
VHDL - Flaxer Eli Ch 3 - 1Entities & Architectures

Chapter 3
Entities and Architectures

VHDL

VHDL - Flaxer Eli Ch 3 - 2Entities & Architectures

Course Objectives Affected

Write functionally correct and well-documented VHDL
code, intended for either simulation or synthesis, of any
combinational or sequential logic design.

Define and use the three major styles of writing VHDL code
(structural, dataflow, and behavioral).

Write VHDL code that can be implemented efficiently in a
given technology device.

Programming and testing the device.

VHDL - Flaxer Eli Ch 3 - 3Entities & Architectures

Outline

VHDL Basics:

Entity - Architecture Structure

Entity Declarations (Ports)

Architecture Body

VHDL Styles

Effects of Style on Synthesis

VHDL - Flaxer Eli Ch 3 - 4Entities & Architectures

Reserved Word - IEEE 1076-1993
abs downto library postponed sri
access else linkage procedure subtype
after elsif literal process then
alias end loop pure to
all entity map range transport
and exit mod record type
architecture file nand register unaffected
array for new reject units
assert function next rem until
attribute generate nor report use
begin generic not return variable
block group null rol wait
body guarded of ror when
buffer if on select while
bus impure open severity with
case in or signal xnor
component inertial others shared xor
configuration inout out sla
constant is package sll
disconnect label port sra

VHDL - Flaxer Eli Ch 3 - 5Entities & Architectures

Identifiers

Identifiers = names of things you create
– signals, variables, constants
– architecture names, entity names, component names
– process names
– function names, procedure names, etc.

Rules
– Cannot be reserved words
– Uppercase and lowercase equivalent
– Only letters, numbers, and underscore (_)

First character is letter
First and last character NOT underscore
Two underscores in succession illegal

VHDL - Flaxer Eli Ch 3 - 6Entities & Architectures

Identifiers Example

Which are legal identifiers?

footer_5 7bits

_load Execute14_more

doitnow_ Endif

add__subtract process

don’t_do_it exor#and

StrongFuzzyLogicDriver carry/

VHDL - Flaxer Eli Ch 3 - 7Entities & Architectures

Extended Identifiers

An extended identifier is a sequence of characters written
between two backslashes. Any of the allowable characters
can be used, including characters like., !, @, ',and $. Within
an extended identifier, lower-case and upper-case letters are
considered to be distinct. Examples of extended identifiers
are:
– \TEST\ -- Differs from the basic identifier TEST.
– \2FOR$\
– \process\ -- Distinct from the keyword process.
– \7400TTL\
– Two consecutive backslashes represents one backslash \→\\.

VHDL - Flaxer Eli Ch 3 - 8Entities & Architectures

Comments

Comments in a description must be preceded by two
consecutive hyphens (--); the comment extends to the end of
the line. Comments can appear anywhere within a description.
Examples are:
-- This is a comment; it ends at the end of this line.
-- To continue a comment onto a second line, a separate
-- comment line must be started.

entity UART is end; --This comment starts after entity declaration.
Equivalent to // in C & C++.

VHDL - Flaxer Eli Ch 3 - 9Entities & Architectures

Objects

Objects are things that hold values (containers)
– Have a class and a type

Class determines the kind of operations possible for an object
Type determines the legal values for an object

Classes:
– signal - value changes as function of time, has a driver; physical wire
– variable - value changes instantly, no concept of time
– constant - value cannot be changed
– file - values accessed from external disk file

VHDL - Flaxer Eli Ch 3 - 10Entities & Architectures

Tutorial
How to generate a basic Boolean functions in VHDL?

In1

In2In2

Out1

Out2

Entity Architecture

VHDL - Flaxer Eli Ch 3 - 11Entities & Architectures

Tutorial
Basic Boolean functions in VHDL?

library ieee;
use ieee.std_logic_1164.all;

entity MyFirstProg is port(
IN1, IN2: in std_logic;
OUT1, OUT2: out std_logic);

end MyFirstProg;

architecture DataFlow of MyFirstProg is
begin

OUT1 <= IN1 or IN2;
OUT2 <= IN1 and IN2;

end DataFlow;

VHDL - Flaxer Eli Ch 3 - 12Entities & Architectures

Code Model

Device

Entity Declaration

(Interface)

Architecture Body

(Function)

VHDL - Flaxer Eli Ch 3 - 13Entities & Architectures

Device Model

Device
a
b
c

y

Ports - external connection points that
have a class, type, and mode

Entity - collection of concurrent processes & statements
that describe the function

VHDL - Flaxer Eli Ch 3 - 14Entities & Architectures

Device Model

a
b
c y

Multiple-process Entity:

a
b
c y

Single-process Entity:

y <= (a AND b)
OR (NOT c)

y <= t1 OR t2

t1 <= a AND b

t2 <= NOT c

t1

t2

VHDL - Flaxer Eli Ch 3 - 15Entities & Architectures

Entity Declaration

Entity Declaration
– defines external interface to this entity or device
– comes before the architecture section

