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1. Valuation Theory

Only rank 1 valuation, that is, valuations with valuation group contained in R+.

Exercise 1.1:

(a) | − a| = |a|.

(b) |a| < |b| implies |a+ b| = |b|.

Proof: (a) | − a|2 = |(−a)2| = |a|2, hence | − a| = |a|.

(b) On one hand |a+ b| ≤ max(|a|, |b|) = |b|. If |a+ b| < |b|, then |b| = |(a+ b) +

(−a)| ≤ max(|a+ b|, |a|) < |b|, a contradiction.

Completion, definition of norm eqivalence of norms over complete fields, unique-

ness of extension of valuations from complete fields to finite (and hence algebraic) ex-

tensions.

Definition 1.2: Let (k, | |) be a valued field.

(a) k0 = {a ∈ k | |a| ≤ 1} is the valuation ring of | |.

It is a valuation subring of k, that is, for each a ∈ k either a ∈ k0 or k−1 ∈ k0.

(b) k00 = {a ∈ k | |a| < 1} is the (unique) maximal ideal of k0, because

(c) U = k0 r k00 = {a ∈ k | |a| = 1} = (k0)×.

(d) k̄ = k0/k00 is the residue field of | |.

(e) |k×| = {|a| | a ∈ k×} is the value group of | |.

Exercise 1.3: Compute the above objects for k = Q with p-adic valuation and for

k = k0(t). (Notice that |k×| ∼= Z - discrete valuation.)

Let kv be the completion of k. Then kv = k̄. Indeed, k is dense in kv. Hence for

each b ∈ kv with |b| ≤ 1 there is a ∈ k with |b− a| < 1. In particular, |a| ≤ 1.

If | | is discrete, then |k×v | = |k
×|. Indeed, if {an} is a Cauchy sequence in k, then

lim |an| = |am| for some m or lim |an| = 0.

How does kv = Qp look like? Let b ∈ k0
v. Then there is a unique a0 ∈ {0, 1, . . . , p−

1} ⊆ Z such that ā0 = b̄ ∈ k̄, that is |a0 − b| < 1. Thus b = a0 + pb1, where,

b1 ∈ k
0
v. Again, there is a uniqe a1 ∈ {0, 1, . . . , p − 1} such that |a1 − b1| < 1. Thus

b = a0 + pa1 + p2b2, where, b2 ∈ k
0
v. By induction, b =

∑∞
n=0 anp

n.
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For a general b ∈ Qp there is m ≥ 0 such that pmb ∈ k0
v, that is, b = p−mb′, where

b′ ∈ k0
v. So b =

∑∞
n=N anp

n, where N ∈ Z. (This is just like the usual p-adic expansion

of numbers, only infinite; the addition and multiplication are the same.) Notice that

(kv)
0 = Zp = {

∑∞
n=0 anp

n | an ∈ {0, 1, . . . , p− 1}}.

Similarly, the completion of k0(t) is k0((t)) = {
∑∞

n=N ant
n | an ∈ k0, N ∈ Z}.
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2. Banach Spaces

(Some theorems that should be here are at the end of this section.)

Recall the following theorem

Baire Category Theorem: Let X be a nonempty complete metric space, and let

{Xi}
∞
i=1 be a sequence of closed subsets of X such that X =

⋃∞
i=1Xi. Then not each

Xi has empty interior.

Proof: For x ∈ X and for a positive number ε denote B(x, ε) = {x′ ∈ X | d(x, x′) < ε},

the open ball around x of radius ε.

Assume that each Xi has empty interior. Then for each x ∈ X, each ε > 0 and

each i the point x is not in the interior of Xi and hence there is x′ ∈ B(x, ε) such that

x′ /∈ Xi. As B(x, ε) is open and Xi is closed, there is ε′ > 0 such that B(x′, ε′) ⊆ B(x, ε)

and B(x′, ε′) ∩Xi = ∅.

Fix x0 ∈ X and ε0 > 0. Use the preceding paragraph to construct, by induction,

a sequence x1, x2, . . . ∈ X and a sequence of positive numbers ε1, ε2, . . . such that

(a) B(xi+1, εi+1) ⊆ B(xi, εi/2) ⊆ B(xi, εi),

(b) B(xi+1, εi+1) ∩Xi = ∅,

By (a), {xi}
∞
i=1 is a Cauchy sequence in X, and hence converges to some x ∈ X.

Let i ≥ 1. As xj ∈ B(xi, εi/2) for all j > i, this x is in the closure of B(xi, εi/2) and

hence in B(xi, εi). By (b), x /∈ Xi. This is a contradiction to X =
⋃∞

i=1Xi.

The actions on a normed vector space (addition and multiplication with scalars)

are continuous.

A complete vector space (over a complete field) is called a Banach space.

Banach Theorem 2.1: Let T : V → W be a surjective continuous linear map of

Banach spaces over a complete field k. Then T is open.

Proof: Fix π ∈ k with 0 < |π| < 1.

Denote V 0 = {v ∈ V | ||v|| < 1}. This is an open subset of V ; moreover, sets

of the form v + πnV 0 form a basis for the topology on V . Similarly put W 0 = {w ∈

W | ||w|| < 1}. We have to show that the image of every open basic set in V is open
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in W . Since T (v + πnV 0) = T (v) + πnT (V 0), it is enough to show that U := T (V 0) is

open in W . Equivalently, as U is an additive subgroup of W , show that 0 is an inner

point of U .

Claim 1: 0 is an inner point of Ū . Indeed, apply T to V =
⋃∞

n=1 π
−nV 0 to get

W =
⋃∞

n=1 π
−nU and hence W =

⋃∞
n=1 π

−nŪ . By Baire’s theorem there is n such that

π−nŪ has an inner point. Since π−nŪ is homeomorphic to Ū , also Ū has an inner point

u. Then 0 = u− u is an inner point of Ū − u = Ū .

Thus there is m ∈ N such that πmW 0 ⊆ Ū .

Claim 2: If πmW 0 ⊆ Ū , then πm+1W 0 ⊆ U . Indeed, let w ∈ πm+1W 0. We will

construct a sequence {vn}
∞
n=1 in V 0 such that

(3) w −
n∑

i=1

πiT (vi) ∈ π
n+m+1W 0.

Let n ≥ 1. Suppose that we have already constructed v1, v2, . . . , vn−1 ∈ V
0 such that

w−
∑n−1

i=1 π
iT (vi) ∈ π

n+mW 0. (For n = 1 this is the assumption w ∈ πm+1W 0.) Thus

there is w′ ∈ πmW 0 such that

(4) w −
n−1∑

i=1

πiT (vi) = πnw′.

But w′ ∈ πmW 0 ⊆ Ū = T (V 0), hence there is vn ∈ V
0 such that

(5) w′ − T (vn) ∈ πm+1W 0.

Multiply (5) by πn and add it to (4) – and get (3).

Clearly, {
∑n

i=1 π
ivi}

∞
n=1 is a Cauchy sequence in V 0. Let v ∈ V 0 be its limit.

Then
∑n

i=1 π
iT (vi) = T (

∑n
i=1 π

ivi) converges to T (v) ∈ T (V 0) = U . But by (3),
∑n

i=1 π
iT (vi) converges to w. Thus w ∈ U .

Corollary 2.2: There is C > 0 such that for every w ∈ W there is v ∈ V such that

T (v) = w and ||v|| ≤ C||w||.

Proof: By Banach Theorem, there is 0 < δ < 1 such that

{w ∈W | ||w|| < δ} ⊆ {T (v) | v ∈ V, ||v|| < 1}
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That is, replacing w by 1
arw, where a ∈ k× and r ∈ Z, we have:

(1) If w ∈ W such that ||w|| < δ|ar|, then there is v ∈ V such that w = T (v) and

||v|| < |ar|.

Choose a ∈ k such that |a| > 1. Put C = |a|
δ . Let w ∈W . Then there is a unique

r ∈ Z such that

C−1|a|r = δ|a|r−1 < ||w|| ≤ δ|a|r = δ|ar|.

By (1) there is v ∈ V such that T (v) = w and

||v|| < |a|r < C ||w||.

Corollary 2.3: Let T : V → W be a linear map of Banach spaces over a complete

field k. Then T is continuous if and only if its graph G = {(v, T (v) | v ∈ V } is closed

in V ×W = V ⊕W .

Proof: Every continuous map T : V → W into a Hausdorff space has a closed graph

G. Inded, let (v, w) ∈ (V × W ) rG, that is T (v) 6= w. There are disjoint open

neighbourhoods: W1 of T (v) and W2 of w. The neighbourhood T−1(W1) × W2 of

(v, w) ∈ V ×W does not meet G.

Conversely, assume that G is closed. Then it is a complete k-subspace of V ×W .

The projection V × W → V induces a bijective continuous linear map G → V . By

Banach Theorem it is also open. Hence its inverse V → G is also continuous, hence so

is its composition with the projection V ×W →W . But this is T .

Definition 2.4: Let k be a complete field. A Banach algebra over k is a Banach space

A which is also a commutative ring containing k and ||1|| = 1 and ||ab = ||a|| · ||b||.

A Banach module over A is an A-module M with a norm || || such that M is a

Banach space over k and ||am|| ≤ ||a|| · ||m|| for all a ∈ A and m ∈M .

Theorem 2.5: Let M be a finitely generated Banach module over a Banach algebra

A (over a complete field k). Assume that A is noetherian (every submodule of M is

finitely generated). Then every submodule N of M is closed.
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Proof: Let Ñ be the closure of N in M ; it is closed and hence complete. By the

noetherianity, Ñ has a finite set e1, . . . , en of generators. Define a norm on An by

||(a1, . . . , an)|| = max(||a1||, . . . , ||an|). Then An is Banach A-module (also a Banach

algebra - one can produce examples of Banach algebras this way). The map An →

Ñ given by (a1, . . . , an) 7→
∑n

i=1 aiei is an A-homomorphism (in particular k-linear),

continuous and surjective. By Banach Theorem there is C > 0 such that every x ∈ Ñ

can be written as x =
∑n

i=1 aiei with ||ai|| ≤ C||x||. Wlog C > 1.

Choose f1, . . . , fn ∈ N such that ||fi − ei|| ≤
1

C2 .

Claim: N̂ =
∑n

i=1Afi and hence N̂ = N .

Let x ∈ N̂ . We wil construct, by induction, convergent series in A

a1 =

∞∑

k=1

a1k, a2 =

∞∑

k=1

a2k, , . . . , an =

∞∑

k=1

ank,

such that x = a1f1 + · · · + anfn. Suppose, by induction, that we have found aik for

k < l such that

||x−
n∑

i=1

(
l−1∑

k=1

aik)fi|| ≤ C||x||

(for l = 1 this is obvious). Then there are ail ∈ A such that

x−
n∑

i=1

(

l−1∑

k=1

aik)fi =

n∑

i=1

ailei

and

||ail|| ≤ C||x−
n∑

i=1

(
l−1∑

k=1

aik)|| ≤ C
1

Cl−1
||x||

Hence

||
n∑

i=1

ailei −
n∑

i=1

ailfi|| = ||
n∑

i=1

ail(ei − fi)|| ≤ C
1

Cl−1
||x||

1

C2
=

1

Cl
||x||

Exercise 2.6: Let M be a finitely generated module over a noetherian Banach algebra

A. Then M is a Banach module.

Proof: If M = Am, put ||(a1, . . . , an)|| = maxi ||ai||. In the general case there is a

surjective A-homomorphism s: An →M . Put ||s(x)|| = inf{||x−y|| | y ∈ Ker(s)}. Now
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show that this is a norm on M (here we use that Ker(s) is closed in An) and M is

complete w.r.t it.

Corollary 2.7: Every A-homomorphism of finitely generated Banach A-modules is

continuous.

Proof: Let M,N be two A-modules and let u: M → N be an A-homomorphism.

Suppose first M is a free A-module with basis e1, . . . , en and ||
∑
aiei|| = maxi ||ai||.

Then

||u(
∑

aiei)|| = ||
∑

aiu(ei)|| ≤ max ||aiu(ei)|| ≤ max ||ai|| ·max ||u(ei)||.

In the general case there is a surjective map s: An → M . By the previous case s and

u ◦ s are continuous. By Banach theorem s is open. It follows that u is continuous.

(Take U ⊆ N open; then u−1(U) = s(s−1(u−1(U))) = s(u ◦ s)−1(U) is open.)

Definition 2.11: Let V be a vector space over a complete field k. Norm on a E is a

function || ||: E → R such that for all v, v′ ∈ V and all a ∈ k

(a) ||v|| ≥ 0.

(b) ||v|| = 0 implies v = 0.

(c) ||av|| = |a| · ||v||.

(d) ||v + v′|| ≤ max(||v||.||v′||).

Excluding requirement (b) we get a semi-norm.

Two norms || ||1, || ||2 on V are equivalent norms if there are positive constants

C1, C2 such that C1||v||1 ≤ ||v||2 ≤ C2||v||1 for all v ∈ V .

Example 2.12: If dimV = n <∞, and v1, . . . , vn is its basis,

||
n∑

i=1

aivi|| = max
i
|ai|

defines a norm on V .

Lemma 2.13: Let V be a vector space over a complete field k, let v1, . . . , vn ∈ V be

linearly independent, and let v(i) =
∑n

j=1 a
(i)
j vj , for j = 1, 2, . . . be a Cauchy sequence

in V . Then {a
(i)
j }

∞
i=1 is a Cauchy sequence in k, for every 1 ≤ j ≤ n.

Proof: By induction on n.
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Corollay 2.13: In the above lemma,

v(i) → 0↔ a
(i)
j → 0 for all 1 ≤ j ≤ n.

Theorem 2.14: Let V be a finite dimensional vector space over a complete field k.

Then any two norms on V are equivalent: There are positive constants C1, C2 such that

for every v ∈ V

C1||v||1 ≤ ||v||2 ≤ C2||v||1.

Corollay 2.15: Let E be an algebraic extension of a complete field k. Then the

valuation | | of k uniquely extends to a valuation of E. Moreover, if E/k is finite, then

E is complete.

Proof: We do not prove the existence of the extension. We proved the completeness

and the uniqueness. (Missing.)

8



3. Affinoids in the projective line

Let K be an algebraically closed valued field wrt to a non-archimedian (multiplicative)

valuation | |. Notice that |K×| is dense in [0,∞).

Let P = P1(K) = (K × K r{(0, 0)})/ ∼ where (x0, x1) ∼ (y0, y1) if there is

a ∈ K× such that y0 = ax0 and y1 = ax1.

Denote the equivalence class of (x0, x1) in P by (x0 : x1) and write z = (z : 1) and

∞ = (1 : 0). If x1 6= 0, then (x0 : x1) = (x0

x1
: 1) = x0

x1
. If x1 = 0, then x0 6= 0, and

hence (x0 : x1) = (1 : 0) =∞. Thus P = P1(K) = K ∪{∞}. We call P the projective

line.

Definition 3.1: A map ϕ: P → P is called an automorphism of P if there exists a

matrix A ∈ Gl2(K) such that ϕ(x) = Ax.

Exercise 3.2: The set of automorphisms of P is a group, isomorphic to GPl2(K).

Given distinct z1, z2, z3 ∈ P and distinct z′1, z
′
2, z

′
3 ∈ P, there is a unique automor-

phism ϕ of P such that ϕ(zi) = z′i, for i = 1, 2, 3.

Definition 3.3: A subset D of P is a closed [open] disk if there are a ∈ K and ρ ∈ |K×|

such that

D = {z ∈ K | |z − a| ≤ [<] ρ} or D = {z ∈ K | |z − a| ≥ [>] ρ} ∪ {∞}.

Exercise 3.4: (i) Let D = {z ∈ P | |z− a| < ρ}. If b ∈ D, then D = {z ∈ P | |z− b| <

ρ}.

(ii) Let D = {z ∈ P | |z − a| > ρ}. If b /∈ D, then D = {z ∈ P | |z − b| > ρ}.

(iii) Analogous statements hold for closed disks.

Lemma 3.5: Let D be an open (closed) disk, and let T be an automorphism of P. Then

T (D) is an open (closed) disk.

Proof: Every automorphism of P is the product of stretchings (z 7→ az with a ∈ K×),

translations (z 7→ z + b with b ∈ K), and the inversion (z 7→ z−1). (These maps are

defined by elementary matrices over K, and every elementary matrix over K is of one
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of these types, except for

(
1 0
c 1

)

. But

(
1 0
c 1

)

=

(
0 1
1 0

)(
1 c
0 1

)(
0 1
1 0

)

). Thus

we may assume that T is one of these three types.

If T is either stretching or translation, the assertion is obvious. Assume therefore

that T is z 7→ z−1. We may also assume that ∞ /∈ D. Otherwise P rD is a closed

(open) disk that does not contain ∞. If T (P rD) = P rT (D) is a closed (open) disk,

then T (D) will be an open (closed) disk.

This leaves us with four cases. Let / be one of the symbols <,≤, and let /′ be the

other one. This notation allows us to deal with a pair of cases simultaneously.

(1) D = {z ∈ P | |z − a| / ρ} and |a| / ρ. Then 0 ∈ D, and hence by Exercise 3.4,

D = {z ∈ P | |z| / ρ}. In this case T (D) = {w | 1
ρ
/ |w|}, a disk.

(2) D = {z ∈ P | |z − a| / ρ} and ρ /′ |a|. Then every z ∈ D satisfies |z − a| < |a|, and

hence |z| = |a|. Put D′ = {w | |w − 1
a | /

ρ
|a|2 }. As ρ

|a|2 /
′ | 1a |, every w ∈ D′ satisfies

|w − 1
a
| < 1

|a|
, and hence |w| = 1

|a|
. Therefore

T (D) ={w | |
1

w
− a| / ρ, |

1

w
| = |a|} = {w | |w −

1

a
| /

ρ

|a|
|w|, |w| =

1

|a|
} =

{w | |w −
1

a
| /

ρ

|a|2
, |w| =

1

|a|
} = D′.

