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Dephasing of one-particle states in closed quantum dots is analyzed within the framework of random
matrix theory and the master equation. The combination of this analysis with recent experiments on the
magnetoconductance allows, for the first time, the evaluation of the dephasing times of closed quantum
dots. These dephasing times turn out to be dependent on the mean level spacing and significantly en-
hanced as compared with the case of open dots. Moreover, the experimental data available are consistent
with the prediction that the dephasing of one-particle states in finite closed systems disappears at low
enough energies and temperatures.
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Quantum coherence of electrons in closed quantum dots
has attracted much interest in recent years [1–5]. Electron-
electron interactions are believed to be one of the main
sources of dephasing in disordered systems at low tem-
peratures. Compared to low-dimensional metals and semi-
conductors [6], substantial modifications of this dephasing
mechanism are caused by the confinement of the quantum
dot which leads to discrete energy levels. In particular,
the dephasing rate was predicted [2] to disappear at low
excitation energies, e , D

p
g� lng, where D is the mean

level spacing and g is the dimensionless conductance of
the dot.

Whereas there are a number of ways to measure the de-
phasing times in open quantum dots [7,8], the situation is
much more complicated in closed dots. Only a few experi-
ments have attempted to study dephasing in closed quan-
tum dots. Most of these have focused on the relaxation
of highly excited states, verifying the continuous to dis-
crete spectrum transition at e ~ gD [3]. Some signatures
of dephasing in thermalized states have been studied by
Patel et al. [9], who analyzed the statistical distribution of
the conductance maxima Gmax (the height of the Coulomb
blockade peaks). They found that the ratio of standard de-
viation to mean peak height s�Gmax���Gmax� is smaller
than what random matrix theory (RMT) predicts [10], and
attributed this reduction to dephasing effects. More re-
cently, Folk et al. [4] suggested to use the dependence of
the conductance upon applying a magnetic field B,

a � ��Gmax�Bfi0 2 �Gmax�B�0���Gmax�Bfi0 , (1)

as a probe of dephasing times. This is the closed dot
analog of the weak localization magnetoconductance
which was analyzed earlier for open dots [7]. RMT
predicts a � 1�4 [11,12], while Folk et al. measured
considerably lower values of a, down to a � 0 for
the largest quantum dot with the maximal ratio kBT�D

(T is the temperature, kB is the Boltzmann constant)
interactions. Beenakker et al. [5] theoretically analyzed
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the situation in which the phase-breaking inelastic re-
laxation rate Gin [13] far exceeds the mean tunneling
rate (inverse dwell time in the dot) G. It turns out that,
in this limit, a is reduced much stronger than found
experimentally. Thus, they concluded that in the experi-
ment [4] Gin , G. However, as noted in Refs. [4,5], the
lack of a quantitative theory of the crossover regime,
Gin � G, prevents a full analysis of the experimental
results.

In this Letter, we study theoretically the effect of arbi-
trary inelastic scattering on the conductance of a closed
quantum dot. We develop an analytical approach that al-
lows one to evaluate a [Eq. (1)] and compare the results to
the numerical solution. The approximate results are found
to reasonably describe the behavior in the experimentally
relevant temperature regime. Our calculations allow one,
for the first time, to extract dephasing times of low lying
(thermally excited) states in closed quantum dots. We ob-
serve a clear enhancement of the dephasing times relative
to earlier results for open quantum dots [7]. Moreover,
contrary to the analysis of open quantum dots [7] which
showed a dependence on temperature alone, we find a de-
pendence on both T and D. From our analysis it follows
that the measurements of Folk et al. [4] are not inconsistent
with a vanishing dephasing rate for low excitation energies
[2]. A more detailed presentation of the calculation will be
given in [14].

