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ON OPTIMAL RULES OF PERSUASION1

BY JACOB GLAZER AND ARIEL RUBINSTEIN2

A speaker wishes to persuade a listener to accept a certain request. The conditions
under which the request is justified, from the listener’s point of view, depend on the
values of two aspects. The values of the aspects are known only to the speaker and the
listener can check the value of at most one. A mechanism specifies a set of messages
that the speaker can send and a rule that determines the listener’s response, namely,
which aspect he checks and whether he accepts or rejects the speaker’s request. We
study mechanisms that maximize the probability that the listener accepts the request
when it is justified and rejects the request when it is unjustified, given that the speaker
maximizes the probability that his request is accepted. We show that a simple optimal
mechanism exists and can be found by solving a linear programming problem in which
the set of constraints is derived from what we call the L-principle.
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1. INTRODUCTION

OUR MODEL DEALS WITH THE SITUATION in which one agent (the speaker)
wishes to persuade another agent (the listener) to take a certain action.
Whether or not the listener should take the action is dependent on information
possessed by the speaker. The listener can obtain bits of relevant information
but is restricted as to the total amount of evidence he can accumulate. The
speaker can use only verbal statements to persuade. Whether or not the lis-
tener is persuaded is dependent on both the speaker’s arguments and the hard
evidence the listener has acquired.

Following are some real life examples:
A worker wishes to be hired by an employer for a certain position. The

worker tells the employer about his previous experience in two similar jobs.
The employer wishes to hire the worker if his average performance in the two
previous jobs was above a certain minimal level. However, before making the
final decision the employer has sufficient time to thoroughly interview at most
one of the candidate’s previous employers.

A suspect is arrested on the basis of testimonies provided by two witnesses.
The suspect’s lawyer claims that their testimonies to the police have serious in-
consistencies and therefore his client should be released. The judge’s preferred
decision rule is to release the suspect only if the two testimonies substantially
contradict one another; however, he is able to investigate at most one of the
two witnesses.

1Before reading the paper we advise you to play our “Persuasion Game” on-line:
http://gametheory.tau.ac.il/exp5/.

2We are grateful to Noga Alon of Tel Aviv University for numerous discussions and assistance
regarding Proposition 2. We also thank the co-editor of this journal, two anonymous referees,
Andrew Caplin, and Bart Lipman for valuable comments.
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A doctor claims that he has correctly used two procedures to treat a patient
who suffers from two chronic illnesses. An investigator on the case is asked to
determine whether the combination of the two procedures was harmful. The
investigator has access to the doctor’s full report but verifying the details of
more than one procedure would be too costly.

A decision maker asks a consultant for advice on whether or not to take on
a particular project. The decision maker knows that the consultant is better
informed about the state of the world than he is, but he also knows that it is in
the consultant’s interests that the project be carried out regardless of the state
of the world. The decision maker is able to verify only a restricted number of
facts that the consultant claims to be true.

In our model the listener has to choose between two actions a and r.
A speaker’s type is a realization of two aspects initially known only to the
speaker. The listener’s preferred action critically depends on the speaker’s type
whereas the speaker would like the listener to choose the action a regardless
of his type.

We study a family of mechanisms in which the speaker sends a message to
the listener and the listener can then choose to ascertain the realization of
at most one of the two aspects. On the basis of the speaker’s message and the
acquired “hard” evidence, the listener is either persuaded to take the speaker’s
favorite action a or not. More specifically, a mechanism is composed of three
elements: a set of messages from which the speaker can choose; a function that
specifies which aspect is to be checked depending on the speaker’s message;
and the action the listener finally takes as a function of the message sent by the
speaker and the acquired information.

Two types of mechanisms will serve a special role in our analysis:
(A) Deterministic mechanisms—for each of the two aspects certain criteria

are determined and the speaker’s preferred action is chosen if he can show that
his type meets these prespecified criteria in at least one of the two aspects. In
the first example above, a deterministic mechanism would be equivalent to ask-
ing the worker to provide a reference from one of his two previous employers
that meets certain criteria.

(B) Random mechanisms—the speaker is asked to report his type; one as-
pect is then chosen randomly and checked; and the action a is taken if and
only if the speaker’s report is not refuted. Returning to the first example above,
a random mechanism would involve first asking the worker to justify his appli-
cation by reporting his performance in each of his previous two jobs. Based on
his report, the employer then randomly selects one of the two previous em-
ployers to interview and accepts the applicant if his report is not refuted.

We are interested in the properties of the mechanisms that are optimal from
the point of view of the listener, namely, those in which it is least likely that
the listener will choose the wrong action given that the speaker maximizes the
probability that the action a will be taken. In our scenario, the listener does
not have tools to deter the speaker from cheating and thus we can expect that
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the speaker will always argue that his information indicates that the action a
should be taken. The problem therefore is to decide which rules the listener
should follow in order to minimize the probability of making a mistake.

The main results of the paper are as follows:
(i) Finding an optimal mechanism can be done by solving an auxiliary

linear programming problem. The objective in the auxiliary problem is to
minimize the probability of a mistake. The constraints are derived from a con-
dition that we call the L-principle, which can be demonstrated using the first
example above: Assume that the worker’s performances in each job is classified
as good or bad and that the employer wishes to hire the worker only if his per-
formance in both previous jobs was good. Consider the worker’s three types:
his performance was good in two previous jobs, good only in the first job and
good only in the second job. The L-principle says that for any mechanism, the
sum of the probabilities of a mistake conditional on each of the three worker’s
types is at least one.

(ii) An optimal mechanism with a very simple structure always exists. First,
the speaker is asked to report his type. If the speaker admits that the action r
should be taken, then the listener chooses r. If the speaker claims that the
action a should be taken, the listener tosses a fair coin where on each of its
two sides one of three symbols, r, 1, or 2 appears (the degenerate case where
the same symbol appears on both sides is not excluded). The meaning of the
symbol r is that the listener chooses the action r. The meaning of the symbol
i = 1�2 is that the listener checks aspect i and takes the action a if and only if
the speaker’s claim regarding this aspect is confirmed.

(iii) The optimal mechanism is credible, that is, there exists an optimal strat-
egy for the speaker that induces beliefs that make it optimal for the listener to
follow the mechanism. Furthermore, the speaker’s optimal strategy can be de-
rived from the dual (auxiliary) linear programming problem.

