f(z)| = ||f||_C. \text{ For } z \in C' \\ & \text{we have } |f(z)| > |f(z)-q(z)|, \text{ and hence } |f(z)| = |q(z)|. \text{ This proves (ii). Also} \\ & ||f||_C = \sup_{z \in C'} |f(z)| = \sup_{z \in C'} |q(z)| = ||q||_C. \end{aligned}$

LEMMA 5.5: Let $r \in |K^{\times}|$, and let $b_1, \ldots, b_N \in K$ such that $|b_1| = \cdots = |b_N| = r$. Put

$$C = \{ z \in K \mid |z| = r, |z - b_{\nu}| = r, \ 1 \le \nu \le N \}$$
$$= \{ z \in K \mid |z| = r \} \setminus \bigcup_{\nu=1}^{N} \{ z \in K \mid |z - b_{\nu}| < r \},$$

Let q be a rational function with no poles in C. Let $\{d_1, \ldots, d_n\} \subseteq C$ contain all the zeroes of q in C. Then

- (a) $|q(z)| = ||q||_C$, if $z \in C$ and $|z d_i| \ge r$, for i = 1, ..., n;
- (b) $||q||_{\{z \mid |z-d_i| < r\}} = ||q||_C$, for i = 1, ..., n.

Proof: It suffices to show that there are $k \in \mathbb{N}$ and $p, \rho \in |K^{\times}|$ such that p < r and:

- (i) if $z \in C$ and $|z d_i| \ge r$, for i = 1, ..., n, then $|q(z)| = \rho$;
- (ii) $|q(z)| \le \rho$ for all $z \in C$;
- (iii) For each $1 \le i \le n$, if $z \in C$ and $p < |z d_i| < r$, then $\left| \frac{z d_i}{r} \right|^k \rho \le |q(z)| \le \rho$.

Observe that if this assertion is true for two rational functions q_1, q_2 , then it also holds for their product q_1q_2 . Thus we may assume that either q(z) = z - a, where $a \in K$ or $q(z) = \frac{1}{z-a}$, where $a \notin C$.

Futhermore, we may assume that $\{d_1, \ldots, d_n\}$ is the set of all zeroes of q in C. (We could have assumed this from the beginning, but this "more general" setup was necessary for the preceding reduction from q to its factors: The set of zeroes of q_1q_2 may properly contain the set of zeroes of q_1 .) More precisely, let k, p, ρ such that (i), (ii) and (iii) hold, and let $d_{n+1}, \ldots, d_{n'} \in C$. Let

$$p' = \max(p, |d_i - d_i| | 1 \le i, j \le n', |d_i - d_i| \le r).$$

Then the corresponding assertions, say (i'), (ii'), and (iii'), hold for $d_1, \ldots, d_{n+1}, \ldots, d_{n'}$ with k, p', ρ . Indeed, (i') is weaker than (i), and (ii') does not depend on $d_1, \ldots, d_{n'}$. Fix $1 \leq j \leq n'$ and $z \in C$ such that $p' < |z - d_j| < r$. If there is no $1 \leq i \leq n$ such that $|z - d_i| < r$, then $|q(z)| = \rho$ by (i). If there is $1 \leq i \leq n$ such that $|z - d_i| < r$, then $|d_i - d_j| < r$, and hence $|d_i - d_j| \leq p'$, by the definition of p', whence $|z - d_j| = |(z - d_i) + (d_i - d_j)| = |z - d_j|$. As $p \leq p'$, condition (iii') for j follows from (iii) for i. Let q(z) = z - a. Let $a \in K$, and let $z \in C$. Recall that |z| = r.

- (1) If |a| > r, then |z a| = |a|. (In this case n = 0.)
- (2) If |a| < r, then |z a| = r. (In this case n = 0.)
- (3) If |a| = r, but $a \notin C$, then there is ν such that $|a b_{\nu}| < r$. As $|z b_{\nu}| = r$, we have $|z a| = |(z b_{\nu}) (a b_{\nu})| = r$. (In this case n = 0.)
- (4) If |a| = r and $a \in C$, then n = 1 and $a = d_1$, because a is the only zero of q. If $|z d_1| \ge r$, then $|z a| = |z d_1| = r$ (because $|z| = |d_1| = r$). If $|z d_1| < r$, then $|z a| = \frac{|z d_1|}{r}r$.

In case (1) put $\rho = |a|$, otherwise $\rho = r$. Let k = 1, and let p be arbitrary. Then (i),(ii),(iii) hold.

If $q(z) = \frac{1}{z-a}$, where $a \notin C$, then the assertion follows from cases (1),(2),(3) above.

LEMMA 5.6: Let F be an affinoid that contains $D = \{z \in K \mid |z| < 1\}$. Let $0 \neq f \in \mathcal{O}(F)$. Then f has finitely many zeroes in D. Furthermore, $f(z) = g(z) \prod_{i=1}^{m} (z - c_i)$, where c_1, \ldots, c_m are the zeroes of f in D, and $g \in \mathcal{O}(F)$ has no zeroes in D. Moreover, $||g||_D = |g(z)|$ for all $z \in D$.

Proof: In this proof let D_r denote the closed disk of radius r around 0, and U_r the circle of radius r around 0. Put $\rho = ||f||_D$ ($\leq ||f||_F$). Then $\rho > 0$ by Lemma 4.10. Let $q \in \mathcal{O}(F)$ be a rational function such that $||f - q||_D < \frac{\rho}{2}$. (E.g., $||f - q||_F < \frac{\rho}{2}$.)

If $0 < r_0 < 1$ is sufficiently large, $||f||_{D_{r_0}} \ge \frac{\rho}{2}$; this, together with $||f - q||_{D_{r_0}} < \frac{\rho}{2}$, gives $||q||_{D_{r_0}} \ge \frac{\rho}{2}$ (there is $z \in D_{r_0}$ such that $|f(z)| \ge \frac{\rho}{2}$; of course, $|f(z) - q(z)| < \frac{\rho}{2}$, so $|q(z)| \ge \frac{\rho}{2}$). In particular, $q \ne 0$ has only finitely many zeroes. Provided that r_0 is sufficiently large, we may assume that q(z) has no zeroes in $\{z \in K \mid r_0 < |z| < 1\}$.

Let $r_0 < r < 1$, and let $z \in D$ such that |z| = r. We have

$$|f(z) - q(z)| \le ||f - q||_D < \frac{\rho}{2} \le ||q||_{D_{r_0}} \le ||q||_{D_r}.$$

But $||q||_{D_r} = ||q||_{U_r}$, and, by Lemma 5.5 or Proposition 4.4, $||q||_{U_r} = |q(z)|$. Thus |f(z) - q(z)| < |q(z)|, and hence |f(z)| = |q(z)| > 0.

In particular, all the zeroes of f in D are in D_{r_0} . By Lemma 5.3 there are $c_1, \ldots, c_m \in D_{r_0}$ and $g' \in \mathcal{O}(D_{r_0})$ with no zeroes such that $\operatorname{res}_{D_{r_0}} f(z) = g'(z) \prod_{i=1}^m (z - c_i)$. (Observe that this g' is unique.) By the Factorization Lemma and by induction on i we can write $f(z) = g(z) \prod_{i=1}^m (z - c_i)$, where $g \in \mathcal{O}(F)$. By the uniqueness of g' we have $\operatorname{res}_{D_{r_0}} g(z) = g'(z)$. Thus g has no zeroes in D_{r_0} , and hence also in D (by the first statement of this paragraph).

Let $z \in D$. Let |z| < r < 1. By Lemma 5.3, $|g(z)| = ||g||_{D_r}$. Hence $|g(z)| = \lim_{r \to 1^-} ||g||_{D_r} = ||g||_D$.

LEMMA 5.7: Let C be as in Lemma 5.5, and let F be an affinoid that contains C. Let $0 \neq f \in \mathcal{O}(F)$.

- (i) f has finitely many zeroes in C. More precisely, $f(z) = g(z) \prod_{i=1}^{m} (z c_i)$, where c_1, \ldots, c_m are the zeroes of f, and $g \in \mathcal{O}(F)$ has no zeroes in C.
- (ii) If f has no zeroes in C, then $|f(z)| = ||f||_C$ for all $z \in C$.

Proof: Since C contains a closed disk, by Lemma 4.10, $||f||_C > 0$. Let $q \in \mathcal{O}(F)$ be a rational function such that $||f - q||_C < ||f||_C$. Then $q \neq 0$. By Remark 5.4, $||q||_C = ||f||_C$. Let d_1, \ldots, d_n be the zeroes of q in C. Put

$$D_i = \{ z \in C \mid |z - d_i| < r \}, \ 1 \le i \le n, \text{ and } G = C \setminus \bigcup_{i=1}^n D_i.$$

By Lemma 5.5, $|q(z)| = ||q||_C$ for every $z \in G$.

It follows that for every $z \in G$ we have $|f(z)-q(z)| \le ||f-q||_C < ||f||_C = ||q||_C = |q(z)|$, and hence $|f(z)| = |q(z)| = ||q||_C$. In particular, f(z) has no zeroes in G. Thus all the zeroes of f are in the open disks D_1, \ldots, D_n . By Lemma 5.6 their number is finite, and we get the required factorization.

(ii) Let

$$\rho = ||f||_C = ||q||_C = ||q||_{D_i}$$
, for $i = 1, \dots, n$

(the equalities follow from Remark 5.4 and Lemma 5.5, respectively). It suffices to show that $|f(z)| = \rho$ for every $z \in C$. For $z \in G$ this is written above. For $z \in D_i$, by Lemma 5.3, (present D_i as the increasing union of closed disks) $|f(z)| = ||f||_{D_i}$. As

$$||f - q||_{D_i} \le ||f - q||_C < ||f||_C = \rho = ||q||_{D_i},$$

by Remark 5.4, $||f||_{D_i} = ||q||_{D_i}$. Thus $|f(z)| = ||q||_{D_i} = \rho$.

LEMMA 5.8: Let $r_1, r_2 \in |K^{\times}|$, where $r_1 < r_2$. Put

$$C = \{ z \in K \mid r_1 < |z| < r_2 \}.$$

Let F be an affinoid that contains C.

- (i) Let $f \in \mathcal{O}(F)$. If $f \neq 0$, then f has a finite number of zeroes in C. Furthermore, $f(z) = g(z) \prod_{i=1}^{m} (z c_i)$, where c_1, \ldots, c_m are zeroes of f in C, and $g \in \mathcal{O}(F)$ has no zeroes in C.
- (ii) If $g \in \mathcal{O}(F)$ has no zeroes in C, there is $\theta > 0$ such that $|g(z)| > \theta$ for all $z \in C$.