Lemma 3.6: Let D1, D2 be two disks (open or closed, not necessarily of the same type!)

such that D1 ∩D2 6= ∅ and D1 ∪D2 6= P. Then either D1 ⊆ D2 or D2 ⊆ D1.

Proof: Using an autormorphism of P we may assume that ∞ /∈ D1, D2. Thus

Di = {z ∈ P | |z − ai| < ρi} or Di = {z ∈ P | |z − ai| ≤ ρi}, i = 1, 2.

Let a ∈ D1 ∩D2. By Exercise 3.4, wlog a1 = a2 = a. The assertion follows. (If ρi < ρj ,

then Di ⊆ Dj ; if ρi = ρj, and Di is open or Dj closed, then Di ⊆ Dj .)

Corollary 3.7: Let F ′ 6= P be the union of finitely many disks. Then F ′ is the union

of finitely many disjoint disks.

Proof: Let C1, . . . , Cm be disks such that F ′ =
⋃m

j=1 Cj . Let D1, . . . , Dr be the

maximal among C1, . . . , Cm (with respect to inclusion of sets). Then F ′ =
⋃r

i=1Di.

For i 6= j, neither Di ⊆ Dj nor Dj ⊆ Di, and Di ∪Dj 6= P. Therefore, by Lemma 3.6,

Di ∩Dj = ∅.
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Definition 3.8:

(a) A non-empty subset of P is called a connected affinoid, if it is the intersection of

finitely many closed disks. Equivalently, the set is the complement of the union of

finitely many open disks and the union is not P.

(b) An affinoid is the union of finitely many connected affinoids.

The value group |K×| is not discrete, and hence it has infinitely many values

between ρ1 and ρ2. Therefore R is infinite.

Lemma 3.9: Let D0, . . . , Dn be disks. If Di ∪ Dj 6= P for all i, j, then
⋃n

i=0Di 6= P;

moreover, P r
⋃n

i=0Di is an infinite set.

Proof: Replace D0, . . . , Dn by the maximal disks among them to assume that there

are no inclusion among them. By Lemma 3.6, D0, . . . , Dn are disjoint. By Lemma 3.5

we may assume that either D0 = {z ∈ P | |z| ≥ 1} or D0 = {z ∈ P | |z| > 1}. Let

1 ≤ i ≤ n. As D0 ∩Di = ∅, we have Di = {z ∈ K | |z − ai| /i ρi}, where /i is either <

or ≤.

Part A: D0 = {z ∈ P | |z| ≥ 1}. Let 1 ≤ i ≤ n. As D0 ∩ Di = ∅, we have |ai| < 1.

As D0 ∪Di 6= P, also ρi < 1. Thus π := max1≤i≤n(|ai|, ρi) is smaller than 1, and hence

{z ∈ K | π < |z| < 1} is contained in P r
⋃n

i=0Di.

Part B: D0 = {z ∈ P | |z| > 1}. Let 1 ≤ i ≤ n. As D0 ∩ Di = ∅, we have |ai|, ρi ≤

1. However, if ρi = 1 and /i is ≤, then Di = {z ∈ K | |z| ≤ 1}, which gives the

contradiction D0 ∪ Di = P. Therefore either ρi ≤ 1 or /i is <, and hence Di ⊆ {z ∈

K | |z − ai| < 1}. Thus P r
⋃n

i=0Di contains the set

U :={z ∈ K | |z| = 1, |z − ai| = 1, 1 ≤ i ≤ n}

={z ∈ K0 | z̄ 6= 0, ā1, . . . , ār}

which is infinite, since K̄ is infinite.

Corollary 3.10: Let D1, . . . , Dn and C1, . . . , Cm be disks.

(a) If Di ∩Dj 6= ∅ for all i, j, then
⋂n

i=1Di 6= ∅.

(b) If ∅ 6=
⋂n

i=1Di ⊆
⋃m

j=1 Cj 6= P, then there are i and j such that Di ⊆ Cj .
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(c) If D1, . . . , Dn are disjoint, of the same type (closed or open), then P is not their

disjoint union.

(d) If
⋃n

i=1Di =
⋃m

j=1 Cj 6= P, and there are no inclusions among the Di and no

inclusions among the Cj , then n = m and, up to a permutation, Di = Ci, for

i = 1, . . . ,m.

Proof: (a) Apply Lemma 3.9 to the disks P rD1, . . . ,P rD1.

(b) If
⋂n

i=1Di ⊆
⋃m

j=1Cj , then P =
⋃n

i=1(P rDi)∪
⋃m

j=1Cj . By Lemma 3.9 either

(P rDi)∪(P rDi′) = P for some i, i′, or Cj∪Cj′ = P for some j, j′, or (P rDi)∪Cj = P

for some i, j. The first option gives Di ∩Di′ = ∅, a contradiction to ∅ 6=
⋂n

i=1Di. The

second option contradicts
⋃m

j=1 Cj 6= P. The third option gives Di ⊆ Cj .

(c) We have Di ∪ Dk 6= P for all i, k (otherwise Di = Dc
k are of the same type).

Apply Lemma 3.9.

(d) Fix 1 ≤ i ≤ m. As ∅ 6= Di ⊆
⋃n

j=1Cj 6= P, by (b) there is 1 ≤ j ≤ n such

that Di ⊆ Cj . Similarly, there is 1 ≤ i′ ≤ m such that Cj ⊆ Di′ . Thus Di ⊆ Di′ . By

assumption, this implies that i = i′. Hence Di = Cj .

Proposition 3.11: Let F be a connected affinoid, and let F1, . . . , Fm be disjoint con-

nected affinoids, m ≥ 2. Then F 6=
⋃
· m

i=1 Fi.

Proof: Write F as F = P r
⋃
· p

j=1Cj , where Cj are disjoint open disks, and p ≥ 0.

Similarly, for each 1 ≤ i ≤ m we have Fi = P r
⋃
· ni

ti=1Diti
, where the Diti

are

open disks.

Assume that F =
⋃
· m

i=1 Fi. Let T = {t = (t1, . . . , tm) | 1 ≤ ti ≤ ni}. Then

(3) P 6=

p
⋃

·
j=1

Cj = (

n1⋃

·
t1=1

D1t1) ∩ · · · ∩ (

nm⋃

·
tm=1

Dmtm
) =

⋃

·
t∈T

Dt,

where Dt = D1t1 ∩ · · · ∩Dmtm
, for each t ∈ T.

Part A: If Dt 6= ∅, then there is 1 ≤ k ≤ m such that Dktk
⊆ Diti

for all 1 ≤ i ≤ m

and hence Dt = Dktk
.

Indeed, Dt ⊆
⋃

j Cj 6= P, so by Corollary 3.10(b) there are 1 ≤ k ≤ m and

1 ≤ j ≤ p such that Dktk
⊆ Cj . In particular, Dt ⊆ Cj . As C1, . . . , Cp are disjoint, this
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j is uniquely determined by t. Let 1 ≤ i ≤ m. As Fi ⊆ F and hence Cj ⊆
⋃
· ni

si=1Disi
,

by Corollary 3.10(b) there is (a unique) si such that Cj ⊆ Disi
. Thus there is a unique

s = (s1, . . . , sm) ∈ T such that Cj ⊆ Ds. We get Dt ⊆ Dktk
⊆ Cj ⊆ Ds. But t = s,

since Dt ∩Ds 6= ∅. Therefore Dt = Dktk
, which proves the claim.

Part B: For all 1 ≤ i < j ≤ m there are ti and tj such that Diti
∪Djtj

= P. Indeed,

Fi ∩ Fj = ∅, that is,
⋃ni

ti=1Diti
∪
⋃nj

tj=1Djtj
= P. By Lemma 3.9, P is the union of two

of the disks on the left handed side. As
⋃ni

ti=1Diti
,
⋃nj

tj=1Djtj
6= P, one of the two disks

is of the form Diti
and the other one of the form Djtj

.

Part C: Construction of a special t ∈ T . By Part B there are t1 and t2 such that

D1t1 ∪D2t2 = P. Choose such t1. For 2 ≤ i ≤ m choose ti in the following way:

(a) If there exists ti such that D1t1 ∪Diti
= P, – choose such ti.

(b) Otherwise, by Part B, there are t′1 6= t1 and ti such that D1t′1
∪Diti

= P. Choose

such ti. As D1t1 ∩D1t′1
= ∅, we have D1t1 ⊆ Dc

1t′1
⊆ Diti

. Thus we have chosen ti

such that D1t1 ⊆ Diti
.

Part D: There is no i such that Diti
⊆ D1t1 , . . . , Dmtm

. Observe that (a) applies to

i = 2, that is, D1t1 ∪D2t2 = P. Thus D1t1 6⊆ D2t2 . It follows that if i has been chosen

by (b), then also Diti
6⊆ D2t2 . If i has been chosen by (a), then Diti

6⊆ D1t1 .

Part E: Dt 6= ∅. By Corollary 3.10(a) it suffices to show for 1 ≤ i, j ≤ m that

Diti
∩Djtj

6= ∅. Suppose first j = 1. If ti has been chosen by (a), then D1t1 ∪Diti
= P,

and hence D1t1 ∩ Diti
6= ∅. If ti has been chosen by (b), then D1t1 ⊆ Diti

, and hence

D1t1 ∩Diti
6= ∅.

Now the general case: If ti has been chosen by (b), then D1t1 ⊆ Diti
, hence by

the previous case Diti
∩ Djtj

6= ∅. Similarly if tj has been chosen by (b). If both

ti and tj have been chosen by (a), then D1t1 ∪ Diti
= P = D1t1 ∪ Djtj

, and hence

∅ 6= P rD1t1 ⊆ Diti
∩Djtj

.

Exercise 3.12: Let F1, F2 be connected affinoids, F1∩F2 6= ∅. Then both F1∩F2 and

F1 ∪ F2 are connected affinoids.

Proof: The first assertion is trivial. As for the second one, write P rF1 and P rF2 as
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unions of open disks, say, P rF1 =
⋃

iDi and P rF2 =
⋃

j Ej . Then

P r(F1 ∪ F2) = (P rF1) ∩ (P rF2) =
⋃

ij

Di ∩Ej .

The assumption F1 ∩ F2 6= ∅ implies that Di ∪ Ej 6= P, for all i, j. By Lemma 3.6,

Di ∩Ej is either empty or an open disk.

Theorem 3.13: Let F 6= P be an affinoid. There are unique connected affinoids

F1, . . . , Fm such that F =
⋃
· m

i=1 Fi.

Proof: Existence. Write F as the union of connected affinoids F1, . . . , Fm. If there

are 1 ≤ i, j ≤ m such that Fi ∩ Fj 6= ∅, then Fi ∪ Fj is a connected affinoid itself, by

Exercise 3.12. Proceed by induction on m.

Uniqueness. Suppose that F =
⋃
· m

i=1 Fi =
⋃
· n

j=1Gj , where Fi, Gj are connected

affinoids. Then Fi =
⋃
· n

j=1 Fi ∩ Gj . By Exercise 3.12, each Fm ∩ Gj is either empty

or a connected affinoid. Therefore, by Proposition 3.11, there is (a unique) j such that

Fm = Fm ∩ Gj , that is, Fm ⊆ Gj . Wlog j = n. By a similar argument there is a

unique i′ such that Gj ⊆ Fi′ . As the Fi are disjoint, i′ = m. Therefore Fm = Gn. Thus
⋃
· m−1

i=1 Fi =
⋃
· n−1

j=1 Gj . It follows by induction on min(m,n) that m = n, and Fi = Gi,

for i = 1, . . . ,m, up to a permutation.

Exercise 3.14: Assume that K is algebraically closed. Let f ∈ K(z) be a rational

function, and let ρ ∈ |K×|. Then F = {z | |f(z)| ≤ ρ} is an affinoid.

Proof: Write f as c
∏s

i=1(z − ai)
ni , where ai 6= aj for i 6= j, and ni ∈ Z r{0}. Let

n = deg(f) =
∑

i ni. Replacing ρ by ρ
|c| we may assume that c = 1.

Part A: s = 1. In this case

F = {z | |z − a1|
n1 ≤ ρ} =

{

{z | |z − a1| ≤ ρ
1

n1 } if n1 > 0;

{z | |z − a1| ≥ ρ
1

n1 } if n1 < 0.

This is a closed disk.

Part B: Reduction. Assume s ≥ 2. Let T be an automorphism of P. As T−1 maps

affinoids onto affinoids, it suffices to show that F ′ = {z | |f(T (z))| ≤ ρ} is an affinoid.
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For instance, if T is z 7→ az, where a ∈ K×, then

F ′ = {z |
s∏

i=1

|az − ai|
ni ≤ ρ} = {z |

s∏

i=1

|z −
ai

a
|ni ≤

ρ

|a|n
}

Replacing ai by ai

a we may assume that

(i) maxi6=j |ai − aj| = 1.

If T is z 7→ z + a, where a ∈ K, then F ′ = {z |
∏s

i=1 |z − a′i|
ni ≤ ρ}, where

a′i = ai − a. Hence we may replace ai by a′i. (Observe that a′i − a
′
j = ai − aj, so that

(i) is preserved.)

Apply this with a = a1 + u, where u ∈ K such that |u| = 1 but ai − a1 6= ū. We

have |a′i| ≤ max(|ai−a1|, |u|) ≤ 1, but a′i = ai−a1−u together with āi− ā1 6= ū implies

that but |a′i| 6< 1, otherwise āi − ā1 = ū, a contradiction. Replacing ai by a′i we may

assume that

(ii) |ai| = 1 for each i = 1, . . . , s.

Part C: Assume that |ai − aj| = 1 for all i 6= j. We have F = F0 ∪
⋃s

i=1 Fi, where

F0 = {z |
s∧

j=1

|z− aj | ≥ 1∧ |f(z)| ≤ ρ}, Fi = {z | |z− ai| < 1∧ |f(z)| ≤ ρ}, 1 ≤ i ≤ s.

Let z ∈ F0. Then |z − ai| = |z − aj| for all i 6= j. Indeed, if |z − ai| > 1 for some

i, this follows from the above assumption; otherwise |z − ai| = 1 = |z − aj |. Therefore

F0 = {z |
∧s

j=1 |z− aj | ≥ 1∧ |z− ai|
n ≤ ρ} is an affinoid (an intersection of s+1 closed

disks, by Part A).

Let 1 ≤ i ≤ s and let z ∈ Fi. Then |z − ai| < 1. By the above assumption

|z − aj | = 1 for all j 6= i. Therefore

Fi = {z | |z − ai| < 1 ∧ |z − ai|
ni ≤ ρ} =

=







{z | |z − ai| ≤ ρ
1

ni } if ρ < 1 and ni > 0;
∅ if ρ ≤ 1 and ni < 0;
{z |

∧

j 6=i |z − aj | = 1 ∧ |z − ai| < 1} if ρ ≥ 1 and ni > 0;

{z |
∧

j 6=i |z − aj | = 1 ∧ ρ
1

ni ≤ |z − ai| < 1} if ρ > 1 and ni < 0.

It suffices to show that F0 ∪ Fi is an affinoid. By Part A, F0 is an affinoid. In the first

two cases also Fi is an affinoid (possibly empty). Let U = {z |
∧s

j=1 |z − aj | = 1}. In

15



the last two cases Fi ∪ U is an affinoid; but now ρ ≥ 1, and hence U ⊆ F0. Therefore

F0 ∪ Fi = F0 ∪ (U ∪ Fi) is an affinoid.

Part D: Assume that |a1 − a2| 6= 1. There is k such that |a1 − ak| = 1, otherwise

|a1 − ak| < 1 for all k = 2, . . . , s, whence |ai − aj| < 1 for all i 6= j, a contradiction to

(i). Wlog there is 2 < t < s and α ∈ |K×| such that α < 1 and |a1 − ai| < α < 1 for

i = 1, . . . , t and α < |a1 − ai| = 1 for i = t+ 1, . . . , s.

If |z − a1| ≤ α, then |z − ai| = 1 for i = t + 1, . . . , s. If |z − a1| ≥ α, then

|z − ai| = |z − a1| for i = 1, . . . , t. Therefore F = F1 ∪ F2, where

F1 = {z | |z − a1| ≤ α ∧ |f(z)| ≤ ρ} = {z | |z − a1| ≤ α ∧
t∏

i=1

|z − ai|
ni ≤ ρ}

and

F2 = {z | |z − a1| ≥ α ∧ |f(z)| ≤ ρ}

= {z | |z − a1| ≥ α ∧ |z − a1|
n1+···+nt

s∏

i=t+1

|z − ai|
ni ≤ ρ}

Both F0 and F1 are affinoids, by induction on s.

Lemma 3.15: Let F1, F2, . . . , Fr be disjoint connected affinoids.

(a) If r ≥ 2, there are disjoint closed disks E1, E2 such that F1 ⊆ E1, F2 ⊆ E2,

F3, . . . , Fr ⊆ E1
·∪E2.

(b) Suppose F1 =
⋂s

j=1Dj , where Dj are closed disks with disjoint complements. Then

D1 ∪ F2 ∪ · · · ∪ Fr 6= P.

Proof: (a) By induction on the number m of non-disks among F1, . . . , Fr. If m = 0,

that is, F1, . . . , Fr are disjoint closed disks, this is Corollary 3.10(c). Suppose m ≥ 1.

Then there is t such that Ft is not a disk, and hence Ft is the complement of the

disjoint union of open disks ·∪s
j=1Cj . For each i 6= t we have Fi ⊆ ·∪s

j=1Cj , and hence,

by Corollary 3.10(b), Fi ⊆ Cj , for some (unique) j.

