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Breakdown of the Nagaoka phase in the two-dimensionalJ model
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In the limit of weak exchangd at low hole concentratiod the ground state of the two-dimensiorial
model is believed to be ferromagnetic. We study the leading instability of this Nagaoka state, which emerges
with increasingJ. Both exact diagonalization of small clusters, and a semiclassical analytical calculation of
larger systems show that above a certain critical value of the exchange 5%, Nagaoka’s state is unstable to
phase separation. In a finite-size system a bubble of antiferromagnetic Mott insulator appears in the ground
state above this threshold. The size of this bubble dependsand scales as a power of the system $ize
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Recently, much interest was focused on the behavior ofiole in an otherwise half-filled band, at least in the lidhit
strongly correlated electron systems, which cannot be ex—0. This is due to the hole kinetic energy that favors FM
plained by weak-coupling perturbation theory. A variety of ordering. The nature of the ground state for finites, there-
unusual phenomena such as, e.g., high-temperature supé&pre, determined by the competition of this FM tendency
conductivity and quantum magnetism, is believed to requiravith the AFM exchange.

a nonperturbative descriptidnAn important paradigm for In this work, we study the ground state of the 2£J

the study of strongly interacting electrons in general, is thenodel for low concentration of holes, as a function of the
Hubbard model for interacting particles on a lattice. This isAFM interaction strengthl. We aim to identify the leading
probably the simplest possible model that captures some dpstability of the Nagaoka state, i.e., the state that minimizes
the behavior of strongly correlated electrons. It is, thereforelN€ €nergy for not fully polarized states. Based on numerical

widely used to study various correlation driven effects evidence, we claim that the leading instability is towards the
which are not described by a perturbative approach. Thest

eation of an AFM bubble_:,_ while the holes are confined to
include the metal-insulatoiMott) transition, and the super- e FM region. The transition between Nagaoka state and
conductivity of the hight. compounds.

this “bubble” state is a first-order transitichjncluding a
The Hubberd model was orgnaly inoduced i an 7% S35 e Lot spin e il concentate on e
tempt to describe quantum ferromagnetls_m _of itinerant elecgm a1 3 regime, and thus our considerations apply equally to

trons in na(royv-band metafs However, it is now well  the Hubbard model.
known that it is also a model for quantum antiferromag- \we start by summarizing in some detail what is known
netism. The effective Hamiltonian that governs the low-gng conjectured about the nature of thd model ground
energy behavior of the Hubbard model for a nearly half-ﬁHEdState_ For ha|f_f||||ng’ where each site is Occupied by one
band in theU —co limit is the t-J model of itinerant fermi-  electron, no hopping is possible, and the Hamiltonian re-
ons on the lattice duces to the quantum Heisenberg Hamiltonian with AFM
L spin exchange. Although the two-dimensiofaD) Heisen-
=3 + berg model cannot be solved analytically, there is strong nu-
H = _t<%g aigajg+c.c.+J<i2j> (S'SJ_ Znini)' merical evidence(obtained from exact diagonalization and
(1) Quantum Monte Carlo simulationthat the ground state has
long-range AFM correlations at zero temperatife.
The occupation number of each site=a/,a;;+a] a;, can The presence of holes makes the picture more compli-
be either O(a holg or 1 (a spin, since double occupancy is cated. Each hole hopping creates changes in the spin con-
forbidden by strong on-site Hubbard repulsion. The spin opfiguration, unless the spin polarization is uniform. The result-
eratorsS are given in terms of the Pauli matricess ing excitations in the system inhibit the hopping, since the
hopping probability is reduced by a factor proportional to the
1 S af overlap between the original and final spin-wave functions.
S=3 <1 AiaTapdip: (20 This effect results in narrowing the kinetic-energy band, thus
increasing the kinetic contribution to the energy. The band-
Since the spin-exchange coupling constamtt?/U is posi-  width is maximized in the fully polarized state for which the
tive, the on-site Hubbard interaction translates to an antiferspin configuration is unaffected by permutations of different
romagnetic(AFM) superexchange, which favors an AFM spins. Thus, while thd term in the Hamiltonian favors an
correlated ground state. AFM ordering, the kinetict term favors a FM state. The
Nevertheless, in one extreme case this model has a ferr@ompetition between these terms depends on the hole density
magnetic(FM) ground state, known as the Nagaoka stae. and interaction strengtd/t, and determines the physical
fully polarized state minimizes the total energy of a singleproperties of the-J model.
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The question of charge-carrier dynamics on an AFM Many authors have discussed the possibility of phase
background was extensively studied using the string pictureseparation in the Hubbard anet J models**>5~18For high
self-consistent Born approximation, and numerical stulies.concentration of hole§ow electron density phase separa-
ForJ>t a single hole is unable to alter its AFM surrounding, tion does occur forJ sufficiently large*'® However, the
and its kinetic energy comes only through coupling to thesmall J/t case is still under debate. Some groups argue that
quantum fluctuations of the spin system. For moderatelyhe ground-state phase separates for all valued/offor
largeJ (J/t=5-10) the hole develops a spin polaron aroundsufficiently low concentration of holés'’ Others claim that
itself. Within this polaron, the AFM order is suppressed bythere exists a critical valuéps (estimates for its value vary
hole hopping. The size of the polaron increases with decreagetweendp~0.4t and J,s~1.4), such that forJ<J,s the
ing J/t. The “string” picture emerges when this size is much ground state is uniform even for vanishing hole denSity.
larger than the lattice constant. In this picture, the hole acts In the following, we present evidence that the leading

