Micro Processor & Controller

Bit Wise & Shift Operations

Bit Wise Operations

C language has 4 bit wise operator for variable and constant:

(or) &(and) ^(xor) ~(not).

The bit wise operations are different from logic operations $\| (\mathbf{or}) - \&\&(\mathbf{and}) - !(\mathbf{not}). \| \| (\mathbf{or}) - \&\&(\mathbf{and}) - !(\mathbf{not}) - !(\mathbf{or}) - !(\mathbf{or}$

The bit wise operations are operate on the object bit by bit, and not on the full object as Boolean value.

Shift Operations

- C language has two shift operations for variable and constant:

 >> (shift right) << (shift left).
- Shift left operation always insert '0' to the LSB

Shift Operations

- Shift right operation insert, to the MSB, value that depended in the type of the variable or the constant.
- If the type is unsigned, '0' is insert to the MSB

Shift Operations

• If the type is sign, the MSB is duplicated (sign extended).

Shift Operations Example (C)

```
int main ()
      unsigned char x, y;
      char a, b;
      x = 1; // x = 00000001
      y = x << 3; // y = 8
    x = 255; // x = 111111111
      y = x >> 3; // y = 31
      a = 1; // a = 00000001
      b = a << 3; // b = 8
      a = -1; // a = 111111111
      b = a >> 3; // b = -1
```

Constant Shift Operations

- The shift operations work with a constant too.
- For example:

$$-1 << 3 = 8$$

- Constant integer, is by default 32 bit signed.
- Unsigned constant is defined by U.

- How to set especial bit of the variable?
- Set the k bit:

$$x = (1 << k)$$

— For example set bit 3 X = (1 << 3):

- How to clear especial bit of the variable?
- Clear the k bit:

$$x \&= (1 << k)$$

— For example clear bit 3 $\times = (1 << 3)$:

- How to toggle especial bit of the variable?
- Toggle the k bit:

— For example set bit 3 $\times ^{=} (1 << 3)$:

Bit Sensing

- How to check especial bit of the variable?
- Check the k bit of variable Y:
 - Y & (1 << k)
 - For example check bit 3 Y & (1 << 3):

- How to mask N bits of the variable starting at K bit?
- Mask N bit at K bit:

$$((1 << N)-1) << K$$

— For example set 4 bit from bit 2((1 << 4) - 1) << 2:

