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INTRODUCTION

Correlated mutation analysis (CMA) has been suggested as a tool for pre-

dicting physiologically relevant residue–residue interactions in proteins.1 This

analysis has become one of the most studied methods for sequence-based

structure prediction. The main goal of correlated mutations analysis is to

identify pairs of residues that coevolve more often than expected from a pair

of noninteracting residues in the protein. Coevolving residues may have either

functional or structural dependencies, which provide selective pressure in

favor of a mutation in one residue to compensate for a mutation in the other

residue. Indeed, the statistical analysis of Lahn and coworkers2 revealed that

interacting residues tend to coevolve.

Over nearly two decades, various methods were suggested for statistically

characterizing pairs of residue that have undergone correlated mutations.1,3–7

Some of the methods calculate the odds for correlated mutations based on

the probabilities for these mutations as defined by substitution matrices.1,3,7

Others give each amino acid replacement an equal importance.6 The low ac-

curacy of these basic methods led to some suggested improvements to achieve

higher accuracy.8–10 A major challenge in correlated mutations analysis is

dealing the phylogenetic history that introduces a significant amount of false-

positive predictions and several methods were suggested in an attempt to

reduce the phylogenetic noise.10–15 Despite the considerable increase in the

amount of relevant data from genome sequencing projects, ab initio contact

prediction still seems unreachable.

The main method of comparing different methods for sequence-based con-

tact prediction is based on protein contact-maps, two-dimensional matrices in

which each residue–residue interaction is marked and which can be viewed as

a low-resolution reflection of the 3D structure of the protein. Comparisons

between several methods on different data sets3,9,16 revealed that the method

developed by Valencia and coworkers1,17 more than a decade ago remains

one of the most accurate methods for contact map prediction. This method is

based on defining an exchange (similarities) matrix for each position in the

multiple sequence alignment (MSA) and calculating the Pearson correlation

coefficient between the exchange matrices at any two positions. The exchange

matrix dimensions are equal to the depth of the MSA and each matrix ele-

ment contains the similarity value of the residues observed in their related

sequences, according to the McLachlan matrix.18 The correlation coefficient

Additional Supporting Information may be found in the online version of this article.

*Correspondence to: Yossef Kliger, PhD, Compugen Ltd. 72 Pinchas Rosen, Tel Aviv 69512, Israel.

E-mail: kliger@compugen.co.il or yossef.kliger@gmail.com

Received 17 December 2007; Revised 3 May 2008; Accepted 2 June 2008

Published online 24 July 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/prot.22168

ABSTRACT

The main objective of correlated muta-

tion analysis (CMA) is to predict intra-

protein residue–residue interactions

from sequence alone. Despite consider-

able progress in algorithms and com-

puter capabilities, the performance of

CMA methods remains quite low. Here

we examine whether, and to what

extent, the quality of CMA methods

depends on the sequences that are

included in the multiple sequence

alignment (MSA). The results revealed

a strong correlation between the

number of homologs in an MSA and

CMA prediction strength. Furthermore,

many of the current methods include

only orthologs in the MSA, we found

that it is beneficial to include both

orthologs and paralogs in the MSA.

Remarkably, even remote homologs

contribute to the improved accuracy.

Based on our findings we put forward

an automated data collection proce-

dure, with a minimal coverage of 50%

between the query protein and its

orthologs and paralogs. This procedure

improves accuracy even in the absence

of manual curation. In this era of

massive sequencing and exploding

sequence data, our results suggest that

correlated mutation-based methods

have not reached their inherent per-

formance limitations and that the role

of CMA in structural biology is far

from being fulfilled.
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between two positions is a measure for correlated muta-

tion of these positions: the higher the correlation coeffi-

cient is, the higher the probability that the given pair has

coevolved.

All correlated mutation prediction methods are based

on homologous sequences aligned relative to each other.

Correlated mutation information is then extracted from

such MSA. Correlation between the performances of

CMA for contact map prediction and the number of

sequences comprised in the MSA (MSA depth) has been

shown years ago19; however, the massive growth of the

sequences public databases justifies a new systematic

exploring of this important aspect. In addition, simulated

analysis revealed that even uncorrelated sites exhibit

background correlation, hence making the signal to noise

ratio a major obstacle for the prediction of intramolecu-

lar contact-maps, particularly in alignments with less

than 125 sequences.6 In current databases only a rela-

tively small number of proteins have more than 125

orthologous proteins. Thus, we explored the option of

increasing the MSA depth by considering also sequences

with varied level of relatedness (i.e., remote vs. close

homologs, and orthologs vs. paralogs).

