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Breakdown of the Nagaoka phase in the two-dimensionalt-J model
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In the limit of weak exchangeJ at low hole concentrationd the ground state of the two-dimensionalt-J
model is believed to be ferromagnetic. We study the leading instability of this Nagaoka state, which emerges
with increasingJ. Both exact diagonalization of small clusters, and a semiclassical analytical calculation of
larger systems show that above a certain critical value of the exchange,Jcr;td2, Nagaoka’s state is unstable to
phase separation. In a finite-size system a bubble of antiferromagnetic Mott insulator appears in the ground
state above this threshold. The size of this bubble depends ond and scales as a power of the system sizeN.
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Recently, much interest was focused on the behavio
strongly correlated electron systems, which cannot be
plained by weak-coupling perturbation theory. A variety
unusual phenomena such as, e.g., high-temperature s
conductivity and quantum magnetism, is believed to requ
a nonperturbative description.1 An important paradigm for
the study of strongly interacting electrons in general, is
Hubbard model for interacting particles on a lattice. This
probably the simplest possible model that captures som
the behavior of strongly correlated electrons. It is, therefo
widely used to study various correlation driven effec
which are not described by a perturbative approach. Th
include the metal-insulator~Mott! transition, and the super
conductivity of the high-Tc compounds.

The Hubbard model was originally introduced in an
tempt to describe quantum ferromagnetism of itinerant e
trons in narrow-band metals.2 However, it is now well
known that it is also a model for quantum antiferroma
netism. The effective Hamiltonian that governs the lo
energy behavior of the Hubbard model for a nearly half-fill
band in theU→` limit is the t-J model of itinerant fermi-
ons on the lattice

Ht2J52t (
^ i j &s

ais
† aj s1c.c.1J(̂

i j &
S Si•Sj2

1

4
ninj D .

~1!

The occupation number of each siteni5ai↑
† ai↑1ai↓

† ai↓ can
be either 0~a hole! or 1 ~a spin!, since double occupancy i
forbidden by strong on-site Hubbard repulsion. The spin
eratorsSi are given in terms of the Pauli matricessab

Si5
1

2 (
ab

aia
† sabaib . ~2!

Since the spin-exchange coupling constantJ'4t2/U is posi-
tive, the on-site Hubbard interaction translates to an anti
romagnetic~AFM! superexchange, which favors an AF
correlated ground state.

Nevertheless, in one extreme case this model has a fe
magnetic~FM! ground state, known as the Nagaoka state.3 A
fully polarized state minimizes the total energy of a sing
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hole in an otherwise half-filled band, at least in the limitJ
→0. This is due to the hole kinetic energy that favors F
ordering. The nature of the ground state for finiteJ is, there-
fore, determined by the competition of this FM tenden
with the AFM exchange.

In this work, we study the ground state of the 2Dt-J
model for low concentration of holes, as a function of t
AFM interaction strengthJ. We aim to identify the leading
instability of the Nagaoka state, i.e., the state that minimi
the energy for not fully polarized states. Based on numer
evidence, we claim that the leading instability is towards
creation of an AFM bubble, while the holes are confined
the FM region. The transition between Nagaoka state
this ‘‘bubble’’ state is a first-order transition,4 including a
jump DS@1 in the total spin. We will concentrate on th
t-J model, Eq.~1!. However, our study is focused on th
small J regime, and thus our considerations apply equally
the Hubbard model.

We start by summarizing in some detail what is know
and conjectured about the nature of thet-J model ground
state. For half-filling, where each site is occupied by o
electron, no hopping is possible, and the Hamiltonian
duces to the quantum Heisenberg Hamiltonian with AF
spin exchange. Although the two-dimensional~2D! Heisen-
berg model cannot be solved analytically, there is strong
merical evidence,~obtained from exact diagonalization an
Quantum Monte Carlo simulations! that the ground state ha
long-range AFM correlations at zero temperature.5,6

