Solutions Algebra B 1

Moed B

2) Let G be a group whose order is p^{n} with $n \geq 3$. Assume that the center of G, denoted by $Z(G)$, there are p^{n-2} elements.
a) How many elements are there in a conjugacy class of some $a \in G$ which is not in $Z(G)$?
b) How many conjugacy classes the group G has?

Solution: Denote by $C_{a}=\left\{g \in G: g a g^{-1}=a\right\}$, and let k denote its order. Then $Z(G) \subset C_{a}$. Hence p^{n-2} divides k, and k divides p^{n} which is the order of the group G. Hence $k=p^{n-2}, p^{n-1}$ or p^{n}. Since a is not in $Z(G)$, then $Z(G)$ is a proper subgroup of C_{a}. Hence $k>p^{n-2}$. If $k=p^{n}$ then $C_{a}=G$ which means that a commutes with all elements of G and hence a would be in $Z(G)$, which is not the case. Hence $k=p^{n-1}$. Since the number of elements in a conjugacy class is equal to $o(G) / o\left(C_{a}\right)$ we obtain that this number of elements is equal to $p^{n} / p^{n-1}=p$.
b) We proved in class the identity

$$
o(G)=o(Z(G))+\sum_{a} \frac{o(G)}{o\left(C_{a}\right)}
$$

where the sum is over all representatives of conjugacy classes which contain more than one element. From part a) it follows that $o(G) / o\left(C_{a}\right)=p$. If the number of conjugacy classes which contain more than one element is l, the above identity is the same as $p^{n}=p^{n-2}+l p$. Hence, the number of conjugacy classes G has is $l+o(Z(G))=p^{n-1}-p^{n-3}+p^{n-2}$.
3) Let G be a finite group, and let $f: G \mapsto G$ be a homomorphism without a fixed point (that is, if $f(x)=x$ for some $x \in G$, then $x=e$). Also, assume that $f(f(x))=x$ for all $x \in G$.
a) Prove that for every $g \in G$ there is a $h \in G$ such that $g=h f(h)^{-1}$.
b) Prove that $f(g)=g^{-1}$ for all $g \in G$.
c) Prove that G is an abelian group.

Solution: a) Define a map $F: G \mapsto G$ by $F(g)=g f(g)^{-1}$. We prove that it is one to one. Indeed, suppose that $F(g)=F(h)$. Then $g f(g)^{-1}=h f(h)^{-1}$ which implies $h^{-1} g=f(h)^{-1} f(g)=f\left(h^{-1} g\right)$. Since f has no fix point, it follows that $h^{-1} g=e$ or $g=h$. Hence F is one to one. Any one to one function from a finite set to itself is onto. Hence, given $g \in G$ there is $h \in G$ such that $g=h f(h)^{-1}$.
b) Given $g \in G$ there is an $h \in G$ such that $g=h f(h)^{-1}$. Hence, using $f(f(h))=h$ we obtain,

$$
f(g)=f\left(h f(h)^{-1}\right)=f(h) f\left(f\left(h^{-1}\right)\right)=f(h) h^{-1}=\left(h f(h)^{-1}\right)^{-1}=g^{-1}
$$

c) For $g, h \in G$ we have

$$
h^{-1} g^{-1}=(g h)^{-1}=f(g h)=f(g) f(h)=g^{-1} h^{-1}
$$

Hence $g h=h g$ and G is abelian.
4) a) Let G be a group and H a proper subgroup of G. Prove that $\langle G-H\rangle=G$.
b) Prove that a group whose order is 300 , is not a simple group.

Solution: a) It is enough to prove that if $h \in H$ then $h \in<G-H>$. Since H is a proper subgroup of G, there is an element $u \in G-H$. Then $u^{-1} h \in G-H$, for if $u^{-1} h \in H$ then it would follow from the fact that $h \in H$ that $u^{-1} \in H$ and hence $u \in H$ which is not the case. For the same reason $u\left(u^{-1} h\right) \in G-H$. But this last element is h and hence $h \in G-H$.
b) Assume that G is simple. Since $|G|=300=2^{2} \cdot 3 \cdot 5^{2}$ it follows that G has a 5 Sylow group of order 25 . Let r_{5} denote the number of such groups. Thus r_{5} divides 12 and $r_{5} \equiv 1$ $\bmod 5$. If $r_{5}=1$ then there is a unique Sylow subgroup and hence it is normal. This is a contradiction. Hence $r_{5}=6$. Let X denote the set of all 5 Sylow subgroups of G. From the above $|X|=6$. The group G acts on X by $\varphi(g) P=g P g^{-1}$ where $g \in G$ and $P \in X$. Thus, φ produces a homomorphism from G into S_{6}. The kernel of φ is a normal subgroup G. Since G is simple then the kernel is G or $\{e\}$. If it G, then for all $P \in X$ and all $g \in G$ we have $g P g^{-1}=P$. Thus P is normal which is impossible. Hence the kernel of φ is $\{e\}$ but then φ is an isomorphism from G onto a subgroup of S_{6}. Thus 300 must divide $720=6!=\left|S_{6}\right|$, and this is a contradiction.