Different proteins differ in the amount of information

present in their MSA. The amount of information relates

to the number of homologous proteins considered and

their level of relatedness. This raises the question of how

to build an optimal MSA. To deal with this question,

many studies in the filed use PSI-BLAST20 to collect the

homologous sequences and differ from each other in

their filtration methods.5,13,21,22 Other studies are using

preprepared MSAs downloaded mainly from HSSP7,23

or Pfam3,9,16,24
. These data preparation methods are

not perfect and therefore many researchers in the field

perform manual curation of MSAs4,13,14 to improve

performance. However, manual curation of MSAs

impedes high throughput analysis, which is critical for

robust performance analysis. Here, we explored whether

there is a preferable automated data preparation proce-

dure for constructing the MSAs (without any manual

curation). The constructed MSA will be used as input for

correlated mutations-based predictions.

RESULTS AND DISCUSSION

Correlated mutation-based prediction methods are

based on MSAs, in which the sequence of the protein of

interest (reference sequence) and its homologs are aligned

together. Here, we tested the relationship between the

number of sequences comprising an MSA and the per-

formance of the correlated mutations analysis for contact

map prediction. Toward this goal, the algorithm of Va-

lencia and coworkers17 was chosen as a benchmark

method and evaluated for all proteins in a culled PDB25

set (682 proteins).

It is common practice to focus on small portion of the

residue–residue interactions sharing high reliability and

evaluate the performances of CMA prediction methods

based on these interactions.26,27 The main motivation is

that these few highly reliable predicted contacts can be

used as constraints for protein ab-initio structure predic-

tion28 as well as to filter potential models generated by,

for example threading methods.29,30 However, this

approach for performance evaluation does not reflect the

degree of coverage provided by the prediction method.

We therefore evaluate the accuracy of the prediction

methods in the current study using two approaches: (i)

based on the precision of the top L/10 or the top L/5

predictions (where L is the protein length); and (ii) based

on all predicted interactions. In the latter method, evalu-

ation is based on both the precision—the fraction of cor-

rect predictions among all predictions—and the recall—

the fraction of interactions detected among all interac-

tions. In addition, it is common to assume that coevolve-

ment is partially because of relative proximity between

residues and not necessarily due to direct physical con-

tact. Therefore, we evaluate the performances also by

using continuous measure of proximity between the pre-

dicted residues as was suggested by Pazos et al.23 (Xd

measure) and also used by others.26,27,31 Using this

method, we have evaluated the top L/2 predictions.

MSA depth correlates with
prediction accuracy

Generally speaking, one should expect a positive corre-

lation between the MSA depth and the predictor accu-

racy. The MSA depth is limited by the common practice

to use MSAs comprising only of orthologous sequen-

ces.12,13,15 Here we construct such a list by first gener-

ating the list of homologous proteins based on a PSI-

Blast20 run of the protein of interest against the NCBI

Genbank database.32 We then use the simplest, yet far

from perfect, approach for screening only orthologs,

namely, by keeping only the first hit of each organism.13

Finally, only orthologous sequences having an alignment

length that covers at least 90% of the reference sequence

length (0.9-orthologs) are maintained. In an attempt to

avoid covariation due to a common phylogenetic origin

of closely related sequences we have filtered out sequen-

ces having more than 90% identity with each other (i.e.,

there are no two sequences that share more than 90%

pair-wise identity in the MSA) using NRDB90.33 For

this analysis, we used only proteins having more than

256 orthologous sequences (26 proteins from the Culled-

PDB data set). MSAs with varying depths were built for

each of these proteins by randomly selecting a fixed

number of orthologous sequences out of the sequences

pool. In this way, the algorithm was tested on MSAs

ranging in depth from 8 to 256. This process was

repeated 10 times for each of the 26 MSAs. The accura-
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cies were evaluated by calculating the area under the Pre-

cision-Recall Curve (AUC-PR) which reflects the per-

formances of the algorithm based on all predicted and

existing interactions. The curve for a random predictor

in Precision-Recall space is a horizontal line with a preci-

sion equal to the number of interactions observed in the

3D structure of the proteins divided by the number of all

possible residue pairs. To eliminate the accuracy differen-

ces that are due to different protein lengths, the ratio

between the AUC-PR of the Valencia and coworkers’

algorithm and a random predictor was calculated. In

addition, we evaluated the accuracy by calculating the

precision achieved for the top L/5 or L/10 of the pre-

dicted interactions and by using continuous measure of

proximity between the predictions and real contacts for

top L/2 predictions (Xd measure) as commonly used at

CASP evaluations.26,27 The averaged performances

achieved for these proteins using the Valencia and co-

workers’ algorithm and based on MSAs with varying

depths are shown in Figure 1.