Proof: For each $r_1 < r < r_2$ let $U_r = \{z \in K \mid |z| = r\}$. Put $\theta = \inf\{||f||_{U_r} \mid r_1 < r < r_2\}$. We claim that $\theta > 0$.

Indeed, for all $r_1 < r_1' \le r_2' < r_2$ let $F' = \{z \in K \mid r_1' \le |z| \le r_2'\}$. By Example 4.8, there are $a_n \in K$ such that

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n z_n,$$

where $|a_n|(r_2')^n \to 0$ as $n \to \infty$ and $|a_n|(r_1')^n \to 0$ as $n \to -\infty$. By Example 4.8(b), these a_n are unique. This implies that a_n do not depend on r_1', r_2' . As $f \neq 0$, there is $k \in \mathbb{Z}$ such that $a_k \neq 0$.

If $r_1 < r_1' = r = r_2' < r_2$, then $F' = U_r$. By Example 4.8, $||f||_{U_r} = \max_n |a_n| r^n$. Hence $||f||_{U_r} \ge |a_k| r^k \ge |a_k| \cdot \min(r_1^k, r_2^k)$. It follows that $\theta > 0$.

Let $q \in \mathcal{O}(F)$ be a rational function such that $||f - q||_F < \theta$. Then $q \neq 0$, and hence q has only finitely many zeroes in C. Let $r_1 < r < r_2$ such that $r \neq |d|$ for each zero $d \in C$ of q, and let $z \in U_r$. Then q has no zero in U_r , and hence by Lemma 5.5, $|q(z)| = ||q||_{U_r}$. Furthermore, $||f - q||_{U_r} \leq ||f - q||_F < \theta \leq ||f||_{U_r}$. Hence by Remark 5.4, $||f||_{U_r} = ||q||_{U_r}$. Thus for every $z \in U_r$

$$|f(z) - q(z)| < \theta \le ||f||_{U_r} = ||q||_{U_r} = |q(z)|,$$

and hence $|f(z)| = |q(z)| = ||q||_{U_r} = ||f||_{U_r}$.

Therefore $|f(z)| \ge \theta$ for all $z \in C$ except for finitely many U_r 's on which f has zeroes. In particular, this prove (ii). Now apply Lemma 5.7 (to each U_r instead of C there).

Proof of Theorem 5.1: (a) By Lemma 3.17, F is the union of certain sets C_1, \ldots, C_n . By induction, $f = f_0 \prod_{i=1}^k (z - c_i)$, where $c_1, \ldots, c_k \in \bigcup_{i=1}^{n-1} C_i$ and $f_0 \in \mathcal{O}(F)$ has no zeroes

in $\bigcup_{i=1}^{n-1} C_i$. By Lemmas 5.3, 5.5, 5.7, $f_0 = g \prod_{i=k+1}^m (z - c_i)$, where $c_{k+1}, \ldots, c_m \in C_n$ and $g \in \mathcal{O}(F)$ has no zeroes in C_n .

- (b) Implication (iii) \Rightarrow (ii) is trivial. By the preceding lemmas, (ii) \Rightarrow (iii). To deduce (iii) \Rightarrow (i), approximate f by rational functions with no zeroes on F, so that their inverses are rational functions on F; they converge to f^{-1} .
- (c) First notice that F is an integral domain: Let $f, g \in \mathcal{O}(F) \setminus \{0\}$. By (i) they have only finitely many zeroes in F. Since F is an infinite set, there is $c \in F$ such that $f(c), g(c) \neq 0$. Hence $fg \neq 0$. (One could also use Lemma 4.10, which proves that $\mathcal{O}(F) \subseteq \mathcal{O}(D)$ for some closed disk D. As $\mathcal{O}(D)$ is an integral domain, so is $\mathcal{O}(F)$.)

Consider the obvious homomorphism (actually, an embedding) $K[z] \to \mathcal{O}(F)$. Let $J \leq \mathcal{O}(F)$ be an ideal. Let $\{f_i\}_{i \in I}$ be a set of its generators. By (i) and (ii) each f_i is, up to an element of $\mathcal{O}(F)^{\times}$, a polynomial in z. Thus we may assume that $f_i \in K[z]$. Let J_0 be the ideal of K[z] generated by the f_i ; then $J = J_0\mathcal{O}(F)$. As K[z] is a PID, the ideal J_0 is generated by some $f \in K[z]$. Hence $J = f\mathcal{O}(F)$.

6. Affinoid algebras

In this section let $(k, | \cdot |)$ be a complete non-archimedean valued field. Let K be the completion of the algebraic closure of k. (Then K is algebraically closed.)

Definition 6.1: Formal power series. Let $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$. The elements of \mathbb{N}_0^n are n-tuples $\alpha = (\alpha_1, \ldots, \alpha_n)$. For an n-tuple of indeterminates $z = (z_1, \ldots, z_n)$ and for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$ write $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. (Thus $z^{\alpha} z^{\beta} = z^{\alpha+\beta}$.)

Let R be a commutative ring with 1. Then

$$R[[z_1, \dots, z_n]] = \{ \sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R \}$$

is an R-algebra, the ring of formal power series in z_1, \ldots, z_n over R.

LEMMA 6.2: Let R be a commutative ring with 1.

- (a) $R[[z_1, \ldots, z_n]] = R[[z_1, \ldots, z_{n-1}]][[z_n]].$
- (b) If R is an integral domain, then so is $R[[z_1, \ldots, z_n]]$.

Proof: (b) Suppose $f = \sum_{\alpha} a_{\alpha} z^{\alpha}$, $g = \sum_{\beta} b_{\beta} z^{\beta} \neq 0$. Choose smallest α, β , in the lexicographical order on \mathbb{N}_0^n , such that $a_{\alpha}, b_{\beta} \neq 0$. Then the coefficient of $z^{\alpha+\beta}$ in fg is $a_{\alpha}b_{\beta} \neq 0$.

Assume that (R, || ||) is a normed Banach (k, ||)-algebra. Then

$$R^o = \{ r \in R \, | \, ||r|| \le 1 \}$$

is a subring of R (in fact, a k^{o} -algebra) and

$$R^{oo} = \{ r \in R \, | \, ||r|| < 1 \}$$

an ideal in $R^o.$ Let $\bar{R}=R^o/R^{oo}.$ This is an \bar{k} -algebra.

Definition 6.3: Standard affinoid algebra. For $\alpha \in \mathbb{N}_0^n$ put $|\alpha| = \max_i(\alpha_i)$. (This has got nothing to do with the absolute value on k.) Put

$$T_n(R) = R\langle z_1, \dots, z_n \rangle = \{ \sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R, \lim_{|\alpha| \to \infty} a_{\alpha} = 0 \}.$$

This is a subalgebra of $R[[z_1, \ldots, z_n]]$. Put

$$||\sum_{\alpha} a_{\alpha} z^{\alpha}|| = \max_{\alpha} ||a_{\alpha}||.$$

This is a norm (of an algebra over k):

- (a) ||f|| = 0 if and only if f = 0.
- (b) $||f+g|| \le ||f|| + ||g||$. In fact, $||f+g|| \le \max(||f||, ||g||)$.
- (c) ||cf|| = |c|||f||, for $c \in k$ and $f \in T_n$.
- (d) $||fg|| \le ||f|| \cdot ||g||$.

It follows that

$$T_n^o = \{ \sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R^o, \lim_{|\alpha| \to \infty} a_{\alpha} = 0 \}.$$

is a subring of T_n and

$$T_n^{oo} = \{ \sum_{\alpha} a_{\alpha} z^{\alpha} \mid a_{\alpha} \in R^{oo}, \lim_{|\alpha| \to \infty} a_{\alpha} = 0 \}.$$

is an ideal in T_n^o .

Remark 6.4: We have $T_n^o/T_n^{oo} \cong \bar{R}[\bar{z}_1, \dots, \bar{z}_n]$, the ring of polynomials in n variables. Indeed, the map $T_n^{(0)} \to \bar{R}[\bar{z}_1, \dots, \bar{z}_n]$ given by $\sum_{\alpha} a_{\alpha} z^{\alpha} \mapsto \sum_{\alpha} \overline{a_{\alpha}} \bar{z}^{\alpha}$ is well defined and its kernel is precisely T_n^{oo} .

Exercise 6.5: Let R be a Banach algebra over k.

- (a) T_n is complete, that is, a Banach algebra.
- (b) $T_n(R) = T_{n-1}(R)\langle z_n \rangle$ (and the norm on $T_n(R)$ is the norm coming from the right handed side). (This is the main reason that we consider a general ring R instead of a complete field k.)

PROPOSITION 6.6: Let R = k be a field. Then $\bar{R} = \bar{k}$ is the residue field.

- (a) $||fg|| = ||f|| \cdot ||g||$ for all $f, g \in T_n$.
- (b) T_n is an integral domain.
- (c) $f = \sum a_{\alpha} z^{\alpha}$ of T_n is invertible if and only if $|a_0| > |a_{\alpha}|$ for each $\alpha \neq 0$. (Here $0 = (0, \dots, 0) \in \mathbb{N}_0^n$.)

Proof: (a) We may assume that $f, g \neq 0$. Multiplying them by suitable elements of k we may assume that ||f|| = ||g|| = 1. In particular their images \bar{f}, \bar{g} in $\bar{k}[\bar{z}_1, \ldots, \bar{z}_n]$ are

not 0. As $\bar{k}[\bar{z}_1,\ldots,\bar{z}_n]$ is an integral domain also the image $\bar{f}\bar{g}$ of fg is not 0, that is, ||fg|| = 1.

- (b) If $f, g \neq 0$, then $||f||, ||g|| \neq 0$, and hence $||fg|| = ||f \cdot ||g|| \neq 0$, whence $fg \neq 0$.
- (c) Suppose that $|a_0| > |a_\alpha|$ for all $\alpha \neq 0$. Dividing by a_0 we may assume that $a_0 = 1$. Then f may be written as f = 1 h, where ||h|| < 1. It is easy to see that $g = \sum_{n=0}^{\infty} h^n \in T_n$ satisfies fg = 1. Hence f is invertible.

Conversely, suppose that f is invertible. Then $||f|| \neq 0$. Dividing by ||f|| we may assume that ||f|| = 1. In particular, $f \in T_n^o$. Its residue $\bar{f} = \sum \bar{a}_\alpha \bar{z}^\alpha$ is invertible in $\bar{k}[\bar{z}_1, \ldots, \bar{z}_n]$. Therefore $\bar{a}_\alpha = 0$ for each $\alpha \neq 0$. Thus $|a_\alpha| < 1 = ||f||$. It follows that $|a_0| = 1$.

