
TOOLKIT
Oversampling UART
Reduces RF Noise

requires no data coding. But the wireless
nature of the transmissions demands
the use of a receiving algorithm. This
algorithm separates valid data from
undesirable noise. As a result, the data
needs to be sent in packets or frames that
have a well-defined format.

Each frame should begin with a pre-
amble of 1 to 2 B (for example,
“10101010…”). The second field of the
frame should contain the start byte,
which is an identification that indicates
the beginning of a frame. The rest of
the frame will follow the start byte. It
should consist of 1 B of an address (ID).
It will be followed by the frame data (1
to 100 B) and finally 2 B for a check-
sum. The general structure of the frame
is as follows:

INrecent years, wireless communica-
tions have grown to encompass

applications like remote control, remote
sensing, and wireless local-area networks
(WLANs). The data rates of such imple-
mentations vary from a few hundred to
several million bits per second. In addi-
tion, their range can be anywhere from a
few to several hundred meters.Yet almost
all of these wireless applications are the
same in that they provide serial, asyn-
chronous digital data formats.

On the analog side, the physical chan-
nels are shrouded in background noise.
This noise comes from other transmitters

and instruments in the surrounding envi-
ronment. Moreover, some receivers will
detect “fake data” when the transmitter is
out of range. An example is a receiver that
implements FSK modulation schemes.
The “fake data” is actually signals with
random frequency. These error challenges
necessitate a different way to implement a
physical-layer Universal Asynchronous
Receiver Transmitter (UART) for the
wireless communication line.

This article describes the use of an
oversampling technique to transfer data
from one microcontroller to another via
a transceiver module. The module itself

DESIGNER’S TOOLKIT

Reap The Benefits Of Programmable Logic
By Implementing Wireless Communications
Based On An Oversampling Algorithm.

UART
VCC of CY37064

+5V
C4

0.1�F
C5

�F
GND+5V

C6
0.1�F

R1
10K

RST

+5V

C7
0.1�

+5V
1

22 3

4

U3
GND OUT

VDD

CLK
VCC1-E3A-10M000

J1
1 GND
3 JTAGen
5 ISR

9 TDO

JTAG

R2
10K

TCLK 7
8
9

10
JTAGen U1

CY37064P44-125JC

IO5
IO6
IO7
CLK2

TCLK TDI

11 ISR_en
GND
CLK0
IO8
IO9
IO10

12
13

15
16
17

GN
D

VC
C

IO
30

IO
28

+
5V

18

IO
12

IO
19

IO
20

TM
S

26 27 28

Microcontroller

TDOTMS GN
D

+
5V

D

BUSY

DB[0..7]

39
38
37
36
35
34
33
32
31
30
29

TDI

GND

DATA[0..7]

DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0

IO26
IO25
IO24

CLK1
GND
 I3
CLK3
IO23
IO22
IO21

IO27

PORTX[0..7]

INTR

INTA

U4

SOUT

SIN
Transceiver

SEND

INTR

INTA

TD
O

BY ELI FLAXER

WI R E LE SS SYSTE M S D E S I G N22 O CTO BER 2004

1. This hardware-based oversampling UART receives bit-stream data from a transceiver module by a serial
input (D). It then transfers the complete byte to the microcontroller via portx.

Preamble Start Byte Address Data CRC

DESIGNER’S TOOLKIT

The transmission procedure is
simple: The interrupt handler
in the microcontroller should
send the frame, bit by bit, at a
constant rate. This constant
data stream is known as the
communication rate.

The receiver is on the other
end of the transmission system.
The receiving routine is more
complex than its counterpart
on the transmitting side. For
example, the receiver interrupt
handler may be triggered by an
edge-level rise or fall. Such trig-
gering might cause the inter-
rupt handler to sample the
input stream in the middle of
each bit. The result would be a
reduced data rate of only one
sample per bit. This rate would
produce an output that is much
more sensitive to noise than the
oversampling approach.

