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We discuss the quantum Lax—Phillips theory of scattering and unstable systems. In
this framework, the decay of an unstable system is described by a semigroup. The
spectrum of the generator of the semigroup corresponds to the singularities of the
Lax—PhillipsSmatrix. In the case of discreteomplex spectrum of the generator

of the semigroup associated with resonances, the decay law is exactly exponential.
We explain how this profound difference between the quantum Lax—Phillips theory
and the description of unstable systems in the framework of the standard quantum
theory emerges. The states corresponding to these reson@igesfunctions of

the generator of the semigrouipe in the Lax—Phillips Hilbert space, and therefore

all physical properties of the resonant states can be computed. In the special case of
a time-independent potential problem lifted trivially to the quantum Lax—Phillips
theory, we show that the Lax—Philliggmatrix is unitarily related to th&matrix

of standard scattering theory by a unitary transformation parametrized by the spec-
tral variableo of the Lax—Phillips theory. Analytic continuation in has some of

the properties of a method developed some time ago for application to dilation
analytic potentials. We work out an illustrative example of the theory using a
Lee—Friedrichs model, which is generalized to a rank one potential in the Lax—
Phillips Hilbert space. ©2000 American Institute of Physics.
[S0022-248800/00411-4

I. INTRODUCTION

There has been considerable effort in recent years in the development of the theoretical
framework of Lax and Phillips scattering thebrfor the description of quantum mechanical
systems—* This work was motivated by the requirement that the decay law of a decaying system
should be exactly exponential if the simple idea that a set of independent unstable systems consists
of a population for which each element has a probability, Eayo decay, per unit time. The
resulting exponential lawo{e™ ") corresponds to an exact semigroup evolution of the state in the
underlying Hilbert space, defined as a family of bounded operators on that space satisfying

Z(t)Z(ty)=Z(t1+ty), ()

wheret,, t,=0, andZ(t) may have no inverse. If the decay of an unstable system is to be
associated with an irreversible process, then its evolution necessarily has the pfbdgryrhe
standard model of Wigner and Weissk8fased on the computation of the survival amplitude
A(t) as the scalar product
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At)=(g,e My, (1.2)

wherey is the initial state of the unstable system atds the Hamiltonian for the full evolution,
results in a good approximation to an exponential decay law for valuessofficiently large
(Wigner and Weisskoffcalculated an atomic linewidth in this waybut cannot result in a
semigroup’. [This formula is applied to the transitions induced by interacting fields on states in the
Hilbert space of a quantum field theory as we$offer and Weinstein have made very careful
estimates in the Wigner—Weisskopf formulation for time-independent sy3wmasits extension

to the time-dependerthonautonomoyscase®” It is easy to seéfor example, by looking at the
time derivative of the decay transition probabilitytat0) that neither the time-independent nor
time-dependent Hamiltonian models lead to semigroup evolution.

When applied to a two-channel system, such as the decay #f%eeson, one finds that the
poles of the resolvent for the Wigner—Weisskopf evolution of the two channel system results in
nonorthogonal residues that generate interference terms, which make the nonsemigroup property
evident even for times for which the pole approximation is valid,domain in which exponential
decay for the single channel system is very accurately described by the Wigner—Weisskopf model.

The Yang—W¢d! parametrization of th&° decay processes, based on a Gamow!f/peo-
lution generated by an effectivexX2 non-Hermitian matrix Hamiltonian, on the other hand,
results in an evolution that is an exact semigroup. It appears that the phenomenological param-
etrization of Ref. 11 is indeed consistent to a high degree of accuracy with the experimental results
on K-meson decay® the effect of the nonorthogonal residues has been estimated to be large
enough to be excluded by these experiméhfBhese conclusions are independent of the short-
time behavior; the inadequacy of the Wigner—Weisskopf formulation in the usual framework
becomes evident, for the two-channel system, at times for which the pole contributions dominate
the decay amplitudes.

The Wigner—Weisskopf model results in nonsemigroup evolution independently of the dy-
namics of the system. Reversible transitions of a quantum mechanical system, such as adiabatic
precession of a magnetic moment or tunneling through a potential b¥rdidrich are not radia-
tive, could be expected to be well-described by the Wigner—Weisskopf formula.

In order to achieve exact exponential decay, methods of analytic extension of the Wigner—
Weisskopf model to a generalized space have been stlitiidee generalized states, occurring in
the large sector of a Gel'fand triple, are constructed by defining a bilinear form, and analytically
continuing a parametgienergy eigenvalyein one of the vectors to achieve an exact complex
eigenvalue. Although it is possible to achieve an exact exponential decay in this way, the resulting
(Banach spagevector has no properties other than to describe this decay law; one cannot compute
other properties of the system in this “state.” Identifying some representation of the resonant
state, it would be of interest, in some applications, to compute, for example, its localization
properties, its momentum distribution, or its mean spin.

The quantum Lax—Phillips theoR? constructed by embedding the quantum theory into the
original Lax—Phillips scattering theahy(originally developed for hyperbolic systems, such as
acoustic or electromagnetic waygslescribes the resonance as a state in a Hilbert space, and
therefore it is possible, in principle, to calculate all measurable properties of the system in this
state. Moreover, the quantum Lax—Phillips theory provides a framework for understanding the
decay of an unstable system as an irreversible process. It appears, in fact, that this framework is
categorical for the description of irreversible processes.

It is clearly desirable to construct a theory which admits the exact semigroup property, but has
sufficient structure to describe nonsemigroup behavior as well, according to the dynamical prop-
erties of the system. The quantum Lax—Phillips theory contains the latter possibility as well, but
in this work, we shall restrict ourselves to a study of the semigroup property, associated with
irreversible processes.

The scattering theory of Lax and Phillips assumes the existence of a Hilbert spade
physical states in which there are two distinguished orthogonal subspacesd D_ with the
properties
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U(n)D,CD, >0,

U(nD_CD_ <0,

1.3
U7 D.={0}, (43
T

Uunp.=*,

T

i.e., the subspaceB.. are stable under the action of the full unitary dynamical evolutign), a
function of the physical laboratory time, for positive and negative timesspectively; over alf,
the evolution operator generates a dense s@{ finom eitherD, or D_. We shall callD, the
outgoing subspacandD_ the incoming subspacwith respect to the group (7).

