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Abstract.—Any selective advantages of large body size may be counteracted by an increase in
energetic costs associated with reproduction. In canids, larger female body size has been sug-
gested to be associated with increasingly altricial young, larger litter sizes, and an increase in
female pre- and postpartum energetic investment in offspring. It is hypothesized that the chang-
ing costs of reproduction with increasing body size result in a size-related diversity of canid
reproductive life histories and social organization. Smaller canid species require less postpartum
investment and thus tend toward polygyny and have a skewed dispersal ratio toward males.
Larger species, with greater prepartum investment, require greater male investment in the rear-
ing of offspring and thus tend to be group living. Using data on canid life histories, a phylogeny
of the Canidae based on 383 base pairs of mitochondrial DNA, and an autoregressive compara-
tive method, we found this hypothesis was not supported. Strong isometric relationships be-
tween neonate weight and female weight indicate that neonate size is constrained by female
size directly or by parameters co-varying with female body size. Female weight accounted for
only 26% of the variance in litter size, and no correlation was found between litter size and
neonate weight. This result implies that female prenatal investment can be adjusted only by
litter size (and not by neonate or litter weight), which in turn may be adjusted according to
resource availability, an explanation supported by field and laboratory studies. In general, we
hypothesize that much of canid interspecific and intraspecific variation in social structure may
be explained by focusing on proximate environmental mechanisms, specifically resource avail-
ability.

Canids (family Canidae) are a diverse group of carnivores with a wide range
of body weights (1-80 kg), dietary habits (omnivory to strict carnivory), and
habitat preferences (from extreme deserts to ice fields to rain forests). The princi-
pal canid social system is monogamy (Kleiman 1977); however, widespread varia-
tion is observed in life-history traits (Gittleman 1986). Moehlman (1986, 1989)
synthesized data on canid behavioral ecology and hypothesized that adult sex
ratio, dispersal, mating, and neonate rearing systems are size related. In small
canids (<6 kg), the adult sex ratio in social groups is biased toward females,
young males tend to emigrate, and females stay in their natal ranges as helpers
until a breeding opportunity arises. Medium-sized canids (6—13 kg) have an equal
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adult sex ratio and an equal emigration rate, and both sexes may be helpers.
Large-sized canids (>13 kg), excluding the maned wolf, Chrysocyon brachyurus,
exhibit an adult sex ratio skewed toward males, female emigration, and male
helpers. In this article, we reevaluate the hypothesis that the covariation of female
body size and neonate size determines observed differences in social system
among the three size classes of canids.

Previous comparative studies of canids have found significant allometric corre-
lations between adult body weight and almost all life-history traits such as gesta-
tion length, birth weight, and litter weight (Bekoff et al. 1981, 1984; Gittleman
1986). Moehlman (1986) analyzed similar life-history data by examining the rela-
tive deviations of species values (residuals) from allometric regression lines and
excluding outliers from the trends defined by the regression line. Her analysis
indicated that neonate weight, litter size, litter weight, and gestation period were
all correlated with female weight. Large canids have proportionally lighter neo-
nates (regression slope of 0.76) but relatively larger litters (slope of 1.14). There-
fore, females of large canids have larger litters of relatively smaller, more depen-
dent neonates. As a consequence of these allometric patterns, the offspring of
large canids have a longer period of dependency and require more male postpar-
tum investment. Hence, in large canids, competition among females for males as
helpers is more intense, which would drive the system toward polyandry. In
contrast, the relatively heavy neonates of small canids constrain them to produce
smaller litters of more precocial (relatively larger) neonates that require relatively
less parental investment. This allows males to invest time and resources in addi-
tional females (polygyny) because competition for male parental investment is
reduced (Fisher 1930; Trivers 1972). Consequently, canid mating systems and
social organization are an outcome of the conflict between the effect of body size
on reproductive traits and the constraints on females in obtaining resources for
reproduction (Moehlman 1986).

