
VHDL - Flaxer Eli Ch 4 - 1Object & Type

Chapter 4
Data Object and Type

VHDL

VHDL - Flaxer Eli Ch 4 - 2Object & Type

Outline

Keyword
Identifiers & Comment
Data Object
Data Type
Scalar Type
Composite Type
Pointer Type
Incomplete Types
File Type

VHDL - Flaxer Eli Ch 4 - 3Object & Type

Reserved Word - Keyword
abs downto library postponed sri
access else linkage procedure subtype
after elsif literal process then
alias end loop pure to
all entity map range transport
and exit mod record type
architecture file nand register unaffected
array for new reject units
assert function next rem until
attribute generate nor report use
begin generic not return variable
block group null rol wait
body guarded of ror when
buffer if on select while
bus impure open severity with
case in or signal xnor
component inertial others shared xor
configuration inout out sla
constant is package sll
disconnect label port sra



VHDL - Flaxer Eli Ch 4 - 4Object & Type

Identifiers

Identifiers = names of things you create
– signals, variables, constants
– architecture names, entity names, component names
– process names
– function names, procedure names, etc.

Rules
– Cannot be reserved words
– Uppercase and lowercase equivalent
– Only letters, numbers, and underscore ( _ )

First character is letter
First and last character NOT underscore
Two underscores in succession illegal

VHDL - Flaxer Eli Ch 4 - 5Object & Type

Identifiers Example

Which are legal identifiers?

footer_5 7bits

_load Execute14_more

doitnow_ Endif

add__subtract  process

don’t_do_it exor#and

StrongFuzzyLogicDriver carry/

VHDL - Flaxer Eli Ch 4 - 6Object & Type

Extended Identifiers

An extended identifier is a sequence of characters written 
between two backslashes. Any of the allowable characters 
can be used, including characters like., !, @, ',and $. Within 
an extended identifier, lower-case and upper-case letters are 
considered to be distinct. Examples of extended identifiers 
are:
– \TEST\ -- Differs from the basic identifier TEST.
– \2FOR$\
– \process\ -- Distinct from the keyword process.
– \7400TTL\
– Two consecutive backslashes represents one backslash \→\\.



VHDL - Flaxer Eli Ch 4 - 7Object & Type

Comments

Comments in a description must be preceded by two 
consecutive hyphens (--); the comment extends to the end of 
the line. Comments can appear anywhere within a description. 
Examples are:
-- This is a comment; it ends at the end of this line.
-- To continue a comment onto a second line, a separate
-- comment line must be started.

entity UART is end; --This comment starts after entity declaration.
Equivalent to // in C & C++.

VHDL - Flaxer Eli Ch 4 - 8Object & Type

Objects
Objects are things that hold values (containers).

– Have a class and a type
– May have an explicit initial value (useful for synthesis?)
– Declared in a package, entity, architecture, or process
– Visibility limited to region where declared

Class determines the kind of operations possible for an object
Type determines the legal values for an object

Classes:
– signal - value changes as function of time, has a driver; physical wire
– variable - value changes instantly, no concept of time
– constant - value cannot be changed
– file - values accessed from external disk file

VHDL - Flaxer Eli Ch 4 - 9Object & Type

Object Declarations
Syntax

Class  Identifier : Type  := InitialValue;
Examples

CONSTANT MyNumber : real      := 3.14159;
SIGNAL Load_Reg_n: std_logic := ‘X’;
VARIABLE counter   : bit_vector;

ENTITY ename IS
Ports
Declarations --no variables

END ename;

ARCHITECTURE x OF y IS
Declarations --no variables

BEGIN  ...  END x;

PROCESS (a,b)
Declarations --no signals

BEGIN  ...  END PROCESS;



VHDL - Flaxer Eli Ch 4 - 10Object & Type

Signals
All port are signals.

Legal only in architecture entity and package .

Value changes as function of time, has a driver.

Physical wire.

Store a real data.

Signal assignments symbol is  <= for example x <= a OR b;

Signal assignments occurred at the end of the process.

Changing in the signal value create an event.

