
Solutions Algebra B 1

Moed B

2) Let G be a group whose order is pn with n ≥ 3. Assume that the center of G, denoted

by Z(G), there are pn−2 elements.

a) How many elements are there in a conjugacy class of some a ∈ G which is not in Z(G)?

b) How many conjugacy classes the group G has?

Solution: Denote by Ca = {g ∈ G : gag−1 = a}, and let k denote its order. Then

Z(G) ⊂ Ca. Hence pn−2 divides k, and k divides pn which is the order of the group G.

Hence k = pn−2, pn−1 or pn. Since a is not in Z(G), then Z(G) is a proper subgroup of Ca.

Hence k > pn−2. If k = pn then Ca = G which means that a commutes with all elements

of G and hence a would be in Z(G), which is not the case. Hence k = pn−1. Since the

number of elements in a conjugacy class is equal to o(G)/o(Ca) we obtain that this number

of elements is equal to pn/pn−1 = p.

b) We proved in class the identity

o(G) = o(Z(G)) +
∑

a

o(G)

o(Ca)

where the sum is over all representatives of conjugacy classes which contain more than one

element. From part a) it follows that o(G)/o(Ca) = p. If the number of conjugacy classes

which contain more than one element is l, the above identity is the same as pn = pn−2 + lp.

Hence, the number of conjugacy classes G has is l + o(Z(G)) = pn−1 − pn−3 + pn−2.

3) Let G be a finite group, and let f : G 7→ G be a homomorphism without a fixed point

( that is, if f(x) = x for some x ∈ G, then x = e). Also, assume that f(f(x)) = x for all

x ∈ G.

a) Prove that for every g ∈ G there is a h ∈ G such that g = hf(h)−1.

b) Prove that f(g) = g−1 for all g ∈ G.

c) Prove that G is an abelian group.
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Solution: a) Define a map F : G 7→ G by F (g) = gf(g)−1. We prove that it is

one to one. Indeed, suppose that F (g) = F (h). Then gf(g)−1 = hf(h)−1 which implies

h−1g = f(h)−1f(g) = f(h−1g). Since f has no fix point, it follows that h−1g = e or g = h.

Hence F is one to one. Any one to one function from a finite set to itself is onto. Hence,

given g ∈ G there is h ∈ G such that g = hf(h)−1.

b) Given g ∈ G there is an h ∈ G such that g = hf(h)−1. Hence, using f(f(h)) = h we

obtain,

f(g) = f(hf(h)−1) = f(h)f(f(h−1)) = f(h)h−1 = (hf(h)−1)−1 = g−1

c) For g, h ∈ G we have

h−1g−1 = (gh)−1 = f(gh) = f(g)f(h) = g−1h−1

Hence gh = hg and G is abelian.

4) a) Let G be a group and H a proper subgroup of G. Prove that < G−H >= G.

b) Prove that a group whose order is 300, is not a simple group.

Solution: a) It is enough to prove that if h ∈ H then h ∈< G − H >. Since H is a

proper subgroup of G, there is an element u ∈ G−H. Then u−1h ∈ G−H, for if u−1h ∈ H

then it would follow from the fact that h ∈ H that u−1 ∈ H and hence u ∈ H which is

not the case. For the same reason u(u−1h) ∈ G −H. But this last element is h and hence

h ∈ G−H.

b) Assume that G is simple. Since |G| = 300 = 22 · 3 · 52 it follows that G has a 5 Sylow

group of order 25. Let r5 denote the number of such groups. Thus r5 divides 12 and r5 ≡ 1

mod 5. If r5 = 1 then there is a unique Sylow subgroup and hence it is normal. This is a

contradiction. Hence r5 = 6. Let X denote the set of all 5 Sylow subgroups of G. From the

above |X| = 6. The group G acts on X by ϕ(g)P = gPg−1 where g ∈ G and P ∈ X. Thus,

ϕ produces a homomorphism from G into S6. The kernel of ϕ is a normal subgroup G. Since

G is simple then the kernel is G or {e}. If it G, then for all P ∈ X and all g ∈ G we have

gPg−1 = P . Thus P is normal which is impossible. Hence the kernel of ϕ is {e} but then

ϕ is an isomorphism from G onto a subgroup of S6. Thus 300 must divide 720 = 6! = |S6|,
and this is a contradiction.
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