In random predictor, the Xd measure, and the log of

the ratio between the AUC-PR of a CMA method and

the random predictor AUC-PR, are both expected to be

around 0. As expected, panels (A) and (C) of Figure 1

reveal that in most cases the performance of the predic-

tor based on MSAs comprising a small number of

sequences is close to that of a random predictor. On the

other hand, all three panels of Figure 1 reveal that

increasing the MSA depth by considering more ortholo-

gous sequences resulted in significantly higher accuracies.

Figure 1
MSA depth correlates with predictor accuracy. Average performance calculated for 26 proteins, 10 randomizations each, based on their

0.9-orthologous sequences (using valencia and coworkers’ algorithm), as evaluated using three different evaluation methods. A: Log of the ratio

between the Area Under the Curve (AUC) of Precision-Recall graph (AUC-PR) for a CMA predictor, and the corresponding AUC-PR of a random

predictor. B: Precision of top predictions (Top L/5 and L/10 where L 5 protein length). The standard deviations of the average precision is of the

same order of magnitude as the standard deviation shown in (A) and (C), and are not displayed in the Figure to enhance clarity. C: Xd score when

considering top L/2 predictions.
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This observation is important since most of the proteins

do not have that number of orthologous sequences in

the current data base (Supplementary Fig. S1), and thus

will benefit from future expansion of the databases. The

fact that MSAs comprising of 256 sequences still show

significant improvements as compared with MSAs com-

prising of 128 sequences (which are already considered to

be deep) suggest that methods that are based on corre-

lated mutations did not reach their inherent limit yet.

Figure 1(B) also reveals that the accuracy for the top L/

10 predictions is higher than accuracy for the top L/5

predictions. This further confirms that the correlated

mutation signal truly exists.

The high standard deviation shown in Figure 1(A,C)

emphasizes the large variations in accuracy achieved for

different proteins as well as the differences between the

information content of the MSAs. Standard deviations of

the same order of magnitude were also observed in the

precision of top L/5 and L/10 predictions (not shown).

Thus, in addition to the dependency between MSA depth

and performance, it is clear that the accuracy is highly

dependent on the specific protein and the MSA.

Although it is clear from our results that the depth of

the MSA correlates positively with the predictor accuracy,

it is important to note that in absolute values the accura-

cies remain relatively low. Figure 2 shows the overall pre-

cision recall curve for all 97 proteins that have relatively

deep 0.9-orthologs MSAs (of more than 128 sequences).

The figure reveals a low precision of 5% can be achieved

only at a recall as low as 10%. The precision of the top

L/5 predictions reaches an average precision of 15%

(with a standard deviation around 9%). The strong posi-

tive correlation between the accuracy and the MSA depth

led us to further explore ways to increase the MSA depth

and achieve higher performances.

MSA comprising remote orthologues

It is common to build MSA comprising sequences of

similar lengths.5,13 The reason is to enable more accu-

rate alignment by MSA programs since MSA programs

tend to open more, and perhaps unnecessary, gaps, and

perform less accurately when given proteins of different

lengths. However, many proteins do not have a signifi-

cant number of homologs with similar length. Thus, we

decided to check whether the loss of information due to

the exclusion of these remote homologs is justified con-

sidering also the improvements in MSA tools in recent

years.34–37

To test the influence of considering orthologs with

varying overlap lengths, we constructed different sets of

orthologous sequences that differ in the length of the

alignment between the reference sequence and the PSI-

Blast hit. The ratio between the alignment length and the

reference sequence length can serve as a measure of the

relatedness between the chosen sequence and the refer-

ence sequence. In total, three different sets were used:

0.9-ortholog (closest orthologs), 0.7-ortholog, and 0.5-

ortholog (remote orthologs). These sets were filtered for

highly similar sequences sharing more than 90% identity

with each other. To explore the effect of considering

orthologs with varying overlap length while keeping the

number of sequences in the MSA fixed we choose 13

proteins that have many close orthologous sequences and

many remote orthologs (orthologous with varied length).