A theorem of Sindf then assures that can be represented as a family of Hilbert spaces
obtained by foliatingﬁ along the real line, which we shall cdt}, in the form of a direct integral

H= LHt, (1.9

where the set of auxiliary Hilbert spacg are all isomorphic. Representing these spaces in terms
of square-integrable functions, we define the norm in the direct integral $pacese Lesbesgue
measurg as

U s

wheref e H represents a vector i in terms of theL? function spacel.?(—o,,H), and f,
e H, theL? function space representirig, for anyt. The Sinai theorem furthermore asserts that
there are representations for which the action of the full evolution gral@) on
L2(—o,,H) is translation byr units. GivenD .. (theL? spaces representirf. ), there is such
a representation, called tlirecoming translation representatigrfor which functions inD _ have
support inL2(—,0H), and another called theutgoing translation representatipfior which
functions inD | have support in.?(0,,H).

Lax and Phillip$ show that there are unitary operatohs, , called wave operators, which
map elements irH, respectively, to these representations. They defing matrix,

S=w, w1, (1.6

which connects these representations; it is unitary, commutes with translations, and maps
L?(—,0H) into itself. The singularities of thiS-matrix, in what we shall define as tispectral
representationcorrespond to the spectrum of the generator of the exact semigroup characterizing
the evolution of the unstable system.

With the assumptions stated above on the properties of the subsPacasdD_, Lax and
Phillips' prove that the family of operators

Z(r) =P U(7)P_ (7=0), 1.7

whereP.. are projections into the orthogonal complement®af, respectively, is a contractive,
continuous, semigroup. This operator annihilates vectof®.inand carries the space

K=HOD,OD_ (1.9

into itself, with norm tending to zero for every elementkin
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We see from this construction that the outgoing subspagceis defined, in the outgoing
representation, in terms of support properiiiss is also true for the incoming subspace in the
incoming representationOne can then easily understand that the fundamental difference between
Lax—Phillips theory and the standard quantum theory lies in this property. The subspace defining
the unstable system in the standard theory is usually defined as the eigenstate of an unperturbed
Hamiltonian, and is not associated with an interval on a line. The subspaces of the Lax—Phillips
theory are associated with intervdle., the positive and negative half-lines in the outgoing and
incoming representationsTo see this, we remark that the opera®orU(7) is a semigroup. The
product

P+U(71)P+U(72):P+U(Tl)[1_(1_P+)]U(TZ):P+U(Tl)U(TZ):P+U(Tl+72);(1 :

this follows from the fact thall(r;) leaves the subspad2, invariant.
We now show that the generator of this semigroup is symmetric but not self-adjoint, and it is
therefore not a group. In the outgoing translation representation,

(PLU(NF)(s)=0(—9)f(s—7), (1.10

and therefore

Jf
(PKF)(8)=i0(=3) —=(s= )0, (111

wheref(s) is a vector-valued function, arid is the self-adjoint generator associated Witfir).
If we then compute the scalar product of the vector giveflidi0 with a vectorg, we find that

o

fidsg*(s)(m Kf)(s)=id(s)g* (0)f(0)+ f_wds(l% Kg)*(s)f(s). (1.12

The generator is therefore not self-adjoifit.is through this mechanism that the Lax—Phillips
theory provides a description that has the semigroup property for the evolution of an unstable
system(see also Ref.)3] It has, in fact, a family of complex eigenvalues in the upper half-plane;
the eigenfunctions are

e*sn, s=0;
fu®=10, s>0

wheren is some vector in the auxiliary space.

The semigroup property of the opera@fr) of (1.7) follows directly from the discussion
given above. It clearly vanishes on the subspace and by the stability oD, underU(r) for
=0, it vanishes oD, as well! It is therefore nonzero only on the subspagGeand on such
vectors, the operatd®_ can be omitted; the semigroup property then follows from what we have
said above.

The existence of a semigroup law for transitions in the framework of the usual quantum
mechanical Hilbert space has been shown to be unattaihatsia and Pirohfound that the
direct integral of quantum mechanical Hilbert spaces can provide a framework for the Lax—
Phillips construction for the quantum theory, resulting in a structure directly analogous to the
foliation (1.4). In this construction, it appears thdor the representation in which the free evo-
lution is represented by translation on the foliation parameter in(E§) (and for which it is
assumed thab . have definite support propertieshe full evolution of the system should be an
integral kernel in order to achieve the connection between the Lax—Ph8lipatrix and the
semigroup.
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In this work we show that the evolution operator for the physical model for the system may be
pointwise, in a representation which we shall call thedel representatigrbut in another repre-
sentation, corresponding to a different foliation, the necessary conditions for the construction of a
nontrivial Lax—Phillips theory can be naturally realized. The natural association of the time pa-
rameter in the model representation with the foliation asserted by the theorem ot®Sisaive
shall show, does not necessarily correspond to the proper embedding of the quantum theory into
the Lax—Phillips framework.

If we identify elements in the spad¢ with physical statesand identify the subspadé with
the unstable system, we see that the quantum Lax—Phillips theory provides a framework for the
description of an unstable system which decays according to a semigroup law. We remark that,
taking a vectory, in K, and evolving it under the action &f(7), the projection back into the
original state idit follows from (1.7) and the stability ofD.. thatZ(7) =P, U(7)Py as well

A(7)=(4h0,U(7)ho) = (0, PicU(7)Pictho) = (10, Z(7) tho), (1.13

so that the survival amplitude of the Lax—Phillips theory, analogous to that of the Wigner—
Weisskopf formula(1.2), has the exact exponential behavior. The difference between this result
and the corresponding expressidn?) for the Wigner—Weisskopf theory can be accounted for by
the fact that there are translation representationdfar), and that the definition of the subspace

K is rzl3ated to the support properties along the foliation axis on which these translations are
induced:

Functions in the spadd, representing the elements®f depend on the variabteas well as
the variables of the auxiliary spa¢e The measure space of this Hilbert space of states is one
dimension larger than that of a quantum theory represented in the auxiliary space alone. ldenti-
fying this additional variable with anbservablg(in the sense of a quantum mechanical observ-
able time, we may understand this representation of a statevasual history. The collection of
such histories forms a quantum ensemble; the absolute square of the wave function corresponds to
the probability that the system would be found, as a result of measurement, airimearticular
configuration in the auxiliary spade the state described by this wave funcdioire., an element
of one of the virtual histories. For example, the expectation value of the position vaxiabla
givent is, in the standard interpretation of the auxiliary space as a space of quantum states,