(iv) For the case that all types are equally likely, we identify certain “con-
vexity” and “monotonicity” conditions under which there exists an optimal
mechanism that is deterministic.

2. THE MODEL

Let {1� � � � � n} be a set of random variables that we call aspects. Most of the
analysis will be conducted for n = 2. The realization of aspect k is a member
of a set Xk. A problem is (X�A�p), where ∅ �= A⊂X = ×k=1�����n Xk and p is a
probability measure on X . We use the notation px for the probability of type x,
that is px = p({x}). For the case that X is infinite we relate to px as a density
function. For simplicity, we assume that px > 0 for all x. A problem is finite if
the set X is finite. There are two agents: the speaker and the listener. A member
of X is called a (speaker’s) type and is interpreted as a possible characterization
of the speaker. The listener has to take one of two actions: a (accept) or r
(reject). The listener is interested in taking the action a if the speaker’s type is
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in A and the action r if the type is in R = X − A. The speaker, regardless of
his type, prefers the listener to take the action a. The speaker knows his type
while the listener only knows its distribution. The listener can check, that is,
find out the realization of, at most one of the n aspects.

A mechanism is (M�f ), where M is a set (of messages) and f :M → Q where
Q is the set of all lotteries 〈π0� d0;π1� d1; � � � ;πn�dn〉 where (πi)i=0�1�����n is a
probability vector and dk :Xk → {a� r} where X0 = {e} is an arbitrary singleton
set (that is, d0 is a constant). An element in Q is interpreted as a possible
response of the listener to a message. With probability π0 no aspect is checked
and the action d0 ∈ {a� r} is taken, and with probability πk (k = 1� � � � � n) aspect
k is checked and if its realization is xk the action dk(xk) is taken. Our choice
of the set Q captures the assumptions that the listener can check at most one
aspect and that the aspect to be checked can be selected randomly.

A direct mechanism is one where M = X . For a direct mechanism (X�f )
we say that following a message m the mechanism verifies aspect k with prob-
ability πk when f (m) = 〈π0� d0;π1� d1; � � � ;πn�dn〉 is such that dk(xk) = a iff
xk = mk. The fair random mechanism is the direct mechanism according to
which, for every m ∈ A, the listener verifies each aspect with probability 1/n
and, for every m ∈ R, he chooses the action r. A mechanism is deterministic if
for every m ∈ M the lottery f (m) is degenerate (that is, for some k, πk = 1).

For every lottery q = 〈π0� d0;π1� d1; � � � ;πn�dn〉 and every type x define q(x)
to be the probability that the action a is taken when the lottery q is applied
to type x, that is, q(x) = ∑

{k|dk(xk)=a} πk. We assume that given a mechanism
(M�f ) a speaker of type x will choose a message that maximizes the probability
that the action a is taken, namely he chooses a message m ∈ M that maximizes
f (m)(x). Let µx be the probability that the listener takes the wrong action
with respect to type x, assuming the speaker’s behavior. That is, for x ∈ R we
have µx = maxm∈M f (m)(x) and for x ∈ A we have µx = 1 − maxm∈M f (m)(x).
Note that all solutions to the speaker’s maximization problem induce the same
probability of a mistake. We will refer to (µx)x∈X as the vector of mistakes
induced by the mechanism. The mistake probability induced by the mechanism
is

∫
x∈X pxµx.

The mechanisms are evaluated according to the listener’s interests while
ignoring those of the speaker. We assume that the listener’s loss given a mech-
anism is the mistake probability induced by the mechanism. Thus, given a
problem (X�A�p), an optimal mechanism is a machanism that minimizes the
mistake probability. None of our results will change if we modify the listeners’s
loss to

∫
x∈X pxcxµx where cx is interpreted as the listener’s cost from taking the

wrong action when the speaker’s type is x�
It should be mentioned that we do not restrict the discussion to direct mech-

anisms and do not apply the revelation principle.
Following is a concrete example:

EXAMPLE 1: Let X1 = X2 = [0�1], let A = {(x1� x2)|x1 + x2 ≥ 1}, and let p
be the uniform distribution.
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If the listener chooses to ignore the speaker’s message, the lowest probability
of a mistake he can obtain is 1/4. This mistake probability can be achieved by a
mechanism in which aspect 1 is checked with probability 1 and action a is taken
iff aspect 1’s value is at least 1/2 (formally, M = {e} and f (e) is the degenerate
lottery where π1 = 1 and d1(x1)= a iff x1 ≥ 1/2).

In this example, letting the speaker talk can improve matters. Consider the
following deterministic direct mechanism (M =X) characterized by two num-
bers z1 and z2. Following the receipt of a message (m1�m2), the speaker verifies
the value of aspect 1 if m1 ≥ z1 and verifies the value of aspect 2 if m1 < z1 but
m2 ≥ z2. If mk < zk for both k the action r is taken. One interpretation of
this mechanism is that in order to persuade the listener, the speaker has to
show that the realization of at least one of the aspects is above some thresh-
old (which may be different for each aspect). The set of types for which the
listener’s action will be wrong consists of the three shaded triangles shown in
Figure 1A.

One can see that the optimal thresholds are z1 = z2 = 2/3 yielding a mistake
probability of 1/6. Is it possible to obtain a lower probability of a mistake by
applying a nondeterministic mechanism? (Notice that the fair random mecha-
nism does not help here as it yields mistake probability of 1/4.) We will return
to this question later.

FIGURE 1A.
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3. A BASIC PROPOSITION

From now on, assume n= 2. For simplicity of notation, we write µij for µ(i�j).
The following proposition is key to our analysis (note that it is valid for both
finite and infinite X and for any p):

PROPOSITION 0 (The L-Principle): Let (X�A�p) be a problem. For any
mechanism and for any three types (i� j) ∈ A, (i� s) ∈ R, and (t� j) ∈ R, it must be
that µij +µis +µtj ≥ 1.

PROOF: Let (M�f ) be a mechanism. Let m be a message optimal for type
(i� j) and let f (m) = 〈π0� d0;π1� d1;π2� d2〉. For a proposition e, let δe be 1 if
e is true and 0 if e is false. Then

µij = π0δd0=r +π1δd1(i)=r +π2δd2(j)=r �

If type (i� s) sends the message m (“claims” that he is (i� j)) the action a will
be taken with probability π0δd0=a +π1δd1(i)=a and therefore

µis ≥ π0δd0=a +π1δd1(i)=a�

Similarly,

µtj ≥π0δd0=a +π2δd2(j)=a�

Therefore

µij +µis +µtj ≥ π0δd0=r +π1δd1(i)=r +π2δd2(j)=r

+π0δd0=a +π1δd1(i)=a +π0δd0=a +π2δd2(j)=a

= 1 +π0δd0=a ≥ 1� Q.E.D.

The idea of the proof is as follows: whatever is the outcome of the ran-
domization following a message m sent by type (i� j) ∈ A, either the mistaken
action r is taken, or at least one of the two types (i� s) and (t� j) in R can induce
the wrong action a by sending m.

We define an L to be any set of three types (i� j) ∈ A, (i� s) ∈ R, and
(t� j) ∈ R. We refer to the result of Proposition 0 (the sum of mistakes in
every L is at least 1) as the L-principle. Extending the L-principle to the case
of n > 2 is done by defining an L to be a set of three types x ∈ A, y ∈ R, and
z ∈ R such that y and z each differs from x in the value of exactly one aspect.

4. EXAMPLES

In all our examples we take p to be uniform. For the case that X is finite
we will refer to

∑
x∈X µx as the number of mistakes. When p is uniform and X
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1 A1 A A A
2 5 A2 A5 A
3 A3 A
4 5 A4

1 2 3 4

FIGURE 2.

is finite, an optimal mechanism can be found by using a technique that relies
on the L-principle: finding a mechanism that induces H mistakes and find-
ing H disjoint L’s allows us to conclude that this mechanism is optimal, thus
yielding a mistake probability of H/|X|. The examples also give some intuition
as to when optimality can be obtained by deterministic mechanisms and when
it requires that the listener use randomization to determine the aspect to be
checked.

EXAMPLE 2: Let X1 =X2 = {1� � � � �5} and A = {x|x1 + x2 ≥ 7}. In Figure 2,
each entry stands for an element in X and the types in A are indicated by the
letter A. We mark 5 disjoint L’s (the three elements of each L are indicated by
the same number).

Following is a direct mechanism that induces 5 mistakes and is thus opti-
mal: For any message m such that mk ≤ 4 for both k, the action r is taken.
Otherwise, an aspect k, for which mk = 5, is verified. In fact, this mechanism
amounts to simply asking the speaker to present an aspect with a value of 5.
The five mistakes are with respect to the three types (3�4), (4�4), and (4�3)
in A and the two types (1�5) and (5�1) in R.

Example 2 later will be generalized: when p is uniform, constructing an op-
timal mechanism does not require randomization when the speaker’s aim is to
persuade the listener that the average of the values of the two aspects is above
a certain threshold.

EXAMPLE 3: This example shows that the the conclusion of Example 2 (ran-
domization is not needed for the case in which the speaker tries to persuade
the listener that the average of the values of the two aspects is above a certain
threshold) does not hold for the case in which the number of aspects is greater
than 2.

Consider the problem where n = 3, Xk = {0�1} for k = 1�2�3, and A =
{(x1� x2� x3)|∑k xk ≥ 2}. Consider the mechanism where the speaker is asked
to name two aspects, the listener checks each of them with probability 1/2
and takes the action a if the value of the checked aspect is 1. This mech-
anism yields 1�5 mistakes (mistake probability of 3/16) since only the three
types (1�0�0), (0�1�0), and (0�0�1) can each mislead the listener with proba-
bility 1/2.
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To see that this is an optimal mechanism note that the following three in-
equalities hold:

µ(1�1�0) +µ(1�0�0) +µ(0�1�0) ≥ 1�

µ(1�0�1) +µ(1�0�0) +µ(0�0�1) ≥ 1�

µ(0�1�1) +µ(0�1�0) +µ(0�0�1) ≥ 1�

The minimum of
∑

x∈X µx subject to the constraint

∑

{x|x1+x2+x3=2}
µx + 2

∑

{x|x1+x2+x3=1}
µx ≥ 3�

implied by summing up the three inequalities, is attained when µx = 1/2 for
any x ∈ {(1�0�0)� (0�1�0)� (0�0�1)} and µx = 0 for any other x ∈ X . Thus, the
number of mistakes cannot fall below 1�5.

The number of mistakes induced by a determinstic mechanism must be an
integer and thus, for this problem, it is at least 2. One optimal mechanism
within the set of deterministic mechanisms involves taking the action a iff the
speaker can show that either aspect 1 or aspect 2 has the value 1. This mecha-
nism induces two mistakes with regard to types (1�0�0) and (0�1�0).

EXAMPLE 4: This corresponds to the situation described in the Introduction
in which a suspect’s lawyer claims that the two testimonies brought against his
client are inconsistent but the judge has time to thoroughly investigate only
one of them. Consider the problem where X1 = X2 = {1�2�3� � � � � I} and A =
{(x1� x2)|x1 �= x2}. Intuitively, the knowledge of the value of only one aspect by
itself is not useful to the listener. The optimal mechanism will be shown to be
nondeterministic in this case.

The fair random mechanism (following a message in A each of the two as-
pects is verified with probability �5) induces I/2 mistakes. The minimal num-
ber of mistakes is I/2. The two cases I = 2 and I = 3 are illustrated in Figures
3A and 3B.

In the case of I = 2 there is one L. For I = 3, the maximal number of dis-
joint L’s is one; however, notice the six starred types—three in A and three
in R. Each of the starred types in A combined with two of the starred types

1 R1
R1

FIGURE 3A.

∗ ∗ R∗
∗ R∗
R∗

FIGURE 3B.
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in R constitutes an L. Therefore, any mechanism induces mistake probabili-
ties (µx)x∈X satisfying:

µ1�3 +µ1�1 +µ3�3 ≥ 1�

µ1�2 +µ1�1 +µ2�2 ≥ 1�

µ2�3 +µ2�2 +µ3�3 ≥ 1�

which imply that the sum of mistakes with respect to these six elements must
be at least 1�5. The generalization for I > 3 is obvious.