We divided the sequences of these proteins into three dif-

ferent unique groups according to the length of the align-

ment between the set sequence and reference sequence

[i.e., orthologs sequences with overlap of 90% or above

(0.9-orthologs set), orthologs with overlap of 70–90%

(0.7 to 0.9-orthologs set), and orthologs with 50–70%

overlap (0.5 to 0.7-orthologs set)]. For these proteins we

built three sets of MSAs comprising of 100 sequences

that were randomly chosen from the unique groups (i.e.,

0.9-orthologs set, 0.7 to 0.9-orthologs set, 0.5 to 0.7-

orthologs set), testing different ratios of remote ortho-

logs: (1) 100% 0.9-orthologs, (2) 70% 0.9-orthologs 1

30% 0.7 to 0.9-orthologs, and (3) 70% 0.9-orthologs 1

15% 0.7 to 09-orthologs 1 15% 0.5 to 0.7-orthologs.

This procedure was repeated 10 times. The performances

achieved based on the MSAs from these sets were calcu-

lated as specified in the previous section and are shown

in Table I.

The results in Table I reveal that the performances

achieved based on MSAs comprising of sequences with

shorter overlap lengths are not significantly different

from the performance of MSA consisting of sequences of

similar lengths. These results suggest that it is beneficial

Figure 2
Performance evaluation of Valencia and coworkers’ algorithm for
correlated mutation based contact map prediction. Precision-Recall

curve for concatenation of 97 proteins, each having MSAs comprising

of more than 128 orthologous sequences (0.9-orthologs). Note that

even when considering only proteins having deep MSAs the

performances of correlated mutations contact map prediction is

relatively low.
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to include orthologous sequences with shorter overlap

lengths in the MSA, including sequences with alignment

lengths as low as 50% of the reference sequence, since in

this way the MSA depth can be increased. These findings

also suggest that the performances that are being

achieved today by focusing on a relatively small number

of close sequences can be significantly improved by using

more of the available data cloaked in remote orthologs.

MSA comprising both orthologs
and paralogs

The basis of correlated mutations analysis is the

assumption that each of the proteins in the MSA has a

similar structure. Thus, it is common to use MSA com-

prising sequences of orthologous proteins.12,13,15 The

main reason for not considering paralogous proteins is

the common understanding that orthologs have similar

functions (and therefore similar structures), whereas

paralogous proteins may have different functions and

thus a larger structural diversity. Although this is prob-

ably true, it is not clear to what extent the gain in the

signal to noise ratio due to the increase in MSA depth

(see Fig. 1) would be offset by the introduction of addi-

tional noise introduced by the different selection forces

that act on the structures of the paralogous proteins.

Here, we tested whether the inclusion of information

cloaked in paralogous sequences is beneficial for contact

map prediction. Thus, we prepared three more sets: 0.9-

orthologs 1 paralogs, 0.7-orthologs 1 paralogs, and 0.5-

orthologs 1 paralogs, simply by collecting all PSI-Blast

hits, rather than only the first sequence from each orga-

nism.

To explore the influence of considering paralogous

sequences in the MSA on the performances, we prepared

MSAs comprising of 128 sequences. Different ortholo-

gous to paralogous ratios were used. The examination

was made for all proteins that had more than 128-orthol-

ogous sequences and more than 128-paralogous sequen-

ces (21 proteins from the culled PDB set). The sequences

for the MSAs were randomly chosen out of the 0.9-

orthologs and 0.9-paralogs sequences pool. The proce-

dure was repeated 10 times. The performances were cal-

culated and are shown in panels (A) and (B) of Figure 3.

In addition, we have filtered from the sequences pools

the sequences sharing identity of more than 90% with

each other. As expected this step reduced the number of

sequences for each protein. After this step, we were left

with only five proteins that have more than 100 ortho-

logs as well as more than 100 paralogs. We repeated our

analysis for these proteins (while fixing the depth of each

MSA to 100 sequences) and the results are shown in pan-

els (C) and (D) of Figure 3.

All four panels of Figure 3 reveal that the performan-

ces achieved based on MSAs that includes paralogous

sequences is not significantly different from the perform-

ances achieved based on orthologs only. Furthermore,

even when the MSA was comprised of only paralogous

sequences, the performances are not reduced dramati-

cally. However, it is worth to mention that in three

(PDB-IDs: 1gwe, 2cxn, 2c78) out of the 21 proteins

(which their corresponding MSAs were not filtered to

remove redundant sequences), replacing orthologous

with paralogous sequences consistently reduced the per-

formances. Although this is not surprising, because there

may be cases in which the added paralogs are signifi-

cantly different in their structure/function from the refer-

ence sequence. In addition, the large variations in per-

formance achieved for different proteins, mainly because

of the differences between the information contained in

the different MSAs also holds here. Nevertheless, our

results suggest that for most proteins it is beneficial to

consider also paralogous sequences in the MSA, as

including also paralogous sequences deepen the MSA.