(P Xih)
(X)r= A (1.14

The full expectation value in the physical Lax—Phillips state, according.®, is therf

| dtwexm= [ atluloo., 15

so we see thdl,||? corresponds to the probability to find a signal which indicates the presence of
the system at the time (in the same way that is interpreted as a dynamical variable in the
guantum theory

One may ask, in this framework, which results in a precise semigroup behavior for an unstable
system, whether such a theory can support as well the description of stable systems or a system
which makes a transition following the rule of Wigner and Weissk@x, for example, the
adiabatic rotation of an atom with spin in an electromagneticfi¢ids clear that ifD.. span the
whole space, for example, there is no unstable subspace, and one has a scattering theory without
the type of resonances that can be associated with unstable systems. We shall treat this subject in
more detail in a succeeding article.

In the next section, we give a procedure for the construction of the subspaceand for
defining the representations which realize the Lax—Phillips structure. In this framework, we define
the Lax—PhillipsSmatrix. In Sec. lll, we show that this construction results in a Lax—Phillips
theory applicable to models in which the underlying dynamics is locally defined in time. We carry
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out the construction for a Flesia—Piron-type model. In Sec. IV we study the general form of the
Lax—Phillips S matrix and prove that for pointwise models it is unitarily related to the standard
Smatrix of the usual scattering theory in the auxiliary space. In Sec. V, we work out the specific
example of a generalized Lee—Friedrichs spectral mbdeid show that the model can be chosen

so that the condition for the resonance pole is well approximated by the resonance pole condition
of the Lee—Friedrichs model of the usual quantum theory. A discussion and conclusions are given
in Sec. VI.

II. THE SUBSPACES D., REPRESENTATIONS, AND THE LAX-PHILLIPS S-MATRIX

It follows from the existence of the one-parameter unitary grol(p) which acts on the
Hilbert spacel that there is an operatdt which is the generator of dynamical evolution of the
physical states irt{; we assume that there existave operatord). which intertwine this dy-
namical operator with an unperturbed dynamical operitor We shall assume th#t, has only
absolutely continuous spectrum (jp-co,0).

We begin the development of the quantum Lax—Phillips theory with the construction of the
incoming and outgoing translation representations. In this way, we shall construct explicitly the
foliations described in Sec. |. THeee spectral representatioof K is defined by

(o B|Kolg)=0(aBlg), 2.1

where|g) is an element of{ and 8 corresponds to the variabléseasure spag®f the auxiliary
space associated to each valuespfwhich, with o, comprise a complete spectral set. The func-
tions (o B|g) may be thought of as a set of functions of the variatféadexed on the variable
o in a continuous sequence of auxiliary Hilbert spaces isomorphit. to

We now proceed to define the incoming and outgoing subspcesTo do this, we define
the Fourier transform from representations according to the spectriarihe foliation variabld
of (1.5), i.e.,

(t8l)= | & (oplo)do. @22

Clearly,Kq acts as the generator of translations in this representation. We shall say that the set of
functions(tg|g) are in thefree translation representation

Let us consider the sets of functions with support ir<)0and in (—«,0), and call these
subspace®, . The Fourier transform back to the free spectral representation provides the two
sets of Hardy class functions

(oBlas)= [ et eplog)aten. 23

for go €Dy .
We may now define the subspac®s in the Hilbert space of state)]. To do this we first
map these Hardy class functionskhto , i.e, we define the subspac®y by

f % loB)s {oBlgg)doeDy . (2.9

We shall assume that there are wave operators which interjneith the full evolutionkK,
i.e., that the limits

lim e'K7e Ko=), (2.5

r—*ow
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exist on a dense set iH. [We emphasize that the operatérgenerates evolution of the entire
virtual history, i.e., of elements ift{, and that these wave operators are defined in this larger
space. These operators aret, in general, the usual waugéntertwining) operators for the per-
turbed and unperturbed Hamiltonians that act in the auxiliary space. The conditions for their
existence are, however, closely related to those of the usual wave operators. For the existence of
the limit, it is sufficient that forr— +o, ||[VeKo"¢|| -0 for a dense set ir{. For a time-
dependent potential which falls off rapidly for lardte the time translation induced kg, can
provide this result. However, for a time-independent potential which has sufficiently fast falloff in
space, the evolution generated Ky (for example, in the Piron—Flesia fofni,= —id,+H,,
whereH, may be identified with the usual quantum mechanical free Hamiltdnéam also move
the support of a wave packet on space in the same way as for the usual quantum theory, out of the
potential region, as the function is translated simultaneously ont ties. In this case, the
condition for existence of the wave operators coincides with that of the usual theory, and up to a
unitary operator(to be discussed belgwthe wave operators coincide with those of the usual
quantum theory. The free evolution may induce a motion of the wave packet in the auxiliary space
out of the range of the potentiéh the variables of the auxiliary space in the model representa-
tion), as for the usual scattering theory, so that it is possible to construct examples for which the
wave operator exists if the potential falls off sufficiently rapidily.

The construction ofD.. is then completed with the help of the wave operators. We define
these subspaces by

D,=Q.Dy,
D_=Q_Dy . (2.6)

We remark that these subspaces are not produced by the same unitary map. This procedure is
necessary to realize the Lax—Phillips structure nontrivially; if a single unitary map were used, then
there would exist a transformation into the space of functiond. #n-,%,H) which has the
property that all functions with support on the positive half-line represent elemefits pénd all
functions with support on the negative half-line represent elemerit3 oin the same represen-
tation; the resulting Lax—Phillip§-matrix would then be trivial. The requirement tlfat andD_
be orthogonal is not an immediate consequence of our construction; as we shall see, this result is
associated with the analyticity of the operator which corresponds to the Lax—PBHirzgrix.

In the following, we construct the Lax—Philliggmatrix and the Lax—Phillips wave opera-
tors.

