Home Research News Group Members Useful links Funding Contact

We advance and implement X-ray crystallography for probing materials structures. We investigate fine structures on different length scales to obtain standard crystallographic, structural disorder and microstructural information. We study materials under electric, thermal and (in future) mechanical perturbation. We are currently focused on piezoelectrics and ferroelectrics but open for exploring any materials where the relationship between structure and properties are not yet understood.

Current research projects

1. Investigation of multidomain crystals using high-resolution X-ray diffraction

Domain is a finite volume of a crystal, where a physically meaningful order parameter is uniform. Domains and domain walls may mediate new physical properties, such as giant piezoelectricity or shape-memory effect. We advance the methods of investigation of domains using X-ray and neutron scattering inspecting domains from Bragg peaks splitting and track their response to external field.

2. Development of time resolved X-ray single crystal diffractometry

X-ray diffraction is the leading tool for the investigation of materials structures. Understanding the structure-properties relationship relies on the ability of measure how the structure adapts to the external conditions. This adaptation might be e.g. distortion of the chemical bonds, macroscopic strains, variations in the microstructure / domain pattern. For example application of electric field to a piezoelectric material induces macroscopic deformation, which can be to the structural effect or domain wall motion. We develop data aquisition systems for synchronized collection of X-ray diffraction and application of external stimuli to a material (probing a device in action).

3. Crystallography of cleavage

Cleavage describes the tendency of a crystal to break easily along a specific lattice planes. Acquiring the information about cleavage in a given crystal structure is essential for the investigation of key mechanical properties such as fracture toughness, plasticity and strength. Although cleavage planes are commonly known for simple crystals (e.g. silicon), such information about arbitrary crystals is not available.
We develop an universal algorithm for automatic inspection of crystal structures, and the prediction of likely cleavage planes in them. The algorithm is being implemented in the form of MATLAB program. The project is carried out in collaboration with Prof Dov Sherman and his brittle fracture laboratory .

Lab News

30 August 2020

Electric field Our measurements of time-resolved X-ray diffraction under external electric field continue. Does this material have a chance to become the new "star" of piezoelectricity? If so, why? We will get the answer soon.

27 July 2020

Electric field The next milestone celebration in the lab. Our first laboratory-based experiments on crystals under electric field have started. This time, it is test measurements of the piezoelectric coefficient of single crystal of quartz. Synchronization of PILATUS detector with the applied electric field is realized using this methodoly.

17 July 2020

ChrisPaper The new paper is accepted to Applied Physics Letters. The paper results from the past beamtime at the ID22 beamline at the European Synchrotron. It is dirven by one of our major collaborators Dr Christopher Fancher from ORNL and Prof Jacob Jones from NCSU, USA

31 May 2020

ImageCleave We are happy to announce that our first article on the topic of "Crystallography of Cleavage in functional materials" is now published in the latest issue of Acta Materialia. This results from the internal collaboration with Prof Dov Sherman and his brittle fracture laboratory

10 April 2020

Raw image These times of COVID-19 outbreak are dominated by self-isolation, Zoom meetings and online teaching. The laboratory is closed, the experiments are suspended. This time might be useful for analitycal research, analyzing the data, unpacking the old and yet unpublished algorithms.

19 September 2019

Reconstruct A few colorful photos of our laboratory are now available via the link here. Special thanks to Limor Ben Moshe for such an amazing photography.

18 August 2019

Night On our way to Vienna to ECM32 (European Crystallographic Meeting). At this conference we are present with the talk of Dr S Gorfman and poster of U. Vakhnin. Looking forward!

Group Members

Dr Semën Gorfman

Principal investigator

+972 73 380 4341 Sem Gorfman

Curriculum Vitae


Dr David Spirito

Postdoctoral researcher

+972 73 380 4341 David Spirito

Curriculum Vitae


Tal Zaharoni

PhD Student (starting from November 2020)

Joint affiliation with SOREQ /SARAF

+972 Coming soon Tal Zaharoni

Curriculum Vitae


Uriel Vakhin

MSc student

+972 73 380 4341 Uriel Vaknin

Curriculum Vitae

Latest publications


H.J. Lee, J. Kim, S.H. Hwang, H. Choe, S. Gorfman, Y.-J Heo, S.Y. Lee, P.-E Janolin, I. Kornev, T.U.Schuelli, C. Richter, J.-H. Lee, U.Pietsch, C.-H. Yang, J. Y. Jo

Electrically driven transient and permanent phase transformations in highly strained epitaxial BiFeO3 thin films

APL Materials, 8,101110,(2020)

Journal article

A. Brovko, A. Adelberg, L. Chernyak, S. Gorfman, A. Ruzin

Impact of polishing on crystallinity and static performance of Cd1-xZnxTe

Nuclear Instruments and Methods in Physics Research A, 984,164568,(2020)

Journal article

C.M. Fancher, H. Choe, S. Gorfman, H. Simons, C.C.Chung, M. Ziolkowski, S. Prasertpalichat, D. P. Cann, J.L. Jones

Effect of Alloying BaTiO3 with BiZn0.5Ti0.5O3 on Polarization Reversal

Applied Physics Letters, 117,042907-1,(2020)

Journal article

S. Gorfman, H. Choe, G. Zhang, N. Zhang, H. Yokota, A. M. Glazer, Y. Xie, V. Dyadkin, D. Chernyshov and Z.-G. Ye

New method to measure domain-wall motion contribution to piezoelectricity: the case of PbZr0.65Ti0.35O3 ferroelectric

Journal of Applied Crystallography, 53(4), 1039-1050, (2020)

Journal article

Y. Hirsh, S. Gorfman, D. Sherman

Cleavage and surface energies of LiNbO3

Acta Materialia, 192, 338-349, (2020)

Journal article




Useful links


Funding agency:
Israel Science Foundation

Project title:
Fine structure, polarization rotation and low-symmetry phases in ferroelectric perovskites

Project duration:
October 2018 - October 2022

Funding agency: BSF: US-Israel Billateral Science Foundation

Project title: Local structure mechanisms of electromechanical coupling in oxide ferroelectrics

Project partner: Dr Igor Levin , National Institute of Standards and Technology. Gaithersburg, USA

Project duration: Octoer 2019 - October 2022

Contact us


Dr Semën Gorfman

Materials Science and Engineering department
Tel Aviv University

Wolfson Building for Mechanical Engineering, George Wise Street, Tel Aviv, ISRAEL

+972 73 380 4341 Sem Gorfman