as a particle with mass tlsubject to an effective potential instability for low densities is indeed a phase-separated state.
We, therefore, claim that phase separation does occur for

resulting from the string of flipped spins created by its hop- ) i -
ping. This effective potential is a linear potential with slope small values otJ/t, given tha.ta Is sufficiently sm_a_ll. We
3. Accordingly, the size of the polaron scales ag)~ 3. In further show that for a finite-size sample the transition in the
this regime the hole movement scrambles its surroundin round state between th.e N"’?gao""?‘ phase and the phase-
; . eparated state is discontinudiagcluding a large change in
spins, thus suppressing the local AFM order parameter, bl{ e total spinAS>1. Thus this transition cannot be captured
does not yet create a Io%al magnetic moment larger than “\?y the SSF variational studies. It is, therefore, reasonable to
spin 1/2 of a single holé! o assume that better bounds for Nagaoka stability might re-
As soon asl/t decreases beyond some critical valdg ( guire considering many simultaneous, rather than sequential,
<0.1), the nature of the ground state charyéisturns out spin flips.
that lower energy is achieved by creating a FM poldfdn,  \we start by examining at the single hole case. It is
where not only the AFM ordering is destroyed, but also FMstraightforward to show that,,, the J value needed to de-
correlations and a larger magnetic moment are formed in thetabilize Nagaoka’s state, for two spin flifs smallerthan
vicinity of the hole. The radius of the polaron in this regime for one spin flip*® This can be demonstrated by deriving an
scales asJ/t) Y4 In the limit J— 0, the kinetic energy that effective Hamiltonian of a single hole and flipped spins, in
favors FM ordering dominates the tendency towards AFMthe background on the FM Nagaoka state. Since the number
coupling of neighboring spins represented by diterm, and  of flipped spins is presumably small, it is convenient to de-
the size of this polaron diverges. As a result, the ground statscribe the system in terms of the two types of “particles”—
becomes fully polarized. This statement was rigorouslythe hole and the flipped spins. The kinetic part of the Hamil-
proven in the the celebrated paper of Nagddka a single  tonian induces hopping of the hole to its nearest neighbors,
hole case. It was shown that Nagaoka FM phase survives favith an effective mass 1/t2. The nondiagonal part of the
sufficiently small density of holes, even in the thermody-exchange interaction induces hopping of the flipped spins to
namic limit* their nearest neighbors, with an effective mask The ratio
Thus, this apparently simple model exhibits abetween the effective masses of the spin and the hole is,
ferromagnet-antiferromagnet transition at zero temperatureherefore,J/2t, which is small around.,. Therefore, one
as the interaction strengthincreases. Very little is known can assume that the spin is static for calculating its effect on
about the properties of the system in the transition regionthe hole energy, i.e., use Born-Oppenheimer-like adiabatic
Even the dependences of the magnetization curvé and  approximation. The diagonal part of the exchange term con-
the hole concentratiod are yet to be determined. In the tributes the energy- J/2 per flipped spin. In addition to these
following, we try to understand some features of the transiterms, one should take into account the constraint that each
tion. We focus on the boundary regime of Nagaoka’'s phasesite can be occupied by no more than one “partidlietie or
i.e., the transition from full to partial polarization. flipped spin. For that purpose, one can introduce effective,
Naturally, the question of the stability of the Nagaokainfinitely strong, on-site repulsion between the particles.
fully polarized state with respect to switching on the AFM There are other terms in the effective Hamiltonian resulting
exchange term, as well as finite hole densfty attracted from nearest-neighbors interaction between the particles, but
much interest. Several variational wave functions were sugthey do not contribute to the energy in the leading order in
gested in order to yield bounds for the Nagaoka stabilityJ/t. The Nagaoka state is destabilized as soon aOihB
region in 5-U plane (See Ref. 12, and references theyein magnetic energy gained by the flipped spins overcomes this
Most of these estimates were based on the belief that thkinetic-energy gain.
transition from Nagaoka state is continuousTat0.1? In For a state with two spin flips, the kinetic-energy increase
other words, it was implicitly assumed that the leading insta-depends on the distance between the spin flips. When they
bility of Nagaoka’s state is a single spin fliSH. Accord-  are far apart, the kinetic energy lost by the excluded area is
ing to this picture, the transition to the AFM singlet ground about twice the value for a single flip. However, as the two
state with increasing/t occurs gradually, through small in- spin flips get closer, the effective excluded area for the hole
crementalAS=1 changes in the total spin. However, it was decreases. When the distance is small compared to the hole
suggested that for sufficiently loW a phase-separation in- wavelength, the excluded area is not changed much, and the
stability, rather than a SSF one, might be relevant. kinetic-energy increase is about the same as for one flip.
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TABLE |. Exact diagonalization results for the breakdown on a5 |arge as the largest possible s8R, even larger than
Nagaoka's state for the case of one haks is the jump in the  the jump in the spin for the one hole case. This, however, is
ground-state spin at the transition. a particular feature of systems with two holes, which might
not be relevant for the behavior of large systems.