These ideas raise several interesting problems. First, because large canids have
a relatively longer gestation time (Gittleman 1986; Wayne 1986) but smaller
young, prenatal growth rates are predicted to be relatively slower in large canids.
The selective advantage of such reduced prenatal growth rates or smaller neonate
size in large canids is unclear. Second, reproductive constraints of body size may
also occur within species; thus, intraspecific shifts in social organization coincid-
ing with litter size and body size should be observed. Although intraspecific
variation in litter size, litter weight, and body size are documented for many
canid species (see, e.g., Fuentes and Jaksi¢ 1979; Gompper and Gittleman 1991),
we are not aware of any study that reports intraspecific shifts in social organiza-
tion consistent with observed variation in these traits. Finally, allometric correla-
tions among body size, life-history traits, and social organization may not be
phylogenetically independent; thus, evolutionary associations among taxa need
to be considered (see Felsenstein 1985; Harvey and Pagel 1991; Gittleman and
Luh 1992; Gittleman 1993). Also, related to comparative methodology, the exclu-
sion of taxa should be based on criteria that are independent of the results of the
analysis or have a precise statistical justification.

In this article, we assess the phylogenetic component of life-history variation
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among canids using mitochondrial DNA sequence information and a phylogenetic
autocorrelation analysis (Gittleman and Kot 1990; Gittleman and Luh 1992). Fur-
thermore, in contrast to many other comparative studies, we directly estimate
patristic distance among taxa from molecular data as an alternative to recon-
structing distance based on taxonomic rank. Finally, we expand the comparative
data originally synthesized by Moehlman (1986) and thus provide a more compre-
hensive test of hypotheses concerning the covariation of female body size and
social organization in canids.

METHODS

Moehlman’s (1986) argument was based on allometric relationships between
female body weight and four variables: mean gestation period, mean neonate
weight, mean litter size, and litter weight (mean neonate weight X mean litter
size). With the benefit of recent studies, we recompiled data for these traits from
the literature and constructed a new data set for 24 canid species (table 1). To
ensure appropriate species means, we used, whenever possible, several indepen-
dent sources for each species. Additionally, to assess (indirectly) reproductive
costs, we examined relative daily investment in individual neonates (neonate
weight controlled for gestation time) and litters (litter weight controlled for gesta-
tion time) by regressing these parameters on female body weight.

To estimate evolutionary divergence between taxa, we sequenced 383 base
pairs (bp) of the mitochondrial cytochrome b gene in 24 canid species. This region
was sequenced following the protocol outlined elsewhere (Geffen et al. 1992a)
for 10 species of foxlike canids. Pairwise sequence divergence values were cor-
rected for multiple substitutions and transition/transversion bias using a Kimura
two-parameter model and assuming a transition/transversion ratio of 6.0 based
on the average of pairwise comparisons between all taxa. To assess whether
divergence values would change substantially if an additional sequence were ob-
tained for each species, we compared our sequence divergences values to those
based on 2,001 bp of protein-coding sequence (730 bp of cytochrome b, 588 bp
of cytochrome oxidase I, and 684 bp of cytochrome oxidase II) obtained for a
reduced subset of 20 taxa (Gottelli et al. 1994; R. K. Wayne, unpublished data).
The correlation between these two distance measures is high and significant (Man-
tel’s test, » = 0.9228, P < .001), which indicates our distance matrix is representa-
tive of that based on a much larger analysis of protein-coding sequence. Finally,
we constructed a maximum-likelihood tree using the Macintosh program PHYLIP
(DNAML version 3.5c; Felsenstein 1993), assuming a transition/transversion ra-
tio of 6.0 and using the global rearrangement option (fig. 1).

