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We discuss the quantum Lax–Phillips theory of scattering and unstable systems. In
this framework, the decay of an unstable system is described by a semigroup. The
spectrum of the generator of the semigroup corresponds to the singularities of the
Lax–PhillipsS-matrix. In the case of discrete~complex! spectrum of the generator
of the semigroup associated with resonances, the decay law is exactly exponential.
We explain how this profound difference between the quantum Lax–Phillips theory
and the description of unstable systems in the framework of the standard quantum
theory emerges. The states corresponding to these resonances~eigenfunctions of
the generator of the semigroup! lie in the Lax–Phillips Hilbert space, and therefore
all physical properties of the resonant states can be computed. In the special case of
a time-independent potential problem lifted trivially to the quantum Lax–Phillips
theory, we show that the Lax–PhillipsS-matrix is unitarily related to theS-matrix
of standard scattering theory by a unitary transformation parametrized by the spec-
tral variables of the Lax–Phillips theory. Analytic continuation ins has some of
the properties of a method developed some time ago for application to dilation
analytic potentials. We work out an illustrative example of the theory using a
Lee–Friedrichs model, which is generalized to a rank one potential in the Lax–
Phillips Hilbert space. ©2000 American Institute of Physics.
@S0022-2488~00!00411-4#

I. INTRODUCTION

There has been considerable effort in recent years in the development of the theo
framework of Lax and Phillips scattering theory1 for the description of quantum mechanic
systems.2–4 This work was motivated by the requirement that the decay law of a decaying sy
should be exactly exponential if the simple idea that a set of independent unstable systems c
of a population for which each element has a probability, sayG, to decay, per unit time. The
resulting exponential law (}e2Gt) corresponds to an exact semigroup evolution of the state in
underlying Hilbert space, defined as a family of bounded operators on that space satisfyin

Z~ t1!Z~ t2!5Z~ t11t2!, ~1.1!

where t1 , t2>0, andZ(t) may have no inverse. If the decay of an unstable system is to
associated with an irreversible process, then its evolution necessarily has the property~1.1!.5 The
standard model of Wigner and Weisskopf,6 based on the computation of the survival amplitu
A(t) as the scalar product
80500022-2488/2000/41(12)/8050/22/$17.00 © 2000 American Institute of Physics
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A~ t !5~c,e2 iHtc!, ~1.2!

wherec is the initial state of the unstable system andH is the Hamiltonian for the full evolution,
results in a good approximation to an exponential decay law for values oft sufficiently large
~Wigner and Weisskopf6 calculated an atomic linewidth in this way!, but cannot result in a
semigroup.7 @This formula is applied to the transitions induced by interacting fields on states i
Hilbert space of a quantum field theory as well.# Soffer and Weinstein have made very care
estimates in the Wigner–Weisskopf formulation for time-independent systems8 and its extension
to the time-dependent~nonautonomous! case.8,9 It is easy to see~for example, by looking at the
time derivative of the decay transition probability att50) that neither the time-independent n
time-dependent Hamiltonian models lead to semigroup evolution.

When applied to a two-channel system, such as the decay of theK0 meson, one finds that th
poles of the resolvent for the Wigner–Weisskopf evolution of the two channel system resu
nonorthogonal residues that generate interference terms, which make the nonsemigroup p
evident even for times for which the pole approximation is valid,10 a domain in which exponentia
decay for the single channel system is very accurately described by the Wigner–Weisskopf

The Yang–Wu11 parametrization of theK0 decay processes, based on a Gamow-type12 evo-
lution generated by an effective 232 non-Hermitian matrix Hamiltonian, on the other han
results in an evolution that is an exact semigroup. It appears that the phenomenological
etrization of Ref. 11 is indeed consistent to a high degree of accuracy with the experimental
on K-meson decay;13 the effect of the nonorthogonal residues has been estimated to be
enough to be excluded by these experiments.10 These conclusions are independent of the sh
time behavior; the inadequacy of the Wigner–Weisskopf formulation in the usual frame
becomes evident, for the two-channel system, at times for which the pole contributions dom
the decay amplitudes.

The Wigner–Weisskopf model results in nonsemigroup evolution independently of th
namics of the system. Reversible transitions of a quantum mechanical system, such as a
precession of a magnetic moment or tunneling through a potential barrier,14 which are not radia-
tive, could be expected to be well-described by the Wigner–Weisskopf formula.

In order to achieve exact exponential decay, methods of analytic extension of the Wi
Weisskopf model to a generalized space have been studied.15 The generalized states, occurring
the large sector of a Gel’fand triple, are constructed by defining a bilinear form, and analyt
continuing a parameter~energy eigenvalue! in one of the vectors to achieve an exact comp
eigenvalue. Although it is possible to achieve an exact exponential decay in this way, the re
~Banach space! vector has no properties other than to describe this decay law; one cannot co
other properties of the system in this ‘‘state.’’ Identifying some representation of the res
state, it would be of interest, in some applications, to compute, for example, its localiz
properties, its momentum distribution, or its mean spin.

The quantum Lax–Phillips theory,2,3 constructed by embedding the quantum theory into
original Lax–Phillips scattering theory1 ~originally developed for hyperbolic systems, such
acoustic or electromagnetic waves!, describes the resonance as a state in a Hilbert space
therefore it is possible, in principle, to calculate all measurable properties of the system i
state. Moreover, the quantum Lax–Phillips theory provides a framework for understandin
decay of an unstable system as an irreversible process. It appears, in fact, that this frame
categorical for the description of irreversible processes.

It is clearly desirable to construct a theory which admits the exact semigroup property, b
sufficient structure to describe nonsemigroup behavior as well, according to the dynamica
erties of the system. The quantum Lax–Phillips theory contains the latter possibility as we
in this work, we shall restrict ourselves to a study of the semigroup property, associated
irreversible processes.

The scattering theory of Lax and Phillips assumes the existence of a Hilbert spaceH̄ of
physical states in which there are two distinguished orthogonal subspacesD1 andD2 with the
properties
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U~t!D1,D1 t.0,

U~t!D2,D2 t,0,
~1.3!

ù
t

U~t!D65$0%,

ø
t

U~t!D65H̄,

i.e., the subspacesD6 are stable under the action of the full unitary dynamical evolutionU(t), a
function of the physical laboratory time, for positive and negative timest, respectively; over allt,
the evolution operator generates a dense set inH̄ from eitherD1 or D2 . We shall callD1 the
outgoing subspaceandD2 the incoming subspacewith respect to the groupU(t).