Table I
Performances Achieved Based of MSAs Comprising of Sequences with Varying Overlap Length

MSA seta
Average log

(AUC-PR/random AUC PR)b
SD log

(AUC-PR/random AUC PR)
Average top
L/5 precisionc

SD top L/5
precision

1. 100% 0.9-Orthologs sequencesd 0.314 0.082 0.169 0.084

2. 70% 0.9-orthologs sequences 1
0.314 0.089 0.173 0.08830% 0.7 to 0.9-orthologs sequencese

3. 70% 0.9-orthologs sequences 1

0.308 0.089 0.169 0.091
15% 0.7 to 0.9-orthologs sequences 1

15% 0.5 to 0.7-orthologs sequencesf

aMSAs of 13 proteins comprising of 100 orthologoues sequences. The sequences were randomly chosen from the orthologous pool. The process was repeated 10 times.
bAverage log of the ratios between AUC-PR of CMA and random AUC-PR.
cPrecision of top L/5 prediction (L 5 protein length).
dMSAs where all the sequences in the MSA are aligned to the reference sequence in at least 90% of their lengths.
eMSAs where 70% of the sequences in the MSA are aligned to the reference sequence in at least 90% of their lengths, and 30% of the sequences in the MSA are aligned

to the reference sequence in at least 70%, but less than 90%, of their lengths.
fMSAs where 70% of the sequences in the MSA are aligned to the reference sequence in at least 90% of their lengths, 15% of the sequences in the MSA are aligned to

the reference sequence in at least 70%, but less than 90%, of their lengths, and 15% of the sequences in the MSA are aligned to the reference sequence in at least 50%,

but less than 70%, of their lengths.
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Removing highly similar proteins
from the MSA

Researchers in the field frequently filter out sequences

sharing high similarity between each other, using differ-

ent identity cutoffs.13,21,38,39 Our objective was to

explore the tradeoff between reducing noise by filtering

out highly similar sequences and losing the additional in-

formation such sequences may still carry. Thus, we have

evaluated the performance achieved based on MSAs com-

prising sequences from our largest set of sequences (i.e.,

0.5-orthologs 1 paralogs) and the MSAs comprised of

the same set where highly similar sequences have been

filtered out. We have explored the effect of removing

sequences sharing either more than 95% identity or more

than 90% identity. The results obtained based on these

nonredundant MSAs compared with those achieved

based on the full MSAs are shown in Figure 4. The

results reveal that indeed there is justification for remov-

ing highly similar sequences from the MSA, although the

gain is relatively modest. This conclusion is further sup-

ported by the comparison between panel (A) and (C)

and between panel (B) and (D) of Figure 3.

Automated procedure for selecting
sequences for the analysis

It is often hard to automatically differentiate between a

real ortholog and a paralog of an ortholog. Relying on

the prefixes of the protein entry names (the mnemonic

code on the ID line) on the Swiss-Prot knowledgebase40

Figure 3
The influence of including paralogous sequences in MSA. Replacing orthologous with paralogous sequences does not reduce CMA performance.

Proteins sequences were randomly selected for MSAs out of the 0.9-orthologs 1 paralogs sequence pool with 10 repeats for each protein. Sequences

sharing more than 90% sequence similarity were included (A,B) or redundancy was removed (C,D). Performance was evaluated using two methods:

The log of the ratio between AUC-PR for CMA and random AUC-PR (A,C) and the precision of top L/5 prediction (B,D), where L is the protein

length.
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(SP) is another good way for making a list of ortho-

logs.41 Therefore, in addition to the orthologous set

described in previous sections we constructed another set

of orthologous sequences based on SP (SP-orthologs). It

is worth noting that SP suffers from low coverage

because it is manually annotated by expert curators.

Thus the depths of the MSAs of most proteins (532 out

of the 682) are smaller than 20 sequences.

To improve CMA performances, it is common to per-

form manual curation of MSAs.4,13,14 However, this

impedes high-throughput analysis, which is critical for

robust performance analysis. The results obtained with

the data preparation methods as were described in detail

in the previous sections suggest that automated data

preparation methods (without any manual curation) can

be used.

Wilcoxon signed rank test for zero median perform

two-sided test of the hypothesis that the difference

between the matched samples of performances achieved

by the different methods comes from a distribution

whose median is zero. Wilcoxon signed rank tests were

performed for all the results achieved based on the exam-

ined MSA sets, confirming that the differences between

the performances achieved based on the different data

preparation methods are statistically significant (e.g., the

results achieved based on 0.9-orthologs MSAs and 0.9-

orthologs 1 paralogs MSAs are statistically significant).