All size and life-history data were log transformed prior to analysis (table 1).
To estimate phylogenetic correlation in the data, we used the Moran’s (1950) 1
statistic, a measure of autocorrelation. In applying this statistic to comparative
problems, previous researchers (Gittleman and Kot 1990) provided an equation
for the maximum /7 and suggested scaling I relative to the maximum value (i.€.,
observed values are scaled between —1 and 1). Moran’s I may be taken to be
normally or randomly distributed (Cliff and Ord 1971, 1981). Using randomiza-
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Fi6. 1.—A maximum-likelihood tree for 24 species of canids based on 383 bp of cyto-
chrome b sequence (transition/transversion ratio = 6.0, DNAML, PHYLIP; Felsenstein
1993). Ln likelihood = —2,949.07, and 8,160 trees were examined. Nodes that were not
significantly different from zero are marked by an asterisk. Key to species: Uci, Urocyon
cinereoargenteus; Npr, Nyctereutes procyonoides; Ome, Otocyon megalotis; Fze, Fennecus
zerda; Vca, Vulpes cana; Vru, Vulpes rueppelli; Vvu, Vulpes vulpes; Vima, Vulpes macrotis;
Ala, Alopex lagopus; Vch, Vulpes chama; Sve, Speothos venaticus; Cbr, Chrysocyon
brachyurus,; Lpi, Lycaon pictus; Clu, Canis lupis; Cla, Canis latrans; Csi, Canis simensis;
Cau, Canis aureus; Cme, Canis mesomelas; Cal, Cuon alpinus; Cad, Canis adustus; Cth,
Cerdocyon thous; Dgr, Dusicyon griseus, Dcu; Dusicyon culpaeus; Dgy, Dusicyon gymno-
cercus.

tion, we tested the null hypothesis of no phylogenetic autocorrelation at the 0.05
level by using a z-test to examine whether I varies from an expected value by
more than 1.96 standard deviations (Gittleman and Kot 1990). Using a correlo-
gram, which shows how autocorrelation (I/1,,,) varies with phylogenetic (genetic)
distance (fig. 2), we located where in the tree traits are phylogenetically corre-
lated. Using molecular phylogenetic information, we averaged over all species
within some fine interval of distance, set in accord with the distribution of values



3.0 -

2.0 | Body weight
1.0
=
00 —————
N
-1.0 {
2.0 -
201 Gestation length
1.0
—_—
T
00} ——— ——— — .
N’ 0
-1.0
2.0
—_—
=
N
-2.0 -
—_—
T
S
N
4.0
2.0
—_—
E 00
N
2.0 -
-4.0

0.00 0.05 0.10 0.15 0.2¢ 0.25 0.30
Phylogenetic distance

Fi6. 2.—Correlograms for all five life-history traits examined. The null hypothesis of no
phylogenetic autocorrelation at the 0.05 level is tested here by using a Z(r)-test to examine
whether Moran’s I varies from an expected value by more than 1.96 SDs. All traits, excluding
litter size, show Z values higher than 1.96 (or lower than — 1.96) at one or more phylogenetic
distances.
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of the original genetic distance matrix (table 2; see Purvis et al. 1994), and then
calculated correlations at those distance intervals. The observed intervals are 0.1,
0.15, 0.2, and 0.25. Correlograms showing the correlation of each trait at these
intervals are given in figure 2. We then used Cheverud et al.’s (1985) autoregres-
sive model to remove the observed phylogenetic autocorrelation. The model takes
the form

y=rWy+ e,

where y is the vector of standardized trait values, r Wy is the phylogenetic compo-
nent (i.e., the observed relation between phylogenetic distance and the trait val-
ues among taxa), and e the residual vector that is free of phylogenetic correlation.
This technique uses a maximume-likelihood function to fit the observed trait values
on the phylogenetic tree, as presented elsewhere (Gittleman and Kot 1990). Re-
cent simulation studies indicate that the autoregressive approach is statistically
robust when phylogenetic correlation is indeed observed in the comparative data
and when phylogenetic information (genetic distance) is based on relatively small
samples of less than 50 species (Gittleman and Luh 1992, 1994; Purvis et al. 1994).
Both conditions are met in the present analysis.