A theorem of Sinai16 then assures thatH̄ can be represented as a family of Hilbert spac
obtained by foliatingH̄ along the real line, which we shall call$t%, in the form of a direct integral

H̄5E
%

Ht , ~1.4!

where the set of auxiliary Hilbert spacesHt are all isomorphic. Representing these spaces in te
of square-integrable functions, we define the norm in the direct integral space~we use Lesbesgue
measure! as

i f i25E
2`

`

dti f tiH
2 , ~1.5!

where f PH̄ represents a vector inH̄ in terms of theL2 function spaceL2(2`,`,H), and f t

PH, theL2 function space representingHt for any t. The Sinai theorem furthermore asserts th
there are representations for which the action of the full evolution groupU(t) on
L2(2`,`,H) is translation byt units. GivenD6 ~the L2 spaces representingD6), there is such
a representation, called theincoming translation representation,1 for which functions inD2 have
support inL2(2`,0,H), and another called theoutgoing translation representation, for which
functions inD1 have support inL2(0,̀ ,H).

Lax and Phillips1 show that there are unitary operatorsW6 , called wave operators, whic
map elements inH̄, respectively, to these representations. They define anS-matrix,

S5W1W2
21, ~1.6!

which connects these representations; it is unitary, commutes with translations, and
L2(2`,0,H) into itself. The singularities of thisS-matrix, in what we shall define as thespectral
representation, correspond to the spectrum of the generator of the exact semigroup characte
the evolution of the unstable system.

With the assumptions stated above on the properties of the subspacesD1 andD2 , Lax and
Phillips1 prove that the family of operators

Z~t![P1U~t!P2 ~t>0!, ~1.7!

whereP6 are projections into the orthogonal complements ofD6 , respectively, is a contractive
continuous, semigroup. This operator annihilates vectors inD6 and carries the space

K5H̄*D1*D2 ~1.8!

into itself, with norm tending to zero for every element inK.
03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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We see from this construction that the outgoing subspaceD1 is defined, in the outgoing
representation, in terms of support properties~this is also true for the incoming subspace in t
incoming representation!. One can then easily understand that the fundamental difference bet
Lax–Phillips theory and the standard quantum theory lies in this property. The subspace d
the unstable system in the standard theory is usually defined as the eigenstate of an unpe
Hamiltonian, and is not associated with an interval on a line. The subspaces of the Lax–P
theory are associated with intervals~i.e., the positive and negative half-lines in the outgoing a
incoming representations!. To see this, we remark that the operatorP1U(t) is a semigroup. The
product

P1U~t1!P1U~t2!5P1U~t1!@12~12P1!#U~t2!5P1U~t1!U~t2!5P1U~t11t2!;
~1.9!

this follows from the fact thatU(t1) leaves the subspaceD1 invariant.
We now show that the generator of this semigroup is symmetric but not self-adjoint, an

therefore not a group. In the outgoing translation representation,

~P1U~t! f !~s!5u~2s! f ~s2t!, ~1.10!

and therefore

~P1K f !~s!5 iu~2s!
] f

]s
~s2t!ur→01

, ~1.11!

where f (s) is a vector-valued function, andK is the self-adjoint generator associated withU(t).
If we then compute the scalar product of the vector given in~1.10! with a vectorg, we find that

E
2`

`

dsg* ~s!~P1K f !~s!5 id~s!g* ~0! f ~0!1E
2`

`

ds~P1Kg!* ~s! f ~s!. ~1.12!

The generator is therefore not self-adjoint.@It is through this mechanism that the Lax–Phillip
theory provides a description that has the semigroup property for the evolution of an un
system~see also Ref. 3!.# It has, in fact, a family of complex eigenvalues in the upper half-pla
the eigenfunctions are

f m~s!5H emsn, s<0;

0, s.0,

wheren is some vector in the auxiliary space.
The semigroup property of the operatorZ(t) of ~1.7! follows directly from the discussion

given above. It clearly vanishes on the subspaceD2 , and by the stability ofD1 underU(t) for
t>0, it vanishes onD1 as well.1 It is therefore nonzero only on the subspaceK, and on such
vectors, the operatorP2 can be omitted; the semigroup property then follows from what we h
said above.

The existence of a semigroup law for transitions in the framework of the usual qua
mechanical Hilbert space has been shown to be unattainable.7 Flesia and Piron2 found that the
direct integral of quantum mechanical Hilbert spaces can provide a framework for the L
Phillips construction for the quantum theory, resulting in a structure directly analogous t
foliation ~1.4!. In this construction, it appears that4 for the representation in which the free ev
lution is represented by translation on the foliation parameter in Eq.~1.5! ~and for which it is
assumed thatD6 have definite support properties!, the full evolution of the system should be a
integral kernel in order to achieve the connection between the Lax–PhillipsS-matrix and the
semigroup.
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In this work we show that the evolution operator for the physical model for the system m
pointwise, in a representation which we shall call themodel representation, but in another repre-
sentation, corresponding to a different foliation, the necessary conditions for the constructio
nontrivial Lax–Phillips theory can be naturally realized. The natural association of the tim
rameter in the model representation with the foliation asserted by the theorem of Sinai,16 as we
shall show, does not necessarily correspond to the proper embedding of the quantum theo
the Lax–Phillips framework.

If we identify elements in the spaceH̄ with physical states, and identify the subspaceK with
the unstable system, we see that the quantum Lax–Phillips theory provides a framework
description of an unstable system which decays according to a semigroup law. We remar
taking a vectorc0 in K, and evolving it under the action ofU(t), the projection back into the
original state is@it follows from ~1.7! and the stability ofD6 that Z(t)5PKU(t)PK as well#

A~t!5~c0 ,U~t!c0!5~c0 ,PKU~t!PKc0!5~c0 ,Z~t!c0!, ~1.13!

so that the survival amplitude of the Lax–Phillips theory, analogous to that of the Wig
Weisskopf formula~1.2!, has the exact exponential behavior. The difference between this r
and the corresponding expression~1.2! for the Wigner–Weisskopf theory can be accounted for
the fact that there are translation representations forU(t), and that the definition of the subspac
K is related to the support properties along the foliation axis on which these translation
induced.3

Functions in the spaceH̄, representing the elements ofH̄, depend on the variablet as well as
the variables of the auxiliary spaceH. The measure space of this Hilbert space of states is
dimension larger than that of a quantum theory represented in the auxiliary space alone.
fying this additional variable with anobservable~in the sense of a quantum mechanical obse
able! time, we may understand this representation of a state as avirtual history. The collection of
such histories forms a quantum ensemble; the absolute square of the wave function corresp
the probability that the system would be found, as a result of measurement, at timet in a particular
configuration in the auxiliary space~in the state described by this wave function!, i.e., an element
of one of the virtual histories. For example, the expectation value of the position variablex at a
given t is, in the standard interpretation of the auxiliary space as a space of quantum state

^x& t5
~c t ,xc t!

ic ti2 . ~1.14!