To further explore whether automated data preparation

methods can be used, the performances were compared

for each protein by ranking the AUC-PR achieved based

on the MSAs derived from the different methods. This

comparison allows us to examine the different data prep-

aration methods for each protein from the culled PDB

set. The number of times each data preparation method

got the different ranks is shown in Figure 5.*

Figure 5(A) shows the number of times each data

preparation method got the highest performances when

considering the depth of 0.9-orthologs MSA. The left-

most bins on Figure 5(A) (depth < 16 and 16 < depth �
128) further confirm our suggestions to increase the MSA

depth by considering also sequences with varied length as

well as to consider all the homologous sequences, especially

when there is small number of close-orthologs. Further-

more, the bins that represent the performances that were

achieved when there are relatively large amounts of ortholo-

gous sequences (orthologs-0.9 � 128) reveals that the

results gain with the 0.5-orthologs 1 paralogs are still rela-

tively better than the results obtained with other tested

MSAs. This is a remarkable finding, as the common wisdom

in the field tends to assume that, paralogs and remote

homologs contribute more noise than signal.5,12,13,15

Figure 5(B) reveals that, as expected, MSA that con-

tains more homologous sequences (0.5-orthologs 1

paralogs) gains the best predictor performances. Signifi-

cantly, the second best performances was gained by 0.5-

orthologs MSAs, then by 0.7 orthologs 1 paralogs MSAs,

and so forth, confirming the positive correlation between

the number of proteins in an MSA and performance for

most proteins. It is worth noting that the positive corre-

lation between MSA depth and performance exists in all

seven sets (Supplementary Fig. S2). The results also con-

firm our hypothesis that it is beneficial to increase the

MSA depth by considering also sequences with varied

length (0.5 > 0.7 > 0.9) as well as paralogs in addition

to orthologous sequences. Figure 5(B) also reveals that

the performance gain with SP-orthologs MSAs is the low-

est for most of the proteins probably because of limited

Figure 4
The effect of removing highly similar sequences from the MSA on the

CMA performances. The performance achieved when using MSAs that

contain highly similar sequences against the performances achieved

when removing from the MSA sequences sharing (A) 95% (B) 90%

sequence identity with other sequences in the MSA. For both panels

most of the points are above the diagonal showing that filtering

improves the accuracy of the prediction.

*There are cases in which two or more data preparation methods got the same

rank and therefore the sum of proteins getting a specific rank can be higher than

the number of analyzed proteins.
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number of annotated sequences. Unfortunately, Fig-

ure 5(B) also reveals that none of the data prepara-

tion methods is optimal for all proteins. Performances

evaluation for top L/5 predictions (precision of L/5 pre-

dictions) reveals as expected, similar results, there are

more cases in which the performances achieved based on

0.5-orthologs 1 paralogs MSAs is better than those

achieved based on the other data preparation methods

(data not shown).

In addition, to evaluate the results obtained by our

data preparation method relative to those achieved using

preprepared MSAs, we have compared the results ob-

tained when using our optimal data preparation method

(0.5-orthologs 1 paralogs) and Pfam42 MSAs. The Pfam

database contains information about protein domains

and families and holds their MSAs. The performances

that were achieved based on full Pfam MSAs compared

with those achieved based on the 0.5-orthologs 1 paral-

ogs MSAs are shown in Supplementary Figure S3. The

results reveal that only for 19 (out of 87) proteins the

performance obtained using Pfam MSAs were better than

that achieved using the 0.5-orthologs 1 paralogs MSAs,

whereas for 63 proteins the performance obtained with

the 0.5-orthologs 1 paralogs MSAs were better. It is

noteworthy that using Pfam preprepared MSAs is not

always possible since Pfam does not always contain an

MSA that fully cover the protein of interest, which is

another advantage of our suggested data preparation

method.

We believe that our data preparation method can be

applied to most, if not all, CMA methods. To confirm

our hypothesis we have repeated the analysis by using the

same seven MSAs as described earlier (i.e., the 0.9-ortho-

logs set, 0.9-orthologs 1 paralogs set, 0.7-orthologs set,

0.7-orthologs 1 paralogs set, 0.5-orthologs set, 0.5-

orthologs 1 paralogs set, and SP-orthologs set) and eval-

uate the performance achieved by the MI method, which

is based on the algorithm described by Martin et al.6 To

benefit from the large MSAs obtained by our data prepa-

ration method, we have slightly modified the algorithm

such that it will not ignore positions that contain one

gap, but rather only ignore positions containing more

than 10% gaps (as suggested by the algorithm of Valencia

and coworkers). The results obtained by the MI method

based on the different set of MSAs are shown in Supple-

mentary Figure S4. Importantly, the results are consistent

with the conclusions made based on Valencia and co-

workers’ algorithm: (1) the performance obtained when

using the 0.5-orthologs 1 paralogs set is superior over

the results obtained with the other data preparation

methods, and (2) none of the data preparation method

is optimal for all the proteins.