After accounting for phylogenetic effects, the data were standardized to a mean
of zero and standard deviation of one and then used to investigate associations
of life histories with female body weight via least-squares linear regression. We
controlled for the effect of gestation time on litter weight by using the residuals
generated from the regression of these two traits as the dependent variable in the
regression of litter weight on female body weight. Similarly, neonate weight was
controlled for the effects of gestation time, and these were defined in this article
as energetic daily investment in neonates and litters, respectively. Litter size and
neonate weight were controlled for the effects of female weight in a similar man-
ner. Finally, to test directly the Moehlman (1986) hypothesis, we classified all
species into three size classes: small canids—species mean body weight < 6.0
kg; medium canids—species mean body weight of 6.0-13.0 kg; and large canids—
species mean body weight > 13.0 kg (see table 1).

RESULTS

The phylogenetic tree generated by the maximum-likelihood algorithm showed
all branch lengths, except three, were significantly different from zero (P < .05;
fig. 1) and were largely consistent with past analyses based on molecular or
karyological data (Wayne et al. 1987; Wayne 1993). We examined the degree of
autocorrelation in five traits across the four specified intervals of phylogenetic
distance and found that the Moran’s I-test showed significant phylogenetic corre-
lation in all the traits except for litter size (fig. 2; table 2) (see Gittleman and Kot
1990). For the four variables showing significant autocorrelation, we then exam-
ined the autoregressed data (table 1) through a Moran’s [ statistic and verified
that the transformed comparative data were not phylogenetically correlated at
any phylogenetic distance (—1.96 < Z[r] < 1.96 in all cases).

Using the autoregressed data, we analyzed relationships between mean female
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Fi6. 3.—The relationship of mean female body weight with mean neonate weight (fop,
y = 1.03x — 0.12; 1> = 0.73) and with mean neonate weight controlled for the effect of
gestation time (bottom, y = 0.47x — 0.06, r* = 0.45). All traits are adjusted for phylogeny.
For key to species, see fig. 1.

body weight and five variables: mean neonate weight, litter weight, mean litter
size, and energetic daily investment per neonate (mean neonate weight controlled
for gestation time) and per litter (mean litter weight controlled for gestation time).
Mean neonate weight and daily investment per neonate were significantly and
positively correlated with mean female body weight (» = 0.853, P < .0001; and
r = 0.673, P = .003, respectively; fig. 3). Litter size was significantly and posi-
tively correlated with mean female body weight (» = 0.508, P = .01; fig. 4).
Litter weight, and litter weight controlled for the effect of gestation period, were
significantly correlated with mean female body weight (» = 0.835, P < .0001; and
r = .678, P = .008, respectively; fig 4). Both neonate weight and mean litter



Litter size

-3 T T
-2 -1 0 1 2

Female weight

21
14
-
£
k=
Q o0+
: o
° Cth Vwu
E -
-l
-2
-3 T T T 1
-2 -1 0 1 2
Female weight
19 Ala  cal
* o
o
K] 0.5 - CIaV‘:j
r-xJ ® pey  NPr Lpi
=] Cth ®
=
5T
[ = Cbr
o8 .
= -oa -0.5
Ot
G
Q -1 4
so
LR
282 s s
-
-2 T T T 1
-2 -1 ] 1 2

Female weight

FiG. 4.—The relationship of mean female body weight with mean litter size (top, y =
0.75x + 0.00003; r> = 0.26), mean litter weight (middle, y = 1.05x — 0.13, 2 = 0.70), and
mean litter weight controlled for the effect of gestation time (bottom, y = 0.51x — 0.06,
r? = 0.38). All traits are adjusted for phylogeny. For key to species, see fig. 1.
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weight are a constant proportion of female body weight (isometric regression
slopes of 1.03 and 1.05, respectively). In contrast, all other significant allometric
relationships scale with slopes of less than one. Finally, nonsignificant correla-
tions were observed between neonate weight and litter size (r = 0.404, P = .108;
fig. 5) and between these traits when both were controlled for female body weight
(r = 0.02, P = .938; fig. 5). That is, residuals for litter size showed no correlation
with the residuals for neonate weight.

In sum, among canids, neonate weight and litter weight are positively corre-
lated with female weight. However, larger canids do not have relatively smaller
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young. Further, although the correlation between maternal weight and litter size
is significant, it explains only 26% of the observed variance, and the regression
slope is less than one. Last, after controlling for phylogeny, neonate weight is
independent of litter size.