Cluster AS b Cluster  AS b These exact results show that the number of spins that flip
2X8 3 0.0225 KA 4 0.0629 at the transition is significantly larger than one, and it in-

2% 10 4 0.0134 X5 6 0.0398 creases with the system size. They indicate that the break-
2% 12 5 0.0086 &6 6 0.0269 down of Nagaoka phase might indeed occur through an

abrupt spin change. It looks interesting to understand how
AS scales with system size. Besides, it is not clear to what
Thus, there is an effective attraction between the flippedxtent are the results specific for a particular small number of
spins, and they bind together, with total energy similar to thaholes (1 or 2), i.e., extension of the results to more holes is
of a single flip. On the other hand, the magnetic energy isequired. Clearly, exact diagonalization is not an adequate
simply proportional to the number of spin flips, and does notool to clarify these questions.

depend on the distance between the spin flips, as long as they To get an insight into the behavior of larger systems, we
are not nearest neighbors. Thus the magnetic energy for twase the spin-hole coherent-state path-integral formalism. We
flipped spins, bound or not, is twice as much as the energfollow the derivation presented in Ref. 22. A semiclassical
for a single flip. Therefore).,, for which the magnetic en- approximation for the ground state is obtained through the
ergy balances the kinetic-energy increase, is lower for a staermal largeS expansion. In the classical limi§— o, the
with two flipped spins. One concludes that, for a single holespins are frozefi.e., the spin part of the coherent-state path
the transition between the maximum spin Nagaoka state andtegral is time independent The energy is determined

a lower spin state involves a spin junys>1. solely by the interplay between hole dynamics and the clas-