The full expectation value in the physical Lax–Phillips state, according to~1.5!, is then4

E dt~c t ,xc t!5E dtic ti2^x& t , ~1.15!

so we see thatic ti2 corresponds to the probability to find a signal which indicates the presen
the system at the timet ~in the same way thatx is interpreted as a dynamical variable in th
quantum theory!.

One may ask, in this framework, which results in a precise semigroup behavior for an un
system, whether such a theory can support as well the description of stable systems or a
which makes a transition following the rule of Wigner and Weisskopf~as, for example, the
adiabatic rotation of an atom with spin in an electromagnetic field!. It is clear that ifD6 span the
whole space, for example, there is no unstable subspace, and one has a scattering theory
the type of resonances that can be associated with unstable systems. We shall treat this su
more detail in a succeeding article.

In the next section, we give a procedure for the construction of the subspacesD6 , and for
defining the representations which realize the Lax–Phillips structure. In this framework, we d
the Lax–PhillipsS-matrix. In Sec. III, we show that this construction results in a Lax–Phil
theory applicable to models in which the underlying dynamics is locally defined in time. We
03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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out the construction for a Flesia–Piron-type model. In Sec. IV we study the general form o
Lax–PhillipsS-matrix and prove that for pointwise models it is unitarily related to the stand
S-matrix of the usual scattering theory in the auxiliary space. In Sec. V, we work out the sp
example of a generalized Lee–Friedrichs spectral model,17 and show that the model can be chos
so that the condition for the resonance pole is well approximated by the resonance pole co
of the Lee–Friedrichs model of the usual quantum theory. A discussion and conclusions are
in Sec. VI.

II. THE SUBSPACES DÁ, REPRESENTATIONS, AND THE LAX–PHILLIPS S-MATRIX

It follows from the existence of the one-parameter unitary groupU(t) which acts on the
Hilbert spaceH̄ that there is an operatorK which is the generator of dynamical evolution of th
physical states inH̄; we assume that there existwave operatorsV6 which intertwine this dy-
namical operator with an unperturbed dynamical operatorK0 . We shall assume thatK0 has only
absolutely continuous spectrum in~2`,`!.

We begin the development of the quantum Lax–Phillips theory with the construction o
incoming and outgoing translation representations. In this way, we shall construct explicit
foliations described in Sec. I. Thefree spectral representationof K0 is defined by

f^sbuK0ug&5s f^sbug&, ~2.1!

whereug& is an element ofH̄ andb corresponds to the variables~measure space! of the auxiliary
space associated to each value ofs, which, with s, comprise a complete spectral set. The fun
tions f^sbug& may be thought of as a set of functions of the variablesb indexed on the variable
s in a continuous sequence of auxiliary Hilbert spaces isomorphic toH.

We now proceed to define the incoming and outgoing subspacesD6 . To do this, we define
the Fourier transform from representations according to the spectrums to the foliation variablet
of ~1.5!, i.e.,

f^tbug&5E eist
f^sbug&ds. ~2.2!

Clearly,K0 acts as the generator of translations in this representation. We shall say that the
functions f^tbug& are in thefree translation representation.

Let us consider the sets of functions with support in (0,`) and in (2`,0), and call these
subspacesD0

6 . The Fourier transform back to the free spectral representation provides th
sets of Hardy class functions

f^sbug0
6&5E e2 ist

f^tbug0
6&dtPH6 , ~2.3!

for g0
6PD0

6 .
We may now define the subspacesD6 in the Hilbert space of statesH̄. To do this we first

map these Hardy class functions inH̄ to H̄, i.e, we define the subspacesD0
6 by

E (
b

usb& f f^sbug0
6&dsPD0

6 . ~2.4!

We shall assume that there are wave operators which intertwineK0 with the full evolutionK,
i.e., that the limits

lim
r→6`

eiK te2 iK 0t5V6 ~2.5!
03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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exist on a dense set inH̄. @We emphasize that the operatorK generates evolution of the entir
virtual history, i.e., of elements inH̄, and that these wave operators are defined in this la
space. These operators arenot, in general, the usual wave~intertwining! operators for the per-
turbed and unperturbed Hamiltonians that act in the auxiliary space. The conditions for
existence are, however, closely related to those of the usual wave operators. For the exist
the limit, it is sufficient that fort→6`, iVeiK 0tfi→0 for a dense set inH̄. For a time-
dependent potential which falls off rapidly for largeutu, the time translation induced byK0 can
provide this result. However, for a time-independent potential which has sufficiently fast fallo
space, the evolution generated byK0 ~for example, in the Piron–Flesia form2 K052 i ] t1H0 ,
whereH0 may be identified with the usual quantum mechanical free Hamiltonian!, can also move
the support of a wave packet on space in the same way as for the usual quantum theory, ou
potential region, as the function is translated simultaneously on thet axis. In this case, the
condition for existence of the wave operators coincides with that of the usual theory, and u
unitary operator~to be discussed below!, the wave operators coincide with those of the us
quantum theory. The free evolution may induce a motion of the wave packet in the auxiliary
out of the range of the potential~in the variables of the auxiliary space in the model represe
tion!, as for the usual scattering theory, so that it is possible to construct examples for whi
wave operator exists if the potential falls off sufficiently rapidly.#

The construction ofD6 is then completed with the help of the wave operators. We de
these subspaces by

D15V1D0
1 ,

D25V2D0
2 . ~2.6!

We remark that these subspaces are not produced by the same unitary map. This proce
necessary to realize the Lax–Phillips structure nontrivially; if a single unitary map were used
there would exist a transformation into the space of functions onL2(2`,`,H) which has the
property that all functions with support on the positive half-line represent elements ofD1 , and all
functions with support on the negative half-line represent elements ofD2 in the same represen
tation; the resulting Lax–PhillipsS-matrix would then be trivial. The requirement thatD1 andD2

be orthogonal is not an immediate consequence of our construction; as we shall see, this r
associated with the analyticity of the operator which corresponds to the Lax–PhillipsS-matrix.

In the following, we construct the Lax–PhillipsS-matrix and the Lax–Phillips wave opera
tors.

The wave operators defined by~2.5! intertwineK andK0 , i.e.,

KV65V6K0 ; ~2.7!

we may therefore construct the outgoing~incoming! spectral representations from the free spec
representation. Since

KV6usb& f5V6K0usb& f5sV6usb& f , ~2.8!

we may identify

usb&out
in

5V6usb& f . ~2.9!