Thus, based on our results we can recommend the fol-

lowing simple automatic procedure that does not

involved manual curation to collect sequences for the

CMA. The procedure outline is as follows: (1) Use PSI-

Blast against the GenBank database, collecting all the

sequences producing significant alignments after two iter-

ations and share at least 35% identity with the sequence

template constructed at the first iteration. (2) Collect all

the sequences whose length of alignment with the refer-

ence is at least 50% of the reference sequence (i.e., both

orthologous and paralogous sequences). (3) Remove re-

dundancy of highly similar sequences sharing more than

90% identity with each other. Implementation of this

procedure is available for academic use by request from

the authors.

CONCLUSIONS

In this study, we have found that the inclusion of

remote homologs is valuable for the analysis of correlated

Figure 5
Comparing the performances achieved using different data preparation

methods. A: The number of times each data preparation method was

ranked first. The results are divided into three bins according to the

depths of the respective 0.9-orthologs MSA. B: The number of times

each data preparation method got the different ranks when considering

all the proteins (682 proteins). The 0.5-orthologs 1 paralogs set was

found to be superior over all other data preparation methods, but
neither of the methods was optimal for all proteins.
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mutations in many proteins. The data preparation proce-

dure we put forward here with 50% alignment coverage

of the query protein and including both orthologs and

paralogs can contribute to increased accuracy of corre-

lated mutation based analysis. It is worth noting that,

due to the large diversity between proteins none of the

data preparation methods outperformed all the others

for all proteins tested.

We believe that our findings together with recent

improvements in MSA preparation tools and CMA algo-

rithms will contribute to significant improvement in the

accuracy of contacts prediction based on CMA in the

coming decade.

METHODS

Selection of proteins

The reference sequences for MSA and the PDB ID

code of their corresponding crystal structures were taken

according to the protein chain that appears at a non-

redundant PDB set (Culled PDB25).

The sequences of a nonredundant set of the PDB

(Culled PDB25) were downloaded from http://dunbrack.

fccc.edu/Guoli/pisces_download.php on March 10, 2007.

This set comprises of 2585 chains of X-ray-derived struc-

tures having resolution of or better than 2 Å, R-factor

cutoff of 0.25, and do not share more than 20% sequence

identity.

The references sequences for the 2585 chains of the

culled PDB were chosen using Blast20 against the Swis-

sProt knowlegdebase40 considering only proteins where

the PDB sequence is at least 90% identical to a SwissProt

protein sequence sharing alignment of at least 100 resi-

dues. This resulted in 1473 protein sequences.

Collecting homologs

The NCBI GenBank database32 (comprising of

4,924,867 sequences) and the SP-Knowledgebase40 (com-

prising of 247,428 sequences) were downloaded on De-

cember 24, 2006. The different sets of sequences were

built by running PSI-Blast20 against the GenBank data-

base, collecting all the sequences producing significant

alignments after two iterations and share at least 35%

identity with the sequence template constructed at the

first iteration. The sequences were further filtered accord-

ing to the criteria specified for each set (i.e., orthologs,

orthologs 1 paralogs) and according to the ratio between

the length of the reference sequence and the length of the

sequence and reference sequence alignment.

For constructing the orthologs by Swiss-Prot set we

ran the PSI-Blast procedure against the SP knowledgebase

considering sequences producing significant alignments

after two iterations and sharing at least 35% identity

with the sequence template constructed at the first itera-

tion. Sequences with length of reference sequence-PSI-

Blast hit alignment of at least 70% of the reference

sequences length that have the same prefix of the Swiss-

Prot entry name were selected for the SP-orthologs set.

Removing redundant sequences

A perl script that implements the NRDB algorithm33

was used to remove sequences that share more than 90%

sequence identity with each other and leaving in the

MSA only one representative for such group of sequen-

ces. During this step, we made sure that the sequence of

the protein of interest (reference sequence) remains in

the sequences pool and was not replaced with one of its

homolog.