In the experimentally relevant regime h̄Gin, h̄G ,

kBT , D, each state of the quantum dot is determined by
a tuple �ni	 of occupation numbers for the single particle
eigenstates with energies Ei and spins Si . The electrons
can tunnel between the dot and the two leads. The left �L�
and right �R� leads differ due to the applied voltage V . The
elctrons in the leads are thermalized and distributed ac-
cording to the Fermi function fFD�E� � 
1 1 eE��kBT��21.
The probability PN ��ni	� to find a given set of occupation
numbers �ni	 with a total of N electrons (restricted to
N [ �N , N 1 1	 due to the Coulomb blockade) obeys
the following master equation [15]:
© 2002 The American Physical Society 136801-1
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dPN ��ni	�
dt
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Gjk
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kj
in PN11��ni	�� .

(2)
Here, �ni	1j��ni	2j� are the tuples obtained from �ni	
by adding (removing) one electron in the one-particle
eigenstate j, and fl

j � fFD
Ej 1 �dlL 2 1�2�eV 2 m�,
where l [ �L, R	 and m is the effective chemical poten-
tial, including the charging energy.

The first terms in (2) describe the tunneling of electrons
between the dot and the leads. The additional terms G

kj
in

in (2) describe inelastic scattering processes between the
dot’s one-particle eigenstates j and k. We assume that
these are caused by thermal bosonic fluctuations at tem-
perature T �vjk � Ej 2 Ek�,

G
jk
in � G0

in

sgn�vjk�D�jvjkj�
exp
vjk��kBT�� 2 1

dSjSk , (3)

where D�E� is the bosonic density of states. The form
of Eq. (3) is very general; it assumes only detailed bal-
ance, no back coupling of the scattering to the Bose bath,
and a spin-independent inelastic scattering. The micro-
scopic mechanism might be due to external noise, electron-
electron, or electron-phonon interaction. An important
point with respect to Eq. (3) is that the suppression of
a is quite robust to the specific model of interaction,
and depends mainly on the total inelastic scattering rate
Gin. We consider Gin as a phenomenological parameter,
to be determined experimentally. Since the experimen-
tal quantum dots [4] contain a large number of electrons,
N ¿ 1, they can be described by RMT [16]. In par-
ticular, the tunneling rates are Porter Thomas distributed
Pb�G� ~ Gb�221 exp
2bG��2G��, with b � 1, 2 for the
136801-2
Gaussian orthogonal (no magnetic field) and unitary en-
semble (with a magnetic field). The difference between
P1�r� and P2�r� leads to the aforementioned, of a � 1�4
in the absence of inelastic scattering [11,17].

The inelastic scattering model (3) is exponentially cut
off to states outside an energy window of O �kBT� and,
thus, Gin vanishes at low temperatures. At kBT ¿ D, on
the other hand, there are many states M ~ kBT�D con-
nected by the inelastic scattering. Therefore, for T ! `,
the total inelastic scattering rate Gin�G ! ` and the result
of [5] is approached. In the leading order in D�kBT , the
solution of the master equation (2) is the equilibrium dis-
tribution and

G �
e2

2kBT
kBT
D

G
L
G

R

G
L

1 G
R , (4)

i.e., a � 0 (here, G
l

is the mean tunneling rate to lead l,
G � G

L
1 G

R
). Two corrections arise in the next order

in D�kBT : (i) the effect of a finite total inelastic scattering
rate, and (ii) G is replaced by an average M levels around
the Fermi energy, i.e., G

l
! ��Gl

j �� �
P

j fj�1 2 fj�Gl
j

[5,15]. (Here and in the following, fj is the Fermi
function at both leads for V � 0.) This introduces
corrections O �1�M� due to correlations between the
numerator and denominator of Eq. (4). We calculate
the former and take into account the latter by solving
the master equation using perturbation theory in G�Gin,
where G

j
in �

P
kfij G

jk
in �1 2 fk�. As a result [14],
G �
e2

kBT
Peq�N�

µ
��GL�� ��GR ��
��GL 1 GR��

2
��GL2�� ��GR ��2 1 ��GR2�� ��GL��2 2 2��GL��2��GR��2

G
�
in��GL 1 GR ��2

∂
, (5)
a �
1
12

D

kBT
1

G

2Gin
, (6)

where Peq�N� is the equilibrium probability to have N
electrons in the dot, and G