The wave operators defined (8.5 intertwineK andKg, i.e.,

KQ.=0.Kg; (2.7

we may therefore construct the outgoifigcoming spectral representations from the free spectral
representation. Since

KQi|0',3>f:QtKo|‘Tﬁ>f:O'Qt|‘7ﬁ>fa 2.9
we may identify

|a’,8)?r‘1“=Qi|aﬂ>f. (2.9

The Lax—PhillipsSmatrix is defined as the operator, bh which carries the incoming to out-

going translation representations of the evolution operdtdBupposey is an element ofH; its
incoming spectral representation, according2d®), is

n(oBlg)=oBlQ-1g). (2.10
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Let us now act on this function with the Lax—Phillifsmatrix in the free spectral representation,
and require the result to be tleitgoingrepresenter og:

out<oﬂ|9>=f<oﬁlﬂzlg>=Jdo'Z {oBlSle’ )0’ 8107 0g), (219
B!
where S is the Lax—PhillipsS-operator(defined on??). Transforming the kernel to the free

translation representation with the help(@f2), i.e.,

1 . .
f(tB|S|t,B’)f:Wf dodo’e ™"t (oB|Sla’ B')r, (2.12

we see that the relatiai2.11) becomes, after using Fourier transform in a similar way to transform
the in and out spectral representations to the corresponding in and out translation representations,

ou1<tﬁ|9>=f<tﬁlmlg>=fdt'Z {tBISIt By (t' B'| Q7 g)
,B,

= [ oS s aslo. 213
Hence the Lax—Phillip&-matrix is given by
S={(tBISIt' B" )}, (2.14
in free translation representation. It follows from the intertwining prop€&ty) that
(oBlSlo’ B')i=8(c—0")SP (). (219
This result can be expressed in terms of operatorg{omet
wot={(tBlQ 7 (2.1
be a map fron?{ to H in the incoming translation representation, and, similarly,
wit={(t|0 7, (2.17
a map fromH to H in the outgoing translation representation. It then follows fi@13 that
S=w;'w_, (2.18

as a kernel on the free translation representation. This kernel is understood to operate on the
representer of a vectqy in the incoming representation and map it to the representer in the
outgoing representation.

We now discuss a class of pointwise physical models, and return in Sec. IV to the construction
of the Lax—PhillipsS-matrix for this class of models.

lll. POINTWISE PHYSICAL MODELS

It has been shown by Pirdithat if (the symbol—ig, stands, in this context, for the operator

on’H which acts on the familyH,} as a partial derivative in the foliation paramet&r —ié,, and
K+id, have a common dense domain on which they are essentially self-adjoint, then there exists
an operator H, defined as the self-adjoint extensioK ¢fi 9, , which is a decomposable operator

onH, that is, (H))¢=H: ;. We therefore have, on this common domain,
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K=—ig+H, (3.0

corresponding to an evolution which acts pointwisé (as in the well-known Floquet theory, used
primarily for studying periodic time-dependent problem&/e shall identify the representation in
which this analysis is carried out with what we have calledrtiozlel representation

In this section, we show that physical models of this type, for which the evolution is defined
pointwise in time(in the model representatipnwhich provide a straightforward way of lifting
problems in the framework of the usual quantum theory to the Lax—Phillips structure, satisfy the
requirements imposed by Eisenberg and Horita the structure of a nontrivial Lax—Phillips
theory, i.e., that the evolution be represented by a nontrivial kernel in the free translation repre-
sentation.

Consider a class of models for nonrelativistic quantum theory characterized by the standard
Heisenberg equatiorisontext should avoid confusion between the symbol H for the Hamiltonian
and the designation of the auxiliary Hilbert spade

dx__ dP__
a—l[H,x], a—l[H,p], (3.2

in terms of operators defined on a Hilbert sp&tevhere
H=Hy+V. (3.3

In case there is an explicit time-dependence/iaV(t), for example, in a model in which the
interaction that induces instability is turned on at some finite laboratory time, it is often convenient
to formally adjoin two new dynamical variabléas done, for example, by Pirband Howland®),

T, andE, along with an evolution parameteito replace the role of the parameten (3.2) (T,
denotes the time operator in the space in which we construct the dynamical model of the system;
such a time operator exists because the spectruf isf taken to be(—,«0)). The evolution
operator may then be considered “timé%-independent, i.e., we define, as operators on a larger

spaceﬁ (and thus identify H with the decomposable operato(3rl))

K=E+H=Ky+V, (3.9)
where
Ko=E+ Hy, (3.5
and
[Tm.E]=i. (3.6)

Then, Egs(3.2) become

dx__ »
E_—l[K,x]—l[H,x],

o
3o =i[K.pI=i[H.pl, @7

and

dE ]
E:|[K,E]=|[H,E],
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dTm . B
F_l[KuTm]_l[E-Tm]_l- (3.8

The first of (3.8) implies, since H is independent of, that®

dE A4 3g

E_ E! ( . )
and the last of3.8) putsT,, andrinto correspondence, i.e., the expectation valu€pfjoes with
7. The evolution of the system is, however, generated by the operator

U(r)=e ¥, (3.10

corresponding to the Lax—Phillips evolution assumedlid). The extension we have constructed
(by the inclusion of the operatoi&,, andE) enables us to embed the nonrelativistic Heisenberg
equations into the Lax—Phillips theory, in a way equivalent to the Flesia—Piron direct integral. The
conditions that they impose, thetandK have a common dense domain, results, by means of the
Trotter formula, in the conclusion that H acts pointwise in the spectral decompositiop.ofhis
result gives(3.4) a precise meaning. Thd€, shares this common domain follows from the
requirement thaV be “small.” °

We shall label the spectral representation of the operBipby the subscripin, so that for

1//677,
m{te|Kol$) = —id; m(tal¥) +m(talHol9), (3.1

where{a} corresponds to a complete set in {la@ixiliary) Hilbert space associated toWe shall
assume that flhas not dependence. We shall assume for the remainder of this sectiol ikat
diagonalin t, so that

ntalHo9) =2 HE nta’| ), (3.12

and

m(talV]) =2 Ve (tnta’| ). (3.13

We therefore see explicitly that the Hilbert space associated to the action of the operator H may be
identified in this case with the auxiliary space of the Lax—Phillips theory, and the larger space,

representing the action d%,, andE (along withH), with the function spacg or the abstract space