Constructing MSA

Mafft (L-INS-i)35 and ProbCons34 were suggested by

Nuin et al.43 to be consistently the most accurate MSA

programs. As our evaluation reveals (data not shown)

that ProbCons v1.1 and Mafft (L-INS-i) v5.861 perform

similarly, we chose to work with Mafft (L-INS-i) because

it is much faster.

Pfam MSAs

The full Pfam-A42 release 21.0 (Nov 2006) was down-

loaded from ftp://ftp.sanger.ac.uk/pub/databases/Pfam/

database_files/old_releases/Pfam21.0/. Only MSAs that

cover at least 90% of the selected PDB chain were con-

sidered. In total, we have evaluated the performances for

87 proteins. The MSAs were converted from Pfam Stock-

holm format to multiple fasta alignment format using

AlignIO module written by Peter Schattner and which is

part of the BioPerl44 package.

Calculating correlated mutations

The correlated mutations for each protein were calcu-

lated using the program that was generously provided by

Florencio Pazos17 and results are reported as correlated

coefficients between two positions. The algorithm

excludes positions with more than 10% gaps or positions

that are totally conserved. The exclusion of such posi-

tions impedes real comparison between performances

achieved based on different sets of sequences for a given

protein. Whereas when considering sequences with differ-

ent level of relatedness we can expect varying number of

gaps and as a results varying number of predictions and

therefore bias when comparing the AUC-PR achieved

based on the different sets. To overcome this obstacle we

decided that the omitted pairs get correlation score of

zero, based on the assumption that the coevolvement rate

of these pairs is equal to the average coevolvement rate.

As suggested by Valencia and coworkers, we considered

only pairs of residues with minimal separation of six res-

Optimal Data Collection for CMA

PROTEINS 553



idues as predicting interactions with shorter sequence

separation is not likely to add structural information.

We have implemented the MI method suggested by

Martin et al.6 such that it will not ignore positions where

one of the sequences contains a gap. In our implementa-

tion, the mutual information is calculated based on all

sequences that do not contain a gap in both positions.

This step increased the number of predictions especially

when dealing with MSAs containing remote homologs,

where gaps are inevitable to construct an MSA. We have

excluded positions with more than 10% gaps or positions

that are totally conserved, as suggested by Valencia and

coworkers.

Performance evaluation

The structure of the proteins was obtained from the

PDB database.45 The CSU program46 was used to deter-

mine all the pairs that interact according to the protein

crystal structure.

Based on the correlation coefficient values and the real

interaction, a Precision-Recall curve was calculated for

each protein [Recall 5 TP/(TP 1 FN) and Precision 5

TP/(TP 1 FP)]. The precision-recall curve allows us to

evaluate the algorithm performances in all range of

correlation scores and considering all the predicted inter-

actions rather than focusing just on small part of the

interactions as often done by those who calculates the

precision for the top predictions. The precision recall

curve provides an informative picture of the predictor

performance even when dealing with highly skewed

datasets.47

It is reasonable to assume that the number of interac-

tions per residue is independent of proteins length, as we

indeed found (data not shown). Hence the number of

residue–residue interactions in proteins scales linearly

with the protein length (N), whereas the number of all

possible residue pairs is �N2. Therefore, small proteins

may seem to have better performance. To enable compar-

ison of the performance on proteins with varied length,

we have divided the area under the precision recall curve

(AUC-PR),47 by the AUC-PR calculated for a random

predictor for each protein. The curve for a random pre-

dictor in Precision-Recall space is a horizontal line with a

precision equal to the number of interactions observed in

the proteins 3D structure divided by the number of all

possible residue pairs. The AUC-PR was calculated using

the AUCCalculator 0.1.47

In addition we have used CASP performance evalua-

tion procedure to evaluate the performances. One of

CASP performance evaluation procedures is based on cal-

culating the precision [precision 5 TP/(TP 1 FP)] of

the top L/5 or L/10 predictions, where L is the protein

length.26,27 The top predictions are the predictions that

gain the higher predictor’s probability estimates.

The Xd method23 was used to also consider relative

proximity between the predicted residues rather than

consider only direct physical contact.

Xd ¼
Xi¼15

i¼1

Pip � Piað Þ
di 3 15ð Þ

There are 15 distance bins covering the range from 0 to

60 Å. The sum runs for all the distance bins. di is the

upper limit representing each distance bin (normalized

to 60). Pip is the percentage of predicted pairs whose dis-

tance is included in bin i. Pia is the same for all the

pairs. Defined in this way, Xd > 0 indicates the positive

cases where the population of predicted contacts’ distances

is shifted to lower distances. For this method, we considered

our top L/2 predictions as the predicted contacts.
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