When using oversampling,
the receiving routine should
sample the received bit stream
at several times the bit rate.
After being acquired, the sam-

We have a lock on timing
…the proof is in the silicon

4962 El Camino Real, Suite 206
Los Altos, CA 94022

650.691.2500
email: timing@truecircuits.com

www.truecircuits.com/time

TSMC, UMC and Chartered processes
from 0.25µm to 90nm

Versatile, with wide output frequency
and multiplication ranges (1-4096)

Small sizes and flexible form factors
for easier integration

Low-jitter and very process tolerant

DLLs for high-speed DDR and other
interface applications

Clock Generator, Low Bandwidth,
Spread Spectrum and Deskew PLLs

…isn't it time to lock in a True Circuits PLL or DLL?

D='0'

Sx <= 0
Cx <= Tnx–3
Bx <= 0
Ax <= 0
INTR <= '0'

Sx < 0.8*Tnx
Bx <= Bx+1

IDLE S1

S2FALL

Cx <= Tns–3
Sx <= 0 Bx = PreBits

Cx <= Tnx–4
Sx <= 0
Bx <= 0
Ax <= 0
Busy <= '1'

Cx > 0

Cx = 0

Cx <= Tnx–3
Sx <= 0

D='1'

Cx = 0Cx > 0

Cx <= Cx–1
Sx <= Sx+D

S0 GO

Cx <= Cx–1
Sx <= Sx+D'

S3
RISE

Bx <= Bx+1

Sx < 0.8*Tnx

FIN

Busy <= '0'

Bx = PreBits

W0

Cx <= Tnx–4
Sx <= 0

S4

Cx <= Cx–1
Sx <= Sx+D

DAMI

BYTE Load

Bx <= 0
Ax <= Ax+1
INTR <= '1'
Data <= PR

Bx <= Bx+1
PR <= PR(6–0) and f(S)

Bx < 8–1Ax < StrLen–1

2. This state-machine diagram
shows the internal architecture
of the CPLD that can be used to
provide the oversampling of
transmitted input data.

DESIGNER’S TOOLKIT
[UART IMPLEMENTATION]

24 WI R E LE SS SYSTE M S D E S I G NO CTO BER 2004

1 -- Oversample A Wireless-
UART Implementation With
VHDL
2 -- Written By Eli Flaxer
3 library IEEE;
4 use
IEEE.STD_LOGIC_1164.all;
5 use IEEE.NUMERIC_STD.all;
6
7 entity WirelessUART is
8 port (Clk: in STD_LOGIC;
9 D: in STD_LOGIC;
10 Rst: in STD_LOGIC;
11 INTR: out STD_LOGIC;
12 INTA: in STD_LOGIC;
13 Busy: out STD_LOGIC;
14 Data: out
STD_LOGIC_VECTOR (7 downto
0));
15 end;
16
17 architecture
WirelessUART_Arch of
WirelessUART is
18
19 constant Freq: INTEGER :=
20000000; -- Clock Freq of
CPLD
20 constant BPS: INTEGER :=
200000; -- Transceiver
Communication Rate
21
22 constant Tnx: INTEGER :=
Freq / BPS; -- OverSample per
Data Bit
23 constant StrLen: INTEGER :=
12; -- Byte per Frame without
preamble
24 constant PreBits: INTEGER
:= 8; -- Preamble Bits minimum
8
25
26 -- SYMBOLIC ENCODED
state machine: UartState
27 type UartState_Type is (IDLE,
S0, S1, S2, S3, FALL, RISE,
28 GO, S4, LOAD, DAMI, W0,
BYTE, FIN);
29
30 subtype CunterType1 is
INTEGER range 0 to StrLen+1;
31 subtype CunterType2 is
INTEGER range 0 to PreBits+1;
32 subtype CunterType3 is
INTEGER range -1 to Tnx+1;
33
34 -- Uart signal declarations
35 signal Ax: CunterType1; --
Byte Counter in the Frame
36 signal Bx: CunterType2; --
Bit Counter in the Byte
37 signal Cx: CunterType3; --