ARCHITECTURE dataflow OF drive IS
BEGIN

x <= y;
y <= z OR a;
z <= NOT a;

END dataflow;

VHDL - Flaxer Eli Ch 4 - 11Object & Type

Signal Driver
Model of 8-input AND gate: x = AND (a_bus(7..0))
Problem due to scheduling and timing - x is ALWAYS 0 !!!
Why?
How can it be fixed?   (By variable as we will see later)

ARCHITECTURE Flaxer OF and8 IS
BEGIN

anding: PROCESS (a_bus)
BEGIN

x <= ‘1’;
FOR i IN 7 DOWNTO 0 LOOP

x <= a_bus(I) AND x;
END LOOP;

END PROCESS anding;
END Flaxer;

VHDL - Flaxer Eli Ch 4 - 12Object & Type

Resolution Functions
What if multiple drivers exist for the same signal?

– VHDL equivalent of  multiple gate outputs wired together
– Result in hardware if values conflict - weird voltage level, high current flow
– Result in simulator - unknown logic level ‘X’
– Why would you create this kind of logic?

How is this done in VHDL?
– Multiple concurrent assignment statements
– Multiple sequential assignment statements in different processes

Signals with multiple drivers MUST have a special resolved type
– The type has a resolution function associated with it that decides the final 

value: ‘0’, ‘1’, ‘X’, ‘Z’, etc.
– For example, std_logic is a resolved type, while std_ulogic is not.
– What about other types?



VHDL - Flaxer Eli Ch 4 - 13Object & Type

Variables
Legal only in processes (and subprograms)
Usually used for high-level, algorithmic calculations.
Easy to write, complex to synthesize.
Immediate assignments with := for example x := a OR b;
Corrected 8-input AND gate model, using variables:

ARCHITECTURE Flaxer OF and8 IS
BEGIN

anding: PROCESS (a_bus)
VARIABLE tmp: bit;

BEGIN
tmp := ‘1’;
FOR i IN 7 DOWNTO 0 LOOP

tmp := a_bus(I) AND tmp;
END LOOP;
x <= tmp;

END PROCESS anding;
END Flaxer;

New

New

VHDL - Flaxer Eli Ch 4 - 14Object & Type

Constants
Legal anywhere.
The value is assigned to the constant  in declaration.
Usually used for constant value of signal or variable.
The value can not be changed.

ARCHITECTURE Dami OF Coni IS
CONSTANT RstLevel: bit := ‘1’;

BEGIN
*
*

IF reset = RstLevel THEN
Q <= “0000”;

ELSE
Q <= Q + 1;

END IF;
*

END Dami;

VHDL - Flaxer Eli Ch 4 - 15Object & Type

Object Aliases
Alternative name for an existing object (or part of an object)

ALIAS Identifier-Type: IS Item-Name

May provide better documentation and more readability

Example:
SIGNAL instruction: std_logic_vector (15 DOWNTO 0);

ALIAS opcode:   std_logic_vector (5 DOWNTO 0)
IS instruction(15 DOWNTO 10);

ALIAS operands: std_logic_vector (9 DOWNTO 0)
IS instruction(9 DOWNTO 0);

instruction

015 10 9

opcode operands



VHDL - Flaxer Eli Ch 4 - 16Object & Type

Types
The type of an object determines the legal values it may contain

VHDL is strongly-typed language

– Objects of different base types cannot be assigned or compare to one another 
directly (can use type conversion functions or casting)

Two major categories of types

– Scalar - holds single value (enumeration, integer, float, physical).

– Composite - holds multiple values (arrays, records).

– Access - hold pointer to object.

– File - represent a file in the host.

Types may be predefined or user-defined

– Predefined types defined in VHDL standards 1076 and 1164

– User-defined types created by you - very useful

VHDL - Flaxer Eli Ch 4 - 17Object & Type

Types

VHDL - Flaxer Eli Ch 4 - 18Object & Type

Scalar Types
Enumeration Types

– List of distinct values an object may hold (similar to enum in C).
– Predefined type: “boolean”,  “bit”, “character”.

Integer Types
– Set of whole numbers, positive and negative, predefined type “integer”

– 32-bit signed values, -(231-1) to +(231-1)
– Often use a reduced range for synthesis, e.g.

