
1 

An Introduction to  
 Computational 

Chemistry Laboratory 



2 

Modern Computational Chemistry -  
super-important and broad-ranged 

 CC is a well developed mathematically and numerically       
(analytical form of interactions + vast experimental data) 

 CC range of applicability: 
• Chemistry: geometric structure, electronics, energetics, 

reactivity, kinetics and thermodynamics  
• Physics: fundamental physical theories beyond the 

Standard Model (SM) (including dark matter and energy) 
• Biology: live organisms molecular structure and functioning 

– the essential secrets of life + pharmacology 
• Anthropology & AI : from chemical brain structure and 

consciousness phenomena to Artificial Intelligence (AI) 
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What is Computational Chemistry 
Laboratory (CCL)? 

 CCL is a virtual chemistry laboratory (in many cases 
substitutes a real laboratory….) 

 The aim: use of computers to aid chemical inquiry. Based on: 
• Physical background theory (Classical Newtonian or 

Quantum Physics) 
• Mathematical numerical algorithms (optimization, linear 

algebra, iteration procedures, numerical integration etc.) 
• Computer software and hardware (HYPERCHEM 8.0, 

GAUSSIAN03   on Windows PC)       
• Chemical knowledge and intuition for understanding and 

interpretation of the computational results 
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Potential Energy Surface (PES) – the main 
chemistry inquiry 
“Chemistry – is knowing the energy as a function of nuclear coordinates” F. Jensen  
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Potential energy surfaces (and 
similar properties) calculation 

 Classical (Molecular) Mechanics 
• quick, simple; accuracy depends on parameterization;     
• no consideration of electrons interaction 

 Quantum Mechanics: 
1. Molecular Wave Function Theory 

• Ab initio molecular orbital methods...much more demanding 
computationally, generally more accurate. 

• Semi-empirical molecular orbital methods ...computationally 
less demanding than ab initio, possible on a pc for moderate 
sized molecules, but generally less accurate  than ab initio, 
especially for energies. 

2. Density functional theory… more efficient and often more 
accurate than Wave Function based approaches. 
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Molecular Mechanics – a theory 
of molecules “without electrons”  

 Employs classical 
(Newtonian) physics 

 Assumes Hooke’s Law 
forces between atoms 
(like a spring between 
two masses) 

      Estretch = ks (l - lo)2 

   graph: C-C; C=O 

 Force field = {ks,l0} 
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Molecular Mechanics  
More elaborate Force Fields (FF) 



Birth of quantum mechanics. 
Matter properties of light. 
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14 December 1900 Planck postulated: 
electromagnetic energy could be emitted or adsorbed 
only in quantized form: 

         E=hν=hc/λ 
      h= 6.62607550D-34 Js 
 

Einstein 1905: 
E=pc 
p=h/λ 

http://en.wikipedia.org/wiki/Quantization_(physics)
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Birth of quantum chemistry 
Wave properties of matter 

 Prince Louis de Broglie (1923): 
 

            λ = h/mv= h/p 
                             h= 6.62607550D-34 Js 

    ψp=e-i2πx/λ= e-i2πpx/h 
 

 (“wave-particle duality” paradox) 

 ψ  - probabilistic (statistic) wave (Copenhagen interpretation).  
 Waves properties: interference, diffraction etc.  
 Possible explanations of the probabilistic (“quantum”) behavior  

• Structure of quantum vacuum. 
• Constrains of the human consciousness (observer’s constrains). 
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Basis of Quantum Chemistry 

 Postulate I : “A closed system is fully described by ψ” 
• Postulate II:  “Operator – for every physical quantity” 
  (-ih/2π)d/dx (e-i2πpx/h) = p (e-i2πpx/h)  
  (-ih/2π)d/dx (ψp) = p (ψp)  
      Operator – linear and Hermitian 
 Schrödinger equation (1926): 
 

    
 
  

 (can be solved exactly for the Hydrogen atom, but nothing larger) 
 

 P.A.M. Dirac, 1929: “The underlying physical laws necessary for the 
mathematical theory of a large part of physics and the whole of 
chemistry are thus completely known.” 

di H E
dt
Ψ − = Ψ = Ψ 

 