DISCUSSION

Size and Life-History Patterns

An analysis of data corrected for phylogenetic correlations indicates that neo-
nate weight and litter size, controlled for female body weight, are not correlated.
Moreover, the correlation between litter size and female body weight is weak,
with only 26% of the variance explained by the regression. Therefore, our results
do not support the idea that body size imposes different energetic constraints on
reproduction in small and large canids and influences their social organization.
Differences-in the results of this study and previous analyses (Bekoff et al. 1981;
Gittleman 1986; Moehlman 1986) highlight the power of modern comparative
methods using molecular phylogenetic data and suggest a reinterpretation of the
relationships between canid life histories and social organization.

The high correlation and isometric relationship between neonatal weight and
female body weight ( = 0.85) implies that the size of young is constrained di-
rectly by female size or possibly by indirect allometric parameters that parallel
those constraining female size. One such parameter might be female pelvic width,
which, as suggested for primates, limits neonate size (Leutenegger 1982); unfortu-
nately, data on pelvic width across most canids are currently unavailable. In
contrast, litter size is weakly and nonisometrically correlated with female body
weight (r = 0.51), which suggests a greater potential to respond to differing
selective pressures. Litter weight showed a significant relationship with female
body size but explained only 38% of the observed variance when controlled for
gestation time. Thus, body size allometry alone is not enough to explain variance
in litter size. Moehlman (1986) found significant allometric correlations in litter
size and litter weight when outliers were excluded from the analysis, a posteriori.
In general, large sample sizes can reveal weak but significant correlations, and

- correlations can be improved by excluding outliers a posteriori. The combination
of both should be used with caution. Indeed, as often pointed out in comparative
allometric studies (see Schmidt-Nielsen 1984; Harvey and Pagel 1991), outliers
are especially instructive for revealing functional relationships, and their exclu-
sion may disguise empirical relationships.

Two general aspects of the allometry of mammalian life histories are relevant
to our discussion. First, based on many comparative studies of phylogenetically
independent groups, body size alone is a poor explanatory factor of variation in
life-history traits (Harvey et al. 1989; Gittleman 1993): species with different body
sizes (e.g., the giant panda and the long-tailed weasel) often have similar life
histories (e.g., small neonate weights and slow growth rates). Second, Charnov’s
(1991, 1993) unified model of mammal life histories shows that, independent of
size, life-history traits (particularly age at sexual maturity and growth rate) are
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determined by adult mortality rate so as to maximize lifetime reproductive suc-
cess. Empirical support for the model is found across eutherian mammals as a
whole (Harvey et al. 1989; Berrigan et al. 1993) and carnivores in particular
(Gittleman 1993). The key variable for testing the model is mortality rate, prefera-
bly measured when populations across species are at equilibrium. A previous
review (see Gittleman 1993) of the literature on carnivore mortality schedules
revealed information on mortality rates for only four canid species (Canis lupus,
Canis latrans, Vulpes vulpes, Urocyon cinererargenteus). Thus, the present anal-
ysis cannot incorporate this life-history model.

Moehlman (1986) suggests that litter size and litter weight determine the social
organization of a species by constraining a female’s ability to provision her off- .
spring, as implied by Fisher’s (1930) theory on parental investment. She argues
that females with large litters require greater nutritional investment and conse-
quently the assistance of other adults (perhaps males) to help provision the pups.
By contrast, in species with small litters, less parental investment is required,
which allows the male to invest in more than one female. Moehlman argues that
neonates are more altricial (relatively smaller) in species with large litters and
more precocial (relatively larger) in species with small litters. This observation
leads to the prediction that as litter size increases, neonates will be relatively
smaller. Our analyses indicate that large canids do not have relatively smaller
neonates (fig. 3). In addition, the lack of correlation between relative litter size
and relative neonate weight implies that no general energetic linkage exists be-
tween these variables. In fact, because neonatal weight is tightly linked with
and perhaps narrowly constrained by body size, the variance in female prebirth
investment can only be adjusted by litter size. This interpretation is supported
by intraspecific empirical studies. Intraspecific studies can help explain causal
relationships of comparative interspecific patterns (Moehlman 1986, 1989; Gomp-
per and Gittleman 1991). A series of elegant field experiments demonstrated that
food given to Arctic foxes (Alopex lagopus) during the winter increased reproduc-
tive success as indicated by larger litters and more breeding pairs (Angerbj6rn et
al. 1991). More generally, in five of eight studies involving food supplementation
to different mammal species, there was an increase in litter size (Boutin 1990).
Last, canids show declines in litter size with decreases in prey abundance (Mac-
pherson 1969; Harrington et al. 1983; Lindstrom 1989; Hersteinsson and Macdon-
ald 1992). From these comparative trends, both intra- and interspecific, we there-
fore hypothesize that litter size has intrinsic variability, which permits females
to adjust their investment according to the availability of resources.