Basic entity syntax:

ENTITY entity_name IS
PORT (port1, port2: MODE TYPE;

port3, port4: MODE TYPE;
port5: MODE TYPE);

END entity_name ;

Direction of
data flow

What kind of values
it can have

VHDL - Flaxer Eli Ch 3 - 16Entities & Architectures

Ports

Port Declaration is primary content of the Entity Declaration

Each port represents either
– external pin(s) of the device, or
– wire(s) connecting two or more entities within a complete device

Each port has
– Port name (identifier you create)
– Mode (direction - In, Out, Buffer, InOut)
– Type (kind of values possible)

VHDL - Flaxer Eli Ch 3 - 17Entities & Architectures

In:
Data flows only INTO this entity, driven by another entity.
Used on right side of assignments.

Port Modes

z <= a NAND inport; library ieee;
use ieee.std_logic_1164.all;

entity MyFirstProg is port(
IN1, IN2: in std_logic;
OUT1, OUT2: out std_logic);

end MyFirstProg;

architecture DataFlow of MyFirstProg is
begin

OUT1 <= IN1 or IN2;
OUT2 <= IN1 and IN2;

end DataFlow;

VHDL - Flaxer Eli Ch 3 - 18Entities & Architectures

Out:
Data flows only OUT of this entity, into other entities.
Cannot be read by this entity (internal feedback)
Used on left side of assignments.

Port Modes

outport <= x OR y; library ieee;
use ieee.std_logic_1164.all;

entity MyFirstProg is port(
IN1, IN2: in std_logic;
OUT1, OUT2: out std_logic);

end MyFirstProg;

architecture DataFlow of MyFirstProg is
begin

OUT1 <= IN1 or IN2;
OUT2 <= IN1 and IN2;

end DataFlow;

VHDL - Flaxer Eli Ch 3 - 19Entities & Architectures

Buffer:
Data flows only OUT of the entity, into other entities.
Can be read by this entity (internal feedback).
Can only have one driver.
Used on both sides of assignments.

Port Modes

bufport <= z;
y <= bufport;

library ieee;
use ieee.std_logic_1164.all;

entity MyFirstProg is port(
IN1, IN2: in std_logic;
Buff1, Buff2: buffer std_logic);

end MyFirstProg;

architecture DataFlow of MyFirstProg is
begin

Buff1 <= IN1 or IN2;
Buff2 <= Buff1 and IN2;

end DataFlow;

* The bufport is the
same in both lines.

* The bufport is the same in both lines.

VHDL - Flaxer Eli Ch 3 - 20Entities & Architectures

InOut:
Data can flow bidirectionally, either in or out or both.
Can be read by this entity (external input).
Can also be driven by external driver.
Used on both sides of assignments.

Port Modes

biport <= z;
y <= biport;

library ieee;
use ieee.std_logic_1164.all;

entity MyFirstProg is port(
IN1, IN2: in std_logic;
BiDir: inout std_logic);

end MyFirstProg;

architecture DataFlow of MyFirstProg is
begin

BiDir <= IN1 or IN2;
X <= Bidir and IN2;

end DataFlow;

* The biport is not the same in both lines.

VHDL - Flaxer Eli Ch 3 - 21Entities & Architectures

Port Types

Ports are always signals
(object class - others are variables, constants, files)

Types useful for synthesis and simulation
– bit, bit_vector
– std_logic, std_logic_vector
– std_ulogic, std_ulogic_vector
– boolean
– integer

Types only useful for simulation
– real
– time

VHDL - Flaxer Eli Ch 3 - 22Entities & Architectures

Architecture Body

Architecture Body
– defines the function of the entity
– follows the entity declaration

Basic architecture syntax:

ARCHITECTURE arch_name OF entity_name IS
BEGIN

CONCURRENT_STATEMENT1;
CONCURRENT_STATEMENT2;

PROCESS();

PROCEDRURES();
END arch_name ;

No meaning for the order

VHDL - Flaxer Eli Ch 3 - 23Entities & Architectures

Architecture Body

Levels of abstraction (VHDL styles)
– behavioral
– dataflow
– structural

An architecture may be written entirely in one style, or in a
mixture of styles (more common)

Various styles allow designer to describe the function of a
device in the simplest or most natural form

VHDL - Flaxer Eli Ch 3 - 24Entities & Architectures

Levels of Abstraction

a

b
sel

y

Entity

LIBRARY ieee;
USE ieee.std_logic_1164.all;
--
ENTITY mymux1 IS

PORT (a,b: IN bit_vector(3 DOWNTO 0);
sel: IN bit;
y: OUT bit_vector(3 DOWNTO 0));

END mymux1;