If t = 1, wlog F2 ⊆ C1. Apply the induction hypothesis to (Cc
1, F2, {Fi | i ≥

3, Fi ⊆ C1}) to get the required assertion. (In detail: the elements of this sequence are

disjoint connected affinoids and the number of non-disks among them is < m (we have
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replaced at least F1 by a disk Cc
1). So there are disjoint closed disks E1, E2 such that

Cc
1 ⊆ E1 (and hence F1 ⊆ E1 and Fi ⊆ E1 if Fi 6⊆ C1), F2 ⊆ E2, and Fi ⊆ E1

·∪ E2,

whenever i ≥ 3 and Fi ⊆ C1.)

Similarly if t = 2.

If t 6= 1, 2, wlog t = r > 2 and F1 ⊆ C1. Apply the induction hypothesis to
{

(F1, F2, {Fi | i ≥ 3, Fi ⊆ C1}, C
c
1) if F2 ⊆ C1

(F1, {Fi | i ≥ 3, Fi ⊆ C1}, C
c
1) if F2 6⊆ C1

to get the required assertion. (In detail: the elements of this sequence are disjoint

connected affinoids and the number of non-disks among them is < m (we have replaced

at least Fr by a disk Cc
1). So there are disjoint closed disks E1, E2 such that F1 ⊆ E1,

each Fi is contained in E1
·∪E2 —either by assumption or because Fi ⊆ C

c
1 ⊆ E1

·∪E2—

and F2 ⊆ E2 —either by assumption or because F2 ⊆ C
c
1 ⊆ E1

·∪E2—.)

(b) First assume r = 2 and F2 is a closed disk. Then
⋂s

j=1Dj ∩ F2 = ∅. By

Corollary 3.10(a) there is j such that Dj ∩F2 = ∅. Hence if j = 1, we have D1 ∪F2 6= P

by an exercise (the union of two disjoint closed disks is not P). If j 6= 1, then Dc
j , D

c
1

are disjoint, and hence F2 ⊆ D
c
j ⊆ D1, whence F2 ∪D1 = D1 6= P.

By induction on the number m of non-disks among F2, . . . , Fr. If m = 0, that is,

F2, . . . , Fr are disjoint closed disks, by an exercise Fi∪Fj 6= P for i 6= j and Fi∪D1 6= P

by the preceding special case. Hence D1 ∪ F2 ∪ · · · ∪ Fr 6= P by Lemma 3.9.

Suppose m ≥ 1. Then r ≥ 2 and wlog Fr is not a disk. Hence Fr is the complement

of the disjoint union of open disks ·∪s
j=1Cj . For each i 6= r we have Fi ⊆ ·∪s

j=1Cj , and

hence, by Corollary 3.10(b), Fi ⊆ Cj , for some (unique) j. Wlog F1 ⊆ C1. Apply the

induction hypothesis to (F1, {Fi | i ≥ 2, Fi ⊆ C1}, C
c
1) (which produces a larger union)

to get the required assertion.

Remark 3.16: There are disjoint connected affinoids F1, F2, F3 for which do not exist

disjoint closed disks E1, E2 such that F1 ⊆ E1 and F2, F3 ⊆ E2. Indeed, let F1 =

(C1
·∪ C2)

c, where C1 = {z | |z| < 1} and C2 = {z | |z − 1| < 1}, and let Fi ⊆ Ci

be a closed disk, containing 0, 1 respectively. If such E1, E2 existed, then 0, 1 ∈ E1

and ∞ /∈ E1. Hence E1 = {z | |z| ≤ ρ} for some ρ ∈ |K×| and ρ ≥ 1. But there is

0, 1 6= z̄ ∈ K̄. Lift it to z ∈ Ko; then z ∈ E1 and z ∈ F1, a contradiction/
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Lemma 3.17: Let F be a connected affinoid such that ∞ /∈ F . Then either F is a

closed disk or a finite union of sets of the form

Cr,r′ = {z ∈ K | r < |z − a0| < r′},

Cr = {z ∈ K | |z − a0| = · · · = |z − an| = r},

where r, r′ ∈ |K×|, a0, . . . , an ∈ K such that |ai − aj | = r.

Proof: If F is not a closed disk, then it is the intersection of n + 1 ≥ 2 closed disks

D0, . . . , Dn+1, such that their complements are disjoint. As ∞ ∈ F c =
⋃
· n+1

i=0 D
c
i , wlog

∞ ∈ Dc
n+1. Thus

Di = {z | |z − ai| ≥ πi}, i = 0, . . . , n, and Dn+1 = {z | |z − an+1| ≤ πn+1}.

Put

Fk = {z ∈ F | |z − ak| ≤ |z − ai|, i = 0, . . . , n}, k = 0, . . . , n.

Then F =
⋃n

k=0 Fk. (By an exercise each Fk is a connected affinoid, but we will not

use this.) Thus it suffices to present each Fk as a finite union of sets of the form Cr,r′

and Cr. Wlog k = 0.

As translations move Cr,r′ and Cr into sets of the same form, we may assume that

a0 = 0. Then 0 = a0 ∈ D
c
0 ⊆ Dn+1; by Exercise 3.4, wlog an+1 = 0. Thus

D0 = {z | |z| ≥ π0}, Di = {z | |z − ai| ≥ πi}, i = 1, . . . , n, Dn+1 = {z | |z| ≤ πn+1}

and

F0 = {z ∈ F | |z| ≤ |z − ai|, i = 1, . . . , n}.

The disjointness of Dc
0, . . . , D

c
n+1 implies, in particular,

π0 ≤ |ai| ≤ πn+1, i = 1, . . . , n,

πi ≤ |ai|, i = 1, . . . , n.

(Indeed, ai ∈ D
c
i ⊆ D0, Dn+1, hence |ai| ≥ π0, |ai| ≤ πn+1. Further, 0 ∈ Dc

0 ⊆ Di,

hence |ai| ≥ πi.)
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Let π0 = r0 < r1 < · · · < rs = πn+1 be all the distinct numbers in the set

{π0, |a1|, . . . , |an|, πn+1}. Then

F0 = ·∪s
t=1{z ∈ F0 | rt−1 < |z| < rt} ·∪ ·∪s

t=1{z ∈ F0 | |z| = rt}.

But if rt−1 < |z| < rt, then π0 ≤ |z| ≤ πn+1, and for every 1 ≤ i ≤ n

|z − ai| =

{
|z| > rt−1 ≥ |ai| if |ai| ≤ rt−1;
|ai| ≥ rt > |z| if |ai| > rt−1, and hence |ai| ≥ rt.

In both cases, |z − ai| ≥ |z| and |z − ai| ≥ |ai| ≥ πi. Hence z ∈ F0. Thus

{z ∈ F0 | rt−1 < |z| < rt} = {z ∈ K | rt−1 < |z| < rt} = Crt−1, rt.

Similarly if |z| = rt, then π0 ≤ |z| ≤ πn+1, and for every 1 ≤ i ≤ n

|z − ai| =







|z| = rt > |ai| if |ai| < rt;
≤ rt if |ai| = rt;
|ai| > rt = |z| if |ai| > rt.

Thus if |ai| 6= rt, then |z − ai| ≥ |z| = rt and |z − ai| ≥ |ai| ≥ πi. If |ai| = rt, then

|z − ai| ≥ |z| = rt, πi ↔ |z − ai| = rt(= |ai| ≥ πi). Hence

{z ∈ F0 | |z| = rt} = {z ∈ K | |z| = rt, π0 ≤ |z| ≤ πn+1,

n∧

i=1
|ai|=rt

|z − ai| ≥ rt, πi}

= {z ∈ K | |z| = rt

n∧

i=1
|ai|=rt

|z − ai| ≥ rt, πi}

= {z ∈ K | |z| = rt,
n∧

i=1
|ai|=rt

|z − ai| = rt},

The last set is of the form Cr. Indeed, if for 1 ≤ i < j ≤ n we have |ai| = |aj| = rt, then

|ai − aj| ≤ rt. If |ai − aj | < rt, then from |z − ai| = rt follows |z − aj| = rt. Therefore

we may throw away the condition |z − aj | = rt. Thus wlog |ai − aj | = rt for all i < j.
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4. Holomorphic functions

Let (K, | |) be an algebraically closed complete non-archimedian valued field. Recall

that Ko is its valuation ring and Koo is its maximal ideal.

Let F be a subset of P = P(K). For a function f : F → K define the norm

||f || = ||f ||F := supz∈F |f(z)| ∈ K. Observe that

(1) ||f + g|| ≤ max(||f ||, ||g||);

(2) ||fg|| ≤ ||f || · ||g||;

(3) ||cf || = |c| · ||f ||, for every c ∈ K×.

Let F ⊂ P be an affinoid.

Definition 4.1: A function f : F → K is holomorphic if for every ε ∈ |K×| there is a

rational function g ∈ K(z) without poles in F such that ||f − g||F < ε.

We set:

(i) O(F ) = the set of K-holomorphic functions on F .

(ii) Oo(F ) = {f ∈ O(F ) | ||f || ≤ 1};

(iii) Ooo(F ) = {f ∈ O(F ) | ||f || < 1};

(iv) O(F ) = Oo(F )/Ooo(F ).

Exercise 4.2: Let g ∈ K(z) be without poles in F . Show that ||g||F < ∞. Deduce

that ||f ||F <∞ for every holomorphic function f on F .

Proof: As K is algebraically closed, g is the product of a constant function, linear

functions z − c, with c ∈ K, and the inverses of linear functions, all of them without

poles in F . Thus we may assume that g is one of them. In particular, g has only one

pole in P. As F is the union of connected affinoids, we may assume that F is connected.

But then F is the intersection of closed disks, and the single pole of g is not in all of

them. Therefore we may assume that F is a disk. In this case the assertion is easy.

Lemma 4.3:

(a) O(F ) is complete.
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(b) O(F ) is a K-algebra, Oo(F ) is a Ko-algebra, Ooo(F ) is an ideal of it, and O(F ) is

an algebra over K̄ = Ko/Koo.

Proof: (a) Let {fn} be a Cauchy sequence in O(F ). Let z ∈ F . Obviously, {fn(z)} is

a Cauchy sequence in K. As K is complete, this sequence has a limit, say, f(z) ∈ K.

This yields a function f : F → K.

Let ε > 0. There is N such that for all n,m ≥ N and each z ∈ F we have

|fn(z) − fm(z)| ≤ ||fn − fm|| < ε. In particular, |fn(z) − f(z)| ≤ ε for all n ≥ N and

each z ∈ F . Hence ||fn − f || ≤ ε for all n ≥ N . Thus fn → f .

Finally, for each ε > 0 there is fn such that ||fn − f || < ε and there is g ∈ K(z)

without poles in F such that ||fn − g|| < ε. Then ||f − g|| < ε.

Proposition 4.4: Let D = {z ∈ K | |z| ≤ 1}.

(a) O(D) = {
∑∞

n=0 anz
n | an ∈ K and limn→∞ an = 0} =: O.

(b) O(D)o = {
∑∞

n=0 anz
n | an ∈ K

o and limn→∞ an = 0}.

(c) O(D)oo = {
∑∞

n=0 anz
n | an ∈ K

oo and limn→∞ an = 0}.

(d) O = K̄[z̄], the ring of polynomials in one variable over K̄.

(e) Let f, g ∈ O. Then ||fg|| = ||f || · ||g||.

(f) If
∑∞

n=0 anz
n ∈ O, then ||

∑∞
n=0 anz

n||D = max |an|. Moreover, there is c ∈ D such

that |
∑∞

n=0 anc
n| = max |an|.

Proof:

Part A: First part of (a). Let us denote the right handed side by O. Its elements are

convergent sequences of powers of z, hence O ⊆ O(D).

Part B: Proof of (f).

If
∑∞

n=0 anz
n ∈ O, then clearly ||

∑∞
n=0 anz

n||D ≤ max |an|. To show “=”, we

may assume, by (3), that max ||an|| = 1, and we have to show that there is z ∈ D such

that |f(z)| = 1. Let f̄ :=
∑∞

n=0 ānZ
n. This is a nonzero polynomial over K̄. Thus

there is z̄ ∈ K̄ such that f̄(z̄) 6= 0. It is the residue of some z ∈ Ko = D. Then

f(z) = f̄(z̄) 6= 0. This means that |f(z)| = 1.
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Part C: O is complete. Let {
∑∞

n=0 a
(i)
n zn}∞i=1 be a Cauchy sequence. By the above

formula for the norm {a
(i)
n }∞i=1 is a Cauchy sequence for each n ≥ 0. Hence it converges

to some an ∈ K. It is easy to see that limn→∞ an = 0 and
∑∞

n=0 a
(i)
n zn →

∑∞
n=0 anz

n.

(Indeed, let ε > 0. There is i such that if j ≥ i, then |a
(i)
n − a

(j)
n | ≤ ε for all n; hence

|a
(i)
n − an| ≤ ε for all n. There is also N such that if n ≥ N then |a

(i)
n | ≤ ε. Thus

|an| ≤ ε for all n ≥ N .)

Part D: Second part of (a). As O is complete, to show that O(D) ⊆ O, it suffices to

show that every rational function f ∈ K(z) with no poles in D is in O. As O is a K-

algebra (check!), we may assume that f is either a polynomial over K (whence f ∈ O)

or f = 1
z−b

, where b /∈ D, that is, |b| > 1, whence 1
z−b

= 1
−b

1
1− 1

b
z

= 1
−b

∑∞
n=0

1
bn z

n =
∑∞

n=0−
1

bn+1 z
n ∈ O.

(b),(c) – clear.

(d) Let z̄ be a variable over K̄. The map
∑∞

n=0 anz
n 7→

∑∞
n=0 anz̄

n is a well

defined homomorphism Oo → K̄[z̄]. The sequence 0 → Ooo → Oo → K̄[z̄] → 0 is

exact. Hence Oo/Ooo ∼= K̄[z̄].

(e) Clearly ||fg|| ≤ ||f || · ||g||. Wlog ||f || = ||g|| = 1, and we have to show that

||fg|| = 1. That is, f̄ , ḡ 6= 0, and we have to show that fg = f̄ ḡ 6= 0. This follows from

(d), since K̄[z̄] is an integral domain.

Exercise 4.5: Let ϕ be an automorphism of P. Let F be an affinoid. Show that

f 7→ f ◦ ϕ is an isomorphism O(ϕ(F ))→ O(F ) of K-algebras that preserves the norm.

Exercise 4.6: Let c ∈ K and π ∈ K×.

(a) Let F = {z | |z − c| ≤ |π|}. Then

O(F ) ={
∞∑

n=0

an(z − c)n | an ∈ K and lim
n→∞

anπ
n = 0}

={
∞∑

n=0

bn(
z − c

π
)n | bn ∈ K and lim

n→∞
bn = 0}

and ||
∑∞

n=0 an(z − c)n||F = max |an||π|
n = max |bn|.
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(b) Let F = {z | |z − c| ≥ |π|}. Then

O(F ) ={
∞∑

n=0

an(z − c)−n | an ∈ K and lim
n→∞

anπ
−n = 0}

={
∞∑

n=0

bn(
π

z − c
)n | bn ∈ K and lim

n→∞
bn = 0}

and ||
∑∞

n=0 an(z − c)n||F = max |an||π|
−n = max |bn|.

Proof: An application of Exercise 4.5 to Proposition 4.4:

(a) The automorphism z 7→ z−c
π maps F onto the unit disk.

(b) The automorphism z 7→ π
z−c

maps F onto the unit disk.

For an affinoid F adopt the following notation: For c ∈ F let O(F )c = {f ∈

O(F ) | f(c) = 0}. Furthermore, let C(F ) be the algebra of constant K-holomorphic

functions on F . Clearly C(F ) ∼= K.

Proposition 4.7 (Decomposition of Mittag-Leffler): Let D1, . . . , Dm be m disjoint

open disks. Let Fi be the complement of Di and let F =
⋂m

i=1 Fi. Let c ∈ F . Then

(a) O(F ) = C(F )⊕⊕m
i=1O(Fi)c.

(b) Let f0 ∈ C(F ) and let fi ∈ O(Fi)c, for i = 1, . . . ,m. Then ||
∑m

i=0 fi||F =

max ||fi||Fi
. Moreover, there is z ∈ F such that |

∑m
i=0 fi(z)| = max ||fi||Fi

.

Proof: (b) We may assume that ||f0||F ≤ max1≤i≤m ||fi||Fi
, otherwise for every z ∈ F

we have |
∑m

i=0 fi(z)| = |f0(z)|. Using (3) we may normalize the fi to assume that

max1≤i≤m ||fi||Fi
= 1 ≥ ||f0||F , and we have to show that there is z ∈ F such that

|
∑m

i=0 fi(z)| = 1.

By Exercise 4.5 we may assume that c =∞. Hence Fi = {z | |z − ai| ≥ |πi|}, for

each i.

Reordering F1, . . . , Fm we may assume that

(i) there is 1 ≤ s ≤ m such that ||fi||Fi
= 1 for i = 1, . . . , s and ||fi||Fi

< 1 for

i = s+ 1, . . . ,m;

(ii) |π1| ≥ |πi| for i = 1, . . . , s.

By Exercise 4.5 we may assume that a1 = 0 and |π1| = 1.
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Let 2 ≤ i. As D1 ∩Di = ∅ and hence ai /∈ D1 and a1 = 0 /∈ Di,

(x) |ai| ≥ |π1|, |πi|, for 2 ≤ i ≤ m.

Therefore, reordering F2, . . . , Fs we may assume that

(iii) there is 1 ≤ r ≤ s such that |ai| = |π1| for i = 2, . . . , r and |ai| > |π1| for

i = r + 1, . . . , s.

Put I = {1} ∪ {2 ≤ i ≤ m | |ai| = |π1|} and

G =
⋂

i∈I

{z ∈ K | |z − ai| = |π1|}.

We claim that

(iv) G ⊆ F ;

(v) every z ∈ G satisfies |fi(z)| < 1 for i = r + 1, . . . ,m; and

(vi) there is z ∈ G such that |
∑r

i=0 fi(z)| = 1.