VARIABLE num: integer RANGE -64 TO +64;

Float Types
– Floating-point numbers, predefined type “real”

– 32-bit single-precision
– Not for synthesis; hardware too complex

Physical Types
– Measurement units, predefined type “time”, (fs, ps, ns, … min, hr)

– Not meaningful for synthesis



VHDL - Flaxer Eli Ch 4 - 19Object & Type

Enumeration Types
Enumeration type = ordered list of distinct values.
The position number of the leftmost element is 0.
The position number of the next elements is increment by 1.
The position defines the order (for relational operators).
User defined types - example:

TYPE color IS (red, green, blue, black);

SIGNAL MyColor: color; ...

IF MyColor = red THEN …

Mycolor <= green;

If the same literal is used in two different enumeration type declarations, 
the literal is said to be overloaded.

TYPE race IS (black, white);

SIGNAL man: race;

man <= black;

VHDL - Flaxer Eli Ch 4 - 20Object & Type

Standard Enumeration Types - 1076
Predefined 1076 types (package standard)

TYPE boolean IS (FALSE, TRUE);

TYPE bit IS (‘0’, ‘1’);

TYPE character IS (-- 256 ascii code --);

nul soh stx etx eot enq ack bel
bs  ht  lf  vt  ff  cr  so  si
dle dc1 dc2 dc3 dc4 nak syn etb
can em sub esc fsp gsp rsp usp
' ' '!' '"' '#' '$' '%' '&' '''
'(' ')' '*' '+' ',' '-' '.' '/'
'0' '1' '2' '3' '4' '5' '6' '7'
'8' '9' ':' ';' '<' '=' '>' '?'
'@' 'A' 'B' 'C' 'D' 'E' 'F' 'G'
'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O'
'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W'
'X' 'Y' 'Z' '[' '\' ']' '^' '_'
'`' 'a' 'b' 'c' 'd' 'e' 'f' 'g'
'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o'
'p' 'q' 'r' 's' 't' 'u' 'v' 'w'
'x' 'y' 'z' '{' '|' '}' '~' del

 

VHDL - Flaxer Eli Ch 4 - 21Object & Type

Enumeration Types - 1164
Predefined 1164 types

– std_logic, std_ulogic, + their arrays and subtypes
– All require library / use statements before entity declaration:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

Base type is std_ulogic (unresolved)
TYPE std_ulogic IS (‘U’, -- Uninitialized

‘X’, -- Forcing unknown
‘0’, -- Forcing zero
‘1’, -- Forcing one
‘Z’, -- High impedance (float)
‘W’, -- Weak unknown
‘L’, -- Weak zero
‘H’, -- Weak one
‘-’ -- Don’t care
);

SUBTYPE std_logic IS resolved std_ulogic;

Values ‘U’, ‘X’, ‘W’ NOT supported for synthesis
Literal values are case sensitive; ‘z’ NOT SAME as ‘Z’



VHDL - Flaxer Eli Ch 4 - 22Object & Type

Resolved Table of std_logic

Resolved signal can accept multiple values

VHDL - Flaxer Eli Ch 4 - 23Object & Type

Integer Types
Integer Types = Set of value fall within a specified integer range.
User defined types - example:
TYPE byte IS RANGE 0 TO 255;

TYPE index IS RANGE MIN TO MAX;

CONSTANT X: byte:= 5;

SIGNAL   Y: index;

The bounds of the range for an integer type must be constant or locally 
static expression (defined at compile time).
Integer literals - value belonging to integer type example:

– 56349    6E2    0    98_71_28 987128    -1962
– The exponent is power of 10.

Integer can also be written in other base between 2 to 16
– base # value # E exponent (the exponent represent a power of the base).
– 2#0001_0010_0011#    16#FA#    16#4#E2 ⇒ (4*162 = 1024)

VHDL - Flaxer Eli Ch 4 - 24Object & Type

Standard Integer Types

Predefined 1076 types (package standard)
– TYPE integer IS RANGE implementation_defined;

– 32-bit signed values  ⇒ -(231-1) to +(231-1)
– VARIABLE temp: integer;

– VARIABLE num:  integer RANGE -64 TO +64;

– SIGNAL MyChar: integer RANGE -128 TO +127;

– CONSTANT M_LEN: integer:= 100;



VHDL - Flaxer Eli Ch 4 - 25Object & Type

Floating Point Types
Floating Point Types = Set of value fall within a specified real range.
User defined types - example:
TYPE TTL_VOL IS RANGE -0.5 TO 5.5;

TYPE real_data IS RANGE MIN TO MAX;

CONSTANT X: TTL_VOL := 5.0;

SIGNAL   Y: real_data;

The bounds of the range for a real type must be constant or locally 
static expression (defined at compile time).
Floating Point literals - value belonging to F.P. type example:

– 16.26    0.0    -0.002    3.1415     3.14_15    62.3E-2    5.0E+2
– The exponent is power of 10.
– The literal must include a dot (.)