In order to describe the leading instability of the Nagaokasical AFM interaction between the spins. In essence, this
ferromagnet with respect to switching on tleterm one limit deals with a classical spin field, interacting with the
should, therefore, determine the number of spin flips thatuantum holes. Clearly this approximation cannot capture
minimizesJ,. We start with presenting results of exact di- the full complexity of the exact wave function, as it ignores
agonalization for small rectangulai< b clusters. We choose dynamical corrections to the spin background as introduced
periodic boundary conditions when the large axis of the clusby, e.g., the dressed holes. Thus, some of the exotic phases
ter has even number of sitema=<2n), and antiperiodic suggested for thé-J model are essentially not taken into
boundary conditions otherwisea€2n+1). Under these account in this approximation. However, in some cases the
conditions theJ=0 ground state is always fully polarized. instability towards these phases can be described within the
For each of the following clusters we diagonalize exactly thesemiclassical approximation. For example, the incommensu-
full many-particle Hamiltonian, for different spin sectors and rate MAF, or spiral phas¥;?°with dressed holes, supercedes
various J values. We determind,, and the value of the the Nagaoka phase for two holes. Within the semiclassical
ground-state spin fod=J,+. It was already pointed odf,  approximation, ignoring the dressing of the holes, the inco-
based on exact diagonalization results, that for big enougmensurate AFM background becomes degenerate with the
clusters, large number of spins may flip together. We preserifagaoka phase. Thus one can expect to find signs for the
here a more systematic study of finite clusters, showing &mergence of complex spin structures even within this sim-
large spin jumpAS>1. For the one hole case, the biggestplified approach. The same approach was previously used to
cluster studied was a>64 torus. The effective size of the study the formation of the FM polaron. Here we use the
full Hilbert space can be substantially reduced by excludingsame technique to study the extreme ldwaseJ=J+, at
the doubly occupied states and using spin and translationihe breakdown of Nagaoka phase, where the FM region oc-
symmetry. For &4 torus, this reduces the problem to the cupies most of the system. We use a Monte-Carlo algorithm
diagonalization of a 13520781 352078 matrix. We em- to find the spin configuration that minimizes the sum of the
ployed the Lanczos algorithm to carry out this diagonaliza-€nergy of the holes and the magnetic energy of thessical
tion. The results for the different clusters are summarized irspin field.

Table |I. Extension of these exact diagonalization studies to We study different lattice sizgsip to 16< 16) and various
larger systems or more than one hole is limited by the size ofiumber of electrons close to half-filling €06<0.12). In all
the Hilbert space. cases, we find the same behavi@y:all the spins align colin-

We did repeat the calculation for two holes on the aboveearly (b) we do not see any signature suggesting the emer-
clusters. It is well known that for two holes on a torus thegence of exotic spin configuratiorispiral, canted, et for
ground state is a singlet even f# 0.2 This is due to the  these small values & and most importantlyc) the uniform
fact that a slowly varying, locally polarized, spin backgroundNagaoka’s state breaks down into a phase-separated state,
creates the effect of a fictitious flux, which minimizes thewith a hole-rich FM region and an AFM bubble with no
kinetic energy of the two holés.As it was done for one holes inside. The size of the bubble at the transition is large
hole, we chose the boundary conditions to overcome thigelative to the lattice constant, giving a big jump in the spin.
effect. However, in all cases studied, a ground state withAs an example we present in Fig. 1 results for ax1®&
small nonzero spin was never observed. We always dealattice with 25 holes. These results, for different lattice sizes
with an abrupt transition to the singl8t=0 state,AS being  and densities, suggest that Nagaoka state breaks down by
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A AANDNNANANNNDNNNNANNA topology of the domaif® The units are chosen such that
T S N S S =2m=1. Equivalently, for the Hubbarr t—J) model, the
N N A N N Y A same formula holds near the bottom of the band, where the
NN B N N energy is in units of and the bottom of the band is taken as
NN NI P LA the energy zero. In the following is taken as the unit of
AN AL ‘P AP 1} P energy, and the lattice constant is taken as the unit of length.
pa s s zﬁ I lﬁ b s n g The averagg/p(E)) of the density of state$DOS) p(E)
pa s % % paaanan =9N(E)/JE, is thus given by
PRIELLLRRRREL LS () A P -
PRIELLLRRRELLE LR PE)~ -~ =
PRIELLLRRRELL LR 8 E

L A A A S S A SR A S S A In the Nagaoka FM state, the available domain for the holes

) ] . o N is the whole torusA=N. The DOS is, therefore, just the
FIG. 1. The spin configuration of the leading instability as ob- 5 miliar Al4m term and the energy is given by
tained from a semiclassical calculation. The hole density is 25/256.