In what follows we could take $R = k\{z_1, \ldots, z_{n-1}\}$ and $z = z_n$, so that $R\{z\} = T_n(k)$.

Definition 6.7: For $g = \sum_{n=0}^{\infty} a_n z^n \neq 0$ in $R\{z\}$ define the **pseudodegree** of g to be the integer $d = \max(n : ||a_n|| = ||g||)$. Call a_d the **pseudoleading coefficient** of g. Call g regular, if $a_d \in R^{\times}$ and $||ca_d|| = ||c|| \cdot |a_d||$ for all $c \in R$.

Remark 6.8: Let g be regular of pseudodegree d and let $0 \neq q \in R\{z\}$ of pseudodegree l. Then qg is of pseudodegree $d + l \geq d$ and $||qg|| = ||q|| \cdot ||g||$.

Indeed, let $g = \sum_{n=0}^{\infty} a_n z^n$ and $q = \sum_{n=0}^{\infty} c_n z^n$ and let l be the pseudodegree of q. Then $||qg|| \leq ||q|| \cdot ||g||$, but, by Remark ? (if ||a|| < ||b|| then ||a+b|| = ||b||), the norm of the coefficient of z^{d+l} in qg is $||c_l a_d|| = ||c_l|| \cdot ||a_d|| = ||q|| \cdot ||g||$.

THEOREM 6.9 (Weierstrass Division Theorem): Let $f \in R\{z\}$ and let $g \in R\{z\}$ be regular of pseudodegree d. Then there are unique $q \in R\{z\}$ and $r \in R[z]$ such that f = qg + r and $\deg r < d$. Moreover,

$$(1) \hspace{1cm} ||qg|| = ||q|| \cdot ||g|| \leq ||f|| \hspace{1cm} and \hspace{1cm} ||r|| \leq ||f||.$$

Proof: Write g as $g = \sum_{n=0}^{\infty} a_n z^n \in R\{z\}$.

PART I: Estimates (1). Assume that f = qg + r, where $\deg r < d$. If q = 0, then (1) is clear. Assume that $q \neq 0$. By Remark 6.8, $||qg|| = ||q|| \cdot ||g||$ and qg is of pseudodegree $m \geq d$. In particular, $||q|| \cdot ||g||$ is the norm of the coefficient of z^m in

qg. This coefficient is also the coefficient of z^m in f = qg + r, since $\deg r < d \le m$. Therefore $||q|| \cdot ||g|| \le ||f||$. It follows that $||r|| = ||f - qg|| \le \max(||f||, ||qg||) \le ||f||$.

PART II: Uniqueness. Assume that f = qg + r = q'g + r', where $\deg r, \deg r' < d$. Then 0 = (q - q')g + (r - r'). By Part I, ||q - q'|| = ||r - r'|| = 0. Hence q = q' and r = r'.

PART III: Existence if g is a polynomial of degree d. Write f as $\sum_{n=0}^{\infty} b_n z^n$. For each $m \geq 0$ let $f_m = \sum_{n=0}^m b_n z^n \in R[z]$. As g is regular of pseudodegree d, its leading coefficient is invertible. Euclid's algorithm for polynomials over R produces $q_m, r_m \in R[z]$ such that $f_m = q_m g + r_m$ and $\deg r_m < \deg g$. Thus for all k, m we have $f_m - f_k = (q_m - q_k)g + (r_m - r_k)$. By Part I, $||q_m - q_k|| \cdot ||g||, ||r_m - r_k|| \leq ||f_m - f_k||$. Thus $\{q_m\}_{m=0}^{\infty}$ and $\{r_m\}_{m=0}^{\infty}$ are Cauchy sequences in $R\{z\}$, and hence they converge to $g \in R\{z\}$ and $g \in R\{z\}$ and $g \in R\{z\}$ with $g \in R\{z\}$ and $g \in R\{z\}$ with $g \in R\{z\}$ and $g \in R\{z\}$

PART IV: Existence for arbitrary g. If $g = \sum_{n=0}^{\infty} a_n z^n$, put $g_0 = \sum_{n=0}^{d} a_n z^n \in R[z]$. Then $||g - g_0|| < ||g||$. By Part III with g_0 and f there are $q_0 \in R\{z\}$ and $r_0 \in R[z]$ such that $f = q_0 g_0 + r_0$ and $\deg r_0 < d$. By Part I, $||q_0|| \le \frac{||f||}{||g||}$ and $||r_0|| \le ||f||$. Thus $f = q_0 g + r_0 + f_1$, where $f_1 = -q_0 (g - g_0)$, and $||f_1|| \le \frac{||g - g_0||}{||g||} \cdot ||f||$.

Put $f_0 = f$. By induction we get, for each $k \geq 0$, elements $f_k, q_k \in R\{z\}$ and $r_k \in R[z]$ such that $\deg r < d$ and

$$f_k = q_k g + r_k + f_{k+1}, \quad ||q_k|| \le \frac{||f_k||}{||g||}, \ ||r_k|| \le ||f_k||, \quad \text{and} \quad ||f_{k+1}|| \le \frac{||g - g_0||}{||g||} ||f_k||.$$

It follows that $||f_k|| \to 0$, whence also $||q_k||, ||r_k|| \to 0$. Therefore $q = \sum_{k=0}^{\infty} q_k \in R\{z\}$ and $r = \sum_{k=0}^{\infty} r_k \in R[z]$. Clearly f = qg + r and $\deg r < d$.

THEOREM 6.10 (Weierstrass Preparation Theorem): Let $f \in T_n(k)$ have norm 1. Then there exists a norm-preserving k-algebra automorphism σ of $T_n(k)$ such that $\sigma(f)$ is regular in z_n .

Proof: Let $e_1, \ldots, e_{n-1} \in \mathbb{N}$. Define σ by

$$z_1 \mapsto z_1 + z_n^{e_1}, \dots, z_{n-1} \mapsto z_{n-1} + z_n^{e_{n-1}}, z_n \mapsto z_n.$$

that is, if $g = \sum_{\alpha} a_{\alpha} z^{\alpha}$, then $\sigma(g) = \sum_{\alpha} a_{\alpha} \sigma(z^{\alpha})$, where

$$\sigma(z^{\alpha}) = (z_1 + z_n^{e_1}) \cdots (z_{n-1} + z_n^{e_{n-1}}) z_n.$$

This is a well defined continuous homomorphism $T_n(k) \to T_n(k)$. Indeed, $||\sigma(z^{\alpha})|| \le ||z^{\alpha}||$. Hence for each $g = \sum_{\alpha} a_{\alpha} z^{\alpha} \in T_n(k)$ the series $\sum_{\alpha} a_{\alpha} \sigma(z^{\alpha})$ converges, whence $\sigma(g) \in T_n(k)$. Moreover, $||\sigma(g)|| \le ||g||$. The inverse of σ is given by replacing + with – in the definition of σ .

We claim that $\sigma(f)$ is regular in z_n for suitable $e_1, \ldots, e_{n-1} \in \mathbb{N}$.

Indeed, write $f = \sum_{\alpha} c_{\alpha} z^{\alpha}$. The set $\Lambda = \{\alpha \in \mathbb{N}_0^n \mid \overline{c_{\alpha}} \neq 0\}$ is finite. We have

$$\overline{\sigma(f)} = \sum_{\alpha \in \Lambda} \overline{c_{\alpha}} (z_1 + z_n^{e_1})^{\alpha_1} \cdots (z_{n-1} + z_n^{e_{n-1}})^{\alpha_{n-1}} z_n^{\alpha_n}$$

$$= \sum_{\alpha \in \Lambda} \overline{c_{\alpha}} (z_n^{e_1 \alpha_1 + \dots + e_{n-1} \alpha_{n-1} + \alpha_n} + \dots)$$

where the other monomials with coefficient $\overline{c_{\alpha}}$ are of degree in z_n strictly smaller than $e_1\alpha_1 + \cdots + e_{n-1}\alpha_{n-1} + \alpha_n$. Thus if the degrees $e_1\alpha_1 + \cdots + e_{n-1}\alpha_{n-1} + \alpha_n$ of the 'leading' monomials are distinct for distinct $\alpha \in \Lambda$, these monomials will not cancel each other, and one of them will be with the maximal degree.

To achieve it, take $e_i = e^i$ with $e > \alpha_j$ for all j and all $\alpha \in \Lambda$. (The above degrees are then e-adic expansions of natural numbers; the sequences of digits in these expansions are distinct, hence the numbers are distinct.)

THEOREM 6.13: The ring T_n is noetherian (every ideal of T_n is finitely generated).

Proof: By induction on n. Suppose T_{n-1} is noetherian. Then so is the ring of polynomials $T_{n-1}[z_n]$. Let I be a non-zero ideal of T_n . Then there is $f \in I$ such that ||f|| = 1. By the Preparation we may assume that f is regular in z_n , say, of degree d. By the Division each $g \in I$ is of the form g = qf + r, where $q \in T_n$ and $r \in T_{n-1}[z_n] \cap I$. Thus I is generated by f and the finitely many generators of the ideal $T_{n-1}[z_n] \cap I$ of $T_{n-1}[z_n]$.

LEMMA 6.14: Let $f \in T_n$ be regular in z_n of pseudodegree d. Then f = qg, where $g \in (T_n)^{\times}$ and $g \in T_{n-1}[z_n]$ is monic of degree d and norm 1 (and hence also regular in z_n of degree d).

Proof: The Division gives $q \in T_n$ and $r \in T_{n-1}[z_n]$ such that $z_n^d = fq + r$; moreover $\deg_{z_n} r < d$ and $||r|| \le ||z_n^d|| = 1$. Hence $z_n^d - r$ is also regular of degree d, and so we may perform another division: $f = q'(z_n^d - r) + r'$. This gives f = qq'f + r'. But also f = 1f + 0. The uniqueness of division by f gives qq' = 1 and r' = 0. Thus f = q'g, where q' is a unit and $g = z_n^d - r \in T_{n-1}[z_n]$ is monic with norm 1.

LEMMA 6.15: Let $f, g \in T_{n-1}[z_n]$, and g be monic of norm 1. Then g|f in $T_{n-1}[z_n]$ if and only if g|f in T_n .