Floating Point can also be written in other base between 2 to 16
– base # value # E exponent (the exponent represent a power of the base).
– 2#0110.0100#    ⇒ (6.25)            2#1.01#E3    ⇒ (10.0)

VHDL - Flaxer Eli Ch 4 - 26Object & Type

Standard Floating Point Types

Predefined 1076 types (package standard)
– TYPE real IS RANGE implementation_defined;

– 32-bit single precision ⇒ -1.000000E38   to  +1.000000E38
– VARIABLE temp: real;

– VARIABLE num:  real RANGE 0.0 TO 100.0;

– SIGNAL MyReal: real RANGE -1.0E6 TO +1.0E6 ;

– CONSTANT PI:    real:= 3.1415;

VHDL - Flaxer Eli Ch 4 - 27Object & Type

Physical Types
A physical type contains values that represent measurement of some 
physical quantity, like time, length, voltage, or current. Values of this 
type are expressed as integer multiples of a base unit.
User defined types - example:
TYPE current IS RANGE 0 TO 1E9

UNITS

nA; -- base unit     

uA = 1000 nA;

mA = 1000 uA;

Amp = 1000 mA;

END UNITS;

Physical literals - are written as an integer or real literal followed by the 
unit name. For example:

– 100 ns    10 V      50 sec       5.6 uA ⇒ (5600) 5.6 nA ⇒ (5)



VHDL - Flaxer Eli Ch 4 - 28Object & Type

Standard Physical Types

Predefined 1076 types (package standard)
TYPE time IS RANGE implementation_defined;

UNITS

fs; -- femtosecond

ps    = 1000 fs;     -- picosecond

ns    = 1000 ps;     -- nanosecond

us    = 1000 ns;     -- microsecond

ms    = 1000 us;     -- milisecond

sec   = 1000 ms;     -- second

min   =   60 sec;    -- minutes

hr    =   60 min;    -- hours

END UNITS;

VHDL - Flaxer Eli Ch 4 - 29Object & Type

Types and Subtypes
Subtype is a type with a constraint.
SUBTYPE NewName IS ExistingType constraint

–For example: SUBTYPE char IS integer RANGE -128 to 127;

Be careful with type-matching problems:
TYPE byteT IS INTEGER RANGE 0 to 255; --new type
SUBTYPE byteS IS INTEGER RANGE 0 to 500; --new subtype
SIGNAL  byte2:   INTEGER RANGE 0 to 255;   --integer
SIGNAL  word:    INTEGER RANGE 0 to 65535; --integer
SIGNAL  byte1: byteT;
SIGNAL  byte3: byteS;
byte1 <= byte2;  --Type mismatch!
byte3 <= byte2;  --OK
word  <= byte2;  --OK

The SubTypeObject can always assigned to the the TypeObject.
The TypeObject can assigned to the the SubTypeObject if the value is in 
the constraint range.

VHDL - Flaxer Eli Ch 4 - 30Object & Type

Composite Types - Array
Array Types = multiple elements of same type.
TYPE ArrayTypeName IS ARRAY (Valid RANGE) OF ExistingType.

– For example:
TYPE AddrBus IS ARRAY (0  TO  11) OF bit;
SIGNAL AB1, AB2: AddrBus;

These are unconstrained array types - (any number of element possible).
– Need constrained arrays for actual use.
– For example:

TYPE MyStk IS ARRAY (integer RANGE < >) OF bit;
SIGNAL MyData: MyStk (-127  TO  127);               -- explicit constrained
CONSTANT UCData: MyStk := (‘1’, ‘0’, ‘0’, ‘1’);  -- implicit constrained

Element of array can be accessed by specifying the index value .
– For example:

AB1(5) <= ‘1’;    AB2(0) <= ‘0’;    MyData(-22) <= AB1(3);

“box”



VHDL - Flaxer Eli Ch 4 - 31Object & Type

Array - Specials Cases
The range of array can be enumeration type.