H of the Lax—Phillips theory, as in th@lirect integral construction of Flesia and Pirén.
The free spectral representation discussed in Sec. Il is constructed by requirikg thmathis
representation, act as multiplication. As(ii1), we label this representation with subscifipand

require, forge H,

H{oBIKolp) =0 oBl|¥), (3.19

where{g} corresponds to a complete set in {laeixiliary) Hilbert space associated t§ and may
have discrete or continuous values. This relation defines the free spectral representation.
The free translation representation is then givenag), i.e.,

Bl [~ e foplnao (315

Downloaded 03 Nov 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http:/jmp.aip.org/jmp/copyright.jsp



8060 J. Math. Phys., Vol. 41, No. 12, December 2000 Strauss, Horwitz, and Eisenberg

One obtains, from{3.11)—(3.14), the relation

m<ta|KO|0':B>f:U'm<ta|0':8>f: —idy m<ta|0':8>f+2 Hga, m<ta’|0':3>f . (3.1

Making the transformation

m(taloB) =€ N (taloB)s, (3.17)
the relation(3.16) becomes
iat?n<taloﬁ>f=§ HE™ (ta' o)y, (3.18
or
?n<ta|oﬂ>f=§ (e7Mohy=e’ (0a’|oB)s (3.19

The solution(3.19 of (3.18 is norm-preserving i, and thereforé,(ta|oB); are not elements

of H (the integral of the modulus squared oveliverges. This norm-preserving evolution reflects
the stability of the system under evolution induced By. The factore'“ in (3.17) imbeds

physical states intéi. To see this, consider the norm aftaly),

| &S lnftal= [ dodorat S et talop)t
@ app’

XO(talo’ By o Blp)* (o' B'|¢)

:j dtdodo’ D, e (0= )t(g iHotyaa"s g=iHot)aa”
a..B’

Xp(0a'|aB)F I0a"|o' Bt (o Bl)* (o' B'|¥).  (3.20

Carrying out the sum oved, the unitary factors cancel, leaving,. ,». The t-integration then
forms a factor 2r§(o—o'), permitting a sum o' =a”. We show below that, from the uni-
tarity of ((ta|oB);, it follows that the indices in,(0a|oB); label orthonormal sets in the aux-
iliary spaces attached to=0 ando, for eacho, i.e.,

> %0.a'|oB)r%0a’ |aB )= 84 40,

’
a

and therefore the final integral anand sum ong can be carried out i3.20):

| 403 Iosln=1

On the other hand, i3.19 were to provide the complete representation,

’ "
a,a’

2 (e—iHOt)aa'*(e—iHot)aa" m<0(1’|l//)* %<0a77|¢):2 |21<0a'|(//)|2 (32])

is bounded but independent fan integral ovet would then diverge.
We now remark that since
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(ople” oy =e"177 (oY), (3.22
it follows from (2.2) that

i(tBle™oTy) = f doe! =7 (o Bly) = (t— 7.8l ¥), (3.23

making explicit the translation induced By, in this representation, as is evident frégl) (or the
first of (3.16)). It then follows that

KtBIKo| )= —d (1Bl ¥), (3.2

and(3.16 becomes, in the free translation representation,
m{ta|Kolt' B)i=idy m<ta|t/ﬁ>f:_iatm<ta|t,ﬁ>f+z HeY w(ta'|t'B),  (3.29
or
(Gt de)ntalt! B)1= 2 HE n(te |t/ B):. (326

It is clear from(3.26) that the transformation function(te|t’8);, from the representation in
which T, is diagonal,

Tm=j dt>) [ta)mt m(tal, (3.27

to that for which the free time operator

Tf:f dt% tB) st (18] (3.28

is diagonal, cannot be a function bf-t’ alone(in particular, proportional ta5(t—t")), if the
right-hand side 0f3.26) is not zero. We see that the existence of a nontrivial relation of the type
(3.26), in which Hy plays a fundamental role, is necessary in order that the free and model
translation representations be distinct.

To find the general solution @B.26), let

m<ta|t,ﬂ>f:fa'8(t+ !t—)y (329)
where
_t’it 33
S (330

Then,(3.26) becomes
iat+fa’8(t+ ’t—):E Hgalf“'ﬁ(u ),
with solution

feB(t, t_)=D, (e Hotsyaa'fa'Bgt ), (3.3))

!
a
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Thet, dependence of this function is determinedHby; thet  dependence is, as can be seen
from (3.26), completely undetermined by the dynamics of the system, and is at our disposal. It
therefore follows that

m<ta|013>f:2 f dt'eio—t’(eiiHotJr)aa,fa’ﬁ(o,t,)

— 2 dtreia't’(e—iHOt)aa"(e—iHO(t'—t)/2))a"a'fa'ﬁ(0’t_)
a’a”

— 2 d(tr_t)eio'teio(t’7t)(e7iHot)aa"(efiH0(t’7t)/2)a”a’fa’ﬁ(0,t7)_ (332)

ron
o

We now define

uaﬁ(a)zmj dteot(e Hotl2yaa’ta' B 1/2), (3.33

so that(3.32 becomes

1 B H ’ !
m(ta|a'B>f=T2 g7l (e Matyaa'ya'p(g), (3.34
T o
It then follows that
U (o) =27 (0a|oB); . (3.39
The unitarity relations for the transformation functig@ta|oB); imply the unitarity of
U*f(o):
3 [ dtioltanntalo’ ),
1 —iot  a—iHptyaa x| 1o’ Bx io't  a—iHgtyaa”
=5 2 dte '7(e "0 U ()€ (7MY U yug
=8(a—a') D UB*(g) U (o)
so that
> U () U (o) =44 . (3.36
Moreover,

S [ doitalos) (oBlt'a’)s
B

1 H ! H " H ’ " "
:E z dO.eIU'(t—t )(e—IHOt)aa (e—lHot )ala///*ua B(O_)Ua B*(o_)
Ba”a’”

= 5(t—1t')8,, . (3.37)

Now, suppose that, o’ correspond tdgeneralizefleigenstates dfl; then,(3.37) becomes
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5(t—t')5w,=%% fdae‘W-Ea)te-“”—Ea')"uaﬁ(a)ua'ﬂ*(a). (3.39
Multiplying (3.38 by e™'"! and integrating ovet, we obtain
e—ivtlaaa,:e—i(V‘FEa—Ea’)t/% UHB(O')UQI'B*(U)M:EHV:
for every v. This relation implies thaE,=E,/, so that
o =2 U0V (). (3.39