16 spins flip in a slanted square configuration. The hole density ENagzzﬂ-N 52=277Nﬁ/N, (6)
vanishes inside the AFM bubble, while being approximately con- . .
stant in the FM region. whereNy, is the number of holes and is the total number of

sites. As soon as the AFM bubble is formed, the energy in-

forming an AFM bubble, whose size is large compared to thé&reases due to two reasons. First of all, the available area is

lattice constant. Contradicting evidence were recently preteduced taA=N—S, and, therefore, the denominator in Eq.

sented regarding the existence of phase separation for sméfi) decreases. Due to this fact, the total energy increases by

J.118We find that the above described phase-separated stdfee factorN/(N—S). Another contribution comes from the

seems to be stable even fbt, provided that the hole den- boundary term that reduces the DOS even further. Bearing in

sity & is sufficiently small, in agreement with Refs. 4 and 17.mind to compare the energy increase with the magnetic en-

The stability of the phase-separated state for lajgand its ~ €rgy that isO(S), we realize that the increase due to the

relation to the above discussed phase, is beyond the scopelgundary termO(P) divided by S becomes singular

this study. (~S Y2 for small S. We will see below that the transition
Motivated by these results, we turn to study the stabilityoccurs forS values much smaller than the system size. As a

of the Nagaoka phase with respect to phase separation. Thgsult, boundary terms are important even for laNyeThe

is, we compare the energy of the Nagaoka state with that dppological £ term also changes due to the AFM barrier.

a system with an AFM ordered domain. To first approxima-However, it can be checked explicitly that it does not affect

tion, the AFM domain acts as an infinite potential barrier,the N—c asymptotic behavior.

i.e., the holes are confined to the FM region. Due to this Using the above averaged DOS, one can calculate the

confinement, the kinetic energy of the holes increases wititotal energy of holes as a function of their density. Adding

the size of the AFM domain. On the other hand, the AFMthe magnetic energy, the total energy relative to the Nagaoka

domain contributes a magnetic term to the energy, which alsenergy is given by

increases with its size. We estimate the magnetic energy per

site in the AFM domain by the value obtained in an infinite

— 2
Heisenberg system, E(d,s)=2mé6°N

S N 2p )
1-s 3 x6N(1-5)%?
Emag= — ad(S+P12), &) ( p )

—aJN| s+ ——]|, 7

24N

where we introduced the normalized quantities

whereS is the aregnumber of sitesof the AFM domain,P

is its perimeter, andy is the energy per site of the ground
state of the 2D Heisenberg modglpin-wave theory gives
a=1.1705, which is in a good agreement with the numerical p=P/IJN, s=SIN. (8)
resulf) a«=1.169. An estimate to the increase in the kinetic

energy of holes for a large system is obtained through thét follows from the dimensional analysis that= C /s, where
well-known Weyl formula for the density of states. The num- C is a dimensionless constant depending on the shape of the
ber of levels up to an enerdy for a free particle in a con- bubble. Although we deal with a lattice problem, in the limit

tinuous 2D domain with ared and boundary perimeté?is ~ we are considering of low doping and large bubbles, the
given by perimeter term from the hole kinetic energy dominates. Since

the dispersion relation for low-energy holes is asymptotically

1 isotropic, this produces an isotropic perimeter energy so the
(N(E))~ E(AE_P\/E‘F K), (4 lowest energy bubbles are circula® € 2+/7). It is straight-
forward to see that given the grand canonical poter@al
where Dirichlet boundary conditions are assumed, dnsla  =E(45,s) —Nud with a fixed chemical potentigk, the sys-

constant term containing information on the geometry andem goes through a first-order phase transition. This transi-
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FIG. 2. Anillustration of the total energy) for different values
of j. (@) No metastable statéh) A metastable state appeafs). The
transition point.(d) J>J,,.

tion occurs atl,= u?/(8wa), where the density jumps from

S_=ul(4w) atJ=J,— to 6,=0 atJ=J,+. In the same
time s jumps froms=0 (Nagaoka phagebelow the transi-
tion, to s=1 (antiferromagnetabove the transition. If the
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1
Vit+j'