Any deterministic mechanism induces a vector (µx)x∈X of mistakes with µx ∈
{0�1} for all x. If there is an i for which µii = 0, then for any j �= i either µjj = 1
or µi�j = 1 since if µjj = 0 the constraint µi�j + µii + µj�j ≥ 1 implies µi�j = 1.
Therefore

∑
x∈X µx ≥ I−1. Thus, any deterministic mechanism induces at least

I − 1 mistakes.
A deterministic mechanism that induces I − 1 mistakes is the one in which

the speaker is asked to present an aspect whose realization is not 1 (thus yield-
ing mistakes only for the types (i� i) with i �= 1).

EXAMPLE 5: Whereas in Example 4 the speaker tries to persuade the list-
ner that the two aspects have different values, here he tries to persuade
him that they have the same value. That is, X1 = X2 = {1� � � � � I} and A =
{x|(x1� x2)|x1 = x2}. Here, it is also true that any information about one of
the aspects provides no useful information to the listener but unlike the previ-
ous case, for I > 2, randomization is not helpful. The mechanism according to
which the listener chooses r independently of the speaker’s message without
checking any of the aspects induces I mistakes. To see that one cannot re-
duce the number of mistakes note that the I sets {(i� i)� (i+ 1� i)� (i� i+ 1)} for
i = 1� � � � � I − 1 and {(I� I)� (1� I)� (I�1)} consist of a collection of disjoint L’s.

COMMENT : In Example 5 with I = 3 the probability of a mistake is 1/3.
This is in fact the worst case for the listener, that is the optimal mechanism in
our model with two aspects and any probability measure will never induce a
mistake probability that is higher than 1/3. Actually, in every problem, either
the “reject all” mechanism or the fair random mechanism guarantees a mistake
probability of at most 1/3. If the probability of the set A is δ, then the “reject
all” mechanism yields mistake probabilities of δ, the fair random mechanism
yields the mistake probability of at most (1−δ)/2 and min{δ� (1−δ)/2} ≤ 1/3.

EXAMPLE 6: As mentioned above, the optimality criterion we employ in-
volves maximizing the probability that the listener makes the right decision
from his point of view while ignoring the interests of the speaker. If the op-
timality criterion also took into account the speaker’s interests, the optimal
mechanism would of course change. In particular, as this example shows,
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the listener might be indifferent between two optimal mechanisms while the
speaker might not.

Consider the problem with X = {1� � � � �5}×{1� � � � �5} and A = {(x1� x2)|x1 +
x2 ∈ {6�8�10}}. The minimal number of mistakes is easily shown to be 8 and
is obtained by both the deterministic mechanism “show me an aspect whose
value is 5” and the fair random mechanism. However, under the fair random
mechanism the listener can induce the action a with probability 17/25 whereas
under the optimal deterministic mechanism he can do so only with probabil-
ity 9/25. Thus, the fair random mechanism is superior for the speaker.

Let us return to Example 1 and demonstrate the usefulness of the
L-principle also in cases where the problem is not finite.

EXAMPLE 1 (Continued): We have already found a deterministic mecha-
nism with mistake probability of 1/6. To see that the mistake probability of
any mechanism is at least 1/6, divide the unit square into 9 equal squares and
divide each square into two triangles as shown in Figure 1B.

The set T1 = {(x1� x2) ∈ A|x1 ≤ 2/3 and x2 ≤ 2/3} is one of the three trian-
gles denoted in the figure by the number 1. Any three points x= (x1� x2) ∈ T1,
y = (x1 − 1/3� x2) ∈ R, and z = (x1� x2 − 1/3) ∈ R establish an L. By Propo-
sition 0, µx + µy + µz ≥ 1. The collection of all these L’s is a set of disjoint
sets whose union is the three triangles denoted in the figure by the number 1.
Therefore the integral of µ over these three triangles must be at least the size
of T1, namely 1/18. Similar considerations regarding the three triangles de-
noted by the number 2 and the three triangles denoted by the number 3 imply
that

∫
x∈X µx ≥ 1/6.

FIGURE 1B.
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5. AN EQUIVALENT LINEAR PROGRAMMING PROBLEM

We will now show that for a finite problem, finding an optimal mechanism is
equivalent to solving an auxiliary linear programming problem.

Let (X�A�p) be a finite problem. Define P(X�A�p) to be the linear pro-
gramming problem:

min
∑

x∈X
pxκx subject to

κij + κis + κtj ≥ 1 for all (i� j) ∈ A�(i� s) ∈ R� and (t� j) ∈ R� and

0 ≤ κx for all x ∈ X�

We will show that the solution to P(X�A�p) coincides with the vector of
mistake probabilities induced by an optimal mechanism.

Note that not every vector that satisfies the constraints of P(X�A�p),
even if we add the constraints κx ≤ 1 for all x, can be induced by a mech-
anism. “Incentive compatibility” implies additional constraints on the vector
of mistake probabilities, (µx)x∈X , induced by a mechanism. For example, if
(i� j) ∈ A�(i� s) ∈ A, and (t� j) ∈ A, then it is impossible that µij = 0 while both
µis = 1 and µtj = 1, since at least one of the types, (i� s) or (t� j), can increase
the probability that the action taken is a by imitating type (i� j). Nevertheless,
we will show that any solution to the linear programming problem can be in-
duced by a mechanism.

PROPOSITION 1: Let (X�A�p) be a finite problem and let (κx)x∈X be a so-
lution to P(X�A�p). Then, there is an optimal mechanism such the vector of
mistakes induced by the mechanism is (κx)x∈X .

PROOF:
Step 1: Note that for every x ∈ X it must be that κx ≤ 1 and either κx = 0

or there are two other types y and z such that {x� y� z} establish an L and
κx +κy +κz = 1. Otherwise we could reduce κx and stay within the constraints.

Step 2: By Proposition 0 any vector of mistake probabilities induced by a
mechanism satisfies the constraints. Thus, it is sufficient to construct a mecha-
nism such that (µx)x∈X , the vector of its induced mistake probabilities, is equal
to (κx)x∈X .

Choose M =X . We use the convention minx∈∅ κx = 1. For any message in R
the action r is chosen.