�
in � G

j
in��1 2 fj�. We neglect

the weak j-dependence of G
�
in. The total inelastic scatter-

ing rate Gin is defined as a value of G
j
in at Fermi energy,

i.e., Gin � G
j
in for Ej � 0.
In the following, we employ an approximation inspired
by this high-T expansion. To first order in the voltage, one
can write PN ��ni	� � P

eq
N ��ni	� 
1 1

eV
kBT

P
j dnj1C� j��,

where P
eq
N ��ni	� is the equilibrium value of PN ��ni	�.

With a large number of final states to scatter to, one can
replace the sum over many individual terms P��ni	1k2j�
in the master equation (2) by an averaged quantity:
X
k

G
kj
in PN11��ni	1k2j� 2 G

jk
in PN11��ni	� �

eV
kBT

P
eq
N11��ni	�

X
k

G
jk
in 
C�k� 2 C� j�� !

eV
kBT

P
eq
N11��ni 	�Gin
C̄ 2 C� j�� .

(7)
Here, C̄ should, in principle, be a weighted average over
levels within a range of O �kBT� around a particular level j
considered. However, only levels around the Fermi en-
ergy are of interest for the conductance since the contribu-
tion of every level j to the conductance is multiplied by
fj�1 2 fj�. For this reason, we approximately employ
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a constant C̄ �
P

j fj�1 2 fj�C� j��

P

j fj�1 2 fj�� in
Eqs. (7) and (2) This leads to a self-consistent solution of
the master equation with the result [14]

G �
e2

kBT
Peq�N�

øø
GL

i ttot
i

µ
GR

i 1
G

�
in��GR

j t
tot
j ��

���GL
j 1 G

R
j �ttot

j ��

∂¿¿
,

(8)

where t
tot
i � �GL

i 1 G
R
i 1 G

�
in�21. One would obtain the

same form (8) but with ��· · ·�� �
PM

j�1 . . . considering M
degenerate levels filled with N [ �0, 1	 electrons.

The result (8) can be interpreted in the following way:
The first term represents processes in which the elec-
tron was not scattered at all. These happen with proba-
bility �GL

i 1 G
R
i �ttot

i and the resulting conductance peak
heights are proportional to �GL

i G
R
i ���GL

i 1 G
R
i �; yielding

G
L
i G

R
i t

tot
i altogether. The second term represents contribu-

tions from electrons that were inelastically scattered after
tunneling from one lead, and their contribution to the con-
ductance is ��GR

j t
tot
j ������GL

j 1 G
R
j �ttot

j ��.
Equation (8) is the main result of this paper. It is

based on an approximation (7) which can be justified in
the high-temperature limit. The particular advantage of
this approach is that it gives not only the correct leading
high-temperature behavior [Eq. (5)] but also reproduces
correctly the limits Gin � 0 and Gin � ` for all T in-
cluding a � 1�4 at T � 0. Below, we demonstrate that
this approach works pretty well in the intermediate regime
kBT � D.

In order to calculate G and a, one has to average Eq. (8)
with respect to the different ensembles. One could do so
numerically, but it is possible to get analytical results via
expanding Eq. (8) in powers of D�kBT [14]. The first
three terms in the D�kBT expansion [or more specifically
in 1�

P
j fj�1 2 fj�, which is ~ D�kBT at large T] al-

ready give good accuracy in the relevant regime kBT . D

and are employed in the following. As we are interested
in this regime, we assumed a picket fence distribution
with spacing D between consecutive spin-degenerate lev-
els (E2j � E2j21 � jD; G

l
2j � G

l
2j21; G

l

j � G�2).
We tested the range of validity of this high-temperature

approximation against the numerical solution [18] of the
master equations (2). The latter is obtained by solving the
master equation (2) by sparse matrix inversion [18]. Fig-
ure 1 compares values of a, as calculated using the first
three terms in the D�kBT expansion, with the numerical
values. The agreement is very good for sufficiently high
temperatures, and reasonable even for low T . In the whole
temperature regime, the deviations are within current ex-
perimental accuracy.