The Lax–PhillipsS-matrix is defined as the operator, onH̄, which carries the incoming to out
going translation representations of the evolution operatorK. Supposeg is an element ofH̄; its
incoming spectral representation, according to~2.9!, is

in^sbug&5 f^sbuV2
21g&. ~2.10!
03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Let us now act on this function with the Lax–PhillipsS-matrix in the free spectral representatio
and require the result to be theoutgoingrepresenter ofg:

out̂ sbug&5 f^sbuV1
21g&5E ds8(

b8
f^sbuSus8b8& f f^s8b8uV2

21g&, ~2.11!

where S is the Lax–PhillipsS-operator~defined onH̄). Transforming the kernel to the fre
translation representation with the help of~2.2!, i.e.,

f~ tbuSut8b8! f5
1

~2p!2 E dsds8eiste2 is8t8
f^sbuSus8b8& f , ~2.12!

we see that the relation~2.11! becomes, after using Fourier transform in a similar way to transfo
the in and out spectral representations to the corresponding in and out translation represen

out̂ tbug&5 f^tbuV1
21g&5E dt8(

b8
f^tbuSut8b8& f f^t8b8uV2

21g&

5E dt8(
b8

f^tbuSut8b8& f in^t8b8ug&. ~2.13!

Hence the Lax–PhillipsS-matrix is given by

S5$ f^tbuSut8b8& f%, ~2.14!

in free translation representation. It follows from the intertwining property~2.7! that

f^sbuSus8b8& f5d~s2s8!Sbb8~s!. ~2.15!

This result can be expressed in terms of operators onH̄. Let

w2
215$ f^tbuV2

21% ~2.16!

be a map fromH̄ to H̄ in the incoming translation representation, and, similarly,

w1
215$ f^tbuV1

21%, ~2.17!

a map fromH̄ to H̄ in the outgoing translation representation. It then follows from~2.13! that

S5w1
21w2 , ~2.18!

as a kernel on the free translation representation. This kernel is understood to operate
representer of a vectorg in the incoming representation and map it to the representer in
outgoing representation.

We now discuss a class of pointwise physical models, and return in Sec. IV to the constr
of the Lax–PhillipsS-matrix for this class of models.

III. POINTWISE PHYSICAL MODELS

It has been shown by Piron5 that if ~the symbol2 i ] t stands, in this context, for the operat
on H̄ which acts on the family$Ht% as a partial derivative in the foliation parameter! K, 2 i ] t , and
K1 i ] t have a common dense domain on which they are essentially self-adjoint, then there
an operator H, defined as the self-adjoint extension ofK1 i ] t , which is a decomposable operat
on H̄, that is, (Hc) t5Htc t . We therefore have, on this common domain,
03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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K52 i ] t1H, ~3.1!

corresponding to an evolution which acts pointwise int ~as in the well-known Floquet theory, use
primarily for studying periodic time-dependent problems!. We shall identify the representation i
which this analysis is carried out with what we have called themodel representation.

In this section, we show that physical models of this type, for which the evolution is de
pointwise in time~in the model representation!, which provide a straightforward way of lifting
problems in the framework of the usual quantum theory to the Lax–Phillips structure, satis
requirements imposed by Eisenberg and Horwitz4 on the structure of a nontrivial Lax–Phillip
theory, i.e., that the evolution be represented by a nontrivial kernel in the free translation
sentation.

Consider a class of models for nonrelativistic quantum theory characterized by the sta
Heisenberg equations~context should avoid confusion between the symbol H for the Hamilton
and the designation of the auxiliary Hilbert spaceH!

dx

dt
5 i @H,x#,

dP

dt
5 i @H,p#, ~3.2!

in terms of operators defined on a Hilbert spaceH, where

H5H01V. ~3.3!

In case there is an explicit time-dependence inV5V(t), for example, in a model in which the
interaction that induces instability is turned on at some finite laboratory time, it is often conve
to formally adjoin two new dynamical variables~as done, for example, by Piron5 and Howland18!,
Tm andE, along with an evolution parametert to replace the role of the parametert in ~3.2! (Tm

denotes the time operator in the space in which we construct the dynamical model of the s
such a time operator exists because the spectrum ofE is taken to be~2`,`!!. The evolution
operator may then be considered ‘‘time’’~t!-independent, i.e., we define, as operators on a la
spaceH̄ ~and thus identify H with the decomposable operator in~3.1!!

K5E1H5K01V, ~3.4!

where

K05E1H0, ~3.5!

and

@Tm ,E#5 i . ~3.6!

Then, Eqs.~3.2! become

dx

dt
5 i @K,x#5 i @H,x#,

dp

dt
5 i @K,p#5 i @H,p#, ~3.7!

and

dE

dt
5 i @K,E#5 i @H,E#,
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dTm

dt
5 i @K,Tm#5 i @E,Tm#51. ~3.8!

The first of ~3.8! implies, since H0 is independent oft, that18

dE

dt
52

]V

]t
, ~3.9!

and the last of~3.8! putsTm andt into correspondence, i.e., the expectation value ofTm goes with
t. The evolution of the system is, however, generated by the operator

U~t!5e2 iK t, ~3.10!

corresponding to the Lax–Phillips evolution assumed in~1.3!. The extension we have constructe
~by the inclusion of the operatorsTm andE! enables us to embed the nonrelativistic Heisenb
equations into the Lax–Phillips theory, in a way equivalent to the Flesia–Piron direct integra
conditions that they impose, thatE andK have a common dense domain, results, by means o
Trotter formula, in the conclusion that H acts pointwise in the spectral decomposition ofTm . This
result gives~3.4! a precise meaning. ThatK0 shares this common domain follows from th
requirement thatV be ‘‘small.’’ 19

We shall label the spectral representation of the operatorTm by the subscriptm, so that for
cPH̄,

m^tauK0uc!52 i ] t m^tauc!1m^tauH0uc!, ~3.11!

where$a% corresponds to a complete set in the~auxiliary! Hilbert space associated tot. We shall
assume that H0 has not dependence. We shall assume for the remainder of this section thaV is
diagonal in t, so that

m^tauH0uc!5(
a8

H0
a,a8

m^ta8uc!, ~3.12!

and

m^tauVuc!5(
a8

Va,a8~ t !m^ta8uc!. ~3.13!

We therefore see explicitly that the Hilbert space associated to the action of the operator H m
identified in this case with the auxiliary space of the Lax–Phillips theory, and the larger s
representing the action ofTm andE ~along withH!, with the function spaceH̄ or the abstract spac
H̄ of the Lax–Phillips theory, as in the~direct integral! construction of Flesia and Piron.2

The free spectral representation discussed in Sec. II is constructed by requiring thatK0 , in this
representation, act as multiplication. As in~2.1!, we label this representation with subscriptf, and
require, forcPH̄,

f^sbuK0uc!5s f^sbuc!, ~3.14!

where$b% corresponds to a complete set in the~auxiliary! Hilbert space associated tos, and may
have discrete or continuous values. This relation defines the free spectral representation.