4 bit 2 x1 MUX

VHDL - Flaxer Eli Ch 3 - 25Entities & Architectures

The Architecture

a

b
sel

y

a0

Sel

Y0
b0

a1

b1

a2

b2

a3

b3

Y1

Y2

Y3

External

Internal

VHDL - Flaxer Eli Ch 3 - 26Entities & Architectures

Behavioral Style
High-level, Algorithmic
Easy to write and understand (like high-level language code)
VHDL Process with sequential statements - order is important!
Executes in zero simulation time

ARCHITECTURE behavior OF mymux1 IS
BEGIN

mux: PROCESS (a,b,sel)
BEGIN
IF sel = ‘0’ THEN

y <= a;
ELSE

y <= b;
END IF;

END PROCESS mux;
END behavior;

VHDL - Flaxer Eli Ch 3 - 27Entities & Architectures

Behavioral Style

Another behavioral description of same device
Is this exactly the same ??? YES !!!
Why ??? (signals are update at the end of the process).

ARCHITECTURE behavior2 OF mymux1 IS
BEGIN

PROCESS (a,b,sel)
BEGIN
y <= a;
IF sel = ‘1’ THEN

y <= b;
END IF;

END PROCESS;
END behavior2;

VHDL - Flaxer Eli Ch 3 - 28Entities & Architectures

Dataflow Style

Mid-level, Data transfers and transformations
Also called RTL (Register Transfer Language) style
May be harder to write and understand (like assembly code)
No VHDL Process
Multiple concurrent signal assignment statements
Executes in non-zero simulation time

ARCHITECTURE dataflow OF mymux1 IS
BEGIN

y <= a WHEN (sel = ‘0’) ELSE b;
END dataflow ;

VHDL - Flaxer Eli Ch 3 - 29Entities & Architectures

Boolean Dataflow Style

Another dataflow description of same device
Concurrent statements - order is irrelevant

ARCHITECTURE boolean_dataflow OF mymux1 IS
BEGIN

y(3) <= (a(3) AND NOT sel) OR (b(3) AND sel);
y(2) <= (a(2) AND NOT sel) OR (b(2) AND sel);
y(1) <= (a(1) AND NOT sel) OR (b(1) AND sel);
y(0) <= (a(0) AND NOT sel) OR (b(0) AND sel);

END boolean_dataflow ;

VHDL - Flaxer Eli Ch 3 - 30Entities & Architectures

Structural Style

Low-level, VHDL netlist - component instantiations and wiring

Essentially the text version of a schematic

Hierarchical

Uses a package of pre-defined lower-level components

May be hard to write and understand (very detailed and low level)

No VHDL Process or concurrent signal assignment statements

VHDL - Flaxer Eli Ch 3 - 31Entities & Architectures

Structural Style
USE work.gates_pkg.all;
ARCHITECTURE structural OF mymux1 IS

SIGNAL ta, tb: bit_vector (3 downto 0);
SIGNAL seln: bit;

BEGIN
u0: and2 PORT MAP (a(3), seln, ta(3));
u1: and2 PORT MAP (a(2), seln, ta(2));
u2: and2 PORT MAP (a(1), seln, ta(1));
u3: and2 PORT MAP (a(0), seln, ta(0));
u4: and2 PORT MAP (b(3), sel, tb(3));
u5: and2 PORT MAP (b(2), sel, tb(2));
u6: and2 PORT MAP (b(1), sel, tb(1));
u7: and2 PORT MAP (b(0), sel, tb(0));
u8: or2 PORT MAP (ta(3), tb(3), y(3));
u9: or2 PORT MAP (ta(2), tb(2), y(2));
u10: or2 PORT MAP (ta(1), tb(1), y(1));
u11: or2 PORT MAP (ta(0), tb(0), y(0));
u12: not PORT MAP (sel, seln);

END structural;

VHDL - Flaxer Eli Ch 3 - 32Entities & Architectures

Schematic Structural Style
a0

Sel

Y0
b0

a1

b1

a2

b2

a3

b3

Y1

Y2

Y3

seln

ta0

tb0

ta1

tb1

ta2

tb2

ta3

tb3

OR2

OR2

OR2

OR2

and2

and2

and2

and2

and2

and2

and2

and2

not

VHDL - Flaxer Eli Ch 3 - 33Entities & Architectures

Effects of Style on Synthesis

For complex circuits, the style of description affects the
implementation by synthesizer and fitter (or place-and-route)
- Why?

The VHDL code may not be an optimal description of the
function

The synthesizer may not generate logic descriptions in the
best form for a particular device’s fitter tool

The fitter may not choose the best device resources to use,
even though it receives the optimal description from the
synthesizer.

VHDL - Flaxer Eli Ch 3 - 34Entities & Architectures

Effects of Style on Synthesis

General recommendations:

Start with behavioral and dataflow code
– easiest to write and understand and debug

Use structural code where design naturally decomposes into
separate functional blocks

If this does not satisfy area/speed goals, add synthesis
directives and constraints

If result still does not satisfy goals, add more detailed RTL
descriptions and/or use vendor-specific library components.