It then follows that there is z ∈ F such that |
∑m

i=1 fi(z)| = 1, whence ||
∑m

i=1 fi|| = 1.

(iv) Let z ∈ G and let 1 ≤ i ≤ m. If i = 1, then |z| = |π1|, and hence z ∈ F1. If

i ≥ 2 and i ∈ I, then |ai| = |π1|, so |z − ai| = |π1| = |ai| ≥ |πi|, by (x), whence z ∈ Fi.

If i /∈ I, then i ≥ 2 and |ai| > |π1| = |z|, hence |z − ai| = |ai| ≥ |πi|, by (x), whence

z ∈ Fi. Thus z ∈
⋂m

i=1 Fi = F .

(v) For s < i ≤ m this follows from (i). If r < i ≤ s we have |z| = |π1| and

|ai| > |π1|, hence |z − ai| = |ai| > |π1|.

(vi) Let 1 ≤ i ≤ r. Recall that ||fi||Fi
= 1. Hence by Exercise 4.6(b), fi =

∑∞
n=1 b

(i)
n ( πi

z−ai
)n, where b

(i)
n ∈ Ko, not all in Koo, |πi| ≤ 1, and |ai| = 1. Therefore

fi =
∑

n=1 b
(i)
n ( πi

z̄−ai
)n ∈ K(z̄). Moreover, f1 6= 0 (as ||f1|| = 1), and has a pole in

z̄ = a1 = 0, whereas fi, for i = 2, . . . , r, has a pole in ai 6= a1 = 0 (or fi = 0), and

f0 has no poles. Therefore
∑r

i=0 f̄i has a pole in 0. In particular,
∑r

i=0 f̄i 6= 0. Hence

there is z̄ ∈ K̄ such that |
∑r

i=0 f̄i(z̄)| 6= 0 and z̄ 6= āi, for each i ∈ I. Lift z̄ to an

element z ∈ K with |z| = 1. Then z ∈ G and |
∑r

i=0 fi(z)| = 1.

(a) Again, we may assume that c =∞. We have to show that for every f ∈ O(F )∞

there are unique fi ∈ O(Fi)∞, i = 1, . . . ,m, such that f =
∑m

i=1 fi. The uniqueness fol-

lows from (b): If 0 =
∑m

i=1 fi, where fi ∈ O(Fi)∞, then 0 = max(||f1||F1
, . . . , ||fm||Fm

),

and hence f1 = · · · = fm = 0.
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To show the existences, it suffices to assume that f is rational. (Why?) As K is

algebraically closed, f can be written as a finite sum of the form

(6) f =
∑

b

∑

k

ak,b

(z − b)k
,

where k ≥ 1, and b ∈ K rF and ak,b ∈ K. Put

(7) fi =
∑

b∈Di

∑

k

ak,b

(z − b)k
.

Then f =
∑m

i=1 fi and fi ∈ O(Fi)∞.

Example 4.8: Let 0 < r1 ≤ r2 and let F = {z | r1 ≤ |z| ≤ r2}. For each n ∈ Z put

r̃n =

{
r1 if n < 0
1 if n = 0
r2 if n > 0

. Then

(a) O(F ) = {
∑∞

n=−∞ anz
n | an ∈ K and limn→±∞ |an|r̃

n
n = 0}.

(b) ||
∑∞

n=−∞ anz
n||F = max |an|r̃

n
n.

Proof: We have F = D1 ∩ D2, where D1 = {z ∈ P | r1 ≤ |z|} and D2 = {z ∈

P | |z| ≤ r2}. Let f ∈ O(F ). Choose c ∈ F . By Mittag-Leffler there are f0 ∈ K (a

constant function), f1 ∈ O(D1)c, f2 ∈ O(D2)c, such that f = f0 +resF f1 + resF f2, and

||f ||F = max(|f0|, ||f1||D1
, ||f2||D2

).

Choose ρ1, ρ2 such that |ρi| = ri. By Exercise 4.6(a), f2(z) = α2 +
∑∞

n=1 anz
n,

where limn→∞ |an|r
n
2 = 0. As f2(c) = 0, we have α2 = −

∑∞
n=1 anc

n.

Similarly, by Exercise 4.6(b), changing n to−n, we have f1(z) = α1+
∑−∞

n=−1 anz
n,

where limn→−∞ |an|r
n
1 = 0. As f1(c) = 0, we have α1 = −

∑−∞
n=−1 anc

n.

Thus f(z) = f0 + f1(z) + f2(z) =
∑∞

n=−∞ anz
n, where a0 = f0 − α1 − α2 and

limn→−∞ |an|r
n
1 = 0 and limn→∞ |an|r

n
2 = 0.

(The an as above are unique; this follows from (b).)

(b) Observe that |α1| ≤ maxn<0(|an|r̃
n
n) and |α2| ≤ maxn>0(|an|r̃

n
n). Therefore

||f ||F = max(|f0|, ||f1||D1
, ||f2||D2

) = max
n6=0

(|f0|, |α1|, |α2|, |an|r̃
n
n) = max

n6=0
(|f0|, |an|r̃

n
n).
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We have to show that this is M , where M = maxn6=0(|f0 − α1 − α2|, |an|r̃
n
n). Clearly

M ≤ ||f ||F . Also, if |f0| ≤ maxn6=0(|an|r̃
n
n), then ||f ||F ≤M . If |f0| > maxn6=0(|an|r̃

n
n),

then |f0 − α1 − α2| = |f0|, so M = ||f ||F .

Lemma 4.9: Let F1, . . . , Fr be disjoint connected affinoids in P. Put F = ·∪r
i=1Fi. Then

O(F ) ∼=
∏r

i=1O(Fi), via f 7→ (resF1
f, . . . , resFr

).

Proof: Wlog r ≥ 2.

The map res: O(F ) →
∏r

i=1O(Fi) is clearly injective. Each (f1, . . . , fr) ∈
∏r

i=1O(Fi) is the sum of elements of the form (0, . . . , 0, fk, 0, . . . , 0), where 1 ≤ k ≤ r

and fk ∈ O(Fk). Therefore it suffices to show that the latter element is in the image of

res. Wlog k = 1.

Part A: f1(z) = 1 for all z ∈ F1. Let 1 ≤ l ≤ r such that l 6= 1. By Lemma 3.15(a)

there are two disjoint closed disks D′ and D′′ such that F ⊆ D′ ∪D′′ and F1 ⊆ D
′ and

Fl ⊆ D
′′.

Wlog D′ = {z | |z| ≤ ρ′} and D′′ = {z | |z| ≥ ρ′′}, where ρ′ < 1 < ρ′′. The

sequence gn(z) = 1
zn+1 (of rational functions without poles in D′ ∪ D′′) converges

(uniformly!) to 1 on D′ and to 0 on D′′. Its restriction to F is a function f1,l ∈ O(F )

that is 1 on F1 and 0 on Fl.

Let f =
∏

l6= f1,l. Then f ∈ O(F ), and resf = (1, 0, . . . , 0).

Part B: Arbitrary f1 ∈ O(F1). Write F1 as
⋂s

i=1Di, where D1, . . . , Ds are closed

disks such that P rF1 = ·∪s
j=1D

c
j . By Mittag-Leffler-Decomposition, f1 = g0 + g1 +

· · ·+ gs, where g0 is constant and gl ∈ O(F ) extends to a function gl ∈ O(Dl), for each

1 ≤ l ≤ s. Wlog f1 = gl for some l and wlog l = 1.

Apply an automorphism of P to Lemma 3.15(b) to assume that 0 ∈ D1 and

∞ /∈ Dl ∪ F2 ∪ · · · ∪ Fr. Then wlog D1 is the unit disk.

We can write f1 ∈ O(D1) as f1(z) =
∑∞

n=1 anz
n, where |an| → 0. For each N the

function f
(N)
1 =

∑∞
n=1 anz

n has a pole only in ∞, and hence f
(N)
1 ∈ O(F ). By Part A

there is g ∈ O(F ) such that g is 1 on F1 and 0 on the rest. Then {gf
(N)
1 }∞N=1 ⊆ O(F )

is a Cauchy sequence. Its limit f ∈ O(F ) satisfies the required conditions.
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Lemma 4.10: Let F be a connected affinoid, and let D be a closed disk contained in

F . Let 0 6= f ∈ O(F ). Then resDf 6= 0.

Proof: Write F as the intersection of r closed disks D1, . . . , Dr such that their com-

plements Dc
1, . . . , D

c
r are disjoint. Wlog ∞ ∈ D and 0 /∈ D. Thus

Dk = {z | |z − ak| ≥ |πk|}, for k = 1, . . . , r, and D = {z | |z| ≥ |ρ|}.

Wlog ||f ||F = 1. If f(∞) 6= 0, the assertion is trivial. So assume that f(∞) = 0.

By Mittag-Leffler there are unique f1 ∈ O(D1), . . . , fr ∈ O(Dr) vanishing at ∞, such

that f = resF f1 + · · ·+ resF fr. As 1 = ||f ||F = maxk ||fk||Dk
, we have ||fk||Dk

≤ 1 for

each k, and there is k with ||fk||Dk
= 1.

Part A: r = 1. We may assume that a1 = 0 and π1 = 1. Thus D1 = {z | |z| ≥ 1},

and D = {z | |z| ≥ |ρ|}, where |ρ| ≥ 1. Then f(z) =
∑∞

i=0 bi(
1
z
)i, where max(|bi|) =

||f ||F > 0. Thus not all bi are 0. Now, resDf(z) =
∑∞

i=0
bi

ρi (
ρ
z )i, and ||f ||D = max(| bi

ρi |).

Hence ||f ||D > 0.

Assume, by induction, that r ≥ 2 and that the assertion is true for less than r

disks.

Part B: Reductions. Wlog (apply the automorphism z 7→ z
π

of P) max(|ak−al|) = 1.

For distinct 1 ≤ k, l ≤ r we have Dc
k ∩D

c
l = ∅, and hence |ak − al| ≥ |πk|, |πl|. Thus

(1) |π1|, . . . , |πr| ≤ 1.

Furthermore, wlog |ρ| is very large, say

(2) |ρ| > 1, |ak|, |πk|, k = 1, . . . , r.

Indeed, let |ρ′| ≥ |ρ| and let D′ = {z | |z| ≥ |ρ′|}. Then D′ ⊆ D ⊆ F . If resD′f 6= 0,

then also resDf 6= 0.

Part C: Reduction to |ak − al| = 1 and πk = 1 for all k 6= l. By Mittag-Leffler there

are unique f1 ∈ O(D1), . . . , fr ∈ O(Dr) vanishing at ∞, such that f = resF f1 + · · ·+

resF fr. As f 6= 0, not all fk are 0.
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For each 1 ≤ k ≤ r let D′
k = {z | |z − ak| ≥ 1}. By Part C, D ⊆ D′

k. By (1),

D′
k ⊆ Dk. Some of the disks in the sequence D′

1, . . . , D
′
r may coincide (see below).

Let E1, . . . , Es be the distinct elements of this sequence, and for each 1 ≤ j ≤ s let

K(j) = {k | D′
k = Ej}.

More precisely, if |ak−al| < 1, then D′
k = D′

l. If, on the other hand, |ak−al| = 1,

then the complements of D′
k and D′

l are disjoint, and hence D′
k 6= D′

l. As there are k, l

such that |ak − al| = 1, not all the disks in the sequence D′
1, . . . , D

′
r are equal. Thus

2 ≤ s and #K(j) < r for each 1 ≤ j ≤ s. Furthermore, the complements of E1, . . . , Es

are disjoint.

Put G =
⋂s

j=1Ej . This is a connected affinoid. We claim that resGf 6= 0. Indeed,

for each 1 ≤ j ≤ s let gj =
∑

k∈K(j) resEj
fk ∈ O(Ej). Then resGf =

∑s
j=1 resGgj .

Therefore this is the Mittag-Leffler decomposition of resGf . Hence it suffices to show

that there is j such that gj 6= 0.

There is k0 such that fk0
6= 0. Let j be such that k0 ∈ K(j). Now, Fj =

⋂

k∈K(j)Dk is the intersection of #K(j) < r closed disks with disjoint complements.

Put g′j =
∑

k∈K(j) resFj
fk ∈ O(Fj). This is the Mittag-Leffler decomposition of g′j .

Therefore, as fk0
6= 0, also g′j 6= 0. But gj = resEj

g′j . As #K(j) < r, by the induction

hypothesis we have gj 6= 0. This shows that resGf 6= 0.

Now, either s < r or or s = r. In the first case, by the induction hypothesis

(applied to D ⊆ G =
⋂s

j=1Ej) resDf 6= 0. In the second case we may replace F with

G (and Dk with D′
k for each k) and thus assume that |ak − al| = 1 and πk = 1 for all

k 6= l.

Part D: Assume that |ak − al| = 1 for all k 6= l and |πi| = 1 ≤ ρ for all i.

Write fk as
∑∞

j=1 b
(k)
j ( 1

z−ak
)j.

Then

(i) |ak|, |b
(k)
j | ≤ 1 for all j and k; in particular, ak, b

(k)
j ∈ K̄ are defined.

(ii) a1, . . . , ar are distinct;

(iii) There are j and k such that |b
(k)
j | = 1; that is, not all b

(k)
j are 0.

Furthermore, |b
(k)
j | → 0, for each 1 ≤ k ≤ r. Therefore
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(iv) there is m such that b
(k)
j = 0 for all k and all j ≥ m.

It follows that f̄(t) =
∑r

k=1

∑∞
j=1 b

(k)
j ( 1

t−ak
)j 6= 0 is a non-trivial rational function

over K̄. Therefore there is c̄ 6= 0 in (the algebraic closure of) K̄ such that f̄(c̄) 6= 0.

Thus there is c in the algebraic closure of K such that |c| = 1 and f(c) 6= 0. In

particular, the restriction of f to D′ = {z | |z| ≥ 1} is not trivial. Since |ρ| ≥ 1, we

have D ⊆ D′. Hence by Part A also resDf 6= 0.
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5. Factorization

The aim of this section is to prove the following

Theorem 5.1: Let F be a connected affinoid in P such that ∞ /∈ F . Let 0 6= f(z).

(a) f has finitely many zeroes in F . Moreover, there are c1, . . . , cm ∈ F such that

f(z) = g(z)
∏m

i=1(z − ci), where g ∈ O(F ) has no zeroes in F .

(b) The following are equivalent:

(i) f ∈ O(F )×;

(ii) f has no zeros in F ;

(iii) There is θ > 0 such that |f(z)| > θ for all z ∈ F .

(b) The ring O(F ) is a principal ideal domain; its maximal ideals are (z − c)O(F ),

where c ∈ F .

We prove this in several steps:

Lemma 5.2 (Factorization): Let F be an affinoid in P. Let∞ 6= c ∈ F and let f ∈ O(F )

such that f(c) = 0. Then there is a unique g ∈ O(F ) such that f(z) = (z − c)g(z) on

F r{∞}.

Proof: To show the uniqueness, it suffices to prove that if 0 6= g ∈ O(F ), then (z −

c) · g(z) 6= 0. There is a ∈ F such that g(a) 6= 0. As g is continuous (it is the limit of

rational functions, which are continuous on F ), we may assume that a 6= c,∞. (There

is 0 6= d ∈ K with |d| sufficiently small; then g(a + d) 6= 0 and a + d 6= c,∞.) Then

(a− c) · g(a) 6= 0.

Part A: Reduction to a connected affinoid. Write F as the disjoint union of connected

affinoids F1, . . . , Fr. Wlog c ∈ F1. For 2 ≤ i ≤ r we have c /∈ Fi and hence (z − c)−1 ∈

O(Fi), whence gi := (z − c)−1fi ∈ O(Fi) satisfies resFi
f = (z − c)gi(z). Suppose there

is g1 ∈ O(F1) such that resF1
f = (z − c)g1(z). Then by Lemma 4.9 there is a unique

g ∈ O(F ) such that resFi
g = gi. Clearly f(z) = (z − c)g(z).

Part B: Reduction to a closed disk. Write F as the intersection of closed disks
⋂s

j=1Dj . By Mittag-Leffler, f =
∑
fi, where fi ∈ O(F )c extends to a holomorphic
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function on Di. It suffices to prove the assertion for each fi. Therefore wlog f extends

to a holomorphic function on Di. So wlog F = Di.

Part C: f is the restriction of an automorphism of P to F . Say, f(z) = αz+β
γz+δ , where

(
α β
γ δ

)

∈ Gl2(K). Since f(c) = 0, we have αc + β = 0. Thus f(z) = α(z−c)
γz+δ =

(z − c) · α
γz+δ

.

Part D: F is the unit disk. Suppose that F = U := {z | |z| ≤ 1} and c = 0. By

Proposition 4.4, f(z) =
∑∞

n=0 anz
n, where an → 0. As f(c) = 0, we have a0 = 0.

Moreover, h(z) :=
∑∞

n=1 anz
n−1 ∈ O(U). Therefore f(z) = zh(z).

Part D: The general case. There is an automorphism ϕ of P such that ϕ(F ) = U

and ϕ(c) = 0. There is f1 ∈ O(U)0 such that f(z) = f1(ϕ(z)). By Part D, f1 = z · g1,

where g1 ∈ O(U). Thus f = f1(ϕ(z)) = ϕ(z) · g1(ϕ(z)), and g1(ϕ(z)) ∈ O(F ). By Part

C, ϕ(z) = (z − c)g2(z) for some g2 ∈ O(F ). So f = (z − c)g1(z)g2(z).

The main tool is a lemma we already proved:

Lemma 3.17: Let F be a connected affinoid such that ∞ /∈ F . Then either F is a

closed disk or a finite union of sets of the form

Cr,r′ = {z ∈ K | r < |z − a0| < r′},

Cr = {z ∈ K | |z − a0| = · · · = |z − an| = r},

where r, r′ ∈ |K×|, a0, . . . , an ∈ K such that |ai − aj | = r.