The free translation representation is then given by~2.2!, i.e.,

f^tbuc!5E
2`

`

eist
f^sbuc!ds. ~3.15!
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One obtains, from~3.11!–~3.14!, the relation

m^tauK0usb& f5sm^tausb& f52 i ] t m^tausb& f1(
a8

H0
aa8

m^ta8usb& f . ~3.16!

Making the transformation

m^tausb& f5eist
m
0 ^tausb& f , ~3.17!

the relation~3.16! becomes

i ] t m
0 ^tausb& f5(

s8
H0

aa8
m
0 ^ta8usb& f , ~3.18!

or

m
0 ^tausb& f5(

s8
~e2 iH 0t!aa8

m
0 ^0a8usb& f . ~3.19!

The solution~3.19! of ~3.18! is norm-preserving inH, and thereforem
0 ^tausb& f are not elements

of H̄ ~the integral of the modulus squared overt diverges!. This norm-preserving evolution reflect
the stability of the system under evolution induced byH0 . The factoreist in ~3.17! imbeds
physical states intoH̄. To see this, consider the norm ofm^tauc),

E dt(
a

um^tauc!u25E dsds8dt (
abb8

e2 i ~s2s8!t
m
0 ^tausb& f*

3m
0 ^taus8b8& f f^sbuc!* f^s8b8uc!

5E dtdsds8 (
a...b8

e2 i ~s2s8!t~e2 iH 0t!aa8* ~e2 iH 0t!aa9

3m
0 ^0a8usb& f* m

0 ^0a9us8b8& f f^sbuc!* f^s8b8uc!. ~3.20!

Carrying out the sum overa, the unitary factors cancel, leavingda8,a9 . The t-integration then
forms a factor 2pd(s2s8), permitting a sum ona85a9. We show below that, from the uni
tarity of f^tausb& f , it follows that the indices inm^0ausb& f label orthonormal sets in the aux
iliary spaces attached tot50 ands, for eachs, i.e.,

(
a8

m
0 ^0,a8usb& f* m

0 ^0a8usb8& f5db,b8 ,

and therefore the final integral ons and sum onb can be carried out in~3.20!:

E ds(
b

u f^sbuc!u251.

On the other hand, if~3.19! were to provide the complete representation,

(
a,a8,a9

~e2 iH 0t!aa8* ~e2 iH 0t!aa9
m
0 ^0a8uc!* m

0 ^0a9uc!5(
a8

um
0 ^0a8uc!u2 ~3.21!

is bounded but independent oft; an integral overt would then diverge.
We now remark that since
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f^sbue2 iK 0tuc!5e2 ist
f^sbuc!, ~3.22!

it follows from ~2.2! that

f^tbue2 iK 0tc!5E dseis~ t2t!
f^sbuc!5 f^t2t,buc!, ~3.23!

making explicit the translation induced byK0 in this representation, as is evident from~2.1! ~or the
first of ~3.16!!. It then follows that

f^tbuK0uc!52] t f^tbuc!, ~3.24!

and ~3.16! becomes, in the free translation representation,

m^tauK0ut8b& f5 i ] t8 m^taut8b& f52 i ] t m^taut8b& f1(
a8

H0
aa8

m^ta8ut8b& f , ~3.25!

or

i ~] t1] t8!m^taut8b& f5(
a8

H0
aa8

m^ta8ut8b& f . ~3.26!

It is clear from ~3.26! that the transformation function,m^taut8b& f , from the representation in
which Tm is diagonal,

Tm5E dt(
a

uta&mt m^tau, ~3.27!

to that for which the free time operator

Tf5E dt(
b

utb& f t f^tbu ~3.28!

is diagonal, cannot be a function oft2t8 alone ~in particular, proportional tod(t2t8)), if the
right-hand side of~3.26! is not zero. We see that the existence of a nontrivial relation of the
~3.26!, in which H0 plays a fundamental role, is necessary in order that the free and m
translation representations be distinct.

To find the general solution of~3.26!, let

m^taut8b& f5 f ab~ t1 ,t2!, ~3.29!

where

t65
t86t

2
. ~3.30!

Then,~3.26! becomes

i ] t1
f ab~ t1 ,t2!5(

a8
H0

aa8 f a8b~ t1 ,t2!,

with solution

f ab~ t1 ,t2!5(
a8

~e2 iH 0t1!aa8 f a8b~0,t2!. ~3.31!
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The t1 dependence of this function is determined byH0 ; the t2 dependence is, as can be se
from ~3.26!, completely undetermined by the dynamics of the system, and is at our dispo
therefore follows that

m^tausb& f5(
a8

E dt8eist8~e2 iH 0t1!aa8 f a8b~0,t2!

5 (
a8a9

E dt8eist8~e2 iH 0t!aa9~e2 iH 0~ t82t !/2!)a9a8 f a8b~0,t2!

5 (
a8a9

E d~ t82t !eisteis~ t82t !~e2 iH 0t!aa9~e2 iH 0~ t82t !/2!a9a8 f a8b~0,t2!. ~3.32!

We now define

Uab~s![A2pE dteist~e2 iH 0t/2!aa8 f a8b~0,t/2!, ~3.33!

so that~3.32! becomes

m^tausb& f5
1

A2p
(
a8

eist~e2 iH 0t!aa8Ua8b~s!. ~3.34!

It then follows that

Uab~s!5A2p m^0ausb& f . ~3.35!

The unitarity relations for the transformation functionm^tausb& f imply the unitarity of
Uab(s):

(
a

E dt f^sbuta&m m̂ taus8b8& f

5
1

2p (
aa8a9

E dte2 ist~e2 iH 0t!aa8* Ua8b* ~s!eis8t~e2 iH 0t!aa9Ua9b8

5d~s2s8!(
a

Uab* ~s!Uab8~s!

so that

(
a

Uab* ~s!Uab8~s!5dbb8 . ~3.36!

Moreover,

(
b

E ds m^tausb& f f^sbut8a8&m

5
1

2p (
ba9a-

E dseis~ t2t8!~e2 iH 0t!aa9~e2 iH 0t8!a8a-* Ua9b~s!Ua-b* ~s!

5d~ t2t8!daa8 . ~3.37!

Now, suppose thata, a8 correspond to~generalized! eigenstates ofH0 ; then,~3.37! becomes
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d~ t2t8!daa85
1

2p (
b

E dsei ~s2Ea!te2 i ~s2Ea8!t8Uab~s!Ua8b* ~s!. ~3.38!

Multiplying ~3.38! by e2 int and integrating overt, we obtain

e2 int8daa85e2 i ~n1Ea2Ea8!t8(
b

Uab~s!Ua8b* ~s!us5Es1n ,

for everyn. This relation implies thatEa5Ea8 , so that

aaa85(
b

Uab~s!Ua8b* ~s!. ~3.39!