For a message (i� j) ∈ A, distinguish between two cases:
(i) κij > 0:

• with probability κij the action r is taken.
• with probability min{s|is∈R} κis the first aspect is verified.
• with probability min{t|tj∈R} κtj the second aspect is verified.

By Step 1, κij + min{s|is∈R} κis + min{t|tj∈R} κtj = 1.
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(ii) κij = 0: Note that min{s|is∈R} κis + min{t|tj∈R} κtj ≥ 1. Choose two numbers
α1 ≤ min{s|is∈R} κis and α2 ≤ min{t|tj∈R} κtj satisfying α1 + α2 = 1. Aspect
1 (2) is verified with probability α1 (α2).

Step 3: We will now show that for the mechanism constructed in Step 2,
µx ≤ κx for every x ∈ X .

A type (i� j) ∈ R cannot induce the action a with positive probability un-
less he sends a message (i� s∗) ∈ A or (t∗� j) ∈ A. If he announces (i� s∗)
the first aspect is verified with probability of at most min{s|is∈R} κis ≤ κij . If he
sends the message (t∗� j) the second aspect is verified with probability of at
most min{t|tj∈R} κtj ≤ κij . Thus, (i� j) cannot induce the action a with probability
higher than κij .

A type (i� j) ∈ A who announces (i� j) will induce the action a with proba-
bility 1 − κij . Since his aim is to reduce the probability of a mistake, he will not
induce a probability of a mistake higher than κij .

Step 4: By Proposition 0, the vector (µx)x∈X satisfies the constraints of
P(X�A�p) and by Step 3, the objective function assigns to this vector a value
of at most

∑
x∈X pxκx, which is the value of the solution to P(X�A�p). There-

fore it must be that µx = κx for all x ∈ X and the mechanism we constructed
in Step 2 is optimal. Q.E.D.

6. THE SIMPLE STRUCTURE OF OPTIMAL MECHANISMS

Next we will show that there always exists an optimal mechanism with a sim-
ple structure. In Step 2 of the proof of Proposition 1 we constructed a direct
optimal mechanism in which the listener only verifies aspects. Thus, the fact
that we allow the listener to condition his action on the exact value of the
aspect he has checked does not enable him to reduce the mistake probabil-
ity beyond what he could obtain were he only able to verify one aspect of the
speaker’s claim about his type. Proposition 1 by itself does not tell us anything
about the probabilities used in an optimal mechanism. We will now show that
for n = 2 one can always construct an optimal mechanism using only a fair coin
as a form of randomization.

PROPOSITION 2: For every finite problem (X�A�p) there exists an optimal
mechanism that is direct (i.e. M =X) such that:

(a) If m ∈ R the listener takes the action r whereas if m ∈ A the listener does
one of the following:

(i) takes the action r;
(ii) takes the action r with probability 1/2 and verifies one aspect with prob-

ability 1/2;
(iii) verifies each aspect with probability 1/2;
(iv) verifies one aspect with probability 1.

(Using our notation, for every m ∈ R, f (m) is the degenerate lottery r and for
every message m = (m1�m2) ∈ A, f (m) is a lottery 〈π0� d0;π1� d1;π2� d2〉 where
all πi are in {0�1/2�1}, d0 = r, and di(xi)= a iff xi =mi.)
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(b) It is optimal for type x ∈ A to report x and for type x ∈ R to send a mes-
sage y such that for one aspect k, xk = yk.

PROOF: (a) A proposition due to Alon (2003) states that if (αx)x∈X is an
extreme point of the set of all vectors satisfying the constraints in P(X�A�p),
then αx ∈ {0�1/2�1} for all x ∈ X . (Actually, our initial conjecture was that
αx ∈ {0�1} for all x ∈ A and αx ∈ {0�1/2�1} for all x ∈ R. Alon showed that we
were only partially right and proved the modification of our conjecture.)

Let (κx)x∈X be a solution to P(X�A�p). As a solution to a linear program-
ming problem the vector (κx)x∈X is an extreme point and thus κx ∈ {0�1/2�1}
for all x ∈ X . The construction of an optimal mechanism in Proposition 1
implies the rest of our claim since for every i ∈ X1 and j ∈ X2 the numbers
min{s|is∈R} κis and min{t|tj∈R} κtj are all within {0�1/2�1}.

(b) The claim is straightforward for x ∈ R and for x ∈ A for which κx = 0.
Type (i� j) ∈ A for whom κij > 0 can possibly obtain a positive probability of
acceptance only by “cheating” about at most one aspect. If he claims to be type
(t� j), then the probability that the second aspect will be verified is at most
min{t|tj∈R} κtj , which is exactly the probability that aspect 2 is verified when the
speaker admits he is (i� j). Q.E.D.

EXAMPLE 7: In all previous examples the mistake probability of a type in A
induced by the optimal mechanisms we have constructed was either 0 or 1. In
this example any optimal mechanism induces a mistake probability of �5 for at
least one type in A.

Let X1 = {1� � � � �8}, X2 = {1� � � � �7}; the types in A are denoted by A and
p is uniform.

Any mechanism for this problem induces at least 16 mistakes since we can
find 16 disjoint L’s (see Figure 4B where each L is indicated by a distinct num-
ber). This number is at most 16 since the vector κx = 1/2 for any of the 32 types
indicated by a star in Figure 4A and κx = 0 otherwise, satisfies the constraints
of P(X�A�p). Note that κ66 = κ67 = 1/2 although (6�6) and (6�7) are in A.

We will now show that for any (κx)x∈X , a solution for P(X�A�p), either
κ66 or κ67, is not an integer.

First, note that κ66 +κ67 ≤ 1. In Figure 4C we indicate 15 disjoint L’s that do
not contain any of the elements in the box {6�7�8}× {6�7} and thus the sum of
mistakes in that box cannot exceed 1.

The 16 L’s in Figure 4B do not contain (8�6) and (8�7) and thus κ86 =
κ87 = 0. Similarly, κ76 = κ77 = 0.