11 

One-dimensional Schrödinger wave equation 
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 Hamiltonian operator 
• Ĥ = operator of energy 
• SE = energy eigen-value equation 

 Extracts total energy, E 
 Many solutions E0, E1, … En 

 Ψ(x) − wavefunction 
• No direct physical meaning 

 |Ψ (x)|2 −  Probability of 
finding particle with energy E 
at point x 

 Single-valued, finite, continuous 
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Molecular 
Schrödinger equation (SE): 
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2 kinetic energy terms plus 
3 Coulombic energy terms: 
(one attractive, 2 repulsive) 

HΨ = EΨ

H = Hamiltonion operator



Relativistic effects: from the color of your 
wedding ring to the lead battery in your car 

‘…cars start due to relativity’  
(relativity accounts for 85% of the 
voltage in a 2V lead–acid battery).  
The Economist,  15 January, 2011 
Original paper: Ahuja, et.al, Phys. Rev. 
Lett., 106 (2011) 018301. 

Silver (Ag)    versus    Gold (Au)  

Cadmium (Cd)   versus   Mercury (Hg) 

13 
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Relativistic quantum mechanics 
Dirac equation (1928) : 
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Influence of Relativity on 
Quantum World and vice-versa 
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The WORLD IS RELATIVISTIC AND THUS IS QUANTUM (and vice-versa!) 
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Dirac’s sea of electrons. 
Quantum vacuum. 
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The NR molecular wavefunction 
– physical meaning 

 The wavefunction, Ψ , is a key quantity in quantum chemistry.  
 Ψ  depends on coordinates and spins. Spin of electron – relativistic 

property, additional “discrete” coordinate ; |ms1 |=1/2 
 In a three dimensional system of n-electrons, 
                                                                 is the probability of simultaneously 

finding electron 1 with spin ms1 in the volume dx1dy1dz1  at (x1,y1,z1), 
electron 2 with spin ms2 in the volume  dx2dy2dz2 at (x2,y2,z2)  and so on  

 The wave function should be normalized, that is, the probability of 
finding all electrons somewhere in space equals 1.  

( ) 2
1 1 1 1 1,..., , ,..., ....n s sn n n nx z m m dx dy dz dx dy dzψ

( ) 2
1 1 1 1 1 1

 
... , , ,..., , , ... 1n n n n n n

all m
x y z x y z dx dy dz dx dy dzψ

∞ ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞

⋅ ⋅ =∑ ∫ ∫ ∫ ∫ ∫



18 

Wavefunction’s general 
properties 
 The wave function should be antisymmetric, that is, Ψ should 

change sign when two electrons of the molecule interchange: 
 
 

 We can use the molecular wavefunction to calculate any 
property of the molecular system. The average value, <C>, of a 
physical property of our molecular system is: 
 

 where, Ĉ, is the quantum mechanical operator of the physical 
property  and 

                                    
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Ab-initio Wavefunction approach 

 Simplifying assumptions are employed to ‘solve’  
the Schrödinger equation approximately: 
• Born-Oppenheimer approximation allows separate 

treatment of nuclei and electrons 
• Hartree-Fock independent electron approximation 

allows each electron to be considered as being 
affected by the sum (field) of all other electrons. 

• MOLCAO Approximation 
 Tools: Variational Principle or Perturbation 

Theory 
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Born-Oppenheimer 
Approximation                   - 
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Steps of solution of the Schrödinger 
equation in the Born-Oppenheimer 
approximation: 

     Htot  =  (Tn + Vn ) +   Te  +   Vne + Ve= (Hn) + He 
 
1. Electronic SE: He Ψe (r,R)=Ee(R) Ψe (r,R) 
2. Nuclear SE: (Tn + Vn + Ee(R) )Ωn(R)=En Ωn(R) 
      Vn + Ee(R) = potential energy surface (PES)  
      TOTAL WF :     Φ(r,R) = Ωn(R) Ψe (r,R) 
      In our laboratory we concentrate mainly on 

solution of the electronic SE and working with PES 
(finding minimums, transition states etc.) 
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Solving the Electronic SE:       
Hartree-Fock (HF) approximation – 
the physical background 
 Multi-electronic SE: He Ψe (r,R)=Ee(R) Ψe (r,R) is still very 

complicated  → reduce it to the single-electronic equation  
 HF assumes that each electron experiences all the others 

only as a whole (field of charge) rather than individual 
electron-electron interactions. 

