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Disorder induced ferromagnetism
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Abstract. We study the influence of on-site disorder on the magnetic properties of the
ground state for restricted geometries. We find that for two dimensional systems disorder
enhances the spin polarization of the system . The tendency of disorder to enhance magnetism
in the ground state may be relevant to recent experimental observations of spin polarized
ground states in quantum dots.
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1 Introduction

The interplay between disorder and interactions[1] and the possibility that it leads
to ground state ferromagnetism has been the subject of much interest[2]. In sev-
eral new experiments in restricted geometries, such as zero temperature transport
measurements of the conductance through semiconducting quantum dots[3] and car-
bon nanotubes[4], tantalizing hints of a weakly ferromagnetic ground state of small
systems with a few hundreds of electrons have appeared. The ground state spin po-
larization may be directly measured by coupling the dot or tube to external leads and
measuring the differential conductance. Also from a recent mean field treatment of
electron-electron interactions in disordered electronic systems[5] as well as from a nu-
merical study of such systems[6] a partially magnetized ground state seems probable.
In this work, we suggest that the presence of disorder might enhance the possibility
of magnetic ground state (GS).

The GS spin polarization of small clean clusters is known to be highly fluctuating
as a function of the number of electrons, and boundary conditions [7]. We wish to
show that in some sense the situation in the disordered case is simpler. Analysis of
the competing effects which lead to the complex dependence of the GS spin polariza-
tion, shows that as disorder decreases the sensitivity to boundary conditions of the
single-particle wave-functions suppress the singlet favoring effect, while the polariza-
tion favoring effect does not depend as much on disorder. Therefore, one might expect
a transition from a singlet state to a polarized state, as a function of disorder. A
numerical study of the U = ∞ Hubbard model with a nearly half-filled band supports
the existence of such transition.



708 Ann. Phys. (Leipzig) 8 (1999) 7 – 9

2 Analytical considerations

In the high-density limit, the GS is obtained by a consecutive filling of the lowest
single-particle levels possible. Thus, the GS is a singlet. However, in the low density
limit, where the Coulomb energy dominates the kinetic energy, the weight of doubly
occupied states is reduced, and the possibility of a magnetic GS arises. We start
by considering the simplest case of a hole in a full band. The spin comes to play
since the hopping of the hole around the lattice induces permutations in the spin
ordering. The hopping term is then effectively reduced by a factor proportional to
the overlap of the permuted spin function with the original one, averaged over the
different permutations. In order to maximize the hopping term, thus minimizing the
kinetic energy, this overlap should be maximal. This is achieved in the fully polarized,
symmetric, state. This consideration is not changed by the presence of disorder. An
exact manifestation of this argument was given by Nagaoka [8], who showed that the
GS of one hole in an otherwise half-filled band of the U = ∞ Hubbard model is a fully
saturated ferromagnetic state, for any realization of the on-site disordered potential.
The situation is more complicated when more than one hole exists. Although the
above argument for preferring a ferromagnetic order equally applies for the case of
several holes, it is known that Nagaoka’s theorem can not be extended even to the
case of two holes[9, 10]. In order to understand the reason for this complexity, we first
describe the situation in 1D (one dimension).

It was shown [11] that the problem of m interacting electrons on a ring (at U = ∞)
can be mapped onto a system of m non-interacting spinless fermions on a 1D ring,
where the effect of the spin is replaced by a fictitious flux Φj, Φj/Φ0 = 2πj/m (j =
0, 1 · · · , m−1), where the fully polarized state corresponds to the trivial case Φj=0 = 0.
The GS energy is obtained by minimization of the GS energies with respect to the
possible “flux” values j. It is well known that the flux value which minimizes the GS
energy of a spinless particle on a ring is Φ = 0. This is so even is the presence of disorder
[11]. Therefore, the 1D one-holes GS is minimized by a trivial spin background. On
the other hand, when a (real) flux π is applied to the ring, the GS is obtained by
creating a spin background which forms a fictitious flux −π, which masks the real
flux. In terms of this picture, we now suggest an explanation to the 2D behavior. In
2D particles can bypass each other, and change their ordering, in many ways. For
each couple of two holes, the hopping of one hole around the other one is equivalent
to a hopping of that hole around a flux π, since a phase π accompanies each winding
of a fermion around another. Since it may be energetically favorable to screen these
fluxes, a non-trivial spin background may be generated. In short, we can say that the
spin background in the 2D GS is due to the need to optimally mask the fermionic BC
(boundary conditions) between the holes. One should remember, however, that while
in the 1D case, the Nagaoka’s effect was not relevant, as explained above, in the 2D
case there is a competition between these effects. In general, one obtains a complex
dependence on the details of small clean clusters [7], due to these competing effects.