The presence of holes makes the picture more com
cated. Each hole hopping creates changes in the spin
figuration, unless the spin polarization is uniform. The resu
ing excitations in the system inhibit the hopping, since t
hopping probability is reduced by a factor proportional to t
overlap between the original and final spin-wave functio
This effect results in narrowing the kinetic-energy band, th
increasing the kinetic contribution to the energy. The ba
width is maximized in the fully polarized state for which th
spin configuration is unaffected by permutations of differe
spins. Thus, while theJ term in the Hamiltonian favors an
AFM ordering, the kinetict term favors a FM state. The
competition between these terms depends on the hole de
and interaction strengthJ/t, and determines the physica
properties of thet-J model.
©2002 The American Physical Society37-1
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The question of charge-carrier dynamics on an AF
background was extensively studied using the string pict
self-consistent Born approximation, and numerical studi6

For J@t a single hole is unable to alter its AFM surroundin
and its kinetic energy comes only through coupling to
quantum fluctuations of the spin system. For modera
largeJ (J/t'5 –10) the hole develops a spin polaron arou
itself. Within this polaron, the AFM order is suppressed
hole hopping. The size of the polaron increases with decr
ing J/t. The ‘‘string’’ picture emerges when this size is muc
larger than the lattice constant. In this picture, the hole a
as a particle with mass 1/t subject to an effective potentia
resulting from the string of flipped spins created by its ho
ping. This effective potential is a linear potential with slo
J. Accordingly, the size of the polaron scales as (J/t)21/3. In
this regime the hole movement scrambles its surround
spins, thus suppressing the local AFM order parameter,
does not yet create a local magnetic moment larger than
spin 1/2 of a single hole.7,8

As soon asJ/t decreases beyond some critical value (Jc

,0.1), the nature of the ground state changes.9 It turns out
that lower energy is achieved by creating a FM polaron10

where not only the AFM ordering is destroyed, but also F
correlations and a larger magnetic moment are formed in
vicinity of the hole. The radius of the polaron in this regim
scales as (J/t)21/4. In the limit J→0, the kinetic energy tha
favors FM ordering dominates the tendency towards AF
coupling of neighboring spins represented by theJ term, and
the size of this polaron diverges. As a result, the ground s
becomes fully polarized. This statement was rigorou
proven in the the celebrated paper of Nagaoka3 for a single
hole case. It was shown that Nagaoka FM phase survives
sufficiently small density of holes, even in the thermod
namic limit.11

Thus, this apparently simple model exhibits
ferromagnet-antiferromagnet transition at zero temperat
as the interaction strengthJ increases. Very little is known
about the properties of the system in the transition reg
Even the dependences of the magnetization curve onJ and
the hole concentrationd are yet to be determined. In th
following, we try to understand some features of the tran
tion. We focus on the boundary regime of Nagaoka’s pha
i.e., the transition from full to partial polarization.

Naturally, the question of the stability of the Nagao
fully polarized state with respect to switching on the AF
exchange term, as well as finite hole densityd, attracted
much interest. Several variational wave functions were s
gested in order to yield bounds for the Nagaoka stabi
region in d-U plane ~See Ref. 12, and references therei!.
Most of these estimates were based on the belief that
transition from Nagaoka state is continuous atT50.12 In
other words, it was implicitly assumed that the leading ins
bility of Nagaoka’s state is a single spin flip~SSF!. Accord-
ing to this picture, the transition to the AFM singlet groun
state with increasingJ/t occurs gradually, through small in
crementalDS51 changes in the total spin. However, it w
suggested that for sufficiently lowd a phase-separation in
stability, rather than a SSF one, might be relevant.13,14
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Many authors have discussed the possibility of ph
separation in the Hubbard andt2J models.4,13,15–18For high
concentration of holes~low electron density!, phase separa
tion does occur forJ sufficiently large.4,16 However, the
small J/t case is still under debate. Some groups argue
the ground-state phase separates for all values ofJ/t for
sufficiently low concentration of holes.4,17 Others claim that
there exists a critical valueJps ~estimates for its value vary
betweenJps;0.4t and Jps;1.4t), such that forJ,Jps the
ground state is uniform even for vanishing hole density.18

In the following, we present evidence that the leadi
instability for low densities is indeed a phase-separated s
We, therefore, claim that phase separation does occur
small values ofJ/t, given thatd is sufficiently small. We
further show that for a finite-size sample the transition in
ground state between the Nagaoka phase and the ph
separated state is discontinuous,4 including a large change in
the total spinDS@1. Thus this transition cannot be capture
by the SSF variational studies. It is, therefore, reasonabl
assume that better bounds for Nagaoka stability might
quire considering many simultaneous, rather than sequen
spin flips.