– For example:

TYPE EnumRangeType IS (red, green, blue);

TYPE ColorArray IS ARRAY ( EnumRangeType ) OF bit;

SIGNAL CA1: ColorArray;
CA1(red) <= ‘1’; CA1(green) <= ‘0’;

Assignment (or compare) can be made to an entire array, or to an 
element of an array, or to a slice of an array. 

– For example:

AB1 <=  AB2;    AB2(0) <= ‘0’; MyData( 0 TO 7 ) <= AB1( 3 to 10);

AB2( 0 TO 3) <= (‘1’, ‘0’, ‘0’, ‘1’); 

VHDL - Flaxer Eli Ch 4 - 32Object & Type

Array - Predefined Type

Predefined 1076 types (package standard).
SUBTYPE natural IS integer RANGE 0 TO integer’HIGH;
SUBTYPE positive IS integer RANGE 1 TO integer’HIGH;
TYPE string IS ARRAY ( positive RANGE < > ) OF character;
TYPE bit_vector IS ARRAY ( natural RANGE < > ) OF bit;

Predefined 1164 types (package std_logic).
TYPE std_ulogic_vector IS ARRAY (natural RANGE < > ) OF std_ulogic;

TYPE std_logic_vector IS ARRAY (natural RANGE < > ) OF std_logic;

VHDL does not allow a type that is an unconstrained array of an 
unconstrained array.

– TYPE Mem IS ARRAY (natural RANGE < > ) OF std_logic_vector;  --Not Allow

– TYPE Bem IS ARRAY (natural RANGE < > ) OF std_logic_vector(0 TO 7); --OK

VHDL - Flaxer Eli Ch 4 - 33Object & Type

Value for Array - String Literals
String literal = string of characters literals in double quotes (“ “).

– For example:

"This Is a String Literal"

"State ""READY"" entered!” -- Two double quote characters represents one.

A string literal can be assigned to different types of objects; for example, 
to a STRING type object or a BIT_VECTOR type object. 

The type of a string literal is therefore determined from the context in 
which it appears.

– For example:

VARIABLE ErrMessage: string(1 to 19);

ErrMessage := "Fatal ERROR: abort!";
VARIABLE BusValue : bit_vector(0 to 3);
BusValue := "1101";



VHDL - Flaxer Eli Ch 4 - 34Object & Type

Value for Array - Bit String
Bit String literal = A string literal that represents a sequence of bits 
(values of type bit ⇒ {‘0’, ‘1’} ).

This sequence of bits, called bit strings, can be represented as either a 
binary value, an octal value, or a hexadecimal value.

The underscore character can be used in bit string literals for clarity.
– For example:

X"FF0" -- X for hexadecimal.
B"00_0011_1101" -- B for binary.
O"327" -- O for octal.
X"FF_F0_AB"

The type of a bit string literal is also determined from the context in 
which it appears.

VHDL - Flaxer Eli Ch 4 - 35Object & Type

Array Assignment
There are many different way to assign value to an array object.

VARIABLE Bus1: bit_vector (0 TO 7) ;

VARIABLE Bus2: bit_vector (7 DOWNTO 0) ;

Bus1 := “00110011”; -- String Literal

Bus1 := B“0011_0011”; -- Bit String

Bus1 := (‘0’, ’0’, ’1’, ’1’, ’0’, ’0’, ’1’, ’1’); -- Positional Associate

Bus1 := (2 => ‘1’, 5 => ’1’, OTHERS => ‘0’); -- Named Associate

Bus1 := (OTHERS => ‘0’); -- All Value set to ‘0’

The direction of the range is important.
Bus2 := (‘0’, ’0’, ’1’, ’1’, ’0’, ’0’, ’1’, ’1’); -- The yellow bit is index 0

Bus1 := (‘0’, ’0’, ’1’, ’1’, ’0’, ’0’, ’1’, ’1’); -- The yellow bit is index 7

In Bus1 the MSB is ‘1’ while in Bus2 the MSB is ‘0’.