Now assume that both κ66 and κ67 are integers. Then there is j ∈ {6�7} so
that κ6j = 0. For any i = 1� � � � �5 it must be κ6j +κ6i +κ7j ≥ 1 and thus κ6�i = 1.
However, none of the 12 disjoint L’s in Figure 4D contain any of the 5 types
(6� i), where i = 1� � � � �5 and hence the total number of mistakes is at least 17,
which is a contradiction!
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∗ ∗ ∗ ∗ ∗ A∗
∗ ∗ ∗ ∗ ∗ A∗
∗ A A A A ∗ ∗ ∗
A ∗ A A A ∗ ∗ ∗
A A ∗ A A ∗ ∗ ∗
A A A ∗ A ∗ ∗ ∗
A A A A ∗ ∗ ∗ ∗

FIGURE 4A.

9 10 1 2 5 15A 15
8 6 3 4 7 16A 16

11 A 1A 2A 14A 14 1 2
11A 11 3A 4A A 15 3 4
A 6A 13 12A 5A 12 5 6

8A A 13A 12 7A 13 7 8
9A 10A A A 14 16 9 10

FIGURE 4B.

9 10 1 2 5 A
8 6 3 4 7 A

13 11A 1A 2A A 11 1 2
A 11 3A 4A 12A 12 3 4

13A 6A 14 A 5A 13 5 6
8A A 14A 15 7A 14 7 8
9A 10A A 15A 12 15 9 10

FIGURE 4C.

9 10 1 2 5 A
8 6 3 4 7 A

11 11A 1A 2A A 1 2
A 11 3A 4A A 3 4
A 6A 12 12A 5A 5 6

8A A A 12 7A 7 8
9A 10A A A 9 10

FIGURE 4D.



RULES OF PERSUASION 1729

7. THE LISTENER’S CREDIBILITY AND THE DUAL PROBLEM

In the construction of the optimal mechanism we have assumed that the
listener is committed to the mechanism. It is possible, however, that the listener
will calculate the optimal strategy of the speaker given the mechanism and will
make an inference from the speaker’s message about his type that will lead the
listener to prefer not to follow the mechanism.

In other words, one may think about the situation as an extensive game: the
speaker first sends a message to the listener; following the message the listener
chooses which aspect to check and once he has observed the realization of
the aspect, he decides whether to take the action a or r. A mechanism can be
thought of as a listener’s strategy in this extensive game. One may ask whether
the listener’s strategy, which corresponds to an optimal mechanism, is part of
a sequential equilibrium for this extensive game. If it is, we will say that the
mechanism is credible.

We do not think that the sequential optimality of the listener’s mechanism is
a crucial criterion for its plausibility. The listener’s commitment to the mech-
anism may arise from considerations external to the model (such as the desire
to maintain his reputation). Note also that in our model sequential equilib-
rium does not impose any restrictions on the beliefs following messages outside
the support of the speaker’s strategy. This fact makes sequential rationality a
rather weak restriction on the listener’s strategy.

Nevertheless, the study of the “sequential rationality” of the listener’s mech-
anism yields a surprising result. As we will now see, a solution to the dual linear
programming problem of the primal problem studied in Proposition 1 can be
transformed into a strategy for the speaker that, together with the listener’s
strategy as derived in Proposition 1, yield a sequential equilibrium.

THE DUAL PROBLEM 1: Let (X�A�p) be a problem and let T(X�A) be the
set of all its L’s. The dual problem to P(X�A) is D(X�A�p):

max
∑

∆∈T(X�A)

λ∆ subject to

∑

{∆∈T(X�A)|x∈∆}
λ∆ ≤ px for all x ∈ X� and

0 ≤ λ∆ for all ∆ ∈ T(X�A)�

Recall the examples in Section 4 where px = 1/|X| for all x ∈ X . In the
analysis of some of these examples we found a number of disjoint L’s equal to
the number of mistakes induced by some mechanism. Finding a collection of
disjoint L’s is equivalent to finding a point within the constraints of D(X�A�p)
(for which λ∆ = 1/|X| for any ∆ in the collection and λ∆ = 0 for ∆ not in the
collection). Finding a vector of mistake probabilities induced by a mechanism
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is equivalent to finding a point within the constraints of P(X�A�p). Thus, our
technique is equivalent to the technique commonly used in solving a linear
programming problem based on the fact that the values of the solutions of
P(X�A�p) and D(X�A�p) coincide.

The analysis of the case in which I = 3 in Example 4 can also be viewed
in these terms. Assigning λ∆ = 1/18 for the three L’s {(1�3)� (1�1)� (3�3)},
{(1�2)� (1�1)� (2�2)}, and {(2�3)� (2�2)� (3�3)}, and λ∆ = 0 otherwise, we iden-
tify a point in the constraints of the dual problem with an objective function’s
value of 1/6. The fair random mechanism induces the mistake probabilities
of µx = 1/2 for the three points on the main diagonal and µx = 0 otherwise,
yielding the value 1/6 for the objective function of the primal problem.

PROPOSITION 3: Let (X�A�p) be a finite problem. An optimal mechanism,
built in Propositions 1 and 2 from a solution (κx)x∈X to P(X�A�p) satisfying that
(κx)x∈X ∈ {0�1/2�1} for all x ∈ X , is credible.

PROOF: By the Complementary Slackness Theorem the dual problem
D(X�A�p) has a solution (λ∆)∆∈T(X�A) such that λ∆(1 − ∑

x∈∆ κx) = 0 for all
∆ ∈ T(X�A) and κx(px − ∑

x∈∆∈T(X�A) λ∆) = 0 for all x ∈ X . The solutions
to the primal and dual problems have the same value, that is,

∑
∆∈T(X�A) λ∆ =∑

x∈X pxκx.
Consider the following speaker’s strategy: Let x be a speaker’s type. Every

x ∈ A announces x with certainty. Every x ∈ R announces x with probabil-
ity 1 − ∑

{∆∈T(X�A)|x∈∆} λ∆/px and every ∆ with x ∈ ∆, x announces the unique
y ∈ A∩∆ with probability λ∆/px. This strategy is well defined since by the dual
problem constraints

∑
{∆∈T(X�A)|x∈∆}λ∆ ≤ px.