Lemma 5.3: Let D = {z | |z| ≤ 1} be a closed disk. Let 0 6= f(z) =
∑∞

n=0 anz
n ∈

O(D), and let m = max(n | |an| = ||f ||D).

(a) If m ≥ 1, then f has a zero in D; more precisely –

(b) There are c1, . . . , cm ∈ D and g ∈ O(D) with no zeros in D such that f(z) =

g(z)
∏m

i=1(z − ci).

(c) The following are equivalent:

(i) f ∈ O(D)×;

(ii) f has no zeros in D;

(iii) f = c(1 + s), where c ∈ K× and s ∈ Ooo(D) (that is, m = 0);
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(iv) |f(z)| = ||f ||D for each z ∈ D.

Proof: Wlog am = 1. Hence f ∈ Oo(D).

(a) For k ≥ m let fk(z) =
∑k

n=0 anz
n. Then

f̄(z) = f̄k(z) = zm + ām−1z
m−1 + · · ·+ ā0.

Write fk as

fk(z) = λ′
s∏

i=1

(z − cik)

t∏

j=1

(z − djk),

where |cik| ≤ 1 and |djk| > 1. Put λ = λ′(−d1k) · · · (−dtk) (and λ′ is the leading

coefficient of fk, which is not necessarily ak, because the latter could be 0). Then we

can write the preceding equation as

fk(z) = λ
s∏

i=1

(z − cik)
t∏

j=1

(1− d−1
jk z).

Comparing norms on both sides we get |λ| = 1. Taking bar on both sides we see that

zm + ām−1z
m−1 + · · ·+ ā0 = f̄k(z) = λ̄

s∏

i=1

(z − c̄ik).

Hence λ̄ = 1 and m = s.

For each k put Zk = {c1k, . . . , cmk}. Then #Zk ≤ m.

Fix k and let ck+1 ∈ Zk+1. Then

m∏

i=1

|ck+1 − cik| = |fk(ck+1)| = |fk(ck+1)− fk+1(ck+1)| ≤ ||fk − fk+1||.

Hence there is ck = cik ∈ Zk such that |ck+1−ck| ≤ ||fk−fk+1||
1
m . Choose this ck ∈ Zk;

this defines a map : Zk+1 → Zk by ck+1 7→ ck. Now, lim
←−

Zn 6= ∅, so there is a sequence

{ck}k ⊆ D such that fk(ck) = 0 and |ck+1 − ck| ≤ ||fk − fk+1||
1
m for every k. Thus

{ck}k is a Cauchy sequence. Hence its limit c ∈ D is a zero of f .

(c) (i) ⇒ (ii) - clear.

(ii) ⇒ (iii): If f has no zeros in D, then by (a), m = 0. Hence f = a0 + s = 1 + s,

where s =
∑∞

n=1 anzn satisfies ||s||D < 1.
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(iii) ⇒ (iv): Let z ∈ D. Then |s(z)| ≤ ||s||D < 1, hence |1 + s(z)| = 1.

(iv) ⇒ (i): Write f as the limit of a sequence of rational functions fk without

poles in D (for instance, the partial sums fk(z) =
∑k

n=0 anz
n). We may assume that

||fk − f || < 1 for each k, and hence fk has no zeros in D; in fact, for every z ∈ D we

have |fk(z) − f(z)| < 1, but |f(z)| = 1, whence |fk(z)| = 1. Thus 1
fk

is a sequence of

rational functions with no poles in D. Check that 1
fk
→ 1

f
.

(b) By induction on m. Assume first that m = 0. Then ||1 − f || < 1, hence by

(c), f ∈ O(D)×.

Assume that m ≥ 1. By (a), f has a zero c ∈ D. Then f can be written as f(z) =
∑∞

n=0 bn(z− c)n, where |bn| ≤ 1. As f(c) = 0, we have b0 = 0. Thus f(z) = (z− c)h(z),

where h(z) =
∑∞

n=1 bn(z − c)n ∈ Oo(D). Write h(z) as h(z) =
∑∞

n=0 a
′
nz

n, and put

m′ = max(n | |a′n| = 1). From f̄(z) = (z − c̄)h̄(z) we see that m′ = m − 1. By the

induction hypothesis h(z) = g(z)
∏m−1

i=1 (z − ci), where c1, . . . , cm−1 ∈ K and g ∈ O(D)

has no zeros in D. Put c = cm. Then f(z) = g(z)
∏m

i=1(z − ci)g(z).

Remark 5.4: Let C be a subset of an affinoid F , and let f, q ∈ O(F ) such that

||f − q||C < ||f ||C. Then

(i) ||f ||C = ||q||C .

(ii) If z ∈ C and |f(z)| = ||f ||C, then |f(z)| = |q(z)|.

Proof: Let C ′ = {z ∈ C | |f(z)| > ||f − q||C}. As supz∈C |f(z)| = ||f ||C > ||f − q||C ,

the set C ′ is not empty. Hence C ′ contains all z ∈ C with |f(z)| = ||f ||C. For z ∈ C ′

we have |f(z)| > |f(z) − q(z)|, and hence |f(z)| = |q(z)|. This proves (ii). Also

||f ||C = supz∈C′ |f(z)| = supz∈C′ |q(z)| = ||q||C.

Lemma 5.5: Let r ∈ |K×|, and let b1, . . . , bN ∈ K such that |b1| = · · · = |bN | = r. Put

C = {z ∈ K | |z| = r, |z − bν | = r, 1 ≤ ν ≤ N}

= {z ∈ K | |z| = r}r
N⋃

ν=1

{z ∈ K | |z − bν | < r},

Let q be a rational function with no poles in C. Let {d1, . . . , dn} ⊆ C contain all the

zeroes of q in C. Then
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(a) |q(z)| = ||q||C, if z ∈ C and |z − di| ≥ r, for i = 1, . . . , n;

(b) ||q||{z | |z−di|<r} = ||q||C , for i = 1, . . . , n.

Proof: It suffices to show that there are k ∈ N and p, ρ ∈ |K×| such that p < r and:

(i) if z ∈ C and |z − di| ≥ r, for i = 1, . . . , n, then |q(z)| = ρ;

(ii) |q(z)| ≤ ρ for all z ∈ C;

(iii) For each 1 ≤ i ≤ n, if z ∈ C and p < |z − di| < r, then | z−di

r |
kρ ≤ |q(z)| ≤ ρ.

Observe that if this assertion is true for two rational functions q1, q2, then it also

holds for their product q1q2. Thus we may assume that either q(z) = z−a, where a ∈ K

or q(z) = 1
z−a , where a /∈ C.

Futhermore, we may assume that {d1, . . . , dn} is the set of all zeroes of q in C.

(We could have assumed this from the beginning, but this “more general” setup was

necessary for the preceding reduction from q to its factors: The set of zeroes of q1q2

may properly contain the set of zeroes of q1.) More precisely, let k, p, ρ such that (i),

(ii) and (iii) hold, and let dn+1, . . . , dn′ ∈ C. Let

p′ = max(p, |di − dj| | 1 ≤ i, j ≤ n′, |di − dj | < r).

Then the corresponding assertions, say (i′), (ii′), and (iii′), hold for d1, . . . , dn+1, . . . , dn′

with k, p′, ρ. Indeed, (i′) is weaker than (i), and (ii′) does not depend on d1, . . . , dn′ .

Fix 1 ≤ j ≤ n′ and z ∈ C such that p′ < |z − dj | < r. If there is no 1 ≤ i ≤ n such

that |z − di| < r, then |q(z)| = ρ by (i). If there is 1 ≤ i ≤ n such that |z − di| < r,

then |di − dj | < r, and hence |di − dj | ≤ p′, by the definition of p′, whence |z − dj| =

|(z − di) + (di − dj)| = |z − dj |. As p ≤ p′, condition (iii′) for j follows from (iii) for i.

Let q(z) = z − a. Let a ∈ K, and let z ∈ C. Recall that |z| = r.

(1) If |a| > r, then |z − a| = |a|. (In this case n = 0.)

(2) If |a| < r, then |z − a| = r. (In this case n = 0.)

(3) If |a| = r, but a /∈ C, then there is ν such that |a − bν | < r. As |z − bν | = r, we

have |z − a| = |(z − bν)− (a− bν)| = r. (In this case n = 0.)

(4) If |a| = r and a ∈ C, then n = 1 and a = d1, because a is the only zero of q. If

|z − d1| ≥ r, then |z − a| = |z − d1| = r (because |z| = |d1| = r). If |z − d1| < r,

then |z − a| = |z−d1|
r r.
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In case (1) put ρ = |a|, otherwise ρ = r. Let k = 1, and let p be arbitrary. Then

(i),(ii),(iii) hold.

If q(z) = 1
z−a

, where a /∈ C, then the assertion follows from cases (1),(2),(3) above.

Lemma 5.6: Let F be an affinoid that contains D = {z ∈ K | |z| < 1}. Let 0 6= f ∈

O(F ). Then f has finitely many zeroes in D. Furthermore, f(z) = g(z)
∏m

i=1(z − ci),

where c1, . . . , cm are the zeroes of f in D, and g ∈ O(F ) has no zeroes in D. Moreover,

||g||D = |g(z)| for all z ∈ D.

Proof: In this proof let Dr denote the closed disk of radius r around 0, and Ur the

circle of radius r around 0. Put ρ = ||f ||D (≤ ||f ||F ). Then ρ > 0 by Lemma 4.10. Let

q ∈ O(F ) be a rational function such that ||f − q||D < ρ
2 . (E.g., ||f − q||F < ρ

2 .)

If 0 < r0 < 1 is sufficiently large, ||f ||Dr0
≥ ρ

2
; this, together with ||f−q||Dr0

< ρ
2
,

gives ||q||Dr0
≥ ρ

2 (there is z ∈ Dr0
such that |f(z)| ≥ ρ

2 ; of course, |f(z) − q(z)| < ρ
2 ,

so |q(z)| ≥ ρ
2 ). In particular, q 6= 0 has only finitely many zeroes. Provided that r0 is

sufficiently large, we may assume that q(z) has no zeroes in {z ∈ K | r0 < |z| < 1}.

Let r0 < r < 1, and let z ∈ D such that |z| = r. We have

|f(z)− q(z)| ≤ ||f − q||D <
ρ

2
≤ ||q||Dr0

≤ ||q||Dr
.

But ||q||Dr
= ||q||Ur

, and, by Lemma 5.5 or Proposition 4.4, ||q||Ur
= |q(z)|. Thus

|f(z)− q(z)| < |q(z)|, and hence |f(z)| = |q(z)| > 0.

In particular, all the zeroes of f in D are in Dr0
. By Lemma 5.3 there are

c1, . . . , cm ∈ Dr0
and g′ ∈ O(Dr0

) with no zeroes such that resDr0
f(z) = g′(z)

∏m
i=1(z−

ci). (Observe that this g′ is unique.) By the Factorization Lemma and by induction on

i we can write f(z) = g(z)
∏m

i=1(z − ci), where g ∈ O(F ). By the uniqueness of g′ we

have resDr0
g(z) = g′(z). Thus g has no zeroes in Dr0

, and hence also in D (by the first

statement of this paragraph).

Let z ∈ D. Let |z| < r < 1. By Lemma 5.3, |g(z)| = ||g||Dr
. Hence |g(z)| =

limr→1− ||g||Dr
= ||g||D.
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Lemma 5.7: Let C be as in Lemma 5.5, and let F be an affinoid that contains C. Let

0 6= f ∈ O(F ).

(i) f has finitely many zeroes in C. More precisely, f(z) = g(z)
∏m

i=1(z − ci), where

c1, . . . , cm are the zeroes of f , and g ∈ O(F ) has no zeroes in C.

(ii) If f has no zeroes in C, then |f(z)| = ||f ||C for all z ∈ C.

Proof: Since C contains a closed disk, by Lemma 4.10, ||f ||C > 0. Let q ∈ O(F )

be a rational function such that ||f − q||C < ||f ||C. Then q 6= 0. By Remark 5.4,

||q||C = ||f ||C. Let d1, . . . , dn be the zeroes of q in C. Put

Di = {z ∈ C | |z − di| < r}, 1 ≤ i ≤ n, and G = C r

n⋃

i=1

Di.

By Lemma 5.5, |q(z)| = ||q||C for every z ∈ G.

It follows that for every z ∈ G we have |f(z)−q(z)| ≤ ||f−q||C < ||f ||C = ||q||C =

|q(z)|, and hence |f(z)| = |q(z)| = ||q||C . In particular, f(z) has no zeroes in G. Thus

all the zeroes of f are in the open disks D1, . . . , Dn. By Lemma 5.6 their number is

finite, and we get the required factorization.

(ii) Let

ρ = ||f ||C = ||q||C = ||q||Di
, for i = 1, . . . , n

(the equalities follow from Remark 5.4 and Lemma 5.5, respectively). It suffices to

show that |f(z)| = ρ for every z ∈ C. For z ∈ G this is written above. For z ∈ Di, by

Lemma 5.3, (present Di as the increasing union of closed disks) |f(z)| = ||f ||Di
. As

||f − q||Di
≤ ||f − q||C < ||f ||C = ρ = ||q||Di

,

by Remark 5.4, ||f ||Di
= ||q||Di

. Thus |f(z)| = ||q||Di
= ρ.

Lemma 5.8: Let r1, r2 ∈ |K
×|, where r1 < r2. Put

C = {z ∈ K | r1 < |z| < r2}.

Let F be an affinoid that contains C.
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(i) Let f ∈ O(F ). If f 6= 0, then f has a finite number of zeroes in C. Furthermore,

f(z) = g(z)
∏m

i=1(z − ci), where c1, . . . , cm are zeroes of f in C, and g ∈ O(F ) has

no zeroes in C.

(ii) If g ∈ O(F ) has no zeroes in C, there is θ > 0 such that |g(z)| > θ for all z ∈ C.

Proof: For each r1 < r < r2 let Ur = {z ∈ K | |z| = r}. Put θ = inf{||f ||Ur
| r1 < r <

r2}. We claim that θ > 0.

Indeed, for all r1 < r′1 ≤ r′2 < r2 let F ′ = {z ∈ K | r′1 ≤ |z| ≤ r′2}. By

Example 4.8, there are an ∈ K such that

f(z) =

+∞∑

n=−∞

anzn,

where |an|(r
′
2)

n → 0 as n → ∞ and |an|(r
′
1)

n → 0 as n → −∞. By Example 4.8(b),

these an are unique. This implies that an do not depend on r′1, r
′
2. As f 6= 0, there is

k ∈ Z such that ak 6= 0.

If r1 < r′1 = r = r′2 < r2, then F ′ = Ur. By Example 4.8, ||f ||Ur
= maxn |an|r

n.

Hence ||f ||Ur
≥ |ak|r

k ≥ |ak| ·min(rk
1 , r

k
2). It follows that θ > 0.

Let q ∈ O(F ) be a rational function such that ||f − q||F < θ. Then q 6= 0,

and hence q has only finitely many zeroes in C. Let r1 < r < r2 such that r 6= |d|

for each zero d ∈ C of q, and let z ∈ Ur. Then q has no zero in Ur, and hence by

Lemma 5.5, |q(z)| = ||q||Ur
. Furthermore, ||f − q||Ur

≤ ||f − q||F < θ ≤ ||f ||Ur
. Hence

by Remark 5.4, ||f ||Ur
= ||q||Ur

. Thus for every z ∈ Ur

|f(z)− q(z)| < θ ≤ ||f ||Ur
= ||q||Ur

= |q(z)|,

and hence |f(z)| = |q(z)| = ||q||Ur
= ||f ||Ur

.

Therefore |f(z)| ≥ θ for all z ∈ C except for finitely many Ur’s on which f has

zeroes. In particular, this prove (ii). Now apply Lemma 5.7 (to each Ur instead of C

there).

Proof of Theorem 5.1: (a) By Lemma 3.17, F is the union of certain sets C1, . . . , Cn. By

induction, f = f0
∏k

i=1(z−ci), where c1, . . . , ck ∈
⋃n−1

i=1 Ci and f0 ∈ O(F ) has no zeroes
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in
⋃n−1

i=1 Ci. By Lemmas 5.3, 5.5, 5.7, f0 = g
∏m

i=k+1(z − ci), where ck+1, . . . , cm ∈ Cn

and g ∈ O(F ) has no zeroes in Cn.

(b) Implication (iii) ⇒ (ii) is trivial. By the preceding lemmas, (ii) ⇒ (iii). To

deduce (iii) ⇒ (i), approximate f by rational functions with no zeroes on F , so that

their inverses are rational functions on F ; they converge to f−1.

(c) First notice that F is an integral domain: Let f, g ∈ O(F ) r{0}. By (i) they

have only finitely many zeroes in F . Since F is an infinite set, there is c ∈ F such that

f(c), g(c) 6= 0. Hence fg 6= 0. (One could also use Lemma 4.10, which proves that

O(F ) ⊆ O(D) for some closed disk D. As O(D) is an integral domain, so is O(F ).)

Consider the obvious homomorphism (actually, an embedding) K[z]→ O(F ). Let

J ≤ O(F ) be an ideal. Let {fi}i∈I be a set of its generators. By (i) and (ii) each fi is,

up to an element of O(F )×, a polynomial in z. Thus we may assume that fi ∈ K[z].

Let J0 be the ideal of K[z] generated by the fi; then J = J0O(F ). As K[z] is a PID,

the ideal J0 is generated by some f ∈ K[z]. Hence J = fO(F ).
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6. Affinoid algebras

In this section let (k, | |) be a complete non-archimedean valued field. Let K be the

completion of the algebraic closure of k. (Then K is algebraically closed.)

Definition 6.1: Formal power series. Let N0 = {0, 1, 2, . . .}. The elements of Nn
0 are

n-tuples α = (α1, . . . , αn). For an n-tuple of indeterminates z = (z1, . . . , zn) and for

α = (α1, . . . , αn) ∈ Nn
0 write zα = zα1

1 · · · z
αn
n . (Thus zαzβ = zα+β .)