We start by examining at the single hole case. It
straightforward to show thatJcr , the J value needed to de
stabilize Nagaoka’s state, for two spin flipsis smaller than
for one spin flip.13 This can be demonstrated by deriving a
effective Hamiltonian of a single hole and flipped spins,
the background on the FM Nagaoka state. Since the num
of flipped spins is presumably small, it is convenient to d
scribe the system in terms of the two types of ‘‘particles’’—
the hole and the flipped spins. The kinetic part of the Ham
tonian induces hopping of the hole to its nearest neighb
with an effective mass 1/(2t). The nondiagonal part of the
exchange interaction induces hopping of the flipped spin
their nearest neighbors, with an effective mass 1/J. The ratio
between the effective masses of the spin and the hole
therefore,J/2t, which is small aroundJcr . Therefore, one
can assume that the spin is static for calculating its effect
the hole energy, i.e., use Born-Oppenheimer-like adiab
approximation. The diagonal part of the exchange term c
tributes the energy2J/2 per flipped spin. In addition to thes
terms, one should take into account the constraint that e
site can be occupied by no more than one ‘‘particle’’~hole or
flipped spin!. For that purpose, one can introduce effectiv
infinitely strong, on-site repulsion between the particl
There are other terms in the effective Hamiltonian result
from nearest-neighbors interaction between the particles,
they do not contribute to the energy in the leading order
J/t. The Nagaoka state is destabilized as soon as theO(J)
magnetic energy gained by the flipped spins overcomes
kinetic-energy gain.

For a state with two spin flips, the kinetic-energy increa
depends on the distance between the spin flips. When
are far apart, the kinetic energy lost by the excluded are
about twice the value for a single flip. However, as the t
spin flips get closer, the effective excluded area for the h
decreases. When the distance is small compared to the
wavelength, the excluded area is not changed much, and
kinetic-energy increase is about the same as for one
7-2
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BREAKDOWN OF THE NAGAOKA PHASE IN THE TWO- . . . PHYSICAL REVIEW B 65 134437
Thus, there is an effective attraction between the flipp
spins, and they bind together, with total energy similar to t
of a single flip. On the other hand, the magnetic energy
simply proportional to the number of spin flips, and does
depend on the distance between the spin flips, as long as
are not nearest neighbors. Thus the magnetic energy for
flipped spins, bound or not, is twice as much as the ene
for a single flip. Therefore,Jcr , for which the magnetic en
ergy balances the kinetic-energy increase, is lower for a s
with two flipped spins. One concludes that, for a single ho
the transition between the maximum spin Nagaoka state
a lower spin state involves a spin jumpDS.1.

In order to describe the leading instability of the Nagao
ferromagnet with respect to switching on theJ term one
should, therefore, determine the number of spin flips t
minimizesJcr . We start with presenting results of exact d
agonalization for small rectangulara3b clusters. We choose
periodic boundary conditions when the large axis of the cl
ter has even number of sites (a52n), and antiperiodic
boundary conditions otherwise (a52n11). Under these
conditions theJ50 ground state is always fully polarized
For each of the following clusters we diagonalize exactly
full many-particle Hamiltonian, for different spin sectors a
various J values. We determineJcr and the value of the
ground-state spin forJ5Jcr1. It was already pointed out,19

based on exact diagonalization results, that for big eno
clusters, large number of spins may flip together. We pres
here a more systematic study of finite clusters, showin
large spin jumpDS.1. For the one hole case, the bigge
cluster studied was a 634 torus. The effective size of th
full Hilbert space can be substantially reduced by exclud
the doubly occupied states and using spin and translati
symmetry. For 634 torus, this reduces the problem to th
diagonalization of a 1 352 07831 352 078 matrix. We em-
ployed the Lanczos algorithm to carry out this diagonali
tion. The results for the different clusters are summarized
Table I. Extension of these exact diagonalization studies
larger systems or more than one hole is limited by the siz
the Hilbert space.