Proof: The division with reminder in $T_{n-1}[z_n]$ gives f = qg + r, with $q, r \in T_{n-1}[z_n]$ and $\deg r < d$. But $q \in T_n$ and g is regular in z_n . Thus if g|f in T_n , by the uniqueness of the division in T_n we must have r = 0. Therefore g|f in $T_{n-1}[z_n]$. The converse is trivial.

LEMMA 6.16: Let $g \in T_{n-1}[z]$ be monic of norm 1. Then g is irreducible in $T_{n-1}[z_n]$ if and only if g is irreducible in T_n .

Proof: An element of a ring is invertible if and only if it divides 1 in that ring, Thus by Lemma 6.15, a monic polynomial of norm 1 in $T_{n-1}[z_n]$ is invertible in $T_{n-1}[z_n]$ if and only if it is invertible in T_n .

Suppose g is reducible in $T_{n-1}[z_n]$, that is, $g = g_1g_2$, where $g_1, g_2 \in T_{n-1}[z_n]$ are not invertible. Wlog g_1, g_2 are monic, whence $||g_1||, ||g_2|| \ge 1$. But $||g_1|| \cdot ||g_2|| = ||g|| = 1$, so $||g_1|| = ||g_2|| = 1$. By the preceding paragraph g_1, g_2 are not invertible in T_n . Thus g is reducible in T_n .

Conversely, suppose g is reducible in T_n , that is, $g = g_1g_2$, where $g_1, g_2 \in T_n$ are not invertible. We may assume that $||g_1|| = ||g_2|| = 1$. By Exercise 6.12, g_1, g_2 are regular in z_n . By Lemma 6.14 we may assume that g_1 is monic in $T_{n-1}[z_n]$. Division with remainder in $T_{n-1}[z_n]$ gives $g = g_1q + r$ with $q, r \in T_{n-1}[z_n]$ and $\deg r < \deg g_1$. By the uniqueness of division in T_n we have $q = g_2$ and r = 0. Thus $g_2 \in T_{n-1}[z_n]$. As $g = g_1g_2$, also g_2 is monic. By the first paragraph of this proof g_1, g_2 are not invertible in $T_{n-1}[z_n]$. Thus g is reducible in $T_{n-1}[z_n]$.

Theorem 6.17: The ring T_n is a unique factorization domain.

Proof: By induction on n. Suppose T_{n-1} is a UFD. Then so is the ring of polynomials $T_{n-1}[z_n]$ [Lang, Algebra, Theorem IV.2.3].

Let $0 \neq f \in T_n$. We want to show that f is a product of irreducibles, unique up to invertibles. Without loss of generality ||f|| = 1. By the Preparation we may assume that f is regular in z_n , say, of pseudodegree d. By Lemma 6.14 we may assume that $f \in T_{n-1}[z_n]$ is monic of degree d and norm 1.

Write $f = g_1 \cdots g_r$, where $g_i \in T_{n-1}[z_n]$ are irreducible. Then their leading coefficients must be invertible. So wlog they are monic. Thus $||g_i|| \ge 1$. As $f = g_1 \cdots g_r$, we have $||g_i|| = 1$. By Lemma 6.16, the g_i are irreducible in T_n .

To show the uniqueness of the product, let $g \in T_n$ be irreducible, g|f in T_n . By Lemma 6.14 we may assume that $g \in T_{n-1}[z_n]$ is monic of norm 1. By Lemma 6.15, g|f in $T_{n-1}[z_n]$. Thus there is i such that $g|g_i$ in $T_{n-1}[z_n]$. Therefore $g = g_i$.

THEOREM 6.18: Let I be an ideal of T_n . Then there exist an integer $d \leq n$ and a norm preserving k-automorphism σ of T_n such that the composition $T_d \to T_n \xrightarrow{\sigma} T_n \to T/I$ is a finite injective morphism.

Proof: (a) By induction on n. The assertion is clear for n=0. Assume $n \geq 1$. If I=0, take d=n and let σ be the identity. So assume that $I\neq 0$.

By the Preparation there is a norm-preserving k-automorphism ρ of T_n such that $\rho^{-1}(I)$ contains some f regular of degree m in z_n . Put $J = \rho^{-1}(I) \cap T_{n-1}$. The canonical morphism $\bar{\lambda} \colon T_{n-1}/J \to T_n/\rho^{-1}(I)$ is injective. The division by f in T_n shows that $T_n/\rho^{-1}(I) = T_{n-1}\{z_n\}/\rho^{-1}(I)$ is a finite T_{n-1}/J -module, generated by $1, z_n, \ldots, z_n^{m-1}$. Thus $\bar{\lambda}$ is finite. The map $\bar{\rho} \colon T_n/\rho^{-1}(I) \to T_n/I$ induced from ρ is an isomorphism.

By the induction hypothesis there is d and a norm-preserving k-automorphism τ of T_{n-1} such that $T_d \to T_{n-1} \xrightarrow{\tau} T_{n-1} \to T_{n-1}/J$ is a finite injective morphism. Extend

 τ to an automorphism of T_n by $\tau(z_n) = z_n$.

Then $\bar{\rho}\bar{\lambda}\bar{\tau}$: $T_d \to T_n/I$ is an injective finite morphism. Hence $\sigma = \rho\tau$ has the required property.

COROLLARY 6.19: Let \mathfrak{m} be a maximal ideal of T_n . Then the field T_n/\mathfrak{m} is a finite extension of k.

Proof: By Theorem 6.18 there is a subring T_d of T_n/\mathfrak{m} over which T_n/\mathfrak{m} is finite. As T_n/\mathfrak{m} is a field, so is T_d [AM, Prop. 5.7]. It follows that d=0 (for instance, z_1 is not invertible in T_d) and hence T_n/\mathfrak{m} is a finite extension of $T_0=k$.

Definition 6.20: An **affinoid algebra** A over k is a k-algebra which is finite over T_n , for some n. That is, there is a ring homomorphism $T_n \to A$ such that via it A is a finite T_n -module. By Theorem 6.18 we may assume that $T_n \to A$ is injective. (A composition of finite homomorphisms is finite.)

Theorem 6.21: An affinoid algebra is a noetherian ring.

Proof: By definition, an affinoid algebra is a finitely generated extension of some T_n , which is noetherian by Theorem 6.13. Hence A is noetherian.

COROLLARY 6.22: Let A be an affinoid algebra, and suppose A is a Banach algebra with respect to some norm on A. Let $I \leq A$ be an ideal. Then

- (a) I is closed with respect to the norm.
- (b) The norm on A induces a norm on A/I such that A/I is a Banach algebra with respect to it.

Proof: (a) This is Theorem 2.5.

(b) Put E = A/I. Define norm on E by $||e||_E = \inf\{||f|| \mid \varphi(f) = e\}$. We check that this is a norm: Suppose $||e||_E = 0$. Then there is $\{f_i\}_{i=0}^{\infty} \subseteq A$ such that $\varphi(f_i) = e$ and $||f_i|| \to 0$. Thus $f_0 - f_i \in I$ and $f - f_i \to f_0$. But I is closed by (a), hence $f_0 \in I$. Thus $e = \varphi(f_0) = 0$.

Clearly $||\alpha e|| = \alpha |\cdot||e||_E$, for every $\alpha \in k$. Let $e, e' \in E$. Let $f, f' \in A$ such that $\varphi(f) = e, \varphi(f') = e'$. Then $||ee'||_E \leq ||ff'|| \leq ||f|| \cdot ||f'||$. Taking infimum on the right handed side, $||ee'||_E \leq ||e|| \cdot ||e'||$.

In particular $(e=e'=1), ||1||_E \ge 1$. But $||1||_E \le ||1|| = 1$. So $||1||_E = 1$.

To show that $||e + e'|| \le \max(||e||, ||e'||)$, use that for $A, B \subseteq [0, \infty)$ we have $\inf_{a \in A, b \in B} \max(a, b) = \max(\inf(A), \inf(B))$.

EXERCISE 6.23: Let $g \in T_{n-1}[z_n]$ be monic of norm 1. Then $T_{n-1}[z_n]/gT_{n-1}[z_n] \to T_n/gT_n$ is an isomorphism.

THEOREM 6.24: Let E be an affinoid algebra. Then $E \cong T_n/I$ for some n and for some ideal $I \leq E$.

Proof: (a) By the definition there exists a finite homomorphism $\varphi: T_d \to E$. Thus $E = T_d[e_{d+1}, \ldots, e_n]$, (by abuse of notation we write T_d instead of $\varphi(T_d)$) and each e_i is integral over T_d , that is, satisfies some monic $g_i(X) \in T_d[X]$.

Fix i. Say, $g_i = X^m + a_1 X^{m-1} + \ldots + a_m$, with $a_j \in T_d$. We may assume that $\max ||a_j|| \le 1$, otherwise replace e_i by αe_i , where $\alpha \in k^{\times}$ with $|\alpha|$ sufficiently small. (Then αe_i satisfies $X^m + \alpha a_1 X^{m-1} + \ldots + \alpha^m a_m$.)

CLAIM: We can extend φ to a homomorphism φ : $T_n \to E$ such that $\varphi(z_i) = e_i$. Indeed, by induction on i suppose we have already extended φ to φ : $T_{i-1} \to E$. Extend it to φ : $T_{i-1}[z_i] \to E$ by $\varphi(z_i) = e_i$. Then $g_i(z_i) \in T_{i-1}[z_i]$ and $\varphi(g_i(z_i)) = 0$. Hence φ factors into $T_{i-1}[z_i] \to T_{i-1}[z_i]/g_iT_{i-1}[z_i] \to E$. By the preceding paragraph, $||g_i|| = 1$. By Exercise 6.23 we may replace the first map by $T_i \to T_i/g_iT_i$ and thus extend φ to T_i .

As the image of φ contains the generators of E over T_d , φ is surjective. Let $I = \ker(\varphi)$; then $E \cong T_n/I$. It is easy to see that E is complete.

Theorem 6.25: Let $(A_i, || \ ||_i)$, for i = 1, 2, be two affinoid algebras, which are Banach k-algebras w.r.t. their respective norms. Let $u: A_1 \to A_2$ be a homomorphism of k-algebras. Then u is continuous. In particular, all norms on an affinoid algebra which make it into a Banach k-algebra are equivalent.

Proof: By Corollary 2.3 we have to show that the graph $\{(x, u(x)) \mid x \in A_1\}$ is closed in $A_1 \times A_2$. That is, if $(x_i, u(x_i)) \to (x, y) \in A_1 \times A_2$, then y = u(x). Replacing x_i by $x_i - x$ and y by y - u(x) we have to prove: if $\lim x_i = 0$ and $\lim u(x_i) = y \in A_2$, then y = 0.