Let R be a commutative ring with 1. Then

R[[z1, . . . , zn]] = {
∑

α

aαz
α | aα ∈ R}

is an R-algebra, the ring of formal power series in z1, . . . , zn over R.

Lemma 6.2: Let R be a commutative ring with 1.

(a) R[[z1, . . . , zn]] = R[[z1, . . . , zn−1]][[zn]].

(b) If R is an integral domain, then so is R[[z1, . . . , zn]].

Proof: (b) Suppose f =
∑

α aαz
α, g =

∑

β bβz
β 6= 0. Choose smallest α, β, in the

lexicographical order on Nn
0 , such that aα, bβ 6= 0. Then the coefficient of zα+β in fg is

aαbβ 6= 0.)

Assume that (R, || ||) is a normed Banach (k, | |)-algebra. Then

Ro = {r ∈ R | ||r|| ≤ 1}

is a subring of R (in fact, a ko-algebra) and

Roo = {r ∈ R | ||r|| < 1}

an ideal in Ro. Let R̄ = Ro/Roo. This is an k̄-algebra.

Definition 6.3: Standard affinoid algebra. For α ∈ Nn
0 put |α| = maxi(αi). (This has

got nothing to do with the absolute value on k.) Put

Tn(R) = R〈z1, . . . , zn〉 = {
∑

α

aαz
α | aα ∈ R, lim

|α|→∞
aα = 0}.
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This is a subalgebra of R[[z1, . . . , zn]]. Put

||
∑

α

aαz
α|| = max

α
||aα||.

This is a norm (of an algebra over k):

(a) ||f || = 0 if and only if f = 0.

(b) ||f + g|| ≤ ||f ||+ ||g||. In fact, ||f + g|| ≤ max(||f ||, ||g||).

(c) ||cf || = |c|||f ||, for c ∈ k and f ∈ Tn.

(d) ||fg|| ≤ ||f || · ||g||.

It follows that

T o
n = {

∑

α

aαz
α | aα ∈ R

o, lim
|α|→∞

aα = 0}.

is a subring of Tn and

T oo
n = {

∑

α

aαz
α | aα ∈ R

oo, lim
|α|→∞

aα = 0}.

is an ideal in T o
n .

Remark 6.4: We have T o
n/T

oo
n
∼= R̄[z̄1, . . . , z̄n], the ring of polynomials in n variables.

Indeed, the map T
(0)
n → R̄[z̄1, . . . , z̄n] given by

∑

α aαz
α 7→

∑

α aαz̄
α is well defined

and its kernel is precisely T oo
n .

Exercise 6.5: Let R be a Banach algebra over k.

(a) Tn is complete, that is, a Banach algebra.

(b) Tn(R) = Tn−1(R)〈zn〉 (and the norm on Tn(R) is the norm coming from the right

handed side). (This is the main reason that we consider a general ring R instead of

a complete field k.)

Proposition 6.6: Let R = k be a field. Then R̄ = k̄ is the residue field.

(a) ||fg|| = ||f || · ||g|| for all f, g ∈ Tn.

(b) Tn is an integral domain.

(c) f =
∑
aαz

α of Tn is invertible if and only if |a0| > |aα| for each α 6= 0. (Here

0 = (0, . . . , 0) ∈ Nn
0 .)

Proof: (a) We may assume that f, g 6= 0. Multiplying them by suitable elements of k

we may assume that ||f || = ||g|| = 1. In particular their images f̄ , ḡ in k̄[z̄1, . . . , z̄n] are
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not 0. As k̄[z̄1, . . . , z̄n] is an integral domain also the image f̄ ḡ of fg is not 0, that is,

||fg|| = 1.

(b) If f, g 6= 0, then ||f ||, ||g|| 6= 0, and hence ||fg|| = ||f · ||g|| 6= 0, whence fg 6= 0.

(c) Suppose that |a0| > |aα| for all α 6= 0. Dividing by a0 we may assume that

a0 = 1. Then f may be written as f = 1 − h, where ||h|| < 1. It is easy to see that

g =
∑∞

n=0 h
n ∈ Tn satisfies fg = 1. Hence f is invertible.

Conversely, suppose that f is invertible. Then ||f || 6= 0. Dividing by ||f || we may

assume that ||f || = 1. In particular, f ∈ T o
n . Its residue f̄ =

∑
āαz̄

α is invertible in

k̄[z̄1, . . . , z̄n]. Therefore āα = 0 for each α 6= 0. Thus |aα| < 1 = ||f ||. It follows that

|a0| = 1.

In what follows we could take R = k{z1, . . . , zn−1〉 and z = zn, so that R{z} =

Tn(k).

Definition 6.7: For g =
∑∞

n=0 anz
n 6= 0 in R{z} define the pseudodegree of g to be

the integer d = max(n : ||an|| = ||g||). Call ad the pseudoleading coefficient of g.

Call g regular, if ad ∈ R
× and ||cad|| = ||c|| · |ad|| for all c ∈ R.

Remark 6.8: Let g be regular of pseudodegree d and let 0 6= q ∈ R{z} of pseudodegree l.

Then qg is of pseudodegree d+ l ≥ d and ||qg|| = ||q|| · ||g||.

Indeed, let g =
∑∞

n=0 anz
n and q =

∑∞
n=0 cnz

n and let l be the pseudodegree of

q. Then ||qg|| ≤ ||q|| · ||g||, but, by Remark ? (if ||a|| < ||b|| then ||a + b|| = ||b||), the

norm of the coefficient of zd+l in qg is ||clad|| = ||cl|| · ||ad|| = ||q|| · ||g||.

Theorem 6.9 (Weierstrass Division Theorem): Let f ∈ R{z} and let g ∈ R{z} be

regular of pseudodegree d. Then there are unique q ∈ R{z} and r ∈ R[z] such that

f = qg + r and deg r < d. Moreover,

(1) ||qg|| = ||q|| · ||g|| ≤ ||f || and ||r|| ≤ ||f ||.

Proof: Write g as g =
∑∞

n=0 anz
n ∈ R{z}.

Part I: Estimates (1). Assume that f = qg + r, where deg r < d. If q = 0, then

(1) is clear. Assume that q 6= 0. By Remark 6.8, ||qg|| = ||q|| · ||g|| and qg is of

pseudodegree m ≥ d. In particular, ||q|| · ||g|| is the norm of the coefficient of zm in
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qg. This coefficient is also the coefficient of zm in f = qg + r, since deg r < d ≤ m.

Therefore ||q|| · ||g|| ≤ ||f ||. It follows that ||r|| = ||f − qg|| ≤ max(||f ||, ||qg||)≤ ||f ||.

Part II: Uniqueness. Assume that f = qg + r = q′g + r′, where deg r, deg r′ < d.

Then 0 = (q − q′)g + (r − r′). By Part I, ||q − q′|| = ||r − r′|| = 0. Hence q = q′ and

r = r′.

Part III: Existence if g is a polynomial of degree d. Write f as
∑∞

n=0 bnz
n. For

each m ≥ 0 let fm =
∑m

n=0 bnz
n ∈ R[z]. As g is regular of pseudodegree d, its

leading coefficient is invertible. Euclid’s algorithm for polynomials over R produces

qm, rm ∈ R[z] such that fm = qmg + rm and deg rm < deg g. Thus for all k,m we have

fm − fk = (qm − qk)g+ (rm − rk). By Part I, ||qm − qk|| · ||g||, ||rm− rk|| ≤ ||fm − fk||.

Thus {qm}
∞
m=0 and {rm}

∞
m=0 are Cauchy sequences in R{z}, and hence they converge

to q ∈ R{z} and r ∈ R[z] with deg r < d. Clearly f = qg + r.

Part IV: Existence for arbitrary g. If g =
∑∞

n=0 anz
n, put g0 =

∑d
n=0 anz

n ∈ R[z].

Then ||g − g0|| < ||g||. By Part III with g0 and f there are q0 ∈ R{z} and r0 ∈ R[z]

such that f = q0g0 + r0 and deg r0 < d. By Part I, ||q0|| ≤
||f ||
||g||

and ||r0|| ≤ ||f ||. Thus

f = q0g + r0 + f1, where f1 = −q0(g − g0), and ||f1|| ≤
||g−g0||

||g|| · ||f ||.

Put f0 = f . By induction we get, for each k ≥ 0, elements fk, qk ∈ R{z} and

rk ∈ R[z] such that deg r < d and

fk = qkg + rk + fk+1, ||qk|| ≤
||fk||

||g||
, ||rk|| ≤ ||fk||, and ||fk+1|| ≤

||g − g0||

||g||
||fk||.

It follows that ||fk|| → 0, whence also ||qk||, ||rk|| → 0. Therefore q =
∑∞

k=0 qk ∈ R{z}

and r =
∑∞

k=0 rk ∈ R[z]. Clearly f = qg + r and deg r < d.

Theorem 6.10 (Weierstrass Preparation Theorem): Let f ∈ Tn(k) have norm 1. Then

there exists a norm-preserving k-algebra automorphism σ of Tn(k) such that σ(f) is

regular in zn.

Proof: Let e1, . . . , en−1 ∈ N. Define σ by

z1 7→ z1 + ze1
n , . . . , zn−1 7→ zn−1 + zen−1

n , zn 7→ zn.
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that is, if g =
∑

α aαz
α, then σ(g) =

∑

α aασ(zα), where

σ(zα) = (z1 + ze1
n ) · · · (zn−1 + zen−1

n )zn.

This is a well defined continuous homomorphism Tn(k) → Tn(k). Indeed, ||σ(zα)|| ≤

||zα||. Hence for each g =
∑

α aαz
α ∈ Tn(k) the series

∑

α aασ(zα) converges, whence

σ(g) ∈ Tn(k). Moreover, ||σ(g)|| ≤ ||g||. The inverse of σ is given by replacing + with

− in the definition of σ.

We claim that σ(f) is regular in zn for suitable e1, . . . , en−1 ∈ N.

Indeed, write f =
∑

α cαz
α. The set Λ = {α ∈ Nn

0 | cα 6= 0} is finite. We have

σ(f) =
∑

α∈Λ

cα(z1 + ze1
n )α1 · · · (zn−1 + zen−1

n )αn−1zαn
n

=
∑

α∈Λ

cα
(
ze1α1+···+en−1αn−1+αn
n + . . .

)

where the other monomials with coefficient cα are of degree in zn strictly smaller than

e1α1 + · · · + en−1αn−1 + αn. Thus if the degrees e1α1 + · · · + en−1αn−1 + αn of the

‘leading’ monomials are distinct for distinct α ∈ Λ, these monomials will not cancel

each other, and one of them will be with the maximal degree.

To achieve it, take ei = ei with e > αj for all j and all α ∈ Λ. (The above

degrees are then e-adic expansions of natural numbers; the sequences of digits in these

expansions are distinct, hence the numbers are distinct.)

Theorem 6.13: The ring Tn is noetherian (every ideal of Tn is finitely generated).

Proof: By induction on n. Suppose Tn−1 is noetherian. Then so is the ring of polyno-

mials Tn−1[zn]. Let I be a non-zero ideal of Tn. Then there is f ∈ I such that ||f || = 1.

By the Preparation we may assume that f is regular in zn, say, of degree d. By the

Division each g ∈ I is of the form g = qf+r, where q ∈ Tn and r ∈ Tn−1[zn]∩I. Thus I

is generated by f and the finitely many generators of the ideal Tn−1[zn]∩ I of Tn−1[zn].

Lemma 6.14: Let f ∈ Tn be regular in zn of pseudodegree d. Then f = qg, where

g ∈ (Tn)× and g ∈ Tn−1[zn] is monic of degree d and norm 1 (and hence also regular in

zn of degree d).
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Proof: The Division gives q ∈ Tn and r ∈ Tn−1[zn] such that zd
n = fq + r; moreover

degzn
r < d and ||r|| ≤ ||zd

n|| = 1. Hence zd
n − r is also regular of degree d, and so we

may perform another division: f = q′(zd
n − r) + r′. This gives f = qq′f + r′. But also

f = 1f + 0. The uniqueness of division by f gives qq′ = 1 and r′ = 0. Thus f = q′g,

where q′ is a unit and g = zd
n − r ∈ Tn−1[zn] is monic with norm 1.

Lemma 6.15: Let f, g ∈ Tn−1[zn], and g be monic of norm 1. Then g|f in Tn−1[zn] if

and only if g|f in Tn.

Proof: The division with reminder in Tn−1[zn] gives f = qg + r, with q, r ∈ Tn−1[zn]

and deg r < d. But q ∈ Tn and g is regular in zn. Thus if g|f in Tn, by the uniqueness

of the division in Tn we must have r = 0. Therefore g|f in Tn−1[zn]. The converse is

trivial.

Lemma 6.16: Let g ∈ Tn−1[z] be monic of norm 1. Then g is irreducible in Tn−1[zn] if

and only if g is irreducible in Tn.

Proof: An element of a ring is invertible if and only if it divides 1 in that ring, Thus

by Lemma 6.15, a monic polynomial of norm 1 in Tn−1[zn] is invertible in Tn−1[zn] if

and only if it is invertible in Tn.

Suppose g is reducible in Tn−1[zn], that is, g = g1g2, where g1, g2 ∈ Tn−1[zn] are

not invertible. Wlog g1, g2 are monic, whence ||g1||, ||g2|| ≥ 1. But ||g1||·||g2|| = ||g|| = 1,

so ||g1|| = ||g2|| = 1. By the preceding paragraph g1, g2 are not invertible in Tn. Thus

g is reducible in Tn.

Conversely, suppose g is reducible in Tn, that is, g = g1g2, where g1, g2 ∈ Tn are

not invertible. We may assume that ||g1|| = ||g2|| = 1. By Exercise 6.12, g1, g2 are

regular in zn. By Lemma 6.14 we may assume that g1 is monic in Tn−1[zn]. Division

with remainder in Tn−1[zn] gives g = g1q + r with q, r ∈ Tn−1[zn] and deg r < deg g1.

By the uniqueness of division in Tn we have q = g2 and r = 0. Thus g2 ∈ Tn−1[zn]. As

g = g1g2, also g2 is monic. By the first paragraph of this proof g1, g2 are not invertible

in Tn−1[zn]. Thus g is reducible in Tn−1[zn].

Theorem 6.17: The ring Tn is a unique factorization domain.
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Proof: By induction on n. Suppose Tn−1 is a UFD. Then so is the ring of polynomials

Tn−1[zn] [Lang, Algebra, Theorem IV.2.3].

Let 0 6= f ∈ Tn. We want to show that f is a product of irreducibles, unique up

to invertibles. Without loss of generality ||f || = 1. By the Preparation we may assume

that f is regular in zn, say, of pseudodegree d. By Lemma 6.14 we may assume that

f ∈ Tn−1[zn] is monic of degree d and norm 1.

Write f = g1 · · · gr, where gi ∈ Tn−1[zn] are irreducible. Then their leading

coefficients must be invertible. So wlog they are monic. Thus ||gi|| ≥ 1. As f = g1 · · · gr,

we have ||gi|| = 1. By Lemma 6.16, the gi are irreducible in Tn.

To show the uniqueness of the product, let g ∈ Tn be irreducible, g|f in Tn. By

Lemma 6.14 we may assume that g ∈ Tn−1[zn] is monic of norm 1. By Lemma 6.15,

g|f in Tn−1[zn]. Thus there is i such that g|gi in Tn−1[zn]. Therefore g = gi.

Theorem 6.18: Let I be an ideal of Tn. Then there exist an integer d ≤ n and a norm

preserving k-automorphism σ of Tn such that the composition Td → Tn
σ
−→Tn → T/I

is a finite injective morphism.

Proof: (a) By induction on n. The assertion is clear for n = 0. Assume n ≥ 1. If

I = 0, take d = n and let σ be the identity. So assume that I 6= 0.

By the Preparation there is a norm-preserving k-automorphism ρ of Tn such that

ρ−1(I) contains some f regular of degree m in zn. Put J = ρ−1(I)∩Tn−1. The canonical

morphism λ̄: Tn−1/J → Tn/ρ
−1(I) is injective. The division by f in Tn shows that

Tn/ρ
−1(I) = Tn−1{zn}/ρ

−1(I) is a finite Tn−1/J -module, generated by 1, zn, . . . , z
m−1
n .

Thus λ̄ is finite. The map ρ̄: Tn/ρ
−1(I)→ Tn/I induced from ρ is an isomorphism.

By the induction hypothesis there is d and a norm-preserving k-automorphism τ

of Tn−1 such that Td → Tn−1
τ
−→Tn−1 → Tn−1/J is a finite injective morphism. Extend
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τ to an automorphism of Tn by τ(zn) = zn.

Tn
τ // Tn

id // Tn
ρ //

��

Tn

��

Tn−1

OO

τ // Tn−1

OO

��
Td

OO

τ̄ // Tn−1/J
λ̄ // Tn/ρ

−1(I)
ρ̄ // Tn/I

Then ρ̄λ̄τ̄ : Td → Tn/I is an injective finite morphism. Hence σ = ρτ has the required

property.

Corollary 6.19: Let m be a maximal ideal of Tn. Then the field Tn/m is a finite

extension of k.

Proof: By Theorem 6.18 there is a subring Td of Tn/m over which Tn/m is finite. As

Tn/m is a field, so is Td [AM, Prop. 5.7]. It follows that d = 0 (for instance, z1 is not

invertible in Td) and hence Tn/m is a finite extension of T0 = k.

Definition 6.20: An affinoid algebra A over k is a k-algebra which is finite over Tn,

for some n. That is, there is a ring homomorphism Tn → A such that via it A is a finite

Tn-module. By Theorem 6.18 we may assume that Tn → A is injective. (A composition

of finite homomorphisms is finite.)