We did repeat the calculation for two holes on the abo
clusters. It is well known that for two holes on a torus t
ground state is a singlet even forJ50.19,20This is due to the
fact that a slowly varying, locally polarized, spin backgrou
creates the effect of a fictitious flux, which minimizes t
kinetic energy of the two holes.21 As it was done for one
hole, we chose the boundary conditions to overcome
effect. However, in all cases studied, a ground state w
small nonzero spin was never observed. We always d
with an abrupt transition to the singletS50 state,DS being

TABLE I. Exact diagonalization results for the breakdown
Nagaoka’s state for the case of one hole.DS is the jump in the
ground-state spin at the transition.

Cluster DS Jcr Cluster DS Jcr

238 3 0.0225 434 4 0.0629
2310 4 0.0134 435 6 0.0398
2312 5 0.0086 436 6 0.0269
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as large as the largest possible spin,Smax, even larger than
the jump in the spin for the one hole case. This, however
a particular feature of systems with two holes, which mig
not be relevant for the behavior of large systems.

These exact results show that the number of spins that
at the transition is significantly larger than one, and it
creases with the system size. They indicate that the bre
down of Nagaoka phase might indeed occur through
abrupt spin change. It looks interesting to understand h
DS scales with system size. Besides, it is not clear to w
extent are the results specific for a particular small numbe
holes (1 or 2), i.e., extension of the results to more hole
required. Clearly, exact diagonalization is not an adequ
tool to clarify these questions.

To get an insight into the behavior of larger systems,
use the spin-hole coherent-state path-integral formalism.
follow the derivation presented in Ref. 22. A semiclassi
approximation for the ground state is obtained through
formal largeS expansion. In the classical limit,S→`, the
spins are frozen~i.e., the spin part of the coherent-state pa
integral is time independent!. The energy is determined
solely by the interplay between hole dynamics and the c
sical AFM interaction between the spins. In essence,
limit deals with a classical spin field, interacting with th
quantum holes. Clearly this approximation cannot capt
the full complexity of the exact wave function, as it ignor
dynamical corrections to the spin background as introdu
by, e.g., the dressed holes. Thus, some of the exotic ph
suggested for thet-J model are essentially not taken int
account in this approximation. However, in some cases
instability towards these phases can be described within
semiclassical approximation. For example, the incommen
rate MAF, or spiral phase,19,20with dressed holes, superced
the Nagaoka phase for two holes. Within the semiclass
approximation, ignoring the dressing of the holes, the in
mensurate AFM background becomes degenerate with
Nagaoka phase. Thus one can expect to find signs for
emergence of complex spin structures even within this s
plified approach. The same approach was previously use
study the formation of the FM polaron. Here we use t
same technique to study the extreme lowJ caseJ5Jcr1, at
the breakdown of Nagaoka phase, where the FM region
cupies most of the system. We use a Monte-Carlo algorit
to find the spin configuration that minimizes the sum of t
energy of the holes and the magnetic energy of the~classical!
spin field.

We study different lattice sizes~up to 16316) and various
number of electrons close to half-filling (0,d,0.12). In all
cases, we find the same behavior:~a! all the spins align colin-
early ~b! we do not see any signature suggesting the em
gence of exotic spin configurations~spiral, canted, etc.! for
these small values ofJ, and most importantly~c! the uniform
Nagaoka’s state breaks down into a phase-separated s
with a hole-rich FM region and an AFM bubble with n
holes inside. The size of the bubble at the transition is la
relative to the lattice constant, giving a big jump in the sp
As an example we present in Fig. 1 results for a 16316
lattice with 25 holes. These results, for different lattice siz
and densities, suggest that Nagaoka state breaks dow
7-3
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EISENBERG, BERKOVITS, HUSE, AND ALTSHULER PHYSICAL REVIEW B65 134437
forming an AFM bubble, whose size is large compared to
lattice constant. Contradicting evidence were recently p
sented regarding the existence of phase separation for s
J.17,18We find that the above described phase-separated
seems to be stable even forJ!t, provided that the hole den
sity d is sufficiently small, in agreement with Refs. 4 and 1
The stability of the phase-separated state for largerJ, and its
relation to the above discussed phase, is beyond the sco
this study.