Let $I_2 \leq A_2$ be an ideal such that $\dim_k A_2/I_2 < \infty$. Let $I_1 = \operatorname{Ker}(A_1 \to A_2 \to A_2/I_2)$. Then

$$A_{1} \xrightarrow{u} A_{2}$$

$$\downarrow^{\pi_{1}} \qquad \downarrow^{\pi_{2}}$$

$$A_{1}/I_{1} \xrightarrow{\bar{u}} A_{2}/I_{2}$$

commutes, with \bar{u} an embedding. So also $\dim_k A_1/I_1 < \infty$.

By Theorem 6.18, A_i/I_iA_i are affinoid algebras and by Corollary 6.22, they are Banach algebras, wrt the induced norms. The norm of A_2/I_2A_2 restricts via \bar{u} to another norm on A_1/I_iA_1 . By Theorem 2.14 these two norms are equivalent. Thus \bar{u} is continuous. Therefore $\pi_2 \circ u = \bar{u} \circ \pi_1$ is continuous. Thus $\pi_2(y) = 0$, that is, $y \in I_2$.

It remains to show that $\bigcap_{\dim_k A/I < \infty} I = 0$.

Let $M \leq A$ be a maximal ideal. By Theorem 6.24 there is an epimorphism $\pi \colon T_n \to A$; As $\pi^{-1}(M) \leq T_n$ is maximal and $T_n/\pi^{-1}(M) \cong A/M$, by Corollary 6.19, $\dim_k A/M < \infty$. Moreover, $\dim_k A/M^n < \infty$ for every $n \geq 1$. (Indeed, by induction on n, using the short exact sequence $0 \to M^{n-1}/M^n \to A/M^n \to A/M^{n-1} \to 0$, it suffices to show that $\dim_k M^{n-1}/M^n < \infty$. As A is noetherian, the A-ideal M^{n-1} is a finite A-module; hence M^{n-1}/M^n is a finite A/M-module. But A/M is a finite A-module, so M^{n-1}/M^n is a finite A-module.)

Assume there is $0 \neq y \in \bigcap_M \bigcap_n M^n$. Put $J = \{a \in A \mid ay = 0\}$. This is a a proper ideal of A. Hence there is a maximal $M \leq A$ such that $J \subseteq M$. Thus every $s \in A \setminus M$ satisfies $sy \neq 0$. This means that $\frac{y}{1} \in A_M$ is not zero. Furthermore,

 $\frac{y}{1} \in M^n A_M = (MA_M)^n$. But by Krull's Theorem, (in noetherian ring A we have $\bigcap_n \operatorname{rad}(A)^n = 0$) $\bigcap_n (MA_M)^n = 0$. A contradiction.

7. Affinoid spaces

Definition 7.1: An **affinoid space** is the set $X = \operatorname{Sp}(A)$ of the maximal ideals of an affinoid algebra A. For each $x \in X$ the field A/x is a finite extension of k by Corollary 6.19. The valuation $| \ |$ of k uniquely extends to A/x. For $f \in A$ put f(x) to be the image of f in A/x under the quotient map $A \to A/x$. Define topology on A: generated by $\{x \in X \mid |f(x)| \leq 1\}$. Put $||f||_{\operatorname{sp}} = \sup_{x \in X} |f(x)|$. Define

$$A^o = \{ f \in A \, | \, ||f||_{\rm sp} \le 1 \} \qquad A^{oo} = \{ f \in A \, | \, ||f||_{\rm sp} < 1 \}.$$

LEMMA 7.2: Let || || be a norm on A. Then $||f||_{sp} \leq ||f||$ for every $f \in A$.

Proof: It suffices to prove: $|f(x)| \leq ||f||$ for every $f \in A$ and every $x \in X$. Fixing x, it suffices to prove: $|f(x)| \leq ||g||$ for every $g \in A$ such that f(x) = g(x). That is, $|a| \leq ||a||$ for every $a \in A/x$, where || || || is the induced norm on A/x.

There is C > 0 such that $C|b| \le ||b||$ for every $b \in A/x$. In particular, $C|a|^m = C|a^m| \le ||a^m|| \le ||a||^m$. Thus $C^{1/m}|a| \le ||a||$. Taking limit, $|a| \le ||a||$.

Remark 7.3: The map $|| \cdot ||_{sp}$ is a semi-norm, called the **spectral semi-norm**. It is a norm if and only if the intersection of all maximal ideals of A is 0.

Example 7.4: Let A be an affinoid algebra. Let \tilde{k} be an algebraic closure of k. Every $x \in \operatorname{Sp}(A)$ defines a homomorphism (necessarily continuous, by Theorem 6.25) $u: A \to \tilde{k}$, whose image is a finite extension A/x of k. Two such homomorphisms u_1, u_2 are equivalent if they have the same kernel, i.e., there is a k-isomorphism $\theta: u_1(A) \to u_2(A)$ such that $u_2 = \theta \circ u_1$. Thus elements of $\operatorname{Sp}(A)$ correspond to equivalence classes of k-algebra homomorphisms $u: A \to \tilde{k}$ with image finite over k. (If k = K is algebraically closed, each equivalence class contains a unique homomorphism.)

In particular, for $A=T_n$, each such $u\colon T_n\to \tilde k$ defines $(x_1,\ldots,x_n)\in \tilde k^n$ by $x_i=u(z_i)$. The continuity of u implies that $|x_i|\le 1$ (for every $a\in \tilde k$ with |a|<1 the Cauchy series $\sum_{j=1}^\infty a^j z_i^j$ is mapped into a Cauchy series $\sum_{j=1}^\infty a^j x_i^j$, so $|a|\cdot |x_i|<1$). Conversely, every such $(x_1,\ldots,x_n)\in \tilde k^n$ defines a homomorphism $u\colon T_n\to \tilde k$ with image

finite over k. Thus $\operatorname{Sp}(T_n) = D_n = \{x = (x_1, \dots, x_n) \in \tilde{k}^n \mid |x_i| \leq 1\} / \cong$. If k = K is algebraically closed, then $\operatorname{Sp}(T_n) = D_n = \{x = (x_1, \dots, x_n) \in \tilde{k}^n \mid |x_i| \leq 1\}$.

LEMMA 7.5: The spectral norm on T_n coincides with the standard norm. Moreover, for every $f \in T_n$ there is $x \in \operatorname{Sp}(T_n)$ such that ||f|| = |f(x)|.

Proof: By Lemma 7.2, $||f||_{sp} \leq ||f||$ for every $f \in T_n$. So we only have to prove the second assertion. Wlog ||f|| = 1. Hence $\bar{f} \in \bar{k}[z_1, \ldots, z_n]$ is not zero. So there are $\bar{x}_1, \ldots, \bar{x}_n$ in the algebraic closure of \bar{k} such that $\bar{f}(\bar{x}_1, \ldots, \bar{x}_n) \neq 0$. Lift them to $x_1, \ldots, x_n \in \bar{k}$ with $|x_i| \leq 1$. (For instance, first lift \bar{x}_i to $x_i \in K^o$, where K is the completion of \bar{k} , and then, as \bar{k} is dense in K, replace x_i by a sufficiently close element of \bar{k} .) There is a finite extension l of k such that $x_1, \ldots, x_n \in l^o$. The k-map $T_n \to l$ defined by $z_i \mapsto x_i$ is a continuous epimorphism. Its kernel $x \in \mathrm{Sp}(T_n)$ satisfies |f(x)| = 1.

EXERCISE 7.6: Let A be an affinoid algebra. Let $f \in A$. TFAE:

- (a) $\inf\{|f(x)| \mid x \in \text{Sp}(A)\} > 0;$
- (b) $f(x) \neq 0$ for all $x \in \operatorname{Sp}(A)$;
- (c) $f \in A^{\times}$;

Example 7.7: Let k = K be algebraically closed. We have defined a connected affinoid in \mathbb{P} as the complement F of a union of disjoint disks in \mathbb{P} . We now show that $\mathcal{O}(F)$ is an affinoid algebra and that $\operatorname{Sp}(\mathcal{O}(F)) = F$.

To make notation easier assume that $\infty \in F$. Thus $F^c = \bigcup_{i=1}^n \{a \in \mathbb{P} \mid |a - a_i| < |\pi_i| \}$, with $a_i, \pi_i \in K$. Define $\varphi \colon F \to (K^o)^n$ by

$$\varphi(a) = (\frac{\pi_1}{a - a_1}, \dots, \frac{\pi_n}{a - a_n}).$$

It is an injection and

$$\varphi(F) = \{(x_1, \dots, x_n) \in (K^o)^n \mid \frac{\pi_i}{x_i} + a_i = \frac{\pi_j}{x_j} + a_j \text{ for } i \neq j\}$$

$$= \{(x_1, \dots, x_n) \in (K^o)^n \mid \pi_i x_j - \pi_j x_i + (a_i - a_j) x_i x_j = 0 \text{ for } i \neq j\}$$

$$= \{(x_1, \dots, x_n) \in (K^o)^n \mid \frac{\pi_i}{a_i - a_j} x_j + \frac{\pi_j}{a_j - a_i} x_i + x_i x_j = 0 \text{ for } i \neq j\}$$

Let I be the ideal of T_n generated by

$$E_{ij} = \frac{\pi_i}{a_i - a_j} z_j + \frac{\pi_j}{a_j - a_i} z_i + z_i z_j \in T_n = K\langle z_1, \dots, z_n \rangle, \text{ for } i \neq j \}.$$

and put $A = T_n/I$. Then A is an affinoid algebra and $\operatorname{Sp}(A)$ can be identified with $\varphi(F)$. We show that there is an isomorphism $\psi \colon A \to \mathcal{O}(F)$ such that $\varphi = \operatorname{Sp}(\psi)$.

Since $\mathcal{O}(F)$ is a Banach algebra with respect to the 'supremum' norm $|| \cdot ||_F$ and $|| \frac{\pi_i}{z - a_i} ||_F \le 1$, the map $z_i \mapsto \frac{\pi_i}{z - a_i}$ extends to a unique homomorphism $\hat{\psi} \colon T_n \to \mathcal{O}(F)$ such that $|| \hat{\psi}(f) ||_F \le || f ||$ for every $f \in T_n$. Obviously $\hat{\psi}(E_{ij}) = 0$, hence $\hat{\psi}$ induces a homomorphism $\psi A \to \mathcal{O}(F)$ such that $|| \psi(f) ||_F \le || f ||_A$ for every $f \in A$ (in the infimum norm on A). Using the E_{ij} it is easy to see that every $f \in T_n$ is of the form $f = f_0 + a + \sum_{i=1}^n \sum_{m=1}^\infty a_{i,m} z_i^m$, where $f_0 \in I$ and $a, a_{i,m} \in K$ with $\lim_m a_{i,m} = 0$. By the Mittag-Leffler decomposition in $\mathcal{O}(F)$ we see that $\hat{\psi}$ is surjective, its kernel is I, and for every $g \in \mathcal{O}(F)$ there is a preimage $f \in T_n$ such that $|| f || = || g ||_F$. Thus ψ is an isometric isomorphism.