Theorem 6.21: An affinoid algebra is a noetherian ring.

Proof: By definition, an affinoid algebra is a finitely generated extension of some Tn,

which is noetherian by Theorem 6.13. Hence A is noetherian.

Corollary 6.22: Let A be an affinoid algebra, and suppose A is a Banach algebra

with respect to some norm on A. Let I ≤ A be an ideal. Then

(a) I is closed with respect to the norm.

(b) The norm on A induces a norm on A/I such that A/I is a Banach algebra with

respect to it.

Proof: (a) This is Theorem 2.5.
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(b) Put E = A/I. Define norm on E by ||e||E = inf{||f || | ϕ(f) = e}. We check

that this is a norm: Suppose ||e||E = 0. Then there is {fi}
∞
i=0 ⊆ A such that ϕ(fi) = e

and ||fi|| → 0. Thus f0 − fi ∈ I and f − fi → f0. But I is closed by (a), hence f0 ∈ I.

Thus e = ϕ(f0) = 0.

Clearly ||αe|| = α| · ||e||E, for every α ∈ k. Let e, e′ ∈ E. Let f, f ′ ∈ A such that

ϕ(f) = e, ϕ(f ′) = e′. Then ||ee′||E ≤ ||ff
′|| ≤ ||f || · ||f ′||. Taking infimum on the right

handed side, ||ee′||E ≤ ||e|| · ||e
′||.

In particular (e = e′ = 1), ||1||E ≥ 1. But ||1||E ≤ ||1|| = 1. So ||1||E = 1.

To show that ||e + e′|| ≤ max(||e||, ||e′||), use that for A,B ⊆ [0,∞) we have

infa∈A,b∈B max(a, b) = max(inf(A), inf(B)).

Exercise 6.23: Let g ∈ Tn−1[zn] be monic of norm 1. Then Tn−1[zn]/gTn−1[zn] →

Tn/gTn is an isomorphism.

Theorem 6.24: Let E be an affinoid algebra. Then E ∼= Tn/I for some n and for some

ideal I ≤ E.

Proof: (a) By the definition there exists a finite homomorphism ϕ: Td → E. Thus

E = Td[ed+1, . . . , en], (by abuse of notation we write Td instead of ϕ(Td)) and each ei

is integral over Td, that is, satisfies some monic gi(X) ∈ Td[X].

Fix i. Say, gi = Xm + a1X
m−1 + . . .+ am, with aj ∈ Td. We may assume that

max ||aj|| ≤ 1, otherwise replace ei by αei, where α ∈ k× with |α| sufficiently small.

(Then αei satisfies Xm + αa1X
m−1 + . . .+ αmam.)

Claim: We can extend ϕ to a homomorphism ϕ: Tn → E such that ϕ(zi) = ei. Indeed,

by induction on i suppose we have already extended ϕ to ϕ: Ti−1 → E. Extend it to

ϕ: Ti−1[zi] → E by ϕ(zi) = ei. Then gi(zi) ∈ Ti−1[zi] and ϕ(gi(zi)) = 0. Hence ϕ

factors into Ti−1[zi]→ Ti−1[zi]/giTi−1[zi]→ E. By the preceding paragraph, ||gi|| = 1.

By Exercise 6.23 we may replace the first map by Ti → Ti/giTi and thus extend ϕ to

Ti.

As the image of ϕ contains the generators of E over Td, ϕ is surjective. Let

I = ker(ϕ); then E ∼= Tn/I. It is easy to see that E is complete.
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Theorem 6.25: Let (Ai, || ||i), for i = 1, 2, be two affinoid algebras, which are Banach

k-algebras w.r.t. their respective norms. Let u: A1 → A2 be a homomorphism of k-

algebras. Then u is continuous. In particular, all norms on an affinoid algebra which

make it into a Banach k-algebra are equivalent.

Proof: By Corollary 2.3 we have to show that the graph {(x, u(x)) | x ∈ A1} is closed

in A1 × A2. That is, if (xi, u(xi))→ (x, y) ∈ A1 × A2, then y = u(x). Replacing xi by

xi − x and y by y − u(x) we have to prove: if limxi = 0 and limu(xi) = y ∈ A2, then

y = 0.

Let I2 ≤ A2 be an ideal such that dimk A2/I2 < ∞. Let I1 = Ker(A1 → A2 →

A2/I2). Then

A1
u //

π1

��

A2

π2

��
A1/I1

ū // A2/I2

commutes, with ū an embedding. So also dimk A1/I1 <∞.

By Theorem 6.18, Ai/IiAi are affinoid algebras and by Corollary 6.22, they are

Banach algebras, wrt the induced norms. The norm of A2/I2A2 restricts via ū to

another norm on A1/IiA1. By Theorem 2.14 these two norms are equivalent. Thus ū

is continuous. Therefore π2 ◦ u = ū ◦ π1 is continuous. Thus π2(y) = 0, that is, y ∈ I2.

It remains to show that
⋂

dimk A/I<∞ I = 0.

Let M ≤ A be a maximal ideal. By Theorem 6.24 there is an epimorphism

π: Tn → A; As π−1(M) ≤ Tn is maximal and Tn/π
−1(M) ∼= A/M , by Corollary 6.19,

dimk A/M <∞. Moreover, dimk A/M
n <∞ for every n ≥ 1. (Indeed, by induction on

n, using the short exact sequence 0→Mn−1/Mn → A/Mn → A/Mn−1 → 0, it suffices

to show that dimk M
n−1/Mn < ∞. As A is noetherian, the A-ideal Mn−1 is a finite

A-module; hence Mn−1/Mn is a finite A/M -module. But A/M is a finite k-module, so

Mn−1/Mn is a finite k-module.)

Assume there is 0 6= y ∈
⋂

M

⋂

nM
n. Put J = {a ∈ A | ay = 0}. This is a a

proper ideal of A. Hence there is a maximal M ≤ A such that J ⊆ M . Thus every

s ∈ ArM satisfies sy 6= 0. This means that y
1 ∈ AM is not zero. Furthermore,
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y
1 ∈ MnAM = (MAM)n. But by Krull’s Theorem, (in noetherian ring A we have
⋂

n rad(A)n = 0)
⋂

n(MAM )n = 0. A contradiction.
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7. Affinoid spaces

Definition 7.1: An affinoid space is the set X = Sp(A) of the maximal ideals of

an affinoid algebra A. For each x ∈ X the field A/x is a finite extension of k by

Corollary 6.19. The valuation | | of k uniquely extends to A/x. For f ∈ A put f(x)

to be the image of f in A/x under the quotient map A→ A/x. Define topology on A:

generated by {x ∈ X | |f(x)| ≤ 1}. Put ||f ||sp = supx∈X |f(x)|. Define

Ao = {f ∈ A | ||f ||sp ≤ 1} Aoo = {f ∈ A | ||f ||sp < 1}.

Lemma 7.2: Let || || be a norm on A. Then ||f ||sp ≤ ||f || for every f ∈ A.

Proof: It suffices to prove: |f(x)| ≤ ||f || for every f ∈ A and every x ∈ X. Fixing

x, it suffices to prove: |f(x)| ≤ ||g|| for every g ∈ A such that f(x) = g(x). That is,

|a| ≤ ||a|| for every a ∈ A/x, where || || is the induced norm on A/x.

There is C > 0 such that C|b| ≤ ||b|| for every b ∈ A/x. In particular, C|a|m =

C|am| ≤ ||am|| ≤ ||a||m. Thus C1/m|a| ≤ ||a||. Taking limit, |a| ≤ ||a||.

Remark 7.3: The map || ||sp is a semi-norm, called the spectral semi-norm. It is a

norm if and only if the intersection of all maximal ideals of A is 0.

Example 7.4: Let A be an affinoid algebra. Let k̃ be an algebraic closure of k. Every

x ∈ Sp(A) defines a homomorphism (necessarily continuous, by Theorem 6.25) u: A→

k̃, whose image is a finite extension A/x of k. Two such homomorphisms u1, u2 are

equivalent if they have the same kernel, i.e., there is a k-isomorphism θ: u1(A)→ u2(A)

such that u2 = θ ◦ u1. Thus elements of Sp(A) correspond to equivalence classes of

k-algebra homomorphisms u: A→ k̃ with image finite over k. (If k = K is algebraically

closed, each equivalence class contains a unique homomorphism.)

In particular, for A = Tn, each such u: Tn → k̃ defines (x1, . . . , xn) ∈ k̃n by

xi = u(zi). The continuity of u implies that |xi| ≤ 1 (for every a ∈ k̃ with |a| < 1 the

Cauchy series
∑∞

j=1 a
jzj

i is mapped into a Cauchy series
∑∞

j=1 a
jxj

i , so |a| · |xi| < 1).

Conversely, every such (x1, . . . , xn) ∈ k̃n defines a homomorphism u: Tn → k̃ with image
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finite over k. Thus Sp(Tn) = Dn = {x = (x1, . . . , xn) ∈ k̃n | |xi| ≤ 1}/ ∼=. If k = K is

algebraically closed, then Sp(Tn) = Dn = {x = (x1, . . . , xn) ∈ k̃n | |xi| ≤ 1}.

Lemma 7.5: The spectral norm on Tn coincides with the standard norm. Moreover,

for every f ∈ Tn there is x ∈ Sp(Tn) such that ||f || = |f(x)|.

Proof: By Lemma 7.2, ||f ||sp ≤ ||f || for every f ∈ Tn. So we only have to prove

the second assertion. Wlog ||f || = 1. Hence f̄ ∈ k̄[z1, . . . , zn] is not zero. So there

are x̄1, . . . , x̄n in the algebraic closure of k̄ such that f̄(x̄1, . . . , x̄n) 6= 0. Lift them

to x1, . . . , xn ∈ k̄ with |xi| ≤ 1. (For instance, first lift x̄i to xi ∈ Ko, where K is

the completion of k̄, and then, as k̄ is dense in K, replace xi by a sufficiently close

element of k̄.) There is a finite extension l of k such that x1, . . . , xn ∈ l
o. The k-map

Tn → l defined by zi 7→ xi is a continuous epimorphism. Its kernel x ∈ Sp(Tn) satisfies

|f(x)| = 1.

Exercise 7.6: Let A be an affinoid algebra. Let f ∈ A. TFAE:

(a) inf{|f(x)| | x ∈ Sp(A)} > 0;

(b) f(x) 6= 0 for all x ∈ Sp(A);

(c) f ∈ A×;

Example 7.7: Let k = K be algebraically closed. We have defined a connected affinoid

in P as the complement F of a union of disjoint disks in P. We now show that O(F ) is

an affinoid algebra and that Sp(O(F )) = F .

To make notation easier assume that ∞ ∈ F . Thus F c =
⋃
· n

i=1{a ∈ P | |a− ai| <

|πi|}, with ai, πi ∈ K. Define ϕ: F → (Ko)n by

ϕ(a) = (
π1

a− a1
, . . . ,

πn

a− an
).

It is an injection and

ϕ(F ) = {(x1, . . . , xn) ∈ (Ko)n |
πi

xi
+ ai =

πj

xj
+ aj for i 6= j}

= {(x1, . . . , xn) ∈ (Ko)n | πixj − πjxi + (ai − aj)xixj = 0 for i 6= j}

= {(x1, . . . , xn) ∈ (Ko)n |
πi

ai − aj
xj +

πj

aj − ai
xi + xixj = 0 for i 6= j}
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Let I be the ideal of Tn generated by

Eij =
πi

ai − aj
zj +

πj

aj − ai
zi + zizj ∈ Tn = K〈z1, . . . , zn〉, for i 6= j}.

and put A = Tn/I. Then A is an affinoid algebra and Sp(A) can be identified with

ϕ(F ). We show that there is an isomorphism ψ: A→ O(F ) such that ϕ = Sp(ψ).

Since O(F ) is a Banach algebra with respect to the ‘supremum’ norm || ||F and

|| πi

z−ai
||F ≤ 1, the map zi 7→

πi

z−ai
extends to a unique homomorphism ψ̂: Tn → O(F )

such that ||ψ̂(f)||F ≤ ||f || for every f ∈ Tn. Obviously ψ̂(Eij) = 0, hence ψ̂ induces

a homomorphism ψA → O(F ) such that ||ψ(f)||F ≤ ||f ||A for every f ∈ A (in the

infimum norm on A). Using the Eij it is easy to see that every f ∈ Tn is of the form

f = f0 + a +
∑n

i=1

∑∞
m=1 ai,mz

m
i , where f0 ∈ I and a, ai,m ∈ K with limm ai,m = 0.

By the Mittag-Leffler decomposition in O(F ) we see that ψ̂ is surjective, its kernel is I,

and for every g ∈ O(F ) there is a preimage f ∈ Tn such that ||f || = ||g||F . Thus ψ is

an isometric isomorphism.

The above identification allows to give a different proof of ?

Theorem 7.8: Let F be a connected affinoid in P. Then O(F ) is a principal ideal

domain. In particular, every 0 6= f ∈ O(F ) has only finitely many zeroes.
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8. Spectral norm

Lemma 8.1: Let K be an algebraically closed complete field. Let P (X) = Xn +

a1X
n−1 + · · · + an ∈ K[X] and let α1, . . . , αn ∈ K be its roots. Then maxj |αj| =

maxi |ai|
1/i.

Proof: We have

P (X) = Xn + a1X
n−1 + · · ·+ an = (X − α1) · · · (X − αn).

Wlog |α1| ≥ |αi| for all i. Substitute X = α1Y . Then α−n
1 P (α1Y ) is

Y n +
a1

α1
Y n−1 + · · ·+

an

αn
1

= (Y − 1)(Y −
α2

α1
) · · · (Y −

αn

α1
).

The right handed side is in Ko[Y ]. Hence | ai

αi
1
| ≤ 1 for each i. We must have | ai

αi
1
| = 1

for some i, otherwise modulo Koo the left handed side of the above displayed equation

would be Y n and the right handed side would have root 1, a contradiction.

Proposition 8.2: Let A be an affinoid algebra without zero-divisors and let Td → A

be a finite monomorphism. Then every f ∈ A satisfies a monic irreducible P = Xn +

a1X
n−1 + · · ·+an ∈ Td[X]. We have ||f ||sp = maxi ||ai||

1/i
sp and there is x ∈ Sp(A) with

|f(x)| = maxi ||ai||
1/i
sp . (We can write || || instead of || ||sp, by Lemma 7.5.)

Proof: The map Td → A is an inclusion of integral domains. Let P (X) be the monic

irreducible polynomial of f ∈ A over the quotient field of Td. But Td is a unique

factorization domain, hence integrally closed, [L, Prop. VII.1.7], hence P (X) ∈ Td[X]

[L, Cor. VII.1.6]. Division with remainder gives that Td[f ] ∼= Td[X]/(P (X)).

Let x ∈ Sp(A) (a maximal ideal of A). As A/Td is integral, y = x ∩ Td is a

maximal ideal of Td [AM, 5.8], that is, y ∈ Sp(Td). Thus k ⊆ Td/y ⊆ A/x. There is a

complete algebraically closed field K such that A/x ⊆ K. As P (f) = 0, f(x) is a root

of Xn + a1(y)X
n−1 + · · ·+ an(y) ∈ K[X]. By Lemma 8.1,

|f(x)| ≤ max
i
|ai(y)|

1/i ≤ max
i
||ai||

1/i
sp .

In particular, ||f ||sp ≤ maxi ||ai||
1/i
sp . So we only have to find x ∈ Sp(A) such that

|f(x)| ≥ maxi ||ai||
1/i
sp .
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Choose i which attains the maximum on the right handed side. By Lemma 7.5

there is y ∈ Sp(Td) with |ai(y)| = ||ai||sp. Let K be a complete algebraically closed

field such that Td/y ⊆ K. By Lemma 8.1 there is a root λ ∈ K of Xn + a1(y)X
n−1 +

· · ·+ an(y) ∈ K[X] such that |λ| ≥ |ai(y)|
1/i. So it suffices to find x ∈ Sp(A) such that

f(x) = λ.

As Td[f ] ∼= Td[X]/(P (X)), we may extend the homomorphism Td → Td/y to

u: Td[f ] → K such that u(f) = λ. The image u(Td[f ]) = Td/y[λ] is a field, because

Td/y is a field. Hence Ker(u) is a maximal ideal of Td[f ]. As A is integral over Td and

hence also over Td[f ], there is x ∈ Sp(A) lying over Ker(u) [AM, 5.10 and 5.8]. Then

f(x) = λ.

Exercise 8.3: Let u: A→ B be an epimorphism of affinoid algebras. Then ||u(f)||sp ≤

||f ||sp for every f ∈ A.

Proof: Let y ∈ Sp(B). Then x = u−1(y) ∈ Sp(A) and (u(f))(y) = f(x). Therefore

||u(f)||sp = supx∈u−1(Sp(A)) |f(x)| ≤ supx∈Sp(A) |f(x)| = ||f ||sp.

Let A be a commutative ring with unity. Recall that the nilradical nil(A) = {f ∈

A | (∃n ∈ N)fn = 0} is an ideal of A. It is the intersection of all prime ideals of A, and

hence the intersection of all minimal prime ideals of A. If A is noetherian, there are

only finitely many minimal prime ideals of A. Always nil(A) ⊆ rad(A), the intersection

of the maximal ideals of A. We say that A is reduced if nil(A) = 0.

Corollary 8.4: Let A be an affinoid algebra. Then nil(A) = rad(A). If A is reduced,

then || ||sp is a norm.

Proof: We have rad(A) = {f ∈ A | ||f||sp = 0}. So the second assertion follows from

the first one.

Let f ∈ rad(A), that is, ||f ||sp = 0.