The transformation functiop(ta|oB);=e€'"' %(ta|oB); constitutes a map from the spectral
family associated witfT,,, represented by the kefit ).} to the spectral representation K,
represented by the ketkor8)¢}. We can think of this map in two stages, the first frdfw) .} to
a standard fram 8" )o} (projection in the auxiliary space of the free representation, then a map
(lift) from this to the foliated frame§ o)} according to

m(taloB)i=> w(talB oo B'loB)s, (3.40
P

with the property(3.17) due to the contraction witi 8'|o8);. Then,(3.39 can be written as

U(a) =272 w(0alB oo B'|oB)s. (3.41
ﬁ!
Let us define the unitary map
(a|B'Y=\27 (0a| B0, (3.42
so that
UP' B(a)=o(B'|oB)i= 2 (B'|a)U*P(a) (3.43

corresponds to a transformation in “orientation” of the representation from the standard one, in

the isomorphic auxiliary spaces. The maﬁ/ﬁ(a) from a standard frame to a frame varying with
o has the geometric interpretation of a section of a frame bundle, as reflect@d@n

IV. THE S-MATRIX FOR POINTWISE MODELS

In this section we define the Lax—Phillips wave operators for the pointwise models discussed
in the previous section, and compute Benatrix (based on the intertwining df andK;,). We
show that the Lax—Phillip&matrix is, in this case, simply related to tematrix of the usual
scattering problenibased on the intertwining dfi andHg) by the unitary operatot (o). This
operator acts in a way similar to that of the dilation used by Aguilar and Cchkese also
Simorft) where analytic continuation i distorts the continuous spectrum of the Hamiltonian,
exposing the resonance poles on the first sheet.

We show in the following that the spectrally diagonal operéi‘éﬁ'(o) for pointwise models
has the form

SPE (g)=UP* (o) (S’ ya' A (g). 4.0
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Here,U*#(o) is the operator on the auxiliary space defined &85, andS**is the Smatrix of
the usual scattering theory defined HyH, in the auxiliary space.
To see this, we study the opera®in the form

S=01'0_=lim__ eo7e~2KreKor, 4.2

which can be expressed as
S=Ilim o ef dTefere|Kore72|KfelKor
€— 0
< d . L
:f dT _ _e—E’T eIKOTe—ZIKTeIKOT
0 dr
:1_if dT{elKoTVe—ZIKTeIKoT+eIKo’Te—2|K7’VeIK0’T e €T (4.3)
0

In the free spectral representation, we therefore have

f<o_B|S|O_/B/>f:5(0__0_1)5,6,8’_if de<O'B|Vei(U+(r,_2K+i6)T+ei((r+0,_2K+iE)TV|O"ﬁ’>f
0

! !

=5(a—a')5ﬁ’ﬁ'+%f<aﬁ|VG(G+20 +ie|+G UJ;U +ie|V]o'B')s,
(4.9
where we use the definitions
G(2)= L, Go(2)= : (4.9
z—K z—Kj
We now define the operafdr
T(2)=V+VG(2)V=V+VGy(2)T(2), (4.6
where we have used the second resolvent equation
G(2)=Gp(2) +Go(2)VG(z2)=Gp(2) + G(2)VGy(2). 4.7
Since
T(2)Go(2)=VGy(2) +VG(2)VGy(2)=VG(2), (4.8
and
Go(2)T(2)=Gy(z2)V+Gy(2)VG(2)V=G(2)V, (4.9

it follows that
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o’ oto’
{op|Sla’ B'Yi=8(oc—a') PP + - f<(r,8|T( +I€)Go 5 tie
G +o' . T oto’ .
+Go| —5—tie 5 tie lo’ B’ )
8 ") &PF + + 127 ie) o
- (U U) o—0' +ie o —o+ie f<0-ﬁ| le |UB>f
=8(o— o' {6 —2mi(aB|T(a+ie)| B )} (4.10

We remark that by this construction, we see tﬁ%ﬁ'(a) is analytic in the upper half plana o.
To complete our demonstration @f.1), we expandl (z) (assuming that the series convernges
using(4.6), as
T=V+VGy(2)V+VGy(2)VGy(2)V+.... (4.11

The matrix elements of therefore involve

(B’ B = [ 4D (oBlta) V(0" oiter|o ). (412

From (3.34), we obtain

1 . ’ ’ ot
(B’ By =5= 3, [ atel” OB (v U o), 413

whereV,(t) is the interaction picture form fov in the standard scattering theory,

Vuza (t)_ E (elHot)aa Vuz"u/”(t)( —IHOt)uz”'a'. (414)

a"a"

It is convenient to write(4.13 as an operator-valued kernel on the auxiliary space in the free
spectral representatiqsuppressing the explicit indices of the auxiliary space.,

1 -
f<(T|V|cr'>f=%f dte @ ~ YT o)V, (1)U(a"). (4.15
Since

(o' |Gy(o+ie)|o")i= 8o’ —d"),

o—o' +ie
it follows that

f<U|VGo(0+i6)V|U'>f=f do"da” ((a|V|o")i(0"|Go(a+i€)[a")1(a"|V]o")

e| o’ (t—t")

=UT(0) e iotel"ty () V(1) U(a").

fdo dtdt' ————

(2m)*
(4.16
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Closing the contour in the upper half plane dfi to include the pole at”"= o +ie requirest
>t’ (for t<<t’, the contour must be closed in the lower half plane and vanisttes result, for

t>t’, is —2mie (riat-t) so that

i o t o,
f<a'|VG0(0'+i6)V|U'>f=—ZUT(U)f_ dtf_ dt’e' @ IV (H)V, (1)U (a").
(4.17
For o=¢’', as enforced by4.10, the exponential factor is unity.
To see how the rest of the series goes, we calculate
(o|VGy(a+i€)VGy(a+ie)V|o');
1 . i(o’"*a')tei(tr"’*tr")’['ei(o"*U"')t"
= 2m?Y (")f dtdvdtde”do" — s e