Let us now consider the effect of disorder on the tendency towards a complex spin
background. As disorder increases, the single particle functions become less sensi-
tive to the boundary conditions, and thus the fermionic BC constraint becomes less
important. Therefore, one may expect that the incentive for re-ordering of the spin
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Fig. 1 The spin distributions as a function of disorder W for 600 realizations of a 4 × 4
lattice with 14 electrons. For each W , the bar chart represents the probability of finding the
GS of the system at a particular value of S. The inset presents the average spin 〈S〉 as a
function of W .

background decreases, while, as in the one hole case, there still is a contribution from
the hopping amplitude leading to a Nagaoka state.

3 Numerical results

A numerical study of this effect was done in the framework of the U = ∞ Hubbard
model, a canonical model for the study of itinerant ferromagnetism [12]. The on-
site energies were drawn randomly according to a box distribution between −W/2
and W/2. Note that the infinite U limit has the attractive feature of suppressing
antiferromagnetic correlations which are clearly not relevant to quantum dots, even in
the clean limit [13]. Exact diagonalization for the full many-particle Hamiltonian was
used to test the above arguments. We have used up to 14 electrons on up to 4 × 4
lattices. In the ordered case, the GS was a singlet, in accordance with [9, 10]. Figure 1
presents the GS-spin distributions as a function of W , for 14 electrons on a hard-wall
4× 4 lattice. The average spin 〈S〉 is also plotted against W , and one can see that it
increases significantly with W . In the presence of disorder, one gets a distribution of
GS-spin values. For weak disorder, the main effect is smearing the peak at S = 0 to
low S values. Thus, a tendency towards weak ferromagnetism is clearly demonstrated
even for weak disorder (W = 3t) which corresponds to a ballistic (mean free path
larger than the system size) regime. Moreover, as disorder increases, high S values
dominate the distribution. For W = 6t corresponding to a diffusive regime a clear
dominance of the high spin state appears. Similar behavior was obtained for smaller
lattices and periodic BC. One sees that, in contrast with the situation in the ordered
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case, our results are not sensitive to the lattice size or the BC. This manifests the
chaotic nature of the dot, which suppress dependencies on the details of the system.
Exact diagonalization also confirms the tendency towards non-zero ground state spin
values even for a higher number of holes. We have studied the spin distribution for 12
electrons on a hard-wall 5×3 lattice (3 holes). The GS-spin is significantly enhanced as
function of disorder, although the most probable spin state is not fully ferromagnetic.
Similar results were obtained for higher hole ratios. A simple variational treatment
shows that the tendency towards ferromagnetism persists for larger systems.

In conclusion, the influence of disorder on the magnetic properties of the GS was
studied. For an ordered system, large magnetic moments are generally suppressed,
and the spin structure of the GS, if any, is very complicated. On the other hand, we
have shown that disorder plays an important role in determining the spin polarization
of 2D systems described by the infinite U Hubbard model. Weak disorder tends to
create a partially polarized ground state, while stronger disorder tends to stabilize a
fully ferromagnetic GS. This behavior clearly indicates that there is a basis to expect
that for more realistic descriptions of the experimental systems (U 6= ∞) disorder will
play an important role in creating a spin polarized ground state.
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