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Abstract. We study the influence of on-site disorder on the magnetic properties of the ground
state of the infinite-U one-dimensional (1D) Hubbard model. We find that the ground state is not
ferromagnetic. This is analysed in terms of the algebraic structure of the spin dependence of the
Hamiltonian. A simple explanation is derived for the 1/N periodicity in the persistent current for
this model.

The Hubbard model is the simplest model one can study to examine the effects of correlations
between electrons in narrow energy bands. The Hamiltonian consists of a nearest neighbour
hopping term and an electron–electron repulsion,U , which acts only when two electrons
are on the same site. The Hubbard model is also the canonical model for the study of
itinerant ferromagnetism. The strong coupling regime is of special importance for the study
of ferromagnetism, since a theorem by Nagaoka [1] states that in theU = ∞ limit, the ground
state (GS) is ferromagnetic given some connectivity property of the lattice (which holds in most
cases ford > 1). The model is solvable in one dimension and it was shown [2] that for open
boundary conditions (BCs) the GS for finiteU is a singlet, i.e. there can be no ferromagnetism
unless one postulates explicitly spin- or velocity-dependent forces. For infiniteU , the GS of
all spin sectors are degenerate.

The problem of the interplay between disorder and interactions in systems of electrons is
challenging and has a long history [3]. It is of interest to study the influence of disorder on
the possibility of forming a ferromagnetic GS. In this work we study the spin structure of the
GS of a disorderedU = ∞ Hubbard model in one dimension. We find that for periodic BCs
as well as for open BCs, for any realization of on-site disorder, the GS is degenerate, where
all spin sectors have the same lowest energy, except for the fully polarized one which has a
higher energy. As a by-product of our proof we find that the GS of an even (odd) number
of spinless fermions, on a one-dimensional (1D) ring threaded by flux, is minimal when the
dimensionless flux8/80 equalsπ (0). This might be of interest for the study of persistent
currents in disordered interacting 1D rings [4].

Lieb and Mattis [2] have considered the 1D clean Hubbard model for anyU <∞ given
hard wall (or open) BCs. They found that the GS is always a singlet (for an even number of
spins). WhenU = ∞ the GS in all the different spin sectors become degenerate. Here we
present an analysis ofU = ∞ with periodic BCs, in the presence of on-site disorder. As will
become clear later, the different BCs change the character of the problem and the periodic
BC case gives us an insight into the higher dimensional variants of the problem. Some of the
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following results, and related ones, were obtained by several different approaches in [5–7].
The Hamiltonian we consider is thus given by

H =
∑
iσ

εiniσ − t
∑
iσ

a
†
iσ a(i+1)σ + CC +U

∑
i

ni↑ni↓ (1)

wherea†
iσ is the fermionic creation operator on sitei with spinσ , ni↑ = a†

i↑ai↑, and the on-site
energiesεi are drawn uniformly between−W/2 andW/2.

The Hilbert space is composed of a direct product of the spatial wavefunctions, described
by a basis composed of all the different possibilities of positioningN particles onN out of
theM different sites. This space is isomorphic to the Hilbert space ofN non-interacting
spinless fermions onM sites. For finiteU , the Hilbert space consists of functions with double
occupancy as well and these exists only if the two particles on the same site are in singlet
configurations. Thus, coupling between the spatial functions and spin functions is formed.
However, in theU = ∞ case the spin Hilbert space is decomposed from the spatial Hilbert
space and its natural basis is given by 2N orderings ofN spins.

The action of the hopping terms in the Hamiltonian on a wavefunction changes the spatial
distribution of the particles, through moving one particle at a time to one of its neighbouring
sites. Since double occupancy is restricted, particles cannot interchange their order via hopping.
One gets another invariant of the Hamiltonian, namely, the order of the particles, the importance
of which will become clear later. This holds in the hard wall BC case. However, the periodic
BCs allow particles to ‘bypass’ through the boundaries and breaks this symmetry. Had the
ordering of the spins been conserved, the GS would have been independent on the entire spin
structure of the states. Consequently, in the hard wall BC case, all spin configurations GS are
degenerate. However, the change in the spin ordering due to hopping through the boundaries,
couples the spin part to the spatial part of the wavefunction. Each hopping term in the spatial
part of the Hamiltonian is replaced by a matrix (in principle, 2N × 2N ) which characterizes
the re-ordering of the spins. Most of these matrices, namely, these which are not related to the
boundary terms, are identity matrices. However, some describe the re-ordering due to hopping
from site 1 to siteN , andvice versa, and are not trivial.

Let T be the permutation in spin ordering due to hopping of a particle at site 1, to site
N . The minimal subgroup of the permutation group which containsT (and T −1, which
corresponds to hopping in the inverse direction) is the cyclic group generated byT . The
different spin orderings induce a representation of this cyclic group. Since the cyclic group is
commutative, its irreducible representations are 1D. Thus, we will find the decomposition of
the induced representation in irreducible parts, and then diagonalize the spatial Hamiltonian
for each of the irreducible representations. The GS is the lowest of the eigenvalues obtained for
each representation. Our goal is to determine to whichS value the irreducible representation
corresponds with the lowest eigenvalue.

We note that sinceT N = I , all the representations must be of the formχj (T k) =
exp(2π ijk/N). Thus, different representations correspond to assigning a phaseχj (T ) =
2πj/N to the transition through the boundaries. This is equivalent to adding a flux8 = 2πj/N
through the ring to theN spinless fermions problem. We now prove the following

Theorem 1. Letε(8) be the GS ofN non-interacting spinless particles on a (disordered) ring,
as a function of the flux8. ε(8) has a minimum at8 = π for even numbers of particles (and
at8 = 0 for oddN ).