OverSampling Index in the Bit
38 signal Sx: CunterType3; --
OverSampling Data in the Bit
39 signal PR:
STD_LOGIC_VECTOR (7 downto
0); -- Package Byte
40
41 signal UartState:
UartState_Type;
42 signal UartStateNext:
UartState_Type;
43
44 --
+++++++++++++++++++
+++++++++++++++++++
+++++++++++++++++++
+++++++++++++++
45 function F1 (n: CunterType3)
return STD_LOGIC is
46 begin
47 if(n > Tnx/2) then
48 return('1');
49 else
50 return('0');
51 end if;
52 end function F1;
53 --
+++++++++++++++++++
+++++++++++++++++++
+++++++++++++++++++
+++++++++
54 begin
55 ------------------------------

56 UartSignal_Update: process
(Clk, Rst, UartState)
57 constant TnxC: integer :=
Tnx-1;
58 begin
59 if Rst = '1' then
60 Sx <= 0;
61 Cx <= Tnx-2;
62 Bx <= 0;
63 Ax <= 0;
64 INTR <= '0';
65 Busy <= '0';
66 Data <= (others => '0');
67 elsif (Clk'event and Clk = '1')
then
68 case UartState is
69
70 when IDLE =>
71 Sx <= 0;
72 Cx <= TnxC-2;
73 Bx <= 0;
74 Ax <= 0;
75 INTR <= '0';
76
77 when S1 =>
78 Cx <= Cx-1;
79 if (D = '1') then

80 Sx <= Sx+1;
81 end if;
82
83 when S0 =>
84 Cx <= Cx-1;
85 if (D = '0') then
86 Sx <= Sx+1;
87 end if;
88
89 when FALL =>
90 Bx <= Bx+1;
91
92 when RISE =>
93 Bx <= Bx+1;
94
95 when S2 =>
96 Cx <= TnxC-2;
97 Sx <= 0;
98
99 when S3 =>
100 Cx <= TnxC-2;
101 Sx <= 0;
102
103 when GO =>
104 Cx <= TnxC-3;
105 Sx <= 0;
106 Bx <= 0;
107 Ax <= 0;
108 Busy <= '1';
109
110 when S4 =>
111 Cx <= Cx-1;
112 if (D = '1') then
113 Sx <= Sx+1;
114 end if;
115
116 when LOAD =>
117 Bx <= Bx+1;
118 PR <= PR(6 DOWNTO 0) &
F1(Sx);
119
120 when BYTE =>
121 Ax <= Ax+1;
122 Bx <= 0;
123 INTR <= '1';
124 Data <= PR;
125
126 when W0 =>
127 Cx <= TnxC-3;
128 Sx <= 0;
129 -- INTR <= '0';
130
131 when FIN =>
132 Busy <= '0';
133
134 when others =>
135 null;
136 end case;
137
138 if INTA = '1' then
139 INTR <= '0';
140 end if;

141
142 end if;
143 end process;
144 ----------------------------

145 Uart_State_Update:
process (Clk, Rst)
146 begin
147 if Rst = '1' then
148 UartState <= IDLE;
149 elsif (Clk'event and Clk =
'1') then
150 UartState <=
UartStateNext;
151 end if;
152 end process;
153 ----------------------------

154 Uart_State_Next: process(
UartState, D, Ax, Bx, Cx, Sx)
155 begin
156 case UartState is
157
158 when IDLE =>
159 if D = '1' then
160 UartStateNext <= S1;
161 else
162 UartStateNext <= IDLE;
163 end if;
164
165 when S1 =>
166 if Cx = 0 then
167 UartStateNext <= FALL;
168 else
169 UartStateNext <= S1;
170 end if;
171
172 when S0 =>
173 if Cx = 0 then
174 UartStateNext <= RISE;
175 else
176 UartStateNext <= S0;
177 end if;
178
179 when FALL =>
180 if (Sx < Integer((0.8 * Tnx)))
then
181 UartStateNext <= IDLE;
182 else
183 UartStateNext <= S2;
184 end if;
185
186 when RISE =>
187 if (Sx < Integer((0.8 * Tnx)))
then
188 UartStateNext <= IDLE;
189 else
190 UartStateNext <= S3;
191 end if;
192

DESIGNER’S TOOLKIT

ples must be weighted according to a
weighting table. All of these computa-
tions result in a very reliable transmis-
sion link. Oversampling at a rate of 10
times the bit rate with sample weighting,
for example, will produce a result that is
noticeably resistant to noise.