 Instead of multielectronic Shrödinger equation introduces 
a one-electronic Fock operator F: 

 

    F φ = ε φ 
 

 which is the sum of the kinetic energy of an electron, a 
potential that one electron would experience for a fixed 
nucleus, and an average of the effects of the other 
electrons. 
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Mathematical foundation of the HF (or 
Self-consistent-field (SCF)) method  

 Molecular orbital theory approximates  the molecular wave function 
Ψ as a antisymmetrized product of orthonormal one-electron 
functions (or “molecular spin-orbitals”)  

    
 where Â is the antisymmetrization operator and  

 where k=±1/2;  σ1/2 =α ; σ-1/2 =β .    
 The antisymmetrization operator is defined as the operator that 

antisymmetrizes a product of n one-electron functions and 
multiplies them by normalization factor (n!)-1/2 

1 2
ˆ ( .... )nA f f fψ = × × ×

( , , )i i i i i kf x y zφ σ=
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Determinant of Slater 

 The antisymmetrized WF can be 
represented as the Slater’s determinant: 
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Variational Principle 

 The energy E calculated from any approximation 
of the wavefunction Φ will be higher than the true 
energy E0: 
 

 The better the wavefunction, the lower the energy 
(the more closely it approximates reality). 

 Changes (variation of parameters in Φ) are made 
systematically to minimize the calculated energy. 

 At the energy minimum (which approximates the 
true energy of the system) for HF : ∂E/∂φi = 0. 

*
0

ˆE H d Eτ= Φ Φ ≥∫
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The Hartree-Fock energy 
functional 

 We shall restrict ourselves to closed shell configurations, for 
such cases, a single Slater determinant is sufficient to describe 
the molecular wave function. Using the variational principle 
within this framework lead to the restricted HF theory. The 
Hartree-Fock energy for molecules with only closed shells is 

/ 2 / 2 / 2

1 1 1

12 (2 )
2

n n n
core

HF i ij ij
i i j
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= = =
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    The Hartree-Fock equations 

 The Hartree-Fock equations are derived from 
the variational principle, which looks for those 
orbitals φ that minimize EHF.  

 For computational convenience the molecular 
orbitals are taken to be orthonormal: 

 The orthogonal Hartree-Fock molecular orbitals 
satisfy the single-electronic equations:   

(1) | (1)     i j ijφ φ δ=

ˆ (1) (1) (1)i i iF φ ε φ=



28 

 The (Hartree-) Fock operator  
 Single-electronic operator: 

 
 The Coulomb operator Jj and the exchange 

operator Kj  are defined by 
 
 
 
 

 where f  is an arbitrary function  
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Next step:  
MO-LCAO Approximation 

 Electron positions in molecular orbitals can be 
approximated by a Linear Combination of Atomic 
Orbitals (LCAO). 
 

 This reduces the problem of finding the best 
functional form for the molecular orbitals to the  
much simpler one of optimizing a set of coefficients 
(cn) in a linear equation: 
 

φ  =  c1 χ1 + c2 χ 2 + c3 χ 3 + c4 χ 4 + … 
  where φ is the molecular orbital (MO) wavefunction 

and χ n represent atomic orbital (AO) wavefunctions. 
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One step more: 
Basis sets (BS) 

 A basis set is a set of analytical functions (ξk) used to 
represent the shapes of atomic orbitals χ n: 

 General contracted BS: χn=Σk bk(n) ξk(n)  
 Contraction coefficients are calculated in a separate 

atomic HF calculation;                                                               
if k=1 basis set is called uncontracted. 

 Basis sets in common use have a simple mathematical 
form for representing the radial distribution of electron 
density. 

 Most commonly used are Gaussian-Type orbitals 
(GTO), which approximate the better, but more 
numerically complicated Slater-Type orbitals (STO). 
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Hartree-Fock Self-Consistent 
Field (SCF) Method.  