Motivated by these results, we turn to study the stabi
of the Nagaoka phase with respect to phase separation.
is, we compare the energy of the Nagaoka state with tha
a system with an AFM ordered domain. To first approxim
tion, the AFM domain acts as an infinite potential barri
i.e., the holes are confined to the FM region. Due to t
confinement, the kinetic energy of the holes increases w
the size of the AFM domain. On the other hand, the AF
domain contributes a magnetic term to the energy, which a
increases with its size. We estimate the magnetic energy
site in the AFM domain by the value obtained in an infin
Heisenberg system,

Emag52aJ~S1P/2!, ~3!

whereS is the area~number of sites! of the AFM domain,P
is its perimeter, anda is the energy per site of the groun
state of the 2D Heisenberg model~spin-wave theory gives
a51.1705, which is in a good agreement with the numeri
result5! a51.169. An estimate to the increase in the kine
energy of holes for a large system is obtained through
well-known Weyl formula for the density of states. The num
ber of levels up to an energyE for a free particle in a con-
tinuous 2D domain with areaA and boundary perimeterP is
given by

^N~E!&;
1

4p
~AE2PAE1K!, ~4!

where Dirichlet boundary conditions are assumed, andK is a
constant term containing information on the geometry a

FIG. 1. The spin configuration of the leading instability as o
tained from a semiclassical calculation. The hole density is 25/2
16 spins flip in a slanted square configuration. The hole den
vanishes inside the AFM bubble, while being approximately c
stant in the FM region.
13443
e
-
all

ate

.

of

y
hat
of
-
,
s
th

o
er

l

e
-

d

topology of the domain.23 The units are chosen such that\
52m51. Equivalently, for the Hubbard~or t2J) model, the
same formula holds near the bottom of the band, where
energy is in units oft and the bottom of the band is taken
the energy zero. In the followingt is taken as the unit of
energy, and the lattice constant is taken as the unit of len
The averagê r(E)& of the density of states~DOS! r(E)
[]N(E)/]E, is thus given by

^r~E!&;
A
4p

2
P

8pAE
. ~5!

In the Nagaoka FM state, the available domain for the ho
is the whole torusA5N. The DOS is, therefore, just th
familiar A/4p term and the energy is given by

ENag52pNd252pNh
2/N, ~6!

whereNh is the number of holes andN is the total number of
sites. As soon as the AFM bubble is formed, the energy
creases due to two reasons. First of all, the available are
reduced toA5N2S, and, therefore, the denominator in E
~6! decreases. Due to this fact, the total energy increase
the factorN/(N2S). Another contribution comes from th
boundary term that reduces the DOS even further. Bearin
mind to compare the energy increase with the magnetic
ergy that isO(S), we realize that the increase due to t
boundary termO(P) divided by S becomes singular
(;S 21/2) for small S. We will see below that the transition
occurs forS values much smaller than the system size. A
result, boundary terms are important even for largeN. The
topological K term also changes due to the AFM barrie
However, it can be checked explicitly that it does not affe
the N→` asymptotic behavior.

Using the above averaged DOS, one can calculate
total energy of holes as a function of their density. Addi
the magnetic energy, the total energy relative to the Naga
energy is given by

E~d,s!52pd2NS s

12s
1

2p

3ApdN~12s!3/2D
2aJNS s1

p

2AN
D , ~7!

where we introduced the normalized quantities

p[P/AN, s[S/N. ~8!

It follows from the dimensional analysis thatp5CAs, where
C is a dimensionless constant depending on the shape o
bubble. Although we deal with a lattice problem, in the lim
we are considering of low doping and large bubbles,
perimeter term from the hole kinetic energy dominates. Si
the dispersion relation for low-energy holes is asymptotica
isotropic, this produces an isotropic perimeter energy so
lowest energy bubbles are circular (C52Ap). It is straight-
forward to see that given the grand canonical potentialG
5E(d,s)2Nmd with a fixed chemical potentialm, the sys-
tem goes through a first-order phase transition. This tra