In general, a positive relationship exists within species between body size and
food abundance (Gittleman 1985; Geist 1987; Gompper and Gittleman 1991).
Changes in body size, litter size, and social organization within the Canidae may
be attributed as a response to food availability. Body size co-varies to some
degree with availability of food in different geographical localities. Very small
canids (e.g., Fennecus zerda) are usually associated with arid and poor habitats
in which only a small body mass can be supported year-round. In contrast, large
canids (e.g., Canis simensis, Lycaon pictus) are often associated with habitats in
which prey is abundant. Litter size and group size exhibit similar patterns (Bekoff
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et al. 1984; Nel et al. 1984; Angerbjorn et al. 1991). Carnivore species living in
areas with low food availability have small litters and live in pairs or small groups,
whereas species inhabiting areas where food is abundant have large litters and
live in large groups (Kruuk and Parish 1982; Carr and Macdonald 1986).

For example, the maned wolf, Chrysocyon brachyurus, is a large canid that
occupies South American savannas and feeds largely on rodents and fruit (Dietz
1985). During the Pleistocene, four other large canids (genus Canis and Preto-
cyon) inhabited these savannas, which were rich in large prey (Berta 1987). At
the end of the Pleistocene, all the large South American canids except Chrysocyon
went extinct as a probable result of a sharp decline in large herbivorous prey
(Berta 1987, Pascual and Jaureguizar 1990). Today, low food availability in this
habitat relative to the large body size of maned wolves probably constrains litter
size to a mean of 2.2 pups. If body size in the maned wolf is inflexible (e.g., as
a result of interspecific competition; Fuentes and Jaksi¢ 1979; Dayan et al. 1989),
then only group and litter sizes could have been reduced to accommodate the
present level of food abundance.

Alternative Hypotheses Regarding Social Organization

Within and among species, canid societies are characterized by three poten-
tially interrelated attributes: mating or social system, sex ratio, and helping be-
havior (the extent of helping and the sex of helpers). The intra- and interspecific
variation in these traits may be explained by shifting attention from solely allomet-
ric explanatory mechanisms to environmental mechanisms (Geffen and Macdon-
ald 1992). For example, empirical studies on primates and rodents have shown
that social organization may change as a result of fluctuations in food abundance
and habitat patchiness (see, e.g., Milton and May 1976; Travis and Slobodchikoff
1993). Moreover, recent quantitative analysis across 53 primates and 39 carnivore
species suggests that variation in group size is constrained by feeding competition
(Wrangham et al. 1993). A compelling example of a shift in canid social organiza-
tion in response to a change in food availability is provided by a study of a small
population of red foxes (V. vulpes) on Round Island, Alaska (Zabel and Taggart
1989). This study documented a shift from 71% polygyny when food was super-
abundant to 100% monogamy when prey abundance decreased dramatically, with
a concomitant decrease in litter size. If an increase in food availability permits
an increase in litter size, then males could afford to invest in more than one
female only when prey is especially abundant. On the other hand, if litter size
determines social organization in canids, then within species like the arctic fox,
in which litter size ranges from three to nine, females with large litters might be
expected to tend toward polyandry, and females with small litters might be ex-
pected to shift toward polygyny. The published intraspecific canid field studies
do not support such a trend (see, e.g., Angerbjorn et al. 1991).