XV, (H)V,t")V,(t")U (o), (4.18

where the internal factord (o), U(o™) cancel. Now, as above,

"(t—t")
" = — 27 io(t—t") >t/
f do"—— p a'”+| mTie , >t

and is otherwise zero. The integral ov€f then yields

Ig’/l(t/ t”)
H ! n
do” i :_z,n_iel(r(t —t )’ t,>t",
f o—oc"+ie

and is otherwise zero, so we conclude that a nonzero result requités-t”, and in this case

(o|VGy(o+i€)VGy(o+ie)V|o
i2 *© t ! H ! "
=ZUT(0)f dtf olt'ft dt"V,(t)V,(t")V,(t")U(c")e @~ (4.19

the last factor again becomes unity under the restriatiens’. The general result for the series
is

(— i)?

f<a|s|a’>f=5(o—cr’)UT(a){1—iF dtV,(t)+ Tf dtdt'V,(t)V,(t")

N3 rw
Sl 3,) Tji dtdt'dt”V,(t)V|(t’)V,(t”’)+---’U(cr), (4.20

where 7 indicates that the operations must be time-ordered under the integrals. The terms in the
bracket in(4.20 are the expansion of

Sauxzﬂe_ifiwv|(t)dt), (42])

so that(4.1) is proven.

We have constructed the incoming and outgoing subspBce# (2.6). It is essential for
application of the Lax—Phillips theory that these subspaces be orthogonal, i.e., forfevery
eD,,f_eD_, that (f,,f_)=0.If

=0,
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fo=Q_fg, (4.22
mapped from functions i, , we see that the orthogonality condition is
(f,.f)=(f;.,Q3'Q f5)=0. (4.23

We now show that the&Smatrix leaves the support of the functions Tn. in the incoming
representation invariantand therefore the orthogonality condition is satisfied. As shown in
(2.11), the Smatrix in free representation transforms the incoming to the outgoing representation;
we may therefore write the scalar product(fh23 as

(f2.f)=> | dtdt (f.|tB)ous(tBISIt' B Yn(t' B']F-). (4.24
BB’

Now,
{tBISIt' B )= f dodo’e e (o B|S o’ B' )
= J doe' 7t (o) =SBB (t—t"). (4.25

The functionS(c)##" is analytic in the upper half plane; it may have a null cospace, but is
otherwise regular. Its singularity lies in the lower half plane. To find the nonvanishing value for
Sﬁﬁ'(t—t’), we must close the contour in the lower half plane. This can only be dahe tf For
t'<t, one must close in the upper half plane, and tt&re) has no singularity, so the integral
vanishes. Hencsﬁﬂ'(t—t’) takesD_ to D_ in the incoming representation, and the subspaces
D, andD_ are orthogonal.

We finally remark that th&matrix, in themodelspace, has the form

w(ta|Slt' a"yn="2 | dodo’ (taloB)i(aB|S o’ B (o' Bt @ )
BB’

=3 | dontaloB) U (o) U E () (Bt a' )

m

BB
1 . I3 H " ”
:ZJ da.elo(tft )(eleot)aa ue B(O.)UT,Ba (O’)

m_iv

x Sauxa” @ Uai”ﬁ'(o_)UTB'aU(O_)(efiHot’)aUa'*
= 3(t—t') e’ (4.26

where we have use@.34 and the fact thatl, commutes witi§*"% In the model space&®* acts

at a givent, and multiplication bys(t—t") constitutes the lift of this operator to the Lax—Phillips
theory. This result illustrates the conclusion of Ref. 4, that for a Hamiltonian that is pointwise in

t, the Lax—PhillipsS-matrix has no nontrivial analytic structure in the model representation. In the
free spectral representation, however, it has the nontrivial analytic structure necessary for estab-
lishing the relation between the singularities ${fo) and the spectrum of the generator of the
semigroup.

V. THE LEE-FRIEDRICHS MODEL

In this section, we work out a specific illustrative example for application of the Lax—Phillips
theory, a model which corresponds, in the Lax—Phillips framework, to the well-known time-
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independent soluble model of Friedrichs and Eeewe shall study a problem with a
7-independent rank one potential in the Lax—Phillips Hilbert space, constructed in such a way that
the analytic structure of the resolvent is similar to that of the standard Lee—Friedrichs model.
The Lee—Friedrichs model for scattering and resonahc@dn the framework of standard
nonrelativistic scattering theory, is characterized by a HamiltoHiaH,+V for whichH, has a
bound state with eigenfunctiop and eigenvalu&, embedded in an absolutely continuous spec-
trum on (0, «), and for whichV has matrix elements only from the discrete bound state to the
generalized eigenfunctions on the continuum. The vanishing of continuum—continuum matrix
elements corresponds to the assumption, often a good approximation, that there are no final state
interactions.
For the Lax—Phillips Lee—Friedrichs model, we take the operdtof (3.4) to have nonva-
nishing matrix elements only between a distinguished vegtef{ and(c, S|. We do not require
that ¢ be an eigenfunction oK, since K, must have absolutely continuous spectr(ams the
generator of translations on the free translation representaBarce the potential is rank one, the
wave operatof4.2) exists. The relatiort4.10 then applies. With our assumption ) we may
now compute thes operator directly. The matrix element ©{2) is

{oBIT(@)| o) i=aBIV|aB' )i+, BIV]e){(e|G(2)|e)e|VIe)t, (5.9
where we study only the part diagonal anfor use in(4.10).

We must therefore calculate the reduced resolyen&(z)|¢). To do this, we use the second
resolvent equatiod.?):

(2|G(2)|¢)=(|Go(2)| ®)

1+ [ 4o (oMo (oplC@le) | 62

where we have taken into account the rank one property. dVe then shall need an expression
for {{aB|G(z)|¢). Using again the relatiot¥.7), one finds

f<0'ﬂ|G(Z)|QD>:f<O',3|‘P>+J do' Y, (0B|Go(2)|a’ B )ir(o” B'|V|e)(¢|G(2)|¢). (5.3
<~

Substituting this result int¢5.2), we find

(¢|G(2)|@)=(e|Go(2)| ) 1+f dUZﬁ (¢|VIoB)i{oBIGo(2)| @)