-
6.
ty
-

7-4
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BREAKDOWN OF THE NAGAOKA PHASE IN THE TWO- . . . PHYSICAL REVIEW B 65 134437
tion occurs atJcr5m2/(8pa), where the density jumps from
d25m/(4p) at J5Jcr2 to d150 at J5Jcr1. In the same
time s jumps froms50 ~Nagaoka phase! below the transi-
tion, to s51 ~antiferromagnet! above the transition. If the
density is instead held between these two values, the gro
state, ignoring surface terms, is a phase-separated s
which is a mixture of the two phases. In the following w
study the formation of the AFM bubble in a finite system
given the surface terms. The energy~7! as a function ofs is
presented in Fig. 2 for various values ofJ. At the origin,
E(0)50, and the energy increases withs. For sufficiently
largeJ, the function has a maximum at which the energy
positive and a~local! minimum ats5s* @see Fig. 2 curve
~b!#. When J increases beyond a critical valueJ.Jcr , the
value of the energy at this minimum becomes negative,
local minimum ats* becomes the global minimum of th
function. The function crosses thex axis ats5s0,s* @see
Fig. 2 curve~d!#. For s.s* the function again increases
Therefore, as long asJ,Jcr , the global energy minimum is
obtained ats50, corresponding to Nagaoka FM state,
though a metastable state with an AFM bubble does exis
a range ofJ near, but belowJcr . As J increases beyondJcr ,
the global minimum shifts tos* . It is convenient to intro-
duce the variablej

j 5
J2J0

cr

J0
cr

, J52pd2/a~11 j ![J0
cr~11 j !. ~9!

J0
cr is the value ofJcr for an infinite size system. Thus,j

measures the relative distance ofJ from the value ofJcr
obtained ignoring boundary terms. In terms of this variab
one can express the largeN asymptotics ofs0 ~the value ofs
where the energy vanishes! and s* , which minimizes the
energy.

s05C2~A/ j 21!2/4N; A54/~3Apd!21 ~10!

FIG. 2. An illustration of the total energy~7! for different values
of j. ~a! No metastable state.~b! A metastable state appears.~c! The
transition point.~d! J.Jcr .
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1

A11 j
. ~11!

Note thatA depends only on the hole densityd. Thus, for j
.0, the minimal size of the droplet needed to destabil
Nagaoka’s state remains finite in theN→` limit @S0[s0N
5O(1)#, while the global minimum is obtained when th
droplet is of macroscopic size@S* [s* N5O(N)#. Compar-
ing these two expressions, one immediately sees that
transition occurs forj ;O(N21/3).

In this regimes0 and s* are connected withj via the
equations

j 52s* 1
CA

4ANs*
, ~12!

j 5s01
CA

2ANs0

. ~13!

The last equation has a solution provided thatj . j cr
53(C2A2/16N)1/3. The transition pointJcr is, therefore,

Jcr5
2pd2

a
$113@~CA!2/16N#1/3%. ~14!

Beyond the transition pointJ.Jcr , and for somes the en-
ergy of the bubble is negative and, therefore, the FM stat
unstable. At the transition point, the area of the optimal AF
bubble is

S05Ns05Ns* 5~CAN/4!2/3. ~15!

For j , j cr Eq. ~13! has no solution and the energy is min
mized by Nagaoka state. However, the energy function d
have a local minimum ats* for j . j ms5221/3j cr , and thus a
large metastable bubble can be created. The size of the m
stable bubble atj 5 j ms1 is

S* 5s* N5~CAN/16!2/3. ~16!

In fact, it can be shown that theN2/3 power law follows
from a very general argument. Whenever phase separa
occurs between two phases, with densitiesd1 and d2, the
fraction of the first phase in the phase-separated ground
of an infinite system at a fixed densityd1,d,d2 is given by
(d22d)/(d22d1). Thus, for densities very close tod2 the
size of the bubble of the first phase is arbitrarily small. Ho
ever, the surface energy term raises the energy of the ph
separated state as compared to the uniform state, and
finite-size corrections arise. The energy cost to creat
boundary between the two phases, is proportional to~in d
dimensions! V(d21)/d, whereV is the size of the bubble. This
energy makes it favorable to retain the uniform phase eve
densities slightly smaller thand2. The formation of a bubble
becomes energetically favorable when the density is shi
away from the~infinite system! transition point, such that the
difference in the volume energy of the uniform state as co
pared to the phase-separated state overcomes the su
term. In the generic case, this difference is proportional
7-5
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V2/N whereN is the system size, andV is the size of the
optimal bubble. Comparing the two energies, one obse
that at the transitionV;Nd/(d11).