Designers must note, however, that
timing is critical because the sampling
period must be consistent. If one uses
the microcontroller interrupt to imple-
ment an oversampling, all of the system
resources will be at the mercy of the
interrupt handler. A better method
would be to have a dedicated chip—
using programmable logic—that per-
forms the task of oversampling. This
method won’t tie up valuable system
resources. At the same time, it will
enable much higher oversampling rates
(e.g., sample rates of tens of megasam-
ples per second).

Consider the use of a hardware-based
oversampling UART (FIG. 1).
Component U1-CY37064P44 is a pro-
grammable-logic device (CPLD) from
Cypress Semiconductor (www.cypress.
com). This component boasts 64 macro
cells. It has 44 pins that are triggered by

WANTED

Phone: 813-855-6921 • Fax: 813-855-3291 • E-mail: sales@leadertechinc.com • Web site: www.leadertechinc.com

At Leader Tech we‘ve always had an innovative team. A decade ago we patented our first CBS shield, this shield became
the Industry Standard. We have continued this innovative approach by developing our enhanced CBS shields to meet the
demands of the new and exacting specs we find today.

Our latest Multi Cavity shield isolates EMI/RFI
interference while bringing components closer together,
reducing board weight and maximizing board “real
estate”. Utilizing this technology Engineers are now able
to design using only one shield, eliminating the need for
more costly multiple single shields.

At Leader Tech, you’ll find a dedicated TEAM–innovative,
responsive, technical, experienced, one that thrives on
challenge. We’ll provide you with a prototype and pre-production
quantities within days. We’ll get you what you need when you need it,
regardless of the size of your order or the size of your company.

Send us your next RFQ and watch the TEAMWORK in action.

EMI/RFI DESIGNERS
Searching for the Newest Innovation in Circuit Board Shielding

193 when S2 =>
194 if (Bx = PreBits) then
195 UartStateNext <= GO;
196 else
197 UartStateNext <= S0;
198 end if;
199
200 when S3 =>
201 if (Bx = PreBits) then
202 UartStateNext <= GO;
203 else
204 UartStateNext <= S1;
205 end if;
206
207 when GO =>
208 UartStateNext <= S4;
209
210 when S4 =>
211 if Cx = 0 then
212 UartStateNext <= LOAD;
213 else
214 UartStateNext <= S4;
215 end if;
216
217 when LOAD =>
218 if (Bx < 8-1) then
219 UartStateNext <= DAMI;
220 else

221 UartStateNext <= BYTE;
222 end if;
223
224 when DAMI =>
225 UartStateNext <= W0;
226
227 when BYTE =>
228 if (Ax < StrLen - 1) then
229 UartStateNext <= W0;
230 else
231 UartStateNext <= FIN;
232 end if;
233
234 when W0 =>
235 UartStateNext <= S4;
236
237 when FIN =>
238 UartStateNext <= IDLE;
239
240 when others =>
241 UartStateNext <= IDLE;
242 --null;
243 end case;
244 end process;
245 --

246 end WirelessUART_Arch;
247

DESIGNER’S TOOLKIT
[UART IMPLEMENTATION]

a 20-MHz clock. Of course, any other
CPLD with similar capabilities also
could be used. One example might be
the ispMACH4A from Lattice
Semiconductor (www.latticesemi.com).

The designer can program the CPLD
with any industrial, parallel CPLD pro-
grammer. But a preferred method is to
use In-System Reprogramming (ISR). J1
is a JTAG connector, which is designed
for this purpose. The designer connects
the UltraISR or C3ISR programming
cable between J1 and PC. After loading
the appropriate JED
file, he or she can then
begin programming
the device.

In this UART cir-
cuit, one serial input
(D) receives the bit
stream from the
transceiver module. A
data bus (DATA)
transfers a complete
byte to the microcon-
troller. That micro-
controller contains
the traditional control
ports for interrupt
request (INTR): trigger the microcon-
troller, interrupt acknowledge (INTA),
and a busy line (BUSY).

The internal architecture of the CPLD
can be described using state-machine
diagrams (FIG. 2). The state machine
includes several constants: PreBits
(number of bits in the preamble); StrLen
(number of bytes in the frame excluding
the preamble); and Tnx (number of
samplings per bit). In addition, there are
four counters: Ax, Bx, Cx, and Sx. They
count bytes, bits, oversampling index,
and oversampling data, respectively. The
CPLD contains one register (PR) to

store the received bits. At IDLE state, the
machine is waiting for a rising edge in
the input stream D, which is the begin-
ning of the preamble.

The next six states act as a preamble
detector. At states S1 and S0, the
machine oversamples bits ‘1’ and ‘0’ of
the preamble. At states FALL and RISE,
the machine checks if the average sam-
ple is correct. The machine checks for
the end of the preamble at states S2 and
S3. The busy line is set at GO, which
means that real data is received.

At state S4, the
machine oversam-
ples and averages the
data bits. At LOAD,
eight average data
bits are packed into 1
B. An interrupt
request (INTR) is
sent to the microcon-
troller at state W0 to
collect the byte. At
state BYTE, the
machine checks for
the end of the frame.
Finally, at FIN, it
clears the busy line to

indicate that the entire frame was
received. The DAMI state is for balanc-
ing the path in the machine. If INTA
occurs at any state, the interrupt
acknowledge (INTR) will clear.

Several methods are commonly used
to design, synthesize, and simulate the
content of the complex programmable-
logic device. Typically, VHDL code is
written according to the state-machine
flow to synthesize and simulate the
design. In VHDL, the designer can
search for the best tradeoffs between the
clock frequency, data transfer rate, and
number of bytes per frame. For example,

the VHDL source file created for this
oversampling project was based on a 20-
MHz clock, 200-kbps data transfer rate,
12 B per frame, and a preamble of 8 b
[SEE SIDEBAR). Naturally, the designer
can change those values as necessary to
examine other tradeoff conditions.

A testbench is needed to verify the
VHDL simulation. Given the preceding
example, the simulation would start
with high-frequency noise (500 kHz)
followed by a correct preamble and 12 B
of data (a complete frame). The result-
ing simulation would help to test the
design (FIG. 3).

Here, the testbench indicated that the
UART rejects high-frequency noise (or a
preamble with a different frequency).
The correct preamble is detected and the
BUSY line is set. The 12 bytes that follow
the preamble (complete frame) are 33,
37, 00, 01, 02, 03, 04, 05, 06, 07, 08, and
09. Although the second byte (37)
includes high-frequency noise at the
fourth bit, the UART rejects this noise. It
sends the corrected data to the bus. One
can see that the UART packs eight serial
bits to one parallel byte and triggers the
microcontroller by the INTR command.
When a complete frame is received, the
BUSY line turns to zero. The UART is
then ready to receive the next frame.

This article presents one way to imple-
ment a physical layer (UART) for wire-
less communications. By using an over-
sampling technique, designers can follow
this very approach. It should lead them
to develop a subsystem that is resistant to
noise and other interference. ■

Dr. Eli Flaxer, Senior Lecturer,
Electrical Engineering and Computer Science,
Tel-Aviv Academic College of Engineering,
61533 Tel-Aviv, Israel; e-mail: flaxer@
mail.tace.ac.il, www.tace.ac.il.

26 WI R E LE SS SYSTE M S D E S I G NO CTO BER 2004

Name

Xrst

Xclk

XD

XData

XINTR

XINTA

XBusy

0 50 100 150 200 250 300 350 400 450 500 550 600

Noise

�s

00 33 37 00 01 02 03 04 05 06 07 08 09

3. In the results from a VHDL simulation testbench, high-frequency noise is rejected by the UART.

...THE SAMPLING PERIOD
MUST BE CONSISTENT.

IF ONE USES THE
MICROCONTROLLER

INTERRUPT TO
IMPLEMENT AN
OVERSAMPLING,

ALL OF THE SYSTEM
RESOURCES WILL BE

AT THE MERCY OF THE
INTERRUPT HANDLER.