The transformation functionm^tausb& f5eist
m
0 ^tausb& f constitutes a map from the spectr

family associated withTm , represented by the kets$uta&m% to the spectral representation ofK0 ,
represented by the kets$usb& f%. We can think of this map in two stages, the first from$uta&m% to
a standard frame$ub8&0% ~projection! in the auxiliary space of the free representation, then a m
~lift ! from this to the foliated frames$usb& f% according to

m^tausb& f5(
b8

m^taub8&0 0^b8usb& f , ~3.40!

with the property~3.17! due to the contraction with0^b8usb& f . Then,~3.35! can be written as

Uab~s!5A2p(
b8

m^0aub8&0 0^b8usb& f . ~3.41!

Let us define the unitary map

^aub8&[A2p m^0aub8&0 , ~3.42!

so that

Ub8b~s![0^b8usb& f5(
a

^b8ua&Uab~s! ~3.43!

corresponds to a transformation in ‘‘orientation’’ of the representation from the standard o
the isomorphic auxiliary spaces. The mapUb8b(s) from a standard frame to a frame varying wi
s has the geometric interpretation of a section of a frame bundle, as reflected in~3.40!.

IV. THE S-MATRIX FOR POINTWISE MODELS

In this section we define the Lax–Phillips wave operators for the pointwise models disc
in the previous section, and compute theS-matrix ~based on the intertwining ofK andK0). We
show that the Lax–PhillipsS-matrix is, in this case, simply related to theS-matrix of the usual
scattering problem~based on the intertwining ofH andH0) by the unitary operatorU(s). This
operator acts in a way similar to that of the dilation used by Aguilar and Combes20 ~see also
Simon21! where analytic continuation ins distorts the continuous spectrum of the Hamiltonia
exposing the resonance poles on the first sheet.

We show in the following that the spectrally diagonal operatorSbb8(s) for pointwise models
has the form

Sbb8~s!5Uab* ~s!~Saux!aa8Ua8b8~s!. ~4.1!
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Here,Uab(s) is the operator on the auxiliary space defined by~3.35!, andSaux is theS-matrix of
the usual scattering theory defined byH,H0 in the auxiliary space.

To see this, we study the operatorS in the form

S5V1
21V25 lim

t→`
eiK 0te22iK teiK 0t, ~4.2!

which can be expressed as

S5 lim
e→0

eE
0

`

dte2eteiK 0te22iK teiK 0t

5E
0

`

dtS 2
d

dt
e2etDeiK 0te22iK teiK 0t

512 i E
0

`

dt$eiK 0tVe22iK teiK 0t1eiK 0te22iK tVeiK 0t%e2et. ~4.3!

In the free spectral representation, we therefore have

f^sbuSus8b8& f5d~s2s8!dbb82 i E
0

`

dt f^sbuVei ~s1s822K1 i e!t1ei ~s1s822K1 i e!tVus8b8& f

5d~s2s8!dbb81
1

2 f^sbuVGS s1s8

2
1 i e D1GS s1s8

2
1 i e DVus8b8& f ,

~4.4!

where we use the definitions

G~z!5
1

z2K
, G0~z!5

1

z2K0
. ~4.5!

We now define the operator22

T~z!5V1VG~z!V5V1VG0~z!T~z!, ~4.6!

where we have used the second resolvent equation

G~z!5G0~z!1G0~z!VG~z!5G0~z!1G~z!VG0~z!. ~4.7!

Since

T~z!G0~z!5VG0~z!1VG~z!VG0~z!5VG~z!, ~4.8!

and

G0~z!T~z!5G0~z!V1G0~z!VG~z!V5G~z!V, ~4.9!

it follows that
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f^sbuSus8b8& f5d~s2s8!dbb81
1

2 f^sbuT S s1s8

2
1 i e DG0S s1s8

2
1 i e D

1G0S s1s8

2
1 i e DTS s1s8

2
1 i e D us8b8& f

5d~s2s8!dbb81H 1

s2s81 i e
1

1

s82s1 i eJ
f

^sbuTS s1s8

2
1 i e D us8b8& f

5d~s2s8!$dbb822p i f^sbuT~s1 i e!usb8& f%. ~4.10!

We remark that by this construction, we see thatSbb8(s) is analytic in the upper half planein s.
To complete our demonstration of~4.1!, we expandT(z) ~assuming that the series converge!,

using ~4.6!, as

T5V1VG0~z!V1VG0~z!VG0~z!V1... . ~4.11!

The matrix elements ofT therefore involve

f^sbuVus8b8& f5E dt(
aa8

f^sbuta&mV~ t !aa8
m^ta8us8b8& f . ~4.12!

From ~3.34!, we obtain

f^sbuVus8b8& f5
1

2p (
aa8

E dtei ~s82s!tUab* ~s!VI~ t !aa8Ua8b8~s8!, ~4.13!

whereVI(t) is the interaction picture form forV in the standard scattering theory,

VI
aa8~ t !5 (

a9a-
~eiH 0t!aa9Va9a-~ t !~e2 iH 0t!a-a8. ~4.14!

It is convenient to write~4.13! as an operator-valued kernel on the auxiliary space in the
spectral representation~suppressing the explicit indices of the auxiliary space!, i.e.,

f^suVus8& f5
1

2p E dtei ~s82s!tU†~s!VI~ t !U~s8!. ~4.15!

Since

f^s8uG0~s1 i e!us9& f5
1

s2s81 i e
d~s82s9!,

it follows that

f^suVG0~s1 i e!Vus8& f5E ds9ds- f^suVus9& f f^s9uG0~s1 i e!us-& f f^s-uVus8&

5U†~s!
1

~2p!2 E ds9dt dt8
eis9~ t2t8!

s2s91 i e
e2 isteis8t8VI~ t !VI~ t8!U~s8!.

~4.16!
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Closing the contour in the upper half plane ins9 to include the pole ats95s1 i e requirest
.t8 ~for t,t8, the contour must be closed in the lower half plane and vanishes!; the result, for
t.t8, is 22p iei (s1 i e)(t2t8), so that

f^suVG0~s1 i e!Vus8& f52
i

2p
U†~s!E

2`

`

dtE
2`

t

dt8ei ~s82s!t8VI~ t !VI~ t8!U~s8!.

~4.17!

For s5s8, as enforced by~4.10!, the exponential factor is unity.
To see how the rest of the series goes, we calculate

f^suVG0~s1 i e!VG0~s1 i e!Vus8& f

5
1

~2p!3 U†~s!E dt dt8dt9ds9ds-
ei ~s92s!tei ~s-2s9!t8ei ~s82s-!t9

~s2s91 i e!~s2s-1 i e!