Proof. The energy as a function of the fluxε(8), is symmetric in the parameter8with respect
to the points8 = 0, π . Therefore, the first derivativeε ′(8) vanishes in these points. We
now calculate the second derivative at these points in order to find which is the maximum and
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which is the minimum. Expansion ofε(8) in the vicinity of8 = π is given by perturbation
theory. The flux dependence of the matrix elements is always through the expression ei8, and
therefore, one obtains

ε(8)− ε(π) =
∑
n

an(1− ei(8−π))n. (2)

The curvature, i.e. the second derivative at8 = π is thus given by

∂2ε

∂82

∣∣∣∣
8=π
= a1− 2a2. (3)

At the point8 = π , all the off-diagonal elements in the Hamiltonian are negative, since
the−1 factor of the flux which multiplies the boundary hopping matrix elements cancels with
the(−1)N−1 factor from the interchange of the fermionic operators. Thus, the GS eigenvector
v0 has no nodes, i.e. all its elements are of the same sign. Now, let us write explicitlya1 and
a2

a1 = 〈v0|1H |v0〉 =
∑
[ij ]

gigj > 0 (4)

a2 =
∑ |〈vn|1H |v0〉|2

E0 − En < 0. (5)

The sum over [ij ] is restricted to statesi andj which are coupled by boundary hopping terms.
It then follows that the curvature at8 = π is positive and, therefore, it is a local minimum

point. Unless there is an additional accidental point of the vanishing derivative, this is also the
global minimum. Similar arguments apply to the point8 = 0 for oddN . �

Note that this theorem holds for off-diagonal disorder as well, as long as all the hopping
integrals are of the same sign.

One concludes that for even-N , the irreducible representation which yields the GS isχN/2
andχN/2(T ) = χN/2(T −1) = −1. We now have to find out for whichS values the induced
representation includesχN/2 in its decomposition. There is only one state withS = Sz = Smax,
and thus the induced representation is 1D and irreducible. It is easy to see that it isχ0 (which
corresponds to the maximum energy). It will now be shown that the representation induced
by S = 0 always includeχN/2.

Since the explicit construction of states with definiteS andSz is non-trivial, let us look
at the representations induced by the sets of states with definiteSz only. The irreducible
representations induced bySz = M, which are not induced bySz = M + 1 correspond to
S = M. According to character theory, the number of times an irreducible representation with
characterχ exists in the decomposition of a representationφ is given by(1/K)

∑
k φ(k)χ

∗(k),
where the indexk runs through all the group elements, andK is the group order. The character of
a representation is just the trace of the representing matrices. The character of the representation
induced by a set of states is given by the sum overk of the number of states in the relevant
set which are invariant under thekth element of the group. Accordingly, one obtains that the
number of occurrences ofχN/2 in the representation induced byS = 1 is given by

k1 =


(N − 1)!

(N/2 + 1)!(N/2− 1)!
N/2 even

(N − 1)!

(N/2 + 1)!(N/2− 1)!
− (N/2)!

N((N + 2)/2)!((N − 2)/2)!
N/2 odd

(6)

and the number of occurrences in the representation induced byS = 0 is bounded by

k0 6
(N − 1)!

(N/2)!(N/2)!
. (7)



3602 E Eisenberg and R Berkovits

It then follows thatk0 > k1, i.e. there exists at least one occurrence ofχN/2 induced byS = 0
states. Therefore, the GS is obtained in theS = 0 sector.

We have shown that for each (even)N , the GS is obtained at theS = 0 sector, while the
lowest energy in theSmax sector is higher.

This solution is based on the fact that the permutations induced by the 1D boundary
hopping terms spans only the cyclic group, which is commutative. The representation induced
by the spin states is highly reducible with respect to this subgroup. In higher dimensions,
reordering of spins is not only generated by boundary terms, and the whole (non-commutative)
permutation group is needed to characterize the spin dependence. It can be shown that the
representation induced is irreducible with respect to the full non-commutative group. Thus,
the spin dependence of the Hamiltonian is not equivalent to a trivial flux-like correction.

It is now very easy to consider the effect of magnetic flux added to the Hamiltonian. As
we have seen, for an even number of electrons, the optimal total flux (physical flux + flux
added by spin configuration) is (in dimensionless units)π . This indeed is the fictitious flux
generated by the spins in the GS of the Hamiltonian without an external flux. Now, when
we turn on the magnetic flux, the GS energy will increase. It is, therefore, favourable for the
system to produce an inverse fictitious flux to cancel out the influence of the magnetic flux.
However, as we have seen, this fictitious flux comes in quanta of 2π80/N , whereN is the
number of particles. Thus, magnetic flux of integer multiples of 2π80/N can be completely
cancelled out by the spin ordering, such that the GS energy is exactly as it were in the absence
of flux. Therefore, as one increases the magnetic flux, the GS energy rises, up to the point
8 = π80/N , where it is favourable for the system to produce a negative fictitious flux such
that the total flux is (in absolute value) less than the magnetic flux. We thus have a simple
and transparent explanation for the flux dependence of the GS energy which is periodic with
period 2π/N instead of the usual 2π period [8].

In conclusion, we have shown in this work that the GS of spin 1/2 fermions on a 1D ring
is not polarized in theU = ∞ limit, for any realization of disorder. This is accounted for by
mapping the spin background of the 1D problem onto a fictitious flux. In two dimensions the
influence of the spin background is non-commutative and therefore much more complex. This
leads to ferromagnetic GS for one hole [1] and to disorder-induced ferromagnetism for higher
hole concentration [9]. It was also shown that the energy of spinless fermions is minimized
when the applied magnetic flux is half the flux period, again, for any realization of disorder.
This fact is relevant for persistent current calculations.
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