It, thus, appears that our analytical approach provides
a reliable way to determine Gin from the experimental
measurements of a, in the whole temperature regime. For
future experiments we provide Fig. 2, which presents a as
a contour plot in the space spanned by kBT�D and Gin�G.

A direct experimental test would be provided by mea-
suring values of a in a given dot at fixed T , as a function
136801-3
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FIG. 1. Comparison of the numerical solution of the full mas-
ter equation with the high-temperature approximation. The latter
is seen to work well for kBT . D.

of G (which can be achieved by changing the contact set-
ting). The theoretical dependence of a on G involves a
single fitting parameter, i.e., the unknown total scattering
rate Gin which is assumed to be unaffected by the con-
tact setting. A first step in this direction was done in [4],
and in the inset of Fig. 3 we compare the prediction of our
high-temperature approximation with the measurements of
a for three different values of G. An excellent agreement
is obtained, though more data points are required for reli-
able conclusions.

We now use the above theory to extract dephasing times
from the data points (mean values and error bars) of Folk
et al. [4]. Figure 3 presents these estimates as symbols
and error bars, respectively, and compares them with open
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FIG. 2. A contour plot of a as a function of D�kBT and Gin�G,
based on the high-temperature approximation. The values of the
bold contours are specified. Given T , D, and a from future
experiments, one can extract Gin�G from this figure.
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FIG. 3. Dephasing times, tf , as extracted from the data points
in Ref. [4] for four different dots: D � 28 meV (circles, long-
dashed error bars), D � 10 meV (squares, solid error bars), D �
2.4 meV (up-triangles, dashed error bar), and D � 0.9 meV
(dot-dashed error bar); dotted line: fit to open dot experiments
as calculated in [7]. Error bars which extend up (down) beyond
the graph should be understood as going up to infinity (down
to zero); if no corresponding point is visible, the experimental
mean value itself gives tf � ` (or tf � 0). In the inset, we
fit experimental measurements for different values of G [4] with
our theory. The single fitting parameter is h̄Gin � 0.25 meV, or
tf � 16 ns.

dot values [7]. A clear enhancement of the dephasing
times compared to open dots is observed. In addition,
dephasing times strongly depend on D (as can be seen at
T � 45 mK). This is in contrast to open dot results [7].
An additional suppression of a for kBT , D, resulting
from level-spacing fluctuations [14,17], was not included
in our analysis, and therefore our results underestimate
the dephasing times for kBT , D. In addition, the result
for the D � 0.9 meV quantum dot, which is consistent
with tf � 0, should be interepreted carefully since the
result implies h̄Gin . D and the master equation is not
applicable anymore. Based on our analysis, the recent
experiment [4], measuring dephasing in closed quantum
dots is consistent with dephasing due to electron-electron
interaction alone, including the prediction of the critical
vanishing of dephasing rate. However, given the large
error bars of the current experimental data, one cannot
exclude an algebraic behavior or even a saturation of the
dephasing rates for T ! 0. Nevertheless, the behavior is
clearly different from that of open quantum dots [7] and is
D dependent.

In conclusion, we provide a theoretical approach to ex-
tract the inelastic scattering rate in closed dots based on
measurements of the weak-localization correction a. Ana-
lyzing a recent experiment by Folk et al. [4], we see a
clear enhancement of the dephasing time compared with
136801-4
open dot values. There is no inconsistency with theoreti-
cal predictions for electron-electron interaction, in particu-
lar, a vanishing dephasing rate at a critical D-dependent
temperature. We note, however, that the available experi-
mental data is limited and has considerably statistical un-
certainties. Future experiments are necessary, and we offer
Fig. 2 to extract the temperature and level-spacing depen-
dence of the inelastic scattering rate and to thoroughly test
the prediction of a diverging dephasing time.
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