VHDL - Flaxer Eli Ch 4 - 36Object & Type

Multi Dimensional Array
The language allows for an arbitrary number of dimensions to be 
associated with an array.
Two-dimensional arrays example:

TYPE Vector8 IS ARRAY (7 DOWNTO 0) OF bit;

TYPE Vector4 IS std_logic_vector(3 DOWNTO 0);

TYPE Table6x2 IS ARRAY (0 TO 5, 1 DOWNTO 0) OF bit;

TYPE Table4x8 IS ARRAY (0 TO 3) OF Vector8;

TYPE Table2x4 IS ARRAY (0 TO 1) OF Vector4;

-- Object Declaration

CONSTANT Mytable1: table6x2 := (“00”, “01”, “10”,

“11”, “01”, “01”);

VARIABLE Mytable2: table2x4 := (“10-Z”, “ZX01”); 

SIGNAL Mytable3: table4x8;

Mytable3(2,1) <= ‘1’;

Mytable3(3)   <= “01010101”;



VHDL - Flaxer Eli Ch 4 - 37Object & Type

Composite Types - Record
Record Types = multiple elements of different types.
A record type is analogous to the record data type in Pascal and the
struct declaration in C.
Records Declaration:

TYPE MyRec IS RECORD
ctl:   std_logic;
inp:   bit_vector (3 DOWNTO 0);
outp:  bit_vector (7 DOWNTO 0);
index: integer RANGE 0 TO 64;

END RECORD;

SIGNAL device1, device2, device3 : MyRec;
SIGNAL final: bit_vector (7 DOWNTO 0);

device1.ctl <= ‘1’;
device2.ctl <= device1.ctl;
device2.inp <= “1011”;
final <= device1.outp;
device1 <= device2;
device3 <= (‘Z’, “1111”, “11110000”, 32);

VHDL - Flaxer Eli Ch 4 - 38Object & Type

Access Types - Pointer
Access Types = Pointer. (Usually is not support for synthesis)
Values belonging to an access type are pointers to a dynamically
allocated object of some other type. They are similar to pointers in 
Pascal and C languages.
Access Declaration:

TYPE Ptr  IS ACCESS MyRec; -- Declare previously
TYPE Fifo IS ARRAY (0 TO 63, 7 DOWNTO 0) OF bit;
TYPE FifoPtr  IS ACCESS Fifo; 

Pointer is an access type whose values are addresses that point to 
objects.
Every access type may also have the value null, which means that it 
does not point to any object.
Objects of an access type can only belong to the variable class. 
When an object of an access type is declared, the default value of this 
object is null. For example:

VARIBALE Mod1Ptr, Mod2Ptr: Ptr; -- Default value is null

VHDL - Flaxer Eli Ch 4 - 39Object & Type

Access Types - Dynamic Allocation
Objects to which access types point can be created using allocators.
Allocators provide a mechanism to dynamically create objects of a 
specific type.
NEW is the allocators causes an object of specify type to be created, 
and the pointer to this object is returned.
The values of the elements of the new object are the default values of 
each element (the leftmost value of the implied subtype).

Mod1Ptr := NEW MyRec; -- initialize by default value
Mod2Ptr := NEW MyRec’(‘Z’, “1111”, “11110000”, 32);

For every access type, a procedure deallocate is implicitly declared. 
This procedure, when called, returns the storage occupied by the
object to the host environment [ like free( ) and delete( ) ]. 
deallocate ( Mod1Ptr);



VHDL - Flaxer Eli Ch 4 - 40Object & Type

Access Types - Reference
Objects of an access type can be referenced as:

– obj-ptr.all: Accesses the entire object pointed to by obj_ptr, where obj-ptr is 
a pointer to an object of any type.

– array-obj-ptr (element-index): Accesses the specified array element, where 
array-obj-ptr is a pointer to an array object.

– record-obj-ptr.element-name: Accesses the specified record element, where 
record-obj-ptr is a pointer to a record object.

Pointers can be assigned to other pointer variables of the same access 
type.

Mod1Ptr := Mod2Ptr; 

VHDL - Flaxer Eli Ch 4 - 41Object & Type

Incomplete Types
>>>>>>>>>>>>>>.

>>>>>>>>>>>>>>

VHDL - Flaxer Eli Ch 4 - 42Object & Type

File Types
>>>>>>>>>>>>>>.

>>>>>>>>>>>>>>