Suppose first that A has no zero-divisors. By Theorem 6.18 there exists a finite

monomorphism Td → A. By Proposition 8.2, f satisfies a monic irreducible P (X) ∈

Td[X] whose coefficients, except for the leading one, are 0. Thus P = X, and hence

f = 0. Therefore rad(A) = 0.
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In the general case let P be a prime ideal of A. Then A/P is an affinoid algebra

with no zero-divisors. Let f̄ be the image of f in A/P. By Exercise 8.3, ||f̄ ||sp ≤ ||f ||sp =

0. Hence by the previous case f̄ = 0. Thus f ∈ P. Therefore f ∈
⋂
P = nil(A).

Proposition 8.5: Let A be an affinoid algebra. Let ϕ: Td → A be a finite monomor-

phism. Then

(a) ϕ(T 0
d ) ⊆ Ao.

(b) Ao is integral over T o
d .

Proof: (a) By a home exercise, ||f ||sp = ||ϕ(f)||sp. Thus ϕ(T 0
d ) ⊆ Ao.

(b) Let f ∈ Ao. We want to find a monic P (X) ∈ T o
d [X] such that P (f) = 0.

If A has no zero divisors, the irreducible polynomial P (X) of f over Td has coef-

ficients in T o
d , by Proposition 8.2.

In the general case let P1, . . . ,Ps be the minimal prime ideals in A.

Fix 1 ≤ i ≤ s. Let Ai = A/Pi, let πi: A→ Ai be the quotient map, and put fi =

πi(f). Then Ai is without zero-divisors. By Exercise 8.3, fi ∈ A
o
i . Let Qi = Ker(πi ◦ϕ).

Then ϕ induces a finite monomorphism ϕ̄: Td/Qi → Ai. By Theorem 6.18, there is c ≤ d

and a norm-preserving automorphism σ of Td such that σ̄: Tc → Td
σ
−→Td → Td/Qi is a

finite monomorphism. The composition ϕ̄σ̄ a finite monomorphism Tc → Ai.

Td
σ // Td

ϕ //

��

A

πi

��
Tc

OO

σ̄ // Td/Qi
ϕ̄ // Ai

By the above special case there is a monic P̂i(X) ∈ T o
c [X] such that P̂i(fi) = 0. Since

the spectral norms on Tc, Td are the standard norms and σ preserves the latter, Pi(X) =

σ(P̂i) ∈ T
o
d [X]. Moreover, Pi is monic and Pi(fi) = 0. Thus Pi(f) ∈ Pi.

Put P (X) =
∏s

i=1 Pi(X). Then P ∈ T o
d [X] is monic and P (f) ∈

⋂

i Pi. Therefore

P (f) is nilpotent. So for a suitable m ≥ 1 we have Pm(f) = 0.

Corollary 8.6: Let A be an affinoid algebra with a norm || || which makes it a Banach

algebra. Then Ao = {f ∈ A | supn≥0 ||f
n|| <∞}.

Proof: Let f ∈ A.
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Suppose N = supn≥0 ||f
n|| <∞. Let x ∈ Sp(A). Then for every n ≥ 1, |f(x)n =

|fn(x)| ≤ ||fn||sp ≤ ||f
n|| ≤ N , whence |f(x)| ≤ 1. Therefore ||f ||sp ≤ 1, whence

f ∈ Ao.

Conversely, suppose f ∈ Ao. There is a finite monomorphism Td → A. By

Theorem 8.5(b), f is integral over T o
d . Thus fn =

∑n−1
i=0 aif

i with ai ∈ T o
d . By

induction, fm =
∑n−1

i=0 bif
i where bi ∈ T

o
d . As Td → A is continuous (Theorem 6.25),

there is C > 0 such that ||bi|| ≤ C||bi||Td
. But ||bi||Td

= ||bi||sp, by Lemma 7.5, and

||bi||sp ≤ 1, hence ||bi|| ≤ C. Thus ||fm|| ≤ maxn−1
i=0 C||f

i|| is bounded.

Corollary 8.7: Let A be an affinoid algebra with a norm || || which makes it a Banach

algebra. Then ||f ||sp = limn→∞ ||f
n||1/n.

Proof: By a home exercise, ||f ||nsp = ||fn||sp. Hence by Lemma 7.2, ||f ||nsp = ||fn||sp ≤

||fn||, whence ||f ||sp ≤ ||f
n||1/n. It now suffices to show that lim sup ||fn||1/n ≤ ||f ||sp.

Choose a ∈ k such that |a| > 1. Let s ∈ Z and m ∈ N such that ||f ||sp ≤ |a|
s
m .

Then ||f ||msp ≤ |a|
s, hence || 1

as f
m||sp ≤ 1, whence by Corollary 8.6 there is C ′ > 0 such

that || 1
asq f

mq|| ≤ C ′ for every q ∈ N. In particular, if n ∈ N, write it as n = mq + r

with q, r ∈ N and 0 ≤ r < m. Then sq = s
mn−

sr
m , and hence

||fn|| ≤ ||fmq|| · ||f r|| ≤ C ′|a|sq||f r|| ≤ C ′ ||f
r||

|a|
sr
m

(
|a|

s
m

)n

Let C be the maximum of C ′ ||f
r||

|a|
sr
m

over the finitely many choices of r, s. Then ||fn|| ≤

C
(
|a|

s
m

)n
. Thus lim sup ||fn||1/n ≤ |a|

s
m .

Exercise 8.8: Let ϕ: A → B be a homomorphism of affinoid algebras over k. Put

C = A〈X1, . . . , Xs〉. Let b1, . . . , bs ∈ B. Then there exists a homomorphism of k-

algebras ψ: C → B extending ϕ such that ψ(Xi) = bi for each i if and only if ||bi||sp ≤ 1

for each i. If ψ exists, it is unique and continuous.

Lemma 8.9: Let T be an integral domain, E its quotient field, V a vector space over

E, and A,B ⊆ V finitely generated T -modules. Let AE , BE be the E-vector spaces

generated by A,B. If AE ⊆ BE, then there is 0 6= t ∈ T such that tA ⊆ B.

Proof: Suppose that A =
∑m

i=1 Tαi and B =
∑n

j=1 Tβj . For each i there are tij , 0 6=
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t′ij ∈ T such that αi =
∑n

j=1

t′ij

tij
βj . Put t =

∏

i

∏

j tij . Then 0 6= t ∈ T and and t
tij
∈ T

for all i, j. Hence tαi =
∑

j t
′
ij

t
tij
βj ∈

∑n
j=1 Tβj = B, for all i, whence tA ⊆ B.

Lemma 8.10: Let A be an affinoid algebra without zero-divisors and let Td → A be a

finite morphism. Then ||fα||sp = ||f || · ||α||sp for all f ∈ Td and α ∈ A. (Recall that

||f ||sp = ||f || and the norm on Td is multiplicative.)

Proof: Let Xn + a1X
n−1 + · · ·+ an ∈ Td[X] be the irreducible polynomial of α ∈ A

over the quotient field E of Td. Then Xn +a1X
n−1 + · · ·+an ∈ Td[X] is the irreducible

polynomial of fα over E. Hence by Proposition 8.2

||fα||sp = max
i
||f i

iai||
1/i = max

i
||f i

i ||
1/i · ||ai||

1/i = ||f ||max
i
||ai||

1/i = ||f ||||α||sp.

Lemma 8.11: Let l/k be a finite extension of complete fields, and let q ∈ N. Then

T ′ = l〈z
1/q
1 , . . . , z

1/q
d 〉 is a finite extension of Td = k〈z1, . . . , zd〉.

Proof: Let β1, . . . , βm be a basis of l over k. We show that

T ′ =
m∑

i=1

n∑

j=1

q−1
∑

µ1=0

· · ·

q−1
∑

µn=0

Td(βiz
µ1/q
1 · · · zµn/q

n ).

Let f =
∑

α aα

(
z
1/q
1

)α1 · · ·
(
z
1/q
n

)αn ∈ T ′, with aα ∈ l such that aα → 0. Then each

aα ∈ l can be uniquely written as

aα =
m∑

i=1

aα,iβi, aα,i ∈ k.

We have seen that aα → 0 implies aα,i → 0 for each i. Therefore f =
∑m

i=1 fiβi, where

fi =
∑

α

aα,i

(
z
1/q
1

)α1 · · ·
(
z1/q
n

)αn
, i = 1, . . . ,m

are well defined elements of T ′. But

fi =
∑

0≤µ1,...,µn<q

∑

α
αj≡µj (mod q)

aα,i

(
z
1/q
1

)α1 · · ·
(
z1/q
n

)αn

=
∑

0≤µ1,...,µn<q

(
∑

α

αj≡µj (mod q)

aα,i

(
z
1/q
1

)α1−µ1 · · ·
(
z1/q
n

)αn−µn

)

z
µ1/q
1 · · · zµn/q

n

and the series in the brackets are elements of Td.
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Lemma 8.12: Let k be a complete field of characteristic p > 0 and assume that [k :

kp] < ∞. Let q be a power of p. Let T = k〈z1, . . . , zd〉 and T ′ = k1/q〈z
1/q
1 , . . . , z

1/q
d 〉.

Then T ′ = T 1/q.

Proof: (The equality takes places in some algebraically closed field K containing T ′

and hence also T .)

Let i ∈ N. The isomorphism k → kpi

given by a 7→ api

maps kp ⊆ k onto

kpi+1

→ kpi

, hence [kpi+1

: kpi

] < ∞. Therefore [k : kq] < ∞. Apply the inverse of the

isomorphism k → kq to get that [k1/q : k] <∞.

Claim: T ′ ⊆ T 1/q. Let f =
∑

α aαz
α1/q
1 · · · z

αn/q
n ∈ T ′. Then aα ∈ k

1/q and aα → 0.

Therefore aq
α ∈ k and aq

α → 0. It follows that f q =
∑q

α a
q
αz

α1
1 · · · z

αn
n ∈ T .

Claim: T 1/q ⊆ T ′. Let f ∈ T 1/q. Then f q ∈ T , hence f q =
∑

α aαz
α1
1 · · · z

αn
n , with

aα ∈ k and aα → 0. Then a
1/q
α ∈ k1/q and a

1/q
α → 0. Put g :=

∑

α a
1/q
α z

α1/q
1 · · · z

αn/q
n ∈

T ′. Then gq = f . Hence f ∈ T 1/q.

Theorem 8.13: The spectral norm on a reduced affinoid algebra A is equivalent to

any norm which makes A a Banach algebra.

Proof: Let || || be a norm on A such that A is a Banach k-algebra. We have to show

that there is C > 0 such that || || ≤ C|| ||sp. Since all Banach norms on an affinoid

algebra are equivalent, we actually have to show that A is complete with respect to

|| ||sp.

Part A: Reduction to an integral domain. Let P1, . . . ,Ps be the minimal prime ideals

of A. Each Ai = A/Pi is a Banach algebra with respect to the norm || ||i induced

from A (Corolllary 6.22). Assume that each Ai satisfies the assertion of the theorem.

Then so does Â = A1 × · · · × As with respect to the Banach norm || ||Â given by

||(a1, . . . , as)||Â = maxi ||ai||i. Indeed,

Sp(Â) =

s⋃

i=1

{A1 × · · · ×Ai−1 × x× Ai+1 × · · · × As | x ∈ Sp(Ai)},

and hence ||(a1, . . . , as)||sp = maxi ||ai||sp. If ||ai||i ≤ Ci||ai||sp, then ||(a1, . . . , as)||Â ≤

C||(a1, . . . , as)||sp, where C = maxiCi.
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As A is reduced, the canonical map ι: A→ Â is injective. Its image ι(A) is a closed

A-submodule of Â (Theorem 2.5), and hence Banach with respect to || ||Â. Therefore

it induces a Banach norm || ||ι on A by ||f ||ι = ||ι(f)||Â. By Theorem 6.25, || ||ι and

|| || are equivalent. On the other hand, the restriction of the spectral norm on Â to

A (via ι) is the spectral norm on A. (Indeed, every maximal ideal of Â restricts to a

maximal ideal of A, and every maximal ideal of A contains some Pi and hence extends

to a maximal ideal of Â.) Therefore the assertion for A follows from the assertion for

Â.

By Theorem 6.18 there is a finite monomorphism Td → A.

Part B: Reduction to: the quotient field Q(A) of A is a normal extension of the

quotient fieldQ(Td) of Td. Let L be a finite normal extension ofQ(Td) containingQ(A).

There are finitely many b1, . . . , bm ∈ L such that L = Q(A)[b1, . . . , bm]. Multiplying

them by a suitable element of A we may assume that b1, . . . , bm are integral over A.

Then B = A[b1, . . . , bm] is finite over A, and hence also over Td, and the qotient field of

B is L. If we can show that B is complete with respect to its spectral norm || ||, then

A is complete with respect to || ||, by Theorem 2.5. By a home exercise, the restriction

of || || to A is the spectral norm on A.

Part C: Reduction to: the quotient field Q(A) of A is a separable extension of the

quotient field Q(Td) of Td. If char(k) = 0, there is nothing to prove. If char(k) = p > 0,

we prove the theorem only in the case [k : kp] < ∞. Let M be the maximal purely

inseparable extension ofQ(Td) inQ(A). AsQ(A)/Q(Td) is normal, Q(A)/M is separable

[L, V.6.11].

There are β1, . . . , βm ∈ M such that M = Q(Td)[β1, . . . , βs]. Each βi is purely

inseparable over Q(Td) and hence there is a power qi of the characteristic p such that

βqi

i ∈ Q(Td). Take q = maxi qi. Then q is a power of p and M q ⊆ Q(Td), that is,

M ⊆ Q(Td)
1/q. By an exercise (to be written down later) Q(Td)

1/q = Q(T ′), where

T ′ = k1/q〈z
1/q
1 , . . . , z

1/q
d 〉.

is a finite extension of Td = k〈z1, . . . , zd〉. Let A′ be the compositum of T ′ and A (that

is, the smallest ring containing both T ′ and A) in the algebraic closure of Q(T ′). Then
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A′ is finite over T ′ (is generated by the finitely many generators of A over Td) and hence

over Td, whence also over A. We have the following commutative diagrams of rings and

their quotient fields

A // A′

Td

??
~

~
~

~
~

~
~

// T ′

OO Q(A) // Q(A′)

Q(Td) // M

OO

// Q(T ′)

OO

As Q(A)/M is separable and Q(A′) is the compositum of Q(A) and Q(T ′), the extension

Q(A′)/Q(T ′) is separable. If we can show that A′ is complete with respect to its spectral

norm || ||, then A is complete with respect to || ||, by Theorem 2.5. By a home exercise,

the restriction of || || to A is the spectral norm on A.

Part D: A basis of Q(A) over Q(Td). Choose a basis e1, . . . , er of Q(A) over Q(Td).

By Lemma 8.9 we may multiply each ei by some 0 6= fi ∈ Td to assume that fi(Tdei) ⊆

A, that is, fiei ∈ A. Replace ei by fiei to assume that e1, . . . , er ∈ A.

Notice that
∑s

i=1 Tdei is a free Td-module, contained in A. The standard norm

|| || on Td induces the ‘maximum’ norm on
∑s

i=1 fiei by ||
∑s

i=1 Tdei|| = maxi ||fi||. It

is easy to see that
∑s

i=1 Tdei is complete with respect to this norm.

Part E: The restriction of the spectral norm of A to
∑s

i=1 Tdei is equivalent to the

above maximum norm. To prove this, we will be using the trace Tr: Q(A) → Q(Td)

[L, ?]. This is a Q(Td)-linear operator, defined as follows: If the irreducible polynomial

of α ∈ Q(A) over Q(Td) is Xn + a1X
n−1 + · · ·+ an, then n divides r = [Q(A) : Q(Td)]

and

Tr(α) = −
r

n
a1.

In particular, if α ∈ A, then by Proposition 8.2, a1, . . . , an ∈ Td, and

(1) ||α||sp = max
i
||ai||

1/i ≥ ||a1|| ≥ ||

r
n

times
︷ ︸︸ ︷

a1 + · · ·+ a1 || = ||Tr(α)||.

Furthermore, as Q(A)/Q(Td) is separable, there is a basis e∗1, . . . , e
∗
r of Q(A) over Q(Td).

such that Tr(e∗jei) = δij . As in Part D, for each j there is 0 6= gj ∈ Td such that
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gje
∗
j ∈ A. Replace e∗j by gje

∗
j to assume that

(2) e∗1, . . . , e
∗
r ∈ A is a basis of Q(A) over Q(Td) and Tr(e∗jei) = δijgj ∈ Td.

Let f1, . . . , fr ∈ Td. Then

Tr(e∗j

r∑

i=1

fiei) =

r∑

i=1

fiTr(e∗jei) =

r∑

i=1

figjδij = gjfj ,

hence by (1)

||gj|| · ||fj|| = ||gjfj ||sp = ||Tr(e∗j

r∑

i=1

fiei)||sp ≤ ||e
∗
j

r∑

i=1

fiei||sp ≤ ||e
∗
j ||sp · ||

r∑

i=1

fiei||sp

whence

||
r∑

i=1

fiei|| = max
j
||fj|| ≤ max

j

( ||e∗j ||sp

||gj||

)
||

r∑

i=1

fiei||sp.

On the other hand,

||
r∑

i=1

fiei||sp ≤ max
i
||fi||sp||ei||sp ≤ (max

i
||ei||sp) max ||fi|| = (max

i
||ei||sp)|| · ||

r∑

i=1

fiei||.

Hence the two norms on
∑s

i=1 Tdei are equivalent.

Part F: End of the proof. Obviously,
∑s

i=1 Tdei is complete with respect to the

maximum norm. By the preceding part,
∑s

i=1 Tdei is complete with respect to the

spectral norm of A.

By Lemma 8.9, there is 0 6= f ∈ Td such that fA ⊆
∑s

i=1 Tdei. Therefore the

Td-submodule fA of A is complete (Theorem 2.5). But by Lemma 8.10, ||fα||sp =

||f ||sp · ||α||sp = ||f || · ||α||sp for every α ∈ A. Hence A is complete with respect to || ||sp.
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