The example of the red foxes on Round Island may be extended to help explain
differences in social organization among other canid species. It has been demon-
strated that helpers in canid societies may contribute to the survival of the pups
(Macdonald 1979; Moehlman 1979; Malcolm and Marten 1982; Harrington et al.
1983). In small canids, adult sex ratio is biased toward females, males generally
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emigrate, and females stay in their natal ranges as helpers (e.g., V. vulpes: Mac-
donald 1979). In large canids, adult sex ratio is biased toward males, females
emigrate, and males stay as helpers (e.g., L. pictus: Malcolm and Marten 1982).
Midsized canids have an approximate 1:1 sex ratio and equal probability of hav-
ing a male or a female helper (e.g., Canis mesomelas: Moehlman 1986). Moehl-
man hypothesizes that in large canids, females require more male investment
because of their large altricial litters, and in small canids females require less
paternal investment, which thus reduces competition among females for males.
Why are male helpers better than female helpers in the societies of large canids?
Helpers contribute to pup survival by providing food (regurgitating or carrying it
to the den), guarding, and grooming and playing with pups. There is little evidence .
that female helpers allosuckle the dominant female’s pups except when two fe-
males give birth at the same or neighboring dens (Macdonald 1979; Malcolm and
Marten 1982; Zabel and Taggart 1989). In the African hunting dog (L. pictus), in
which intragroup sex ratio is usually male biased, dimorphism is small and fe-
males are known to participate in and successfully to lead hunts (Malcolm and
Marten 1982; Fanshawe and FitzGibbon 1993). On the other hand, observational
data on gray wolves, C. lupus, suggest an equal sex ratio in many populations
(Mech 1970; Gese and Mech 1991). In sexually dimorphic canid species that hunt
communally, male helpers may be able to handle larger prey and return more
food to the pups. Thus, females might increase the contribution of helpers to
their litter by producing more males. One factor that might affect the sex ratio
of helpers is that male bias in adulthood could arise from selection operating on
sex ratio at birth. A skewed sex ratio within litters could result from intense
competition within litters, siblicide, or genetic determination (Malcolm and Mar-
ten 1982). In the red fox, for which adult sex ratio is biased toward females, the
sex ratio at birth favors females in at least one large sample (94 males: 100 fe-
males, n = 4,551; Layne and McKeon 1956). Complete or partial dominance in
mating by the alpha male has been observed in all canid species studied. There-
fore, if a skewed birth sex ratio in a population persists to adulthood, then un-
paired individuals of the majority sex would have no choice but to wait in their
natal pack until a breeding opportunity arises. Such a scenario would suggest
that in the Canidae, sex ratio among adults within social groups could be deter-
mined by birth sex ratio, which in turn is determined by selective pressures to
maximize reproductive success.

In small canids, what selective pressures might favor a female-biased sex ratio
at birth? Small canids tend to be sexually dimorphic with females being the
smaller sex. Females of small canids may thus require less parental investment
to reach adulthood. Conceivably, birth sex ratio in the Canidae may be related
to food availability; limited food resources during pregnancy may select for fe-
male-biased litters (Trivers and Willard 1973). Experimental studies on white
mice and golden hamsters have demonstrated that low-fat diets produce litters
skewed considerably toward females, whereas balanced diets produced equal sex
ratios (Rivers and Crawford 1974; Labov et al. 1986). If this relationship exists
in canids, then a change in birth sex ratio across species may co-vary with habitat
quality, as was previously suggested for body size and litter size covariance.



CANID LIFE HISTORIES AND SOCIAL ORGANIZATION 155

In conclusion, shifts in the sex ratio, composition of helpers, and social system
among canids of different body size cannot be explained solely as a result of
differences in litter size and female body size. Data on the effect of food availabil-
ity on birth sex ratio in canids, and experimental field data on the contribution
of helpers in different species, are essential for resolving the causes underlying
differences in sex ratios of helpers among canid societies.
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