The above identification allows to give a different proof of?

THEOREM 7.8: Let F be a connected affinoid in \mathbb{P} . Then $\mathcal{O}(F)$ is a principal ideal domain. In particular, every $0 \neq f \in \mathcal{O}(F)$ has only finitely many zeroes.

8. Spectral norm

LEMMA 8.1: Let K be an algebraically closed complete field. Let $P(X) = X^n + a_1 X^{n-1} + \cdots + a_n \in K[X]$ and let $\alpha_1, \ldots, \alpha_n \in K$ be its roots. Then $\max_j |\alpha_j| = \max_i |a_i|^{1/i}$.

Proof: We have

$$P(X) = X^{n} + a_1 X^{n-1} + \dots + a_n = (X - \alpha_1) \cdots (X - \alpha_n).$$

Wlog $|\alpha_1| \ge |\alpha_i|$ for all *i*. Substitute $X = \alpha_1 Y$. Then $\alpha_1^{-n} P(\alpha_1 Y)$ is

$$Y^n + \frac{a_1}{\alpha_1}Y^{n-1} + \dots + \frac{a_n}{\alpha_1^n} = (Y - 1)(Y - \frac{\alpha_2}{\alpha_1}) \cdots (Y - \frac{\alpha_n}{\alpha_n}).$$

The right handed side is in $K^o[Y]$. Hence $\left|\frac{a_i}{\alpha_1^i}\right| \leq 1$ for each i. We must have $\left|\frac{a_i}{\alpha_1^i}\right| = 1$ for some i, otherwise modulo K^{oo} the left handed side of the above displayed equation would be Y^n and the right handed side would have root 1, a contradiction.

PROPOSITION 8.2: Let A be an affinoid algebra without zero-divisors and let $T_d \to A$ be a finite monomorphism. Then every $f \in A$ satisfies a monic irreducible $P = X^n + a_1 X^{n-1} + \cdots + a_n \in T_d[X]$. We have $||f||_{\text{sp}} = \max_i ||a_i||_{\text{sp}}^{1/i}$ and there is $x \in \text{Sp}(A)$ with $|f(x)| = \max_i ||a_i||_{\text{sp}}^{1/i}$. (We can write $||\cdot||$ instead of $||\cdot||_{\text{sp}}$, by Lemma 7.5.)

Proof: The map $T_d \to A$ is an inclusion of integral domains. Let P(X) be the monic irreducible polynomial of $f \in A$ over the quotient field of T_d . But T_d is a unique factorization domain, hence integrally closed, [L, Prop. VII.1.7], hence $P(X) \in T_d[X]$ [L, Cor. VII.1.6]. Division with remainder gives that $T_d[f] \cong T_d[X]/(P(X))$.

Let $x \in \operatorname{Sp}(A)$ (a maximal ideal of A). As A/T_d is integral, $y = x \cap T_d$ is a maximal ideal of T_d [AM, 5.8], that is, $y \in \operatorname{Sp}(T_d)$. Thus $k \subseteq T_d/y \subseteq A/x$. There is a complete algebraically closed field K such that $A/x \subseteq K$. As P(f) = 0, f(x) is a root of $X^n + a_1(y)X^{n-1} + \cdots + a_n(y) \in K[X]$. By Lemma 8.1,

$$|f(x)| \le \max_{i} |a_i(y)|^{1/i} \le \max_{i} ||a_i||_{\text{sp}}^{1/i}.$$

In particular, $||f||_{\text{sp}} \leq \max_i ||a_i||_{\text{sp}}^{1/i}$. So we only have to find $x \in \text{Sp}(A)$ such that $|f(x)| \geq \max_i ||a_i||_{\text{sp}}^{1/i}$.

Choose i which attains the maximum on the right handed side. By Lemma 7.5 there is $y \in \operatorname{Sp}(T_d)$ with $|a_i(y)| = ||a_i||_{\operatorname{sp}}$. Let K be a complete algebraically closed field such that $T_d/y \subseteq K$. By Lemma 8.1 there is a root $\lambda \in K$ of $X^n + a_1(y)X^{n-1} + \cdots + a_n(y) \in K[X]$ such that $|\lambda| \geq |a_i(y)|^{1/i}$. So it suffices to find $x \in \operatorname{Sp}(A)$ such that $f(x) = \lambda$.

As $T_d[f] \cong T_d[X]/(P(X))$, we may extend the homomorphism $T_d \to T_d/y$ to $u: T_d[f] \to K$ such that $u(f) = \lambda$. The image $u(T_d[f]) = T_d/y[\lambda]$ is a field, because T_d/y is a field. Hence $\operatorname{Ker}(u)$ is a maximal ideal of $T_d[f]$. As A is integral over T_d and hence also over $T_d[f]$, there is $x \in \operatorname{Sp}(A)$ lying over $\operatorname{Ker}(u)$ [AM, 5.10 and 5.8]. Then $f(x) = \lambda$.

EXERCISE 8.3: Let $u: A \to B$ be an epimorphism of affinoid algebras. Then $||u(f)||_{sp} \le ||f||_{sp}$ for every $f \in A$.

Proof: Let $y \in \text{Sp}(B)$. Then $x = u^{-1}(y) \in \text{Sp}(A)$ and (u(f))(y) = f(x). Therefore $||u(f)||_{\text{sp}} = \sup_{x \in u^{-1}(\text{Sp}(A))} |f(x)| \le \sup_{x \in \text{Sp}(A)} |f(x)| = ||f||_{\text{sp}}$. ■

Let A be a commutative ring with unity. Recall that the **nilradical** $nil(A) = \{f \in A \mid (\exists n \in \mathbb{N}) f^n = 0\}$ is an ideal of A. It is the intersection of all prime ideals of A, and hence the intersection of all minimal prime ideals of A. If A is noetherian, there are only finitely many minimal prime ideals of A. Always $nil(A) \subseteq rad(A)$, the intersection of the maximal ideals of A. We say that A is **reduced** if nil(A) = 0.

COROLLARY 8.4: Let A be an affinoid algebra. Then nil(A) = rad(A). If A is reduced, then $|| \cdot ||_{sp}$ is a norm.

Proof: We have $rad(A) = \{f \in A \mid ||f||_{sp} = 0\}$. So the second assertion follows from the first one.

Let $f \in rad(A)$, that is, $||f||_{sp} = 0$.

Suppose first that A has no zero-divisors. By Theorem 6.18 there exists a finite monomorphism $T_d \to A$. By Proposition 8.2, f satisfies a monic irreducible $P(X) \in T_d[X]$ whose coefficients, except for the leading one, are 0. Thus P = X, and hence f = 0. Therefore rad(A) = 0.

In the general case let \mathcal{P} be a prime ideal of A. Then A/\mathcal{P} is an affinoid algebra with no zero-divisors. Let \bar{f} be the image of f in A/\mathcal{P} . By Exercise 8.3, $||\bar{f}||_{\mathrm{sp}} \leq ||f||_{\mathrm{sp}} = 0$. Hence by the previous case $\bar{f} = 0$. Thus $f \in \mathcal{P}$. Therefore $f \in \bigcap \mathcal{P} = \mathrm{nil}(A)$.

PROPOSITION 8.5: Let A be an affinoid algebra. Let $\varphi: T_d \to A$ be a finite monomorphism. Then

- (a) $\varphi(T_d^0) \subseteq A^o$.
- (b) A^o is integral over T_d^o .

Proof: (a) By a home exercise, $||f||_{sp} = ||\varphi(f)||_{sp}$. Thus $\varphi(T_d^0) \subseteq A^o$.

(b) Let $f \in A^o$. We want to find a monic $P(X) \in T_d^o[X]$ such that P(f) = 0.

If A has no zero divisors, the irreducible polynomial P(X) of f over T_d has coefficients in T_d^o , by Proposition 8.2.

In the general case let $\mathcal{P}_1, \ldots, \mathcal{P}_s$ be the minimal prime ideals in A.

Fix $1 \leq i \leq s$. Let $A_i = A/\mathcal{P}_i$, let $\pi_i \colon A \to A_i$ be the quotient map, and put $f_i = \pi_i(f)$. Then A_i is without zero-divisors. By Exercise 8.3, $f_i \in A_i^o$. Let $Q_i = \operatorname{Ker}(\pi_i \circ \varphi)$. Then φ induces a finite monomorphism $\bar{\varphi} \colon T_d/Q_i \to A_i$. By Theorem 6.18, there is $c \leq d$ and a norm-preserving automorphism σ of T_d such that $\bar{\sigma} \colon T_c \to T_d \xrightarrow{\sigma} T_d \to T_d/Q_i$ is a finite monomorphism. The composition $\bar{\varphi}\bar{\sigma}$ a finite monomorphism $T_c \to A_i$.

$$T_{d} \xrightarrow{\sigma} T_{d} \xrightarrow{\varphi} A$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow \pi_{i}$$

$$T_{c} \xrightarrow{\bar{\sigma}} T_{d}/Q_{i} \xrightarrow{\bar{\varphi}} A_{i}$$

By the above special case there is a monic $\hat{P}_i(X) \in T_c^o[X]$ such that $\hat{P}_i(f_i) = 0$. Since the spectral norms on T_c, T_d are the standard norms and σ preserves the latter, $P_i(X) = \sigma(\hat{P}_i) \in T_d^o[X]$. Moreover, P_i is monic and $P_i(f_i) = 0$. Thus $P_i(f) \in \mathcal{P}_i$.

Put $P(X) = \prod_{i=1}^{s} P_i(X)$. Then $P \in T_d^o[X]$ is monic and $P(f) \in \bigcap_i \mathcal{P}_i$. Therefore P(f) is nilpotent. So for a suitable $m \geq 1$ we have $P^m(f) = 0$.

COROLLARY 8.6: Let A be an affinoid algebra with a norm || || which makes it a Banach algebra. Then $A^o = \{ f \in A \mid \sup_{n \geq 0} ||f^n|| < \infty \}.$

Proof: Let $f \in A$.

