
Bit Wise & Shift OperationsBit Wise & Shift Operations

Micro Processor & Controller

Bit Wise OperationsBit Wise Operations

• C language has 4 bit wise operator for variable and constant:
| (or) &(and) ^(xor) ~(not).

• The bit wise operations are different from logic operations
|| (or) &&(and) !(not).

• The bit wise operations are operate on the object bit by bit,
and not on the full object as Boolean value.

0 1 1 1 1 1 0 0

1 1 1 1 0 1 1 1

Shift OperationsShift Operations

• C language has two shift operations for variable and constant:
>> (shift right) << (shift left).

• Shift left operation always insert ‘0’ to the LSB

0 0 1 1 0 1 1 00x36=54 0

0 1 1 0 1 1 0 00x6C=108

after

Shift OperationsShift Operations

• Shift right operation insert, to the MSB, value that depended
in the type of the variable or the constant.

• If the type is unsigned, ‘0’ is insert to the MSB

0 0 1 1 0 1 1 0 0x36=540

0 0 0 1 1 0 1 1 0x1B=27

after

Shift OperationsShift Operations

0 0 1 1 0 1 1 0 0x36=54

0 0 0 1 1 0 1 1 0x1B=27
after

• If the type is sign, the MSB is duplicated (sign extended).

1 0 1 1 0 1 1 0 0xB6=-74

1 1 0 1 1 0 1 1 0xDB=-37
after

Shift Operations Example (C)Shift Operations Example (C)

int main ()
{
unsigned char x, y;
char a, b;
x = 1; // x = 00000001
y = x << 3; // y = 8
x = 255; // x = 11111111
y = x >> 3; // y = 31

a = 1; // a = 00000001
b = a << 3; // b = 8
a = -1; // a = 11111111
b = a >> 3; // b = -1
}

Constant Shift OperationsConstant Shift Operations
• The shift operations work with a constant too.
• For example:

– 1 << 3 = 8

– 48 >> 2 = 12

• Constant integer, is by default 32 bit signed.
• Unsigned constant is defined by U.

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

Bit ManipulationsBit Manipulations
• How to set especial bit of the variable ?
• Set the k bit:

– x |= (1 << k)

– For example set bit 3 X |= (1 << 3):

0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 0 1 << 3

0 0 0 1 1 0 1 1

X = 0x13

X = 0x1B

Bit ManipulationsBit Manipulations
• How to clear especial bit of the variable ?
• Clear the k bit:

– x &= ~(1 << k)

– For example clear bit 3 X &= ~(1 << 3):

0 1 1 1 1 1 0 0

1 1 1 1 0 1 1 1 ~(1 << 3)

0 1 1 1 0 1 0 0

X = 0x7C

X = 0x74

Bit ManipulationsBit Manipulations
• How to toggle especial bit of the variable ?
• Toggle the k bit:

– x ^= (1 << k)

– For example set bit 3 X ^= (1 << 3):

0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 0 1 << 3

0 0 0 1 1 0 1 1

X = 0x13

X = 0x1B

Bit SensingBit Sensing
• How to check especial bit of the variable ?
• Check the k bit of variable Y:

– Y & (1 << k)

– For example check bit 3 Y & (1 << 3):

0 0 0 1 x 0 1 1

0 0 0 0 1 0 0 0 1 << 3

0 0 0 0 x 0 0 0
If (x == 0) the all
expression is FALSE
If (x == 1) the all
expression is TRUE

Y

Bit ManipulationsBit Manipulations
• How to mask N bits of the variable starting at K bit ?
• Mask N bit at K bit:

– ((1 << N)-1) << K

– For example set 4 bit from bit 2 ((1 << 4) - 1) << 2:

0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0 0x0F << 2

0 0 0 1 0 0 0 0

(1<<4) – 1 = 0x0F

1<<4 = 0x10

	Slide Number 1
	Bit Wise Operations
	Shift Operations
	Shift Operations
	Shift Operations
	Shift Operations Example (C)
	Constant Shift Operations
	Bit Manipulations
	Bit Manipulations
	Bit Manipulations
	Bit Sensing
	Bit Manipulations

