
Flaxer Eli - Process Control Ch 6 - 1

Chapter 6

Analog / Digital Converters

Process Control

Flaxer Eli - Process Control Ch 6 - 2

Outline

Digital vs. Analog

Analog/Digital Conversion
– Resolotion & Error
– Unipolar & Bipolar Code
– Circuit Diagrams

Programming
– DAC Example.
– ADC Example

Flaxer Eli - Process Control Ch 6 - 3

Digital vs. Analog

Digital characteristics
– Discrete signal levels (voltage usually)
– Two levels: on/off, high/low 1/0 (binary)
– Disjoint or quantized level changes

Analog characteristics
– Continuous signal levels
– Very small, smooth level changes

t

v

v

t

Flaxer Eli - Process Control Ch 6 - 4

Digital vs. Analog

Digital
Compact Disc
Microcomputer-controlled Engine
Telephone System
Movie Special Effects
Digital Computers:

PC, Mainframe, Supercomputer

Analog
Magnetic Tape
Mechanically-controlled Engine
Telephone System
Movie Special Effects
Analog Computer:

OpAmp, Res, Cap

 Natural world is analog
 Many devices better when digital:

Flaxer Eli - Process Control Ch 6 - 5

Digital vs. Analog

Advantages of each technology:

Digital
Reproducible results
Ease of design
Flexible and function
Programmable
High speed
Economical

Analog
Less complex ?

Higher speed ?

Flaxer Eli - Process Control Ch 6 - 6

Outline

Digital vs. Analog

Analog/Digital Conversion
– Resolotion & Error
– Unipolar & Bipolar Code
– Circuit Diagrams

Programming
– DAC Example.
– ADC Example

Flaxer Eli - Process Control Ch 6 - 7

Analog/Digital Conversion

A/D conversion is the process of sampling a continuous signal
Two significant implications

• The information content of the sampled signal is less
than the continuous signal

The continuous signal contains an infinite number of independent
samples, the sampling process reduces that to a finite number of
independent samples

• Uncertainty is added to the sampled data.

 Quantization error is part of the sampling process since the number of
intervals is finite. This is analogous to truncating a number after a specific
number of places

Flaxer Eli - Process Control Ch 6 - 8

Resolution and Error

Quantization error

Resolution

Quantization error is defined as +/- ½ LSB (Least Significant
Bit) = +/- ½ the resolution (see definition below)
Variance of the quantization error = resolution2/12 (variance
of a uniform distribution)

Resolution = 1 LSB = Vfull scale /2n

Flaxer Eli - Process Control Ch 6 - 9

Simple Example

Number of bits = 3
Number of intervals = 23

Range = 0- 10 volts
Resolution= 1.25 volts

Quantization error= +/- .625 volts
Variance =(1.25)2/12=.130 volts2

Flaxer Eli - Process Control Ch 6 - 10

Unipolar & Bipolar Binary Code

• Unipolar Straight Binary (USB) for unipolar analog
signals. For example: 0 to 5V, 0 to 10V.

• Bipolar Offset Binary (BOB) used for bipolar analog
signals. For example: +/-5V, +/-10V.

• Bipolar Two’s Complement (BTC) also used for
bipolar analog signals like the BOB.

Flaxer Eli - Process Control Ch 6 - 11

Unipolar & Bipolar Binary Code

USB BOB BTC

+V 256 256

V - bit 11111111 255 V- bit 11111111 255 V- bit 01111111 127

10000001 129 10000001 129 00000001 1

V/2 10000000 128 0 10000000 128 0 00000000 0

01111111 127 01111111 127 11111111 -1

0 00000000 0 -V 00000000 0 -V 10000000 -128

Flaxer Eli - Process Control Ch 6 - 12

DAC Diagram

-

+

Rf

Vo

.......
S1 S2 S3 Sn

2R 4R 8R 2nR+
Vref

b1 b2 b3 bn

.......

The converting is by writing a binary word to the digital switches

Flaxer Eli - Process Control Ch 6 - 13

ACD Diagram
Configuration of a SAR A/D converter

DAC

Vin

Comparator

b1 b2 - - - - bn

b1 b2 - - - - bn

SAR

Start

b1b2.
.
bn

Ready

ClockStop

The converting is by:
1) Writing start.
2) Waiting for ready.
3) Reading binary word.

Flaxer Eli - Process Control Ch 6 - 14

Outline

Digital vs. Analog

Analog/Digital Conversion
– Resolotion & Error
– Unipolar & Bipolar Code
– Circuit Diagrams

Programming
– DAC Example.
– ADC Example

Flaxer Eli - Process Control Ch 6 - 15

Programming Example
/***/
/* EFDAC.C */
/*--*/
/* Task : Drivers for PC_CARD I/O Interface */

Digital Parameters:
 Chan = (0, 1)
 Data = (0..255)

Analog Parameters:
 Chan = (0, 1, 2, 3)
 Gain = (1, 2, 3, 4)
 Rang = (1.25, 2.50)
 Pol = (UNIPOLAR, BIPOLAR)

Counter Parameters:
 Chan = (0, 1, 2)
 Mode = (0, 1, 2, 3, 4, 5)
 Count = (BINARY, BCD)
 Format= (LATCH, MSB, LSB, LMSB)

 **/
Flaxer Eli - Process Control Ch 6 - 16

Card Addresses
Base + 8 = DAC0d (Read / Write data to dac channel)
Base + 9 = DAC0s (Write=ST start conversion, Read=BUSY end of conversion)
Base + A = DAC1d (Read / Write data to dac channel)
Base + B = DAC1s (Write=ST start conversion, Read=BUSY end of conversion)
Base + C = DAC2d (Read / Write data to dac channel)
Base + D = DAC2s (Write=ST start conversion, Read=BUSY end of conversion)
Base + E = DAC3d (Read / Write data to dac channel)
Base + F = DAC3s (Write=ST start conversion, Read=BUSY end of conversion)

Write to DACxd is digital to analog channel x
Read from DACxd is analog to digital channel x
Write to DACxs (any data) is ST- start conversion A/D
Read from DACxs (bit 1) is BUSY- end of conversion A/D

Flaxer Eli - Process Control Ch 6 - 17

DAC Example

/**/
void AnalogOut(byte Chan, double Rang, byte Pol, double Volt)
 {
 double Temp = (Volt / Rang * 256.0);

 if (Pol == 0)
 outp(Base + 8 + Chan * 2, (byte)Temp); // unsigned char
 else
 outp(Base + 8 + Chan * 2, (char)(Temp / 2)); // signed char
 }
/**/

Flaxer Eli - Process Control Ch 6 - 18

ADC Example
double AnalogIn(byte Chan, double Rang, byte Pol)
 {
 double Temp;
 byte Data1;
 char Data2;
 int Address = Base + 8 + Chan * 2;
 outp(Address + 1, BIT0); // Start convertion
 while (!(inp(Address+1) & BIT1)); // Wait until BIT1 is Set
 if (Pol == 0) {
 Data1 = inp(Address);
 Temp = Data1 / 256.0 * Rang;
 }
 else {
 Data2 = inp(Address);
 Temp = Data2 / 256.0 * Rang * 2;
 }
 return(Temp);
 }