Suppose $N = \sup_{n \geq 0} ||f^n|| < \infty$. Let $x \in \operatorname{Sp}(A)$. Then for every $n \geq 1$, $|f(x)^n = |f^n(x)| \leq ||f^n||_{\operatorname{sp}} \leq ||f^n|| \leq N$, whence $|f(x)| \leq 1$. Therefore $||f||_{\operatorname{sp}} \leq 1$, whence $f \in A^o$.

Conversely, suppose $f \in A^o$. There is a finite monomorphism $T_d \to A$. By Theorem 8.5(b), f is integral over T_d^o . Thus $f^n = \sum_{i=0}^{n-1} a_i f^i$ with $a_i \in T_d^o$. By induction, $f^m = \sum_{i=0}^{n-1} b_i f^i$ where $b_i \in T_d^o$. As $T_d \to A$ is continuous (Theorem 6.25), there is C > 0 such that $||b_i|| \le C||b_i||_{T_d}$. But $||b_i||_{T_d} = ||b_i||_{\text{sp}}$, by Lemma 7.5, and $||b_i||_{\text{sp}} \le 1$, hence $||b_i|| \le C$. Thus $||f^m|| \le \max_{i=0}^{n-1} C||f^i||$ is bounded.

COROLLARY 8.7: Let A be an affinoid algebra with a norm || || which makes it a Banach algebra. Then $||f||_{\text{sp}} = \lim_{n \to \infty} ||f^n||^{1/n}$.

Proof: By a home exercise, $||f||_{\text{sp}}^n = ||f^n||_{\text{sp}}$. Hence by Lemma 7.2, $||f||_{\text{sp}}^n = ||f^n||_{\text{sp}} \le ||f^n||$, whence $||f||_{\text{sp}} \le ||f^n||^{1/n}$. It now suffices to show that $\limsup ||f^n||^{1/n} \le ||f||_{\text{sp}}$.

Choose $a \in k$ such that |a| > 1. Let $s \in \mathbb{Z}$ and $m \in \mathbb{N}$ such that $||f||_{\text{sp}} \leq |a|^{\frac{s}{m}}$. Then $||f||_{\text{sp}}^m \leq |a|^s$, hence $||\frac{1}{a^s}f^m||_{\text{sp}} \leq 1$, whence by Corollary 8.6 there is C' > 0 such that $||\frac{1}{a^{sq}}f^{mq}|| \leq C'$ for every $q \in \mathbb{N}$. In particular, if $n \in \mathbb{N}$, write it as n = mq + r with $q, r \in \mathbb{N}$ and $0 \leq r < m$. Then $sq = \frac{s}{m}n - \frac{sr}{m}$, and hence

$$||f^n|| \le ||f^{mq}|| \cdot ||f^r|| \le C'|a|^{sq}||f^r|| \le C' \frac{||f^r||}{|a|^{\frac{sr}{m}}} \left(|a|^{\frac{s}{m}}\right)^n$$

Let C be the maximum of $C'\frac{||f^r||}{|a|^{\frac{sr}{m}}}$ over the finitely many choices of r, s. Then $||f^n|| \le C(|a|^{\frac{s}{m}})^n$. Thus $\limsup ||f^n||^{1/n} \le |a|^{\frac{s}{m}}$.

EXERCISE 8.8: Let $\varphi: A \to B$ be a homomorphism of affinoid algebras over k. Put $C = A\langle X_1, \ldots, X_s \rangle$. Let $b_1, \ldots, b_s \in B$. Then there exists a homomorphism of k-algebras $\psi: C \to B$ extending φ such that $\psi(X_i) = b_i$ for each i if and only if $||b_i||_{sp} \leq 1$ for each i. If ψ exists, it is unique and continuous.

LEMMA 8.9: Let T be an integral domain, E its quotient field, V a vector space over E, and $A, B \subseteq V$ finitely generated T-modules. Let A_E, B_E be the E-vector spaces generated by A, B. If $A_E \subseteq B_E$, then there is $0 \neq t \in T$ such that $tA \subseteq B$.

Proof: Suppose that $A = \sum_{i=1}^{m} T\alpha_i$ and $B = \sum_{j=1}^{n} T\beta_j$. For each i there are $t_{ij}, 0 \neq 0$

 $t'_{ij} \in T$ such that $\alpha_i = \sum_{j=1}^n \frac{t'_{ij}}{t_{ij}} \beta_j$. Put $t = \prod_i \prod_j t_{ij}$. Then $0 \neq t \in T$ and and $\frac{t}{t_{ij}} \in T$ for all i, j. Hence $t\alpha_i = \sum_j t'_{ij} \frac{t}{t_{ij}} \beta_j \in \sum_{j=1}^n T\beta_j = B$, for all i, whence $tA \subseteq B$.

LEMMA 8.10: Let A be an affinoid algebra without zero-divisors and let $T_d \to A$ be a finite morphism. Then $||f\alpha||_{\rm sp} = ||f|| \cdot ||\alpha||_{\rm sp}$ for all $f \in T_d$ and $\alpha \in A$. (Recall that $||f||_{\rm sp} = ||f||$ and the norm on T_d is multiplicative.)

Proof: Let $X^n + a_1 X^{n-1} + \cdots + a_n \in T_d[X]$ be the irreducible polynomial of $\alpha \in A$ over the quotient field E of T_d . Then $X^n + a_1 X^{n-1} + \cdots + a_n \in T_d[X]$ is the irreducible polynomial of $f\alpha$ over E. Hence by Proposition 8.2

$$||f\alpha||_{\text{sp}} = \max_{i} ||f_i^i a_i||^{1/i} = \max_{i} ||f_i^i||^{1/i} \cdot ||a_i||^{1/i} = ||f|| \max_{i} ||a_i||^{1/i} = ||f||||\alpha||_{\text{sp}}.$$

LEMMA 8.11: Let l/k be a finite extension of complete fields, and let $q \in \mathbb{N}$. Then $T' = l\langle z_1^{1/q}, \dots, z_d^{1/q} \rangle$ is a finite extension of $T_d = k\langle z_1, \dots, z_d \rangle$.

Proof: Let β_1, \ldots, β_m be a basis of l over k. We show that

$$T' = \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{\mu_1=0}^{q-1} \cdots \sum_{\mu_n=0}^{q-1} T_d(\beta_i z_1^{\mu_1/q} \cdots z_n^{\mu_n/q}).$$

Let $f = \sum_{\alpha} a_{\alpha} (z_1^{1/q})^{\alpha_1} \cdots (z_n^{1/q})^{\alpha_n} \in T'$, with $a_{\alpha} \in l$ such that $a_{\alpha} \to 0$. Then each $a_{\alpha} \in l$ can be uniquely written as

$$a_{\alpha} = \sum_{i=1}^{m} a_{\alpha,i} \beta_i, \quad a_{\alpha,i} \in k.$$

We have seen that $a_{\alpha} \to 0$ implies $a_{\alpha,i} \to 0$ for each i. Therefore $f = \sum_{i=1}^{m} f_i \beta_i$, where

$$f_i = \sum_{\alpha} a_{\alpha,i} (z_1^{1/q})^{\alpha_1} \cdots (z_n^{1/q})^{\alpha_n}, \quad i = 1, \dots, m$$

are well defined elements of T'. But

$$f_{i} = \sum_{0 \leq \mu_{1}, \dots, \mu_{n} < q} \sum_{\substack{\alpha_{j} \equiv \mu_{j} \pmod{q}}} a_{\alpha, i} \left(z_{1}^{1/q}\right)^{\alpha_{1}} \cdots \left(z_{n}^{1/q}\right)^{\alpha_{n}}$$

$$= \sum_{0 \leq \mu_{1}, \dots, \mu_{n} < q} \left(\sum_{\substack{\alpha_{j} \equiv \mu_{j} \pmod{q}}} a_{\alpha, i} \left(z_{1}^{1/q}\right)^{\alpha_{1} - \mu_{1}} \cdots \left(z_{n}^{1/q}\right)^{\alpha_{n} - \mu_{n}}\right) z_{1}^{\mu_{1}/q} \cdots z_{n}^{\mu_{n}/q}$$

and the series in the brackets are elements of T_d .

LEMMA 8.12: Let k be a complete field of characteristic p > 0 and assume that $[k : k^p] < \infty$. Let q be a power of p. Let $T = k\langle z_1, \ldots, z_d \rangle$ and $T' = k^{1/q} \langle z_1^{1/q}, \ldots, z_d^{1/q} \rangle$. Then $T' = T^{1/q}$.

Proof: (The equality takes places in some algebraically closed field K containing T' and hence also T.)

Let $i \in \mathbb{N}$. The isomorphism $k \to k^{p^i}$ given by $a \mapsto a^{p^i}$ maps $k^p \subseteq k$ onto $k^{p^{i+1}} \to k^{p^i}$, hence $[k^{p^{i+1}}:k^{p^i}] < \infty$. Therefore $[k:k^q] < \infty$. Apply the inverse of the isomorphism $k \to k^q$ to get that $[k^{1/q}:k] < \infty$.

CLAIM: $T' \subseteq T^{1/q}$. Let $f = \sum_{\alpha} a_{\alpha} z_1^{\alpha_1/q} \cdots z_n^{\alpha_n/q} \in T'$. Then $a_{\alpha} \in k^{1/q}$ and $a_{\alpha} \to 0$. Therefore $a_{\alpha}^q \in k$ and $a_{\alpha}^q \to 0$. It follows that $f^q = \sum_{\alpha}^q a_{\alpha}^q z_1^{\alpha_1} \cdots z_n^{\alpha_n} \in T$.

CLAIM: $T^{1/q} \subseteq T'$. Let $f \in T^{1/q}$. Then $f^q \in T$, hence $f^q = \sum_{\alpha} a_{\alpha} z_1^{\alpha_1} \cdots z_n^{\alpha_n}$, with $a_{\alpha} \in k$ and $a_{\alpha} \to 0$. Then $a_{\alpha}^{1/q} \in k^{1/q}$ and $a_{\alpha}^{1/q} \to 0$. Put $g := \sum_{\alpha} a_{\alpha}^{1/q} z_1^{\alpha_1/q} \cdots z_n^{\alpha_n/q} \in T'$. Then $g^q = f$. Hence $f \in T^{1/q}$.

Theorem 8.13: The spectral norm on a reduced affinoid algebra A is equivalent to any norm which makes A a Banach algebra.