 Computational methodology (Jacobi iterations): 
1. Guess the orbital occupation (position) of an electron 

(set of MO coefficients {cn }) 

2. Calculate  the potential each electron would experience 
from all other electrons (Fock operator F ({cn })) 

3. Solve for Fock equations to generate a new, improved 
guess at the positions of the electrons (new {cn }) 

4. Repeat above two steps until the wavefunction for the 
electrons is consistent with the field that it and the other 
electrons produce (SCF). 
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Types of HF 
 Multiplicity (M) = 2*S+1  
 (S is the total spin of the system) 
 Electrons can have spin up or down . Most 

calculations are closed shell calculations (M=1), 
using doubly occupied orbitals, holding two 
electrons of opposite spins. RHF – restricted HF 

 Open shell systems (M>1) are calculated by 
1. ROHF – restricted open shell HF – the same 

spatial orbitals for different spin-orbitals from the 
valence pair;  

2. UHF – unrestricted HF – different spatial parts for 
different spins from the same valence pair 



33 

Illustrating an RHF singlet, and 
ROHF and UHF doublet states 
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Semi-empirical MO Calculations: 
Further Simplifications of HF 

 
 
 
 
 

 Neglect core (1s) electrons; replace integral for Hcore by an 
empirical or calculated parameter 

 Neglect various other interactions between electrons on 
adjacent atoms: CNDO:                                                          , 
INDO, MINDO, PM3,AM1, etc.(iterative); Huckel – non-iterative 

 Add parameters so as to make the simplified calculation give 
results in agreement with observables (atomic spectra or 
molecular properties). 
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Beyond the SCF. 
Correlated Methods (CM) 

 Include more explicit interaction of electrons than HF :      
 Ecorr = E  -  EHF   , where   EΨ = H Ψ  
 Most CMs begin with HF wavefunction, then incorporate 

varying amounts of electron-electron interaction by mixing in 
excited state determinants with ground state HF determinant 

 The limit of infinite basis set & complete electron correlation is 
the exact solution of Schrödinger equation (which is still an 
approximation)  
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Beyond the SCF. 
Correlation effects on properties. 
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Two alternative ways of the 
electron correlation treatment 

      HF (Hartree-Fock) – “a singe determinant” theory 
• no correlation included! 

1.  WF based “multi-determinant” correlation methods: 
1. Configuration Interaction (CI)     (+ statistical Monte-Carlo (MC))  

• Variational: CISD, CSID(T) … Non-variational: DMRG, DMC 
2. Many-body perturbation theory (including infinite-orders methods) 

• Non-variational ( + variatioanal) MBPT2, MBPT3; CCSD; CCSD(T) 
2.  Density functional theory (DFT) – correlation method not based on  
     wave-function, but rather on modification of the energy functional: 

 
 

Kohn-Sham: A “single determinant” theory including correlation! 

/ 2 / 2 / 2

1 1 1
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Summary of Choices: 

6-311++G**

6-311G**

6-311G*

3-21G*

3-21G

STO-3G

STO

       HF   CI   QCISD   QCISDT    MP2    MP3    MP4     correlation        

       increasing 
size of
basis set       

increasing level of theory    

Schrodinger

increasing accuracy,
increasing cpu time

infinite basis set

full e-
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The extra dimension: 

Experiment 
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Summary: Levels of QM Theory 

HΨ=EΨ 

Born-Oppenheimer approximation 

Single determinant SCF 

Semi-empirical methods  

Correlation approaches: 
1.Multi-determinantial (MCSCF, CI, CC, MBPT) 
2. Single determinantial (DFT) 
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Some applications during your 
work... 

 Calculation of reaction pathways (mechanisms) 
 Determination of reaction intermediates and  

transition structures 
 Visualization of orbital interactions (formation of new 

bonds, breaking bonds as a reaction proceeds) 
 Shapes of molecules including their charge 

distribution (electron density) 
 NMR chemical shift prediction. 
 IR spectra calculation and interpretation. 

https://www.youtube.com/watch?v=0D5StDpMxas
https://www.youtube.com/watch?v=0D5StDpMxas
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