We performed a numerical study to validate the abo
calculations. The single-particle spectrum of a tight-bind
square lattice model with periodic boundary conditions a
an excluded domain, was calculated for different sizes of
excluded domain. We then calculated the ground-state
netic energy~which is the sum of the lowestm eigenvalues,
wherem is the number of holes!, and compared the increas
of kinetic energy as a result of the excluded bubble with
gain in magnetic energy. For each size of excluded doma
minimal value ofJ is needed to balance the increase of
netic energy, thus stabilizing the AFM bubble.Jcr is deter-
mined as the minimum of theseJ values, i.e., the lowes
value of J that allows for a stable bubble. The size of t
bubble at this minimum isS0. The area of the stable bubb
at J5Jcr1 is presented in Fig. 3 as a function ofd andN. It
turns out that the leading asymptotic dominates only fo
very big system, beyond numerical capabilities. We, the
fore, calculated the subleading correctionsO(N22/3) and
O(N21) and compared the numerical results with th
asymptotic expansion. The agreement with the analytica
sult is quite good for sufficiently large lattices, and it see
that the results converge to the asymptotic estimate as
system size increases, indicating that corrections due to
viations from the free particle band shape are not impor
for d<0.05.

The picture emerging from these calculation is as follo
~see also Fig. 4!. At J5Jcr @Eq. ~14!# the Nagaoka state
breaks down and one large AFM bubble with the area
order of O(N2/3) is formed @Eq. ~15!#. As the size of the
bubble scales only sublinearily with system size, the mag
tization per site is continuous in the thermodynamic limit.
the vicinity of the transition point, only these large bubbl
are stable, and, therefore, a large fluctuation is neede
destroy the Nagaoka phase. It is, therefore, a metast
phase. For largerJ, s0, the critical size for a stable bubble
decreases, and forj ;O(1) ~i.e., J2Jcr;Jcr) it becomes fi-
nite and system-size independent. This behavior is typica
a first-order phase transition, where a domain of a new ph
has to be large enough to survive. However, the jump in

FIG. 3. The area of the AFM bubble at the transition pointscr

normalized by system size, as a function ofN for variousN values.
The solid lines are the asymptotic expansion up to orderN21 for the
same five densities~top to bottom!.
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magnetization is not extensive.
Why does not the system create many more bubbles, o

the first bubble is formed, thus reducing the magnetizat
even further? The reason is, as can be shown in Eq.~7!, that
the kinetic energy is not a linear function ofs. Therefore, the
energy cost to create two bubbles is more than twice the
to create one. On the other hand, the magnetic energy ga
linear in s, and, therefore, it would just double by the cr
ation of the second bubble.

There is an ongoing discussion in the literature regard
the existence of a striped ground state in the Hubbard
t-J models. Experimentally, there is evidence for stri
modulations in doped cuprates,24 which are generally be-
lieved to be described by thet-J model. Some authors foun
that thet-J model ground state is indeed striped for a wi
range of doping,25 while others claim that uniform or phase
separated states have lower energy.26 According to the latter
view, the origin of the experimental observation is attribut
to the competition between the local tendency for ph
separation and the long-range Coulomb interaction, whic
missing in thet-J model.27

In this study, we compared the energy of a striped st
with the the energy of a phase-separated state with an A
bubble. Within our approach, the kinetic energy increase
the striped phase due to the higher surface energy, with n
ing else to compensate for this increase. Accordingly,
striped state energy is higher, suggesting that the long-ra
Coulomb repulsion is needed in order to create a stri
ground state forJ/t!1. Our approach cannot rule out th
possibility of a striped ground state of thet-J model atJ
;t.

In conclusion, we presented analytical arguments, ex
diagonalization results, and semiclassical calculations of
2D t-J model, which suggest that at small hole concentrat
d and rather weak AFM couplingJ the Nagaoka ferromag
netic state becomes unstable towards the creation of an A
bubble. In this phase-separated state, the holes are con
to the FM regime. At the transition only a single larg
O(N2/3) bubble is~meta!stable. Thus, the magnetization

FIG. 4. Schematic phase diagram in the vicinity of the bre
down of Nagaoka phase. Region I, Nagaoka phase is stable. Re
II, bubbles bigger than the critical value are metastable. Region
bubbles bigger than the critical value are stable.
7-6
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continuous at the transition in the thermodynamic lim
However, the jump in magnetization per unit area in a sys
with finite number of sitesN, scales asN21/3. This depen-
dence of the critical bubble size, and thus of the magnet
tion, on the size of the system is a typical finite-size effec
a phase-separated ground state.
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