+J dUdU’BEB, (¢lVIoB)i{aBlGo(2)|a’ B )ir{o’' B'|@){e|G(2)] @)} -
(5.9
SinceK, is multiplication by o in the free translation representation,
f<(7/3|Go(Z)|U,,3/>f:5(0—0’)5/;,5”%,

and we may therefore writ€s.4) as

[<¢|Go<z>|¢>-l— [ 40> |<<P|ZV|__U@|] (el6@le)=1+ [ dr3 <¢|V|af_>ff<aﬁ|¢>,
B o g o
(5.9
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from which one may solve for the reduced propagdtgiG(z)|¢). This structure is very similar
to the usual Lee—Friedrichs model. By specializing our example further, we can in fact bring this
model into close coincidence with that model. Let us suppose thak ferE+H,,

Kole) = [ dE/(E" +m]E/m)pof '), 56
and, furthermore, that the support&fE’'m|¢) is very sharp in the neighborhood Bf = 024We

have takeny to be an eigenfunction of @H, with eigenvaluem, and with no support on the
continuous spectrum dfi, (in the auxiliary space Consider the matrix element

o B|Kole)= f dE'(E'+m)(oB|E'm)ny o E'M| @)= o((oB|e). (5.7)

For the support interval cAE’<m aroundE’ =0, (o8| ¢) is therefore strongly concentrated at
o=m. Hence, the reduced free propagator is approximately given by

2 1 1
(olotale)= [ arS KO L [0S (elopi= 69
Equation(5.5) then becomes
\Vj 2
g S

since the last term on the right reduces, in this approximation, to

f doS (e|VIoB) (oBle) _

B Z—0O0

[ 403 (elvios) (ople)

S—mlelVie)=0.
The formula(5.9) is precisely of the form of the standard Lee model; substituting this formula
into Eq. (5.1 one obtains the scattering amplitude. Thenatrix pole then coincide&vithin the
small width given to{o8|¢)) with that of the standard Lee—Friedrichs model if the spectral weight
function |(¢|V|oB)|? coincides with that of the usual modgifter summing ovep). This result
is similar to that obtained for the relativistic quantum field theoretical Lee—Friedrichs model,
where t2r15e sharpness of the pole position is determined by the mass width of the(umgedble
particle:

VI. CONCLUSIONS AND DISCUSSION

An exact semigroup evolution lagexponential decagy corresponding to an irreversible pro-
cess, can be achieved within the framework of a microscopic quantum theory if the Hilbert space
carries a natural foliation along an axis in its measure space on which the wave function moves by
translation, under the full unitary evolution, in a special clas@raihslation representations. The
foliation of such a space is assured by a theorem of Simaien there are distinguished incoming
and outgoing subspac@&s,. which are stable under forwattackward unitary evolution. Lax and
Phillips developed a complete theory of such systems for the case of classical hypevbwkc
equations for scattering on a bounded tafgéesia and Pirchshowed that the quantum mechani-
cal Hilbert space can be extended, by a direct integral construction over the time variable, to form
a structure in which the Lax—Phillips theory can be applied. In a succeedingsituggs shown
that a necessary condition for a nontrivial Lax—Phillips theory, for which the singularities of the
Smatrix in the spectral variable constitute the spectrum of the generator of the semigroup, is that
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the evolution operator act as a smo@tperator-valuedintegral kernel on the time axis in the free
translation representation. We have shown in this work thptimtwise(in t) dynamical evolution
operator in what we have called the model representation, in which the Hamiltonian of a system
and the time variable appear with their usual laboratory interpretation, maps into a smooth, non-
trivial kernel in the free translation representation, and therefore satisfies this necessary condition.

We have discussed the essential difference between the Lax—Phillips theory and the formu-
lation of the unstable system problem in the conventional framework. The existence of a foliation
parameter in the description of a state permits the construction of subspaces in which the restricted
generator of motion is not self-adjoint, therefore admitting semigroup evofutse® also discus-
sion in Ref. 26.

We have shown that the subspad2s may be constructed from the wave operators, inter-
twining the full and unperturbed Lax—Phillips evolution operators, applied to functions with
definite half-line support properties on thexis. The orthogonality of these subspaces follows
from the analytic properties of th&matrix.

We have furthermore shown that the Lax—Phillfsgatrix is equivalent to th&matrix of the
standard scattering theoffor the pointwise time-dependent case as wajl a unitary transfor-
mation which is parametrized by the Lax—Phillips spectral variable. This unitary transformation
arises from the transformation from the model representation to the free spectral representation
(the Fourier transform of the free translation representatidhere is considerable freedom in
choosing such a function, which has the property, upon analytic continuation to the upper half-
plane, of bringing thé&-matrix to a form in which there is a nontrivial null cospace, corresponding
to the eigenvectors of the resonant stdteese points are conjugate to the resonant poles in the
lower half plang. Since these vectors lie in tHauxiliary) Hilbert space, they may be used to
compute expectation values of the usual dynamical variables, such as position, momentum, or
angular momentum. Such properties are not available for the generalized functions obtained in the
method of constructing Gel'fand triplEsor the dilation analytic method$:?*

The work of Lee, Oehme, and YaHgnd Wu and Yang! assuming an effective Hamiltonian
analogous to the Wigner—Weisskopf pole approximation in the form of a two-by-two non-
Hermitian matrix, results in an exact semigroup structure. As has been point&Ydaviations
due to a treatment using careful estimates in the Wigner—Weisskopf method, reflecting its non-
semigroup structure, could be important in regeneration processes; if, however, as the experimen-
tal results ork-meson decdy seem to imply, the phenomenological parametrization of Refs. 11
are indeed consistent to a high level of accuracy, an exact semigroup is strongly suggested, and the
Lax—Phillips theory could provide a useful microscopic theoretical framework.

We gave here an illustration of the method for a one channel nondegenerate Lee—Friedrichs
model”?*for the underlying dynamics. The illustration was worked out by assuming a rank one
potential in the large Lax—Phillips spadé. It is not possible to assume a point eigenvalue
embedded in the spectrum Kfy, since it is the generator of translations in the free translation
representation, but the one-dimensional subspace in the domain of the potential can be chosen to
be an eigenvector of @H, in the model representation, with very narrdiput continuous
support in the variabl& conjugate tot; this implies a narrow support fgo8|¢) in the free
spectral representation, and the resulting model then(lwdk an assumption on the spectral
weight function) the same complex pole for tf&matrix as the usual Lee—Friedrichs model. Other
applications, for example, to the two channel probleng.,K meson decay atomic and molecu-
lar and condensed matter physics, will be discussed elsewhere.
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