3VI~ t !VI~ t8!VI~ t9!U~s8!, ~4.18!

where the internal factorsU(s9), U(s-) cancel. Now, as above,

E ds9
eis9~ t2t8!

s2s91 i e
522p ieis~ t2t8!, t.t8,

and is otherwise zero. The integral overs- then yields

E ds-
eis-~ t82t9!

s2s-1 i e
522p ieis~ t82t9!, t8.t9,

and is otherwise zero, so we conclude that a nonzero result requirest.t8.t9, and in this case

f^suVG0~s1 i e!VG0~s1 i e!Vus8& f

5
i 2

2p
U†~s!E

2`

`

dtE
2`

t

dt8E
2`

t8
dt9VI~ t !VI~ t8!VI~ t9!U~s8!ei ~s82s!t9; ~4.19!

the last factor again becomes unity under the restrictions5s8. The general result for the serie
is

f^suSus8& f5d~s2s8!U†~s!H 12 i E
2`

`

dtVI~ t !1
~2 i !2

2!
TE

2`

`

dt dt8VI~ t !VI~ t8!

1
~2 i !3

3!
TE

2`

`

dt dt8dt9VI~ t !VI~ t8!VI~ t-!1¯J U~s!, ~4.20!

whereT indicates that the operations must be time-ordered under the integrals. The terms
bracket in~4.20! are the expansion of

Saux5T~e2 i *2`
` VI ~ t !dt!, ~4.21!

so that~4.1! is proven.
We have constructed the incoming and outgoing subspacesD6 in ~2.6!. It is essential for

application of the Lax–Phillips theory that these subspaces be orthogonal, i.e., for evef 1

PD1 , f 2PD2 , that (f 1 , f 2)50. If

f 15V1 f 0
1 ,
03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



in
ation;

t is
e for

l
ces

s
se in
the
estab-

he

llips
ime-

8067J. Math. Phys., Vol. 41, No. 12, December 2000 Quantum mechanical resonances

Downloaded 
f 25V2 f 0
2 , ~4.22!

mapped from functions inD0
6 , we see that the orthogonality condition is

~ f 1 , f 2!5~ f 0
1 ,V1

21V2 f 0
2!50. ~4.23!

We now show that theS-matrix leaves the support of the functions inD2 in the incoming
representation invariant,1 and therefore the orthogonality condition is satisfied. As shown
~2.11!, theS-matrix in free representation transforms the incoming to the outgoing represent
we may therefore write the scalar product in~4.23! as

~ f 1 , f 2!5(
bb8

E dt dt8~ f 1utb&outf^tbuSut8b8& f in^t8b8u f 2!. ~4.24!

Now,

f^tbuSut8b8& f5E dsds8eiste2 is8t8
f^sbuSus8b8& f

5E dseis~ t2t8!Sbb8~s!5Sbb8~ t2t8!. ~4.25!

The functionS(s)bb8 is analytic in the upper half plane; it may have a null cospace, bu
otherwise regular. Its singularity lies in the lower half plane. To find the nonvanishing valu
Sbb8(t2t8), we must close the contour in the lower half plane. This can only be done ift8.t. For
t8,t, one must close in the upper half plane, and thereS(s) has no singularity, so the integra
vanishes. HenceSbb8(t2t8) takesD2 to D2 in the incoming representation, and the subspa
D1 andD2 are orthogonal.

We finally remark that theS-matrix, in themodelspace, has the form

m^tauSut8a8&m5(
bb8

E dsds8m^tausb& f f^sbuSus8b8& f f^s8b8ut8a8&m

5(
bb8

E dsm^tausb& fU
†ba~s!Saux,aa8Ua8b8~s! f^sb8ut8a8&m

5
1

2p E dseis~ t2t8!~e2 iH 0t!aa9Ua9b~s!U†ba-~s!

3Saux,a-a iv
Ua ivb8~s!U†b8av

~s!~e2 iH 0t8!ava8*

5d~ t2t8!Saux,aa8, ~4.26!

where we have used~3.34! and the fact thatH0 commutes withSaux. In the model space,Saux acts
at a givent, and multiplication byd(t2t8) constitutes the lift of this operator to the Lax–Phillip
theory. This result illustrates the conclusion of Ref. 4, that for a Hamiltonian that is pointwi
t, the Lax–PhillipsS-matrix has no nontrivial analytic structure in the model representation. In
free spectral representation, however, it has the nontrivial analytic structure necessary for
lishing the relation between the singularities ofS(s) and the spectrum of the generator of t
semigroup.

V. THE LEE–FRIEDRICHS MODEL

In this section, we work out a specific illustrative example for application of the Lax–Phi
theory, a model which corresponds, in the Lax–Phillips framework, to the well-known t
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independent soluble model of Friedrichs and Lee.17 We shall study a problem with a
t-independent rank one potential in the Lax–Phillips Hilbert space, constructed in such a wa
the analytic structure of the resolvent is similar to that of the standard Lee–Friedrichs mod

The Lee–Friedrichs model for scattering and resonances,17,23 in the framework of standard
nonrelativistic scattering theory, is characterized by a HamiltonianH5H01V for which H0 has a
bound state with eigenfunctionf and eigenvalueE0 embedded in an absolutely continuous sp
trum on ~0, `!, and for whichV has matrix elements only from the discrete bound state to
generalized eigenfunctions on the continuum. The vanishing of continuum–continuum m
elements corresponds to the assumption, often a good approximation, that there are no fin
interactions.

For the Lax–Phillips Lee–Friedrichs model, we take the operatorV of ~3.4! to have nonva-
nishing matrix elements only between a distinguished vectorwPH̄ and^s, bu. We do not require
that w be an eigenfunction ofK0 since K0 must have absolutely continuous spectrum~as the
generator of translations on the free translation representation!. Since the potential is rank one, th
wave operator~4.2! exists. The relation~4.10! then applies. With our assumption onV, we may
now compute theS operator directly. The matrix element ofT(z) is

f^sbuT~z!usb8& f5 f^sbuVusb8& f1 f^s,buVuw&^wuG~z!uw&^wuVusb8& f , ~5.1!

where we study only the part diagonal ins for use in~4.10!.
We must therefore calculate the reduced resolvent^wuG(z)uw&. To do this, we use the secon

resolvent equation~4.7!:

^wuG~z!uw&5^wuG0~z!uw&H 11E ds(
b

^wuVusb& f f^sbuG~z!uw&J , ~5.2!

where we have taken into account the rank one property ofV. We then shall need an expressio
for f^sbuG(z)uw&. Using again the relation~4.7!, one finds

f^sbuG~z!uw&5 f^sbuw&1E ds8(
b8

f~sbuG0~z!us8b8& f f^s8b8uVuw&^wuG~z!uw&. ~5.3!

Substituting this result into~5.2!, we find

^wuG~z!uw&5^wuG0~z!uw&H 11E ds(
b

^wuVusb& f f^sbuG0~z!uw&

1E dsds8 (
b,b8

^wuVusb& f f^sbuG0~z!us8b8& f f^s8b8uw&^wuG~z!uw&J .