Note thatA depends only on the hole densify Thus, forj
>0, the minimal size of the droplet needed to destabilize
Nagaoka’s state remains finite in th\e—oo limit [ Sy=syN
=0(1)], while the global minimum is obtained when the
droplet is of macroscopic sie&s, =s, N=0O(N)]. Compar-
ing these two expressions, one immediately sees that the
transition occurs foj ~O(N~%3),

In this regimes, and s, are connected with via the
equations

s, =1—

(11)

s 4 A (12)
=2s ,

J * T 4 Ns,

' + cA (13
=5 :

1=5%0 2 NS

The last equation has a solution provided thatj,,
=3(C2A?/16N)*3. The transition pointl,, is, therefore,
2m8°
Jor=

a

{1+3[(CA)2/16N]Y3}. (14

density is instead held between these two values, the grourBeyond the transition poini>J.,, and for somes the en-
state, ignoring surface terms, is a phase-separated stategy of the bubble is negative and, therefore, the FM state is
which is a mixture of the two phases. In the following we unstable. At the transition point, the area of the optimal AFM
study the formation of the AFM bubble in a finite system, bubble is

given the surface terms. The ener@y as a function ok is
presented in Fig. 2 for various values &f At the origin,
E(0)=0, and the energy increases wihFor sufficiently

large J, the function has a maximum at which the energy is

positive and &local) minimum ats=s, [see Fig. 2 curve
(b)]. WhenJ increases beyond a critical valde>J.,, the

value of the energy at this minimum becomes negative, th
local minimum ats, becomes the global minimum of the

function. The function crosses theaxis ats=s;<s, [see

Fig. 2 curve(d)]. For s>s, the function again increases.
Therefore, as long a$<J.,, the global energy minimum is

So=Nsy=Ns, =(CAN/4)?3, (15)

For j<j¢ EQ. (13) has no solution and the energy is mini-
mized by Nagaoka state. However, the energy function does
have a local minimum &, for j>j.—=2""3.,, and thus a
large metastable bubble can be created. The size of the meta-
Stable bubble af=] o+ is

S, =s,N=(CAN/16)%2, (16)

In fact, it can be shown that th¥?® power law follows

obtained ats=0, corresponding to Nagaoka FM state, al-from a very general argument. Whenever phase separation
thOUgh a metastable state with an AFM bubble does exist f%ccurs between two phases, with densitjﬁsand Oy, the

a range of] near, but below).,. As J increases beyond,,,
the global minimum shifts t®, . It is convenient to intro-
duce the variabl¢

j:J—Jg
3G

. J=278a(1+])=I5(1+]). 9)

¢ is the value ofJ,, for an infinite size system. Thus,
measures the relative distance dffrom the value ofJ.,

fraction of the first phase in the phase-separated ground state
of an infinite system at a fixed densify< <6, is given by

(6,— 6)I(8,— 61). Thus, for densities very close ), the

size of the bubble of the first phase is arbitrarily small. How-
ever, the surface energy term raises the energy of the phase-
separated state as compared to the uniform state, and thus
finite-size corrections arise. The energy cost to create a
boundary between the two phases, is proportionalirtod
dimensions V(4= 1d whereV is the size of the bubble. This
energy makes it favorable to retain the uniform phase even at

obtained ignoring boundary terms. In terms of this variable gengities slightly smaller thaé,. The formation of a bubble

one can express the larffeasymptotics ok, (the value ofs
where the energy vanisheand s, , which minimizes the
energy.

A=4/(3\7d)—1

So=C?(Alj—1)?/4N; (10

becomes energetically favorable when the density is shifted
away from the(infinite system transition point, such that the
difference in the volume energy of the uniform state as com-
pared to the phase-separated state overcomes the surface
term. In the generic case, this difference is proportional to
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25 @ ©5=0.01 1
0 5=0.02
©5=0.03
A 3=0.04
«45=0.05

Nagaoka phase is metastable

Jcr=‘Jcr0+o(N_1/3)

e

N
v 5 Jms_
10 N 10
Nagaoka state — no bubbles

FIG. 3. The area of the AFM bubble at the transition pagt
normalized by system size, as a functior\bfor variousN values. & =onsta! J
The solid lines are the asymptotic expansion up to oktie for the
same five densitiegop to botton). FIG. 4. Schematic phase diagram in the vicinity of the break-