We first show that this strategy is a speaker’s best response to the listener’s
strategy. By Proposition 2 we know that it is optimal for every x ∈ A to an-
nounce x. Let x ∈ R. If κx = 0, type x cannot induce the listener to choose a
with a positive probability and any strategy for type x is thus optimal. If κx > 0,
then

∑
{∆∈T(X�A)|x∈∆} λ∆ = px. If a message z ∈ A is sent by x with a positive

probability, then there exists an L, ∆ = {z ∈ A, x ∈ R, y ∈ R} for which λ∆ > 0
and thus κz + κx + κy = 1. Following are three configurations to consider:

(i) κz = 0, κx = κy = 1/2.
After receiving the message z the listener verifies each of the aspects
with probability 1/2. Thus, by sending the message z, type x will in-
duce a with probability 1/2, which is the best he can do.

(ii) κz = 1/2, κx = 1/2, and κy = 0.
The listener takes the action r with probability 1/2 and verifies with
probabability 1/2 the aspect k for which zk = xk. By announcing z, type
x induces the action a with probability 1/2, which is the best he can do.

(iii) κz = 0, κx = 1, and κy = 0.
The listener verifies with certainty the aspect k for which zk = xk. Thus,
by announcing z type x induces a with probability 1.
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It remains to show that this strategy rationalizes the listener’s strategy.
Assume m ∈ R is sent. There is no case in which a message m ∈ R is sent by

a type in A and thus we can assign to the listener the belief that it was sent
by a type in R and therefore choosing r is indeed optimal.

Assume m ∈A is sent. We distinguish between two cases:
(a) κm > 0: It must be that

∑
m∈∆∈T(X�A) λ∆ = pm. The induced Bayesian be-

liefs assign probability 1/3 to each of the following three events: the speaker is
m ∈ A, the speaker is a type in R that shares with m the value of the first aspect,
and the speaker is a type in R that shares with m the value of the second as-
pect. Conditional on these beliefs, the listener is indifferent between verifying
one of the aspects and choosing r, each of which induces a mistake probability
of 1/3.

(b) κm = 0: The induced Bayesian beliefs assign equal probabilities to the
event that the speaker is a type x ∈ R and x1 = m1 and to the event that
the speaker is a type x ∈ R and x2 = m2. This probability is not higher than
the probability the listener assigns to the event that the speaker is of type m.
Thus, verifying any one of the aspects is optimal. Q.E.D.

8. THE OPTIMALITY OF DETERMINISTIC MECHANISMS

One can think about a deterministic mechanism in the following way: once
the speaker has sent the message m, the listener checks one aspect k(m) with
probability 1 and chooses a if and only if the value of the aspect is in some set
V (m)⊆ Xk(m). A speaker of type (x1� x2) will be able to induce the listener to
take the action a if and only if there is a message m such that xk(m) ∈ V (m).
Denote Vk = ⋃

k(m)=k V (m). A type (x1� x2) will induce a if and only if xk ∈ Vk

for at least one k. Thus, for any deterministic mechanism there are two sets
V1 ⊆X1 and V2 ⊆X2 such that the probability of a mistake is the probability of
{(x1� x2) ∈ A|for no k�xk ∈ Vk} ∪ {(x1� x2) ∈ R|for at least one k�xk ∈ Vk}. We
call V1 and V2 the sets of persuasive facts.

We now derive a simple necessary condition for a mechanism to be optimal
within the set of deterministic mechanisms:

PROPOSITION 4: Let (X�A�p) be a finite problem. For a mechanism to be
optimal within the set of deterministic mechanisms, its sets of persuasive facts
V1 and V2 must satisfy:

for any x1 ∈ V1� p{(x1� x2) ∈ A|x2 /∈ V2} ≥ p{(x1� x2) ∈ R|x2 /∈ V2}
and

for any x1 /∈ V1� p{(x1� x2) ∈ A|x2 /∈ V2} ≤ p{(x1� x2) ∈ R|x2 /∈ V2}�
Similar conditions hold for V2.
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PROOF: Assume, for example, that s ∈ V1 but that

p{(s�x2) ∈ A|x2 /∈ V2} <p{(s�x2) ∈ R|x2 /∈ V2}�

Eliminating s from V1 will decrease the mistake probability. To see this, note
first that every type x such that either x1 �= s or x2 ∈ V2 can induce the action a
iff he could induce it prior to the elimination of s from V1. Any type x such
that x1 = s and x2 /∈ V2 could induce the action a prior to the elimination but
cannot do so following it. Thus, elimination of such an s reduces the mistake
probability. Q.E.D.

The condition stated in Proposition 4 is necessary but not sufficient for a
mechanism to be optimal within the set of deterministic mechanisms: Return-
ing to Example 4 with X1 =X2 = {1�2�3�4}, a mechanism with V1 = V2 = {3�4}
satisfies the conditions in the proposition and yields 4 mistakes, while the
mechanism with V1 = V2 = {2�3�4} yields only 3 mistakes.

Finally, for problems with uniform probability we will identify conditions
that guarantee that there exists an optimal mechanism that is deterministic.
Let X ⊆ �2. We say that a set A ⊆ X is monotonic if for every s > s′ and
for every t, (s′� t) ∈ A implies (s� t) ∈ A and (t� s′) ∈ A implies (t� s) ∈ A. In
other words, a set is monotonic if, for every aspect, the higher its value, the
better indication it is that the type is in A. The sets A in Examples 1 and 2 are
monotonic whereas the sets A in Examples 4, 5, 6, and 7 are not.

The following proposition refers to the case in which the set of types is a
continuum although it also gives some insight into the finite case:

PROPOSITION 5: Let X = [0�1] × [0�1], p be uniform, and assume that A is
monotonic and that R is closed, convex, and nonempty. Then there exists an op-
timal mechanism that is direct and deterministic with (sets of persuasive facts)
Vk = [zk�1] for some zk > 0 for both k.

PROOF: The mistake probability induced by the deterministic mechanisms
with Vk = [yk�1] is continuous in y1 and y2. Thus, there is an optimal mecha-
nism within this class characterized by the sets of persuasive facts Vk = [zk�1].
By our assumptions about R it must be that zk > 0 for both k.

Assume first that zk < 1 for both k. It follows from a modification of Propo-
sition 4 that z2/2 = max{s|(z1� s) ∈ R} and z1/2 = max{s|(s� z2) ∈ R}.
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FIGURE 5.