~5.4!

SinceK0 is multiplication bys in the free translation representation,

f^sbuG0~z!us8b8& f5d~s2s8!dbb8

1

z2s
,

and we may therefore write~5.4! as

H ^wuG0~z!uw&212E ds(
b

u^wuVusb& f u2

z2s J ^wuG~z!uw&511E ds(
b

^wuVusb& f f^sbuw&
z2s

,

~5.5!
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from which one may solve for the reduced propagator^wuG(z)uw&. This structure is very similar
to the usual Lee–Friedrichs model. By specializing our example further, we can in fact brin
model into close coincidence with that model. Let us suppose that, forK05E1H0 ,

K0uw&5E dE8~E81m!uE8m&mm̂ E8muw&, ~5.6!

and, furthermore, that the support ofm^E8muw& is very sharp in the neighborhood ofE850.24 We
have takenw to be an eigenfunction of 1̂H0 with eigenvaluem, and with no support on the
continuous spectrum ofH0 ~in the auxiliary space!. Consider the matrix element

f^sbuK0uw&5E dE8~E81m! f^sbuE8m&m m̂ E8muw&5s f^sbuw&. ~5.7!

For the support interval ofDE8!m aroundE850, f^sbuw& is therefore strongly concentrated
s>m. Hence, the reduced free propagator is approximately given by

^wuG0~z!uw&5E ds(
b

u^wusb& f u2

z2s
>

1

z2m E ds(
b

u^wusb& f u25
1

z2m
. ~5.8!

Equation~5.5! then becomes

H z2m2E ds(
b

u^wuVusb& f u2

z2s J ^wuG~z!uw&51, ~5.9!

since the last term on the right reduces, in this approximation, to

E ds(
b

^wuVusb& f f^sbuw&
z2s

>
1

z2m E ds(
b

^wuVusb& f f^sbuw&

5
1

z2m
^wuVuw&50.

The formula~5.9! is precisely of the form of the standard Lee model; substituting this form
into Eq. ~5.1! one obtains the scattering amplitude. TheS-matrix pole then coincides~within the
small width given tô sbuw&! with that of the standard Lee–Friedrichs model if the spectral we
function u^wuVusb& f u2 coincides with that of the usual model~after summing overb!. This result
is similar to that obtained for the relativistic quantum field theoretical Lee–Friedrichs m
where the sharpness of the pole position is determined by the mass width of the initial~unstable!
particle.25

VI. CONCLUSIONS AND DISCUSSION

An exact semigroup evolution law~exponential decay!, corresponding to an irreversible pro
cess, can be achieved within the framework of a microscopic quantum theory if the Hilbert
carries a natural foliation along an axis in its measure space on which the wave function mo
translation, under the full unitary evolution, in a special class of~translation! representations. The
foliation of such a space is assured by a theorem of Sinai16 when there are distinguished incomin
and outgoing subspacesD6 which are stable under forward~backward! unitary evolution. Lax and
Phillips developed a complete theory of such systems for the case of classical hyperbolic~wave!
equations for scattering on a bounded target.1 Flesia and Piron2 showed that the quantum mechan
cal Hilbert space can be extended, by a direct integral construction over the time variable, t
a structure in which the Lax–Phillips theory can be applied. In a succeeding study,4 it was shown
that a necessary condition for a nontrivial Lax–Phillips theory, for which the singularities o
S-matrix in the spectral variable constitute the spectrum of the generator of the semigroup,
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the evolution operator act as a smooth~operator-valued! integral kernel on the time axis in the fre
translation representation. We have shown in this work that apointwise~in t! dynamical evolution
operator in what we have called the model representation, in which the Hamiltonian of a s
and the time variable appear with their usual laboratory interpretation, maps into a smooth
trivial kernel in the free translation representation, and therefore satisfies this necessary con

We have discussed the essential difference between the Lax–Phillips theory and the
lation of the unstable system problem in the conventional framework. The existence of a fo
parameter in the description of a state permits the construction of subspaces in which the re
generator of motion is not self-adjoint, therefore admitting semigroup evolution3 ~see also discus
sion in Ref. 26!.

We have shown that the subspacesD6 may be constructed from the wave operators, int
twining the full and unperturbed Lax–Phillips evolution operators, applied to functions
definite half-line support properties on thet axis. The orthogonality of these subspaces follo
from the analytic properties of theS-matrix.

We have furthermore shown that the Lax–PhillipsS-matrix is equivalent to theS-matrix of the
standard scattering theory~for the pointwise time-dependent case as well! by a unitary transfor-
mation which is parametrized by the Lax–Phillips spectral variable. This unitary transform
arises from the transformation from the model representation to the free spectral represe
~the Fourier transform of the free translation representation!. There is considerable freedom i
choosing such a function, which has the property, upon analytic continuation to the uppe
plane, of bringing theS-matrix to a form in which there is a nontrivial null cospace, correspond
to the eigenvectors of the resonant state~these points are conjugate to the resonant poles in
lower half plane!. Since these vectors lie in the~auxiliary! Hilbert space, they may be used
compute expectation values of the usual dynamical variables, such as position, moment
angular momentum. Such properties are not available for the generalized functions obtained
method of constructing Gel’fand triples15 or the dilation analytic methods.20,21

The work of Lee, Oehme, and Yang11 and Wu and Yang,11 assuming an effective Hamiltonia
analogous to the Wigner–Weisskopf pole approximation in the form of a two-by-two
Hermitian matrix, results in an exact semigroup structure. As has been pointed out,10 deviations
due to a treatment using careful estimates in the Wigner–Weisskopf method, reflecting it
semigroup structure, could be important in regeneration processes; if, however, as the exp
tal results onK-meson decay13 seem to imply, the phenomenological parametrization of Refs
are indeed consistent to a high level of accuracy, an exact semigroup is strongly suggested,
Lax–Phillips theory could provide a useful microscopic theoretical framework.

We gave here an illustration of the method for a one channel nondegenerate Lee–Frie
model17,23 for the underlying dynamics. The illustration was worked out by assuming a rank
potential in the large Lax–Phillips spaceH̄. It is not possible to assume a point eigenval
embedded in the spectrum ofK0 , since it is the generator of translations in the free transla
representation, but the one-dimensional subspace in the domain of the potential can be ch
be an eigenvector of 1̂H0 in the model representation, with very narrow~but continuous!
support in the variableE conjugate tot; this implies a narrow support forf^sbuw& in the free
spectral representation, and the resulting model then has~with an assumption on the spectr
weight function! the same complex pole for theS-matrix as the usual Lee–Friedrichs model. Oth
applications, for example, to the two channel problem~e.g.,K meson decay!, atomic and molecu-
lar and condensed matter physics, will be discussed elsewhere.
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