) ) ) ) ) down of Nagaoka phase. Region I, Nagaoka phase is stable. Region
V?IN whereN is the system size, and is the size of the | pubbles bigger than the critical value are metastable. Region I,
optimal bubble. Comparing the two energies, one observesubbles bigger than the critical value are stable.
that at the transitioy ~N¥(@*1),

We performed a numerical study to validate the abovemagnetization is not extensive.
calculations. The single-particle spectrum of a tight-binding Why does not the system create many more bubbles, once
square lattice model with periodic boundary conditions andhe first bubble is formed, thus reducing the magnetization
an excluded domain, was calculated for different sizes of theven further? The reason is, as can be shown inBgthat
excluded domain. We then calculated the ground-state kithe kinetic energy is not a linear function ®fTherefore, the
netic energy(which is the sum of the lowesh eigenvalues, energy cost to create two bubbles is more than twice the cost
wherem is the number of holgsand compared the increase to create one. On the other hand, the magnetic energy gain, is
of kinetic energy as a result of the excluded bubble with thdinear in s, and, therefore, it would just double by the cre-
gain in magnetic energy. For each size of excluded domain, ation of the second bubble.
minimal value ofJ is needed to balance the increase of ki- There is an ongoing discussion in the literature regarding
netic energy, thus stabilizing the AFM bubbl&, is deter- the existence of a striped ground state in the Hubbard and
mined as the minimum of thesg values, i.e., the lowest t-J models. Experimentally, there is evidence for stripe
value of J that allows for a stable bubble. The size of the modulations in doped cuprat&swhich are generally be-
bubble at this minimum i§,. The area of the stable bubble lieved to be described by theJ model. Some authors found
atJ=J.+ is presented in Fig. 3 as a function &andN. It  that thet-J model ground state is indeed striped for a wide
turns out that the leading asymptotic dominates only for aange of doping® while others claim that uniform or phase-
very big system, beyond numerical capabilities. We, thereseparated states have lower enéfgiccording to the latter
fore, calculated the subleading correctio®§N~23) and  view, the origin of the experimental observation is attributed
O(N™ 1) and compared the numerical results with thisto the competition between the local tendency for phase
asymptotic expansion. The agreement with the analytical reseparation and the long-range Coulomb interaction, which is
sult is quite good for sufficiently large lattices, and it seemsmissing in thet-J model?’
that the results converge to the asymptotic estimate as the In this study, we compared the energy of a striped state
system size increases, indicating that corrections due to devith the the energy of a phase-separated state with an AFM
viations from the free particle band shape are not importanibubble. Within our approach, the kinetic energy increases in
for 6<0.05. the striped phase due to the higher surface energy, with noth-

The picture emerging from these calculation is as followsing else to compensate for this increase. Accordingly, the
(see also Fig. ¥ At J=J. [Eq. (14)] the Nagaoka state striped state energy is higher, suggesting that the long-range
breaks down and one large AFM bubble with the area ofCoulomb repulsion is needed in order to create a striped
order of O(N??) is formed[Eq. (15)]. As the size of the ground state ford/t<1. Our approach cannot rule out the
bubble scales only sublinearily with system size, the magnepossibility of a striped ground state of thel model atJ
tization per site is continuous in the thermodynamic limit. In ~t.
the vicinity of the transition point, only these large bubbles In conclusion, we presented analytical arguments, exact
are stable, and, therefore, a large fluctuation is needed tdiagonalization results, and semiclassical calculations of the
destroy the Nagaoka phase. It is, therefore, a metastabRD t-J model, which suggest that at small hole concentration
phase. For larged, sy, the critical size for a stable bubble, & and rather weak AFM coupling the Nagaoka ferromag-
decreases, and fgr-O(1) (i.e., J—J,~J) it becomes fi- netic state becomes unstable towards the creation of an AFM
nite and system-size independent. This behavior is typical fobubble. In this phase-separated state, the holes are confined
a first-order phase transition, where a domain of a new phade the FM regime. At the transition only a single large
has to be large enough to survive. However, the jump in th€©(N?3) bubble is(metgstable. Thus, the magnetization is
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continuous at the transition in the thermodynamic limit. ACKNOWLEDGMENTS
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