The rest of the proof extends the idea embedded in Example 1. In Figure 5
the set R is the area below the bold curve. The mistake probability induced by
the mechanism above is the sum of the probabilities of the the following three
disjoint sets:

T1 = {(x1� x2) ∈ A|x1 ≤ z1 and x2 ≤ z2}�
T2 = {(x1� x2) ∈ R|x1 > z1 and x2 ≤ z2/2}�
T3 = {(x1� x2) ∈ R|x1 ≤ z1/2 and x2 > z2}�

Note that by the convexity of R the sets

{(x1 − z1/2� x2)|(x1� x2) ∈ T1} and

{(x1 − z1� x2 + z2/2)|(x1� x2) ∈ T2}
have an empty intersection. Similarly,

{(x1� x2 − z2/2)|(x1� x2) ∈ T1} and

{(x1 + z1/2� x2 − z2)|(x1� x2) ∈ T3}
are disjoint. The collection of all sets

{x� (x1 − z1/2� x2)� (x1� x2 − z1/2)} with x ∈ T1�

{(x1� x2 + z2/2)�x� (x1 − z1� x2 + z2/2)} with x ∈ T2� and

{(x1 + z1/2� x2)�x� (x1 + z1/2� x2 − z2)} with x ∈ T3

is a collection of disjoint L’s. Thus, the mistake probability induced by any
mechanism must be at least the probability of T1 ∪ T2 ∪ T3.
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As to the case where z1 = z2 = 1 it must be that

max{s|(1� s) ∈ R} ≥ 1/2 and max{s|(s�1) ∈ R} ≥ 1/2�

and thus the set A is a subset of [1/2�1] × [1/2�1]. The mechanism “reject
all” induces a mistake probability equal to the probability of the set A. Any
mechanism induces a mistake probability at least as large as the probability
of A since the collection of all sets {x� (x1 −1/2� x2)� (x1� x2 −1/2)} with x ∈ A,
is a collection of disjoint L’s.

Arguments similar to the above complete the proof for the case in which
zk = 1 for one k. Q.E.D.

When the problem is monotonic but the set R is not convex, the optimal
mechanism may not be deterministic. The following example is finite but could
be extended to the case of a continuum.

EXAMPLE 8: Let X1 = X2 = {1�2� � � � �5}. The elements in R are indicated
in Figure 6.

We will see that the optimal mechanism yields 4.5 mistakes and thus must be
nondeterministic. Notice the six starred elements that produce three (nondis-
joint) L’s. Any mechanism that induces mistake probabilities (µx)x∈X must
satisfy:

µ5�5 +µ1�5 +µ5�1 ≥ 1�

µ2�5 +µ2�2 +µ1�5 ≥ 1�

µ5�2 +µ2�2 +µ5�1 ≥ 1�

which implies that the sum of mistakes with respect to these six types must be
at least 1�5. At least three additional mistakes must be induced with respect to
the three disjoint L’s indicated by the numbers 1�2, and 3 in the figure. The
fair random mechanism yields 4�5 mistakes (the 9 types in R− {(1�1)} induce
the action a with probability �5) and thus is optimal.

R∗ ∗ ∗
R1 1
R3 3
R2 R∗ 2 ∗
R R3 R2 R1 R∗

FIGURE 6.
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9. RELATED LITERATURE

Our paper is related to the literature on strategic information transmission
(see, for example, Crawford and Sobel (1982)). This literature studies a model
in which a sender sends a costless message to a receiver. The listener cannot
verify any of the information possessed by the sender. The interests of the
sender and the receiver do not necessarily coincide. The situation is analyzed
as a game and one of the questions asked is whether an informative sequential
equilibrium exists. In contrast, the speaker in our model can choose to check
some of the relevant information and the situation is analyzed as a mechanism
design problem.

Some papers have studied principal agent problems in situations where the
principal can obtain “hard evidence.” In a very different context, Townsend
(1979) studied the structure of efficient contracts in a model where the princi-
pal insures the agent against variability in the agent’s wealth. The transfer of
money from one party to the other may depend on the agent’s wealth, which is
initially known only to the agent. The principal can verify the agent’s wealth if
he incurs some cost. In this model the choice of the principal is whether or not
to verify the state whereas in our model the focus is on the principal’s choice
of which aspect to check.

Some of the literature has studied the circumstances under which the revela-
tion principle holds, whereas our main interest is in characterizing the optimal
mechanisms.

Green and Laffont (1986) studies mechanisms in which the set of messages
each type can send depends on the type and is a subset of the set of types.
Their framework does not allow the listener to randomize. Furthermore, their
model does not cover the case in which the speaker can show the value of the
realization of one of the aspects. In particular, assuming in their framework
that a type (i� j) can only send messages like (i� s) or (t� j) is not the same as
assuming that he can present one of the aspects. The reason is that a message
(m1�m2) would not reveal whether the agent actually showed that the realiza-
tion of aspect 1 is m1 or that he showed that the realization of aspect 2 is m2.

In Bull and Watson (2002) an agent can also show some evidence. A key
condition in their paper is what they call “normality”: if type x can distinguish
himself from type x′ and from x′′, then he can also distinguish himself from
both, a condition that does not hold in our framework. Furthermore, they do
not consider randomized mechanisms.

A related paper is Fishman and Hagerty (1990). One interpretation of what
they do is the analysis of the optimal deterministic mechanisms for the problem
({0�1}n� {x|∑k xk > b}) for some b.

Our own interest in this paper is rooted in Glazer and Rubinstein (2001) in
which we study the design of optimal deterministic debate mechanisms in a
specific example. (Other models of optimal design of debate rules with hard
evidence are Shin (1994), Lipman and Seppi (1995), Deneckere and Severinov
(2003), and Forges and Koessler (2003).) The two models are quite different
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but nevertheless have some common features. In both models there is a listener
and speaker(s); the listener has to take an action after listening to arguments
made by the speaker(s); an instance is characterized by the realization of sev-
eral aspects and the speaker(s) knows the realization of the aspects while the
listener does not; a constrained amount of “hard” evidence can be shown by
the speaker(s) or checked by the listener; the listener must base his decision
on only partial information. In both papers we look for a mechanism that min-
imizes the probability that the listener will take the wrong action.
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