Proof: Let || || be a norm on A such that A is a Banach k-algebra. We have to show that there is C > 0 such that $|| || \le C|| ||_{\text{sp}}$. Since all Banach norms on an affinoid algebra are equivalent, we actually have to show that A is complete with respect to $|| ||_{\text{sp}}$.

PART A: Reduction to an integral domain. Let $\mathcal{P}_1, \ldots, \mathcal{P}_s$ be the minimal prime ideals of A. Each $A_i = A/\mathcal{P}_i$ is a Banach algebra with respect to the norm $|| \ ||_i$ induced from A (Corolllary 6.22). Assume that each A_i satisfies the assertion of the theorem. Then so does $\hat{A} = A_1 \times \cdots \times A_s$ with respect to the Banach norm $|| \ ||_{\hat{A}}$ given by $||(a_1, \ldots, a_s)||_{\hat{A}} = \max_i ||a_i||_i$. Indeed,

$$\operatorname{Sp}(\hat{A}) = \bigcup_{i=1}^{s} \{ A_1 \times \cdots \times A_{i-1} \times x \times A_{i+1} \times \cdots \times A_s \mid x \in \operatorname{Sp}(A_i) \},$$

and hence $||(a_1, \ldots, a_s)||_{sp} = \max_i ||a_i||_{sp}$. If $||a_i||_i \le C_i ||a_i||_{sp}$, then $||(a_1, \ldots, a_s)||_{\hat{A}} \le C||(a_1, \ldots, a_s)||_{sp}$, where $C = \max_i C_i$.

As A is reduced, the canonical map $\iota: A \to \hat{A}$ is injective. Its image $\iota(A)$ is a closed A-submodule of \hat{A} (Theorem 2.5), and hence Banach with respect to $|| \ ||_{\hat{A}}$. Therefore it induces a Banach norm $|| \ ||_{\iota}$ on A by $||f||_{\iota} = ||\iota(f)||_{\hat{A}}$. By Theorem 6.25, $|| \ ||_{\iota}$ and $|| \ ||$ are equivalent. On the other hand, the restriction of the spectral norm on \hat{A} to A (via ι) is the spectral norm on A. (Indeed, every maximal ideal of \hat{A} restricts to a maximal ideal of \hat{A} , and every maximal ideal of A contains some \mathcal{P}_i and hence extends to a maximal ideal of \hat{A} .) Therefore the assertion for A follows from the assertion for \hat{A} .

By Theorem 6.18 there is a finite monomorphism $T_d \to A$.

PART B: Reduction to: the quotient field Q(A) of A is a normal extension of the quotient field $Q(T_d)$ of T_d . Let L be a finite normal extension of $Q(T_d)$ containing Q(A). There are finitely many $b_1, \ldots, b_m \in L$ such that $L = Q(A)[b_1, \ldots, b_m]$. Multiplying them by a suitable element of A we may assume that b_1, \ldots, b_m are integral over A. Then $B = A[b_1, \ldots, b_m]$ is finite over A, and hence also over T_d , and the qotient field of B is L. If we can show that B is complete with respect to its spectral norm $|| \cdot ||$, then A is complete with respect to $|| \cdot ||$, by Theorem 2.5. By a home exercise, the restriction of $|| \cdot ||$ to A is the spectral norm on A.

PART C: Reduction to: the quotient field Q(A) of A is a separable extension of the quotient field $Q(T_d)$ of T_d . If $\operatorname{char}(k) = 0$, there is nothing to prove. If $\operatorname{char}(k) = p > 0$, we prove the theorem only in the case $[k:k^p] < \infty$. Let M be the maximal purely inseparable extension of $Q(T_d)$ in Q(A). As $Q(A)/Q(T_d)$ is normal, Q(A)/M is separable [L, V.6.11].

There are $\beta_1, \ldots, \beta_m \in M$ such that $M = Q(T_d)[\beta_1, \ldots, \beta_s]$. Each β_i is purely inseparable over $Q(T_d)$ and hence there is a power q_i of the characteristic p such that $\beta_i^{q_i} \in Q(T_d)$. Take $q = \max_i q_i$. Then q is a power of p and $M^q \subseteq Q(T_d)$, that is, $M \subseteq Q(T_d)^{1/q}$. By an exercise (to be written down later) $Q(T_d)^{1/q} = Q(T')$, where

$$T' = k^{1/q} \langle z_1^{1/q}, \dots, z_d^{1/q} \rangle.$$

is a finite extension of $T_d = k\langle z_1, \ldots, z_d \rangle$. Let A' be the compositum of T' and A (that is, the smallest ring containing both T' and A) in the algebraic closure of Q(T'). Then

A' is finite over T' (is generated by the finitely many generators of A over T_d) and hence over T_d , whence also over A. We have the following commutative diagrams of rings and their quotient fields

As Q(A)/M is separable and Q(A') is the compositum of Q(A) and Q(T'), the extension Q(A')/Q(T') is separable. If we can show that A' is complete with respect to its spectral norm $|| \ ||$, then A is complete with respect to $|| \ ||$, by Theorem 2.5. By a home exercise, the restriction of $|| \ ||$ to A is the spectral norm on A.

PART D: A basis of Q(A) over $Q(T_d)$. Choose a basis e_1, \ldots, e_r of Q(A) over $Q(T_d)$. By Lemma 8.9 we may multiply each e_i by some $0 \neq f_i \in T_d$ to assume that $f_i(T_d e_i) \subseteq A$, that is, $f_i e_i \in A$. Replace e_i by $f_i e_i$ to assume that $e_1, \ldots, e_r \in A$.

Notice that $\sum_{i=1}^{s} T_d e_i$ is a free T_d -module, contained in A. The standard norm $|| \ ||$ on T_d induces the 'maximum' norm on $\sum_{i=1}^{s} f_i e_i$ by $|| \sum_{i=1}^{s} T_d e_i || = \max_i ||f_i||$. It is easy to see that $\sum_{i=1}^{s} T_d e_i$ is complete with respect to this norm.

PART E: The restriction of the spectral norm of A to $\sum_{i=1}^{s} T_d e_i$ is equivalent to the above maximum norm. To prove this, we will be using the trace Tr: $Q(A) \to Q(T_d)$ [L, ?]. This is a $Q(T_d)$ -linear operator, defined as follows: If the irreducible polynomial of $\alpha \in Q(A)$ over $Q(T_d)$ is $X^n + a_1 X^{n-1} + \cdots + a_n$, then n divides $r = [Q(A) : Q(T_d)]$ and

$$\operatorname{Tr}(\alpha) = -\frac{r}{n}a_1.$$

In particular, if $\alpha \in A$, then by Proposition 8.2, $a_1, \ldots, a_n \in T_d$, and

(1)
$$||\alpha||_{\text{sp}} = \max_{i} ||a_{i}||^{1/i} \ge ||a_{1}|| \ge ||\underbrace{a_{1} + \dots + a_{1}}^{\frac{r}{n} \text{ times}}|| = ||\operatorname{Tr}(\alpha)||.$$

Furthermore, as $Q(A)/Q(T_d)$ is separable, there is a basis e_1^*, \ldots, e_r^* of Q(A) over $Q(T_d)$. such that $\text{Tr}(e_j^*e_i) = \delta_{ij}$. As in Part D, for each j there is $0 \neq g_j \in T_d$ such that $g_j e_j^* \in A$. Replace e_j^* by $g_j e_j^*$ to assume that

(2) $e_1^*, \ldots, e_r^* \in A$ is a basis of Q(A) over $Q(T_d)$ and $\operatorname{Tr}(e_j^* e_i) = \delta_{ij} g_j \in T_d$.

Let $f_1, \ldots, f_r \in T_d$. Then

$$\operatorname{Tr}(e_j^* \sum_{i=1}^r f_i e_i) = \sum_{i=1}^r f_i \operatorname{Tr}(e_j^* e_i) = \sum_{i=1}^r f_i g_j \delta_{ij} = g_j f_j,$$

hence by (1)

$$||g_j|| \cdot ||f_j|| = ||g_j f_j||_{\mathrm{sp}} = ||\operatorname{Tr}(e_j^* \sum_{i=1}^r f_i e_i)||_{\mathrm{sp}} \le ||e_j^* \sum_{i=1}^r f_i e_i||_{\mathrm{sp}} \le ||e_j^*||_{\mathrm{sp}} \cdot ||\sum_{i=1}^r f_i e_i||_{\mathrm{sp}}$$

whence

$$||\sum_{i=1}^{r} f_i e_i|| = \max_{j} ||f_j|| \le \max_{j} \left(\frac{||e_j^*||_{\text{sp}}}{||g_j||}\right) ||\sum_{i=1}^{r} f_i e_i||_{\text{sp}}.$$

On the other hand,

$$||\sum_{i=1}^{r} f_i e_i||_{\mathrm{sp}} \leq \max_{i} ||f_i||_{\mathrm{sp}} ||e_i||_{\mathrm{sp}} \leq (\max_{i} ||e_i||_{\mathrm{sp}}) \max_{i} ||f_i|| = (\max_{i} ||e_i||_{\mathrm{sp}}) ||\cdot|| \sum_{i=1}^{r} f_i e_i||.$$

Hence the two norms on $\sum_{i=1}^{s} T_{d}e_{i}$ are equivalent.

PART F: End of the proof. Obviously, $\sum_{i=1}^{s} T_{d}e_{i}$ is complete with respect to the maximum norm. By the preceding part, $\sum_{i=1}^{s} T_{d}e_{i}$ is complete with respect to the spectral norm of A.

By Lemma 8.9, there is $0 \neq f \in T_d$ such that $fA \subseteq \sum_{i=1}^s T_d e_i$. Therefore the T_d -submodule fA of A is complete (Theorem 2.5). But by Lemma 8.10, $||f\alpha||_{\text{sp}} = ||f||_{\text{sp}} \cdot ||\alpha||_{\text{sp}} = ||f|| \cdot ||\alpha||_{\text{sp}}$ for every $\alpha \in A$. Hence A is complete with respect to $||\cdot||_{\text{sp}}$.

References

- [AM] M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading Massachussetts, 1969.
- [L] S. Lang, Algebra, third edition, Addison-Wesley, Reading Massachussetts, 1994.
- [FP] J. Fresnel and M. v.d. Put, Rigid Analytic Geometry and its Applications, Progress in Mathematics 218, Birkhäuser, Boston, 2004.
- [FP'] J. Fresnel and M. v.d. Put, Géométrie Analytique Rigide et Applications, Progress in Mathematics 18, Birkhäuser, Boston, 1981.

21 January, 2007