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We consider the quantum meehanical behavior o f  a driwm particle in an infinite 
1D potential well We show that the quantum dynamics o f  the system is induced 
by the delicate nontrivial properties o f  the momentum operator in this case, 
namely, its non-sel~:ad]ointness. Using this, we calculate the f irst  order contribu- 
tion to the cross section and the energy gain, and discuss their classieal limit. 

1. I N T R O D U C T I O N  

In this paper we consider the quantum mechanical behavior of a driven 
particle in an infinite potential well. We discuss the proper way to apply a 
perturbative expansion to the system, and explain in detail the origin of the 
failure of the more naive approach. Our treatment applies also to strong 
fields in the high frequency limit. We now turn to a concise qualitative 
description of our approach. 

Applying a gauge transformation, one can show that the Hamiltonian 
can be written as a function of the operators P and p2 alone with time- 
dependent coefficients. Thus, it seems that the Hamiltonian commutes with 
itself for different times, and one may simply integrate over the time to get 
the evolution operator. The resulting evolution operator for a complete 
period (and a number of periods as well) behaves as one which follows 
from an integrable Hamiltonian. Moreover, for a properly chosen periods 
i.e., a proper choice of the start (and end) point, the complete period 
behavior is exactly the same as that of the unperturbed well. 
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This result is physically unacceptable. It is well known (1'2) that the 
quantum dynamics of a system corresponds to its classical dynamics for 
time periods which scale (at least) like ln(1/h). This result can be rigorously 
proved using the path-integral formulation of the expansion around the 
WKB limit. Accordingly, since the classical driven particle experiences a 
chaotic motion, one should expect the quantum dynamics to show some 
features that resembles this chaotic (diffusive) behavior in the short time 
limit (although the long time limit is characterized by the energy-space 
localization which is a purely quantum mechanical effect). Nevertheless, if 
the quantum dynamics is determined by the integrated Hamiltonian, which 
is exactly equal to the one obtained from an integrable system, namely, the 
unperturbed well, it must also describe in this short time limit the classical 
dynamics related to this integrable Hamiltonian. However, the classical 
dynamics of these two are off course qualitatively different; for example, 
while the first diffuses over the whole stochastic layer, the second is energy- 
preserving. Note that the above-described derivation is exact for any value 
of hef t (the effective h). Thus one may choose it to be arbitrarily small, such 
that the correspondence time diverges. One may therefore conclude that 
the result of this derivation contradicts the well-established "log-time" 
correspondence principle. 

It turns out that the origin for this apparent contradiction is found in 
the delicate nontrivial properties of the P operator, when defined on a finite 
interval. We discuss some of the manifestations of this behavior, and 
explain in detail its implication on our derivation. It is shown that the 
seemingly trivial relation [P, p2] = 0 does not hold for a particle in an 
infinite potential well, and therefore our gauged Hamiltonian does not com- 
mute with itself at different times. An explanation of this nontrivial 
behavior is given in terms of the self-adjoint extension procedure relevant 
to our model. This unexpected noncommutativity may be of importance to 
the analysis of many other finite quantum systems. In particular, each finite 
system under the influence of an electric or magnetic fields may be influenced 
by this property. 

In order to study the effect of this noncommutativity of P and p2 over 
the dynamics, we use the explicit form of the operator [P, p2] in the 
energy basis. We then employ the time-dependent perturbation theory to 
the interaction representation of the gauged Hamiltonian, which takes into 
account an infinite number of commutators [p2, [p2, [ .... [p2, p]. . . ] ]] ,  
and obtain the first correction to the exact periodicity implied by the 
previous false derivation. Our expansion is appropriate even for cases in 
which EL = 2L, the (maximal) potential difference between the ends of the 
well, is much larger then Eo, the spacing of the energy levels in the unper- 
turbed well. The matrix elements of the perturbation are not small and, in 
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fact, the reason why the usual time-dependent perturbation theory does not 
break down is the approximate periodicity implied by the preceding wrong 
argument. We thus obtain an expression for the integral cross section, i.e., 
the probability to leave the initial state after one period of the perturbation. 
The high frequency limit of the frequency dependence of this cross section 
is O(co 4), i.e., much faster then the usual O(~ -2) asymptotics, which 
characterizes the response in the high frequency limit. 

The first-order treatment yields an infinite series for the escape prob- 
ab i l i ty - the  probability not to return to the initial state after a complete 
period, and the energy gain. We discuss the asymptotics of these series in 
the various regimes. In particular, we study the behavior in the classical 
limit, i.e., he~-~ 0, while keeping the energy fixed. We show how the 
approximate periodicity breaks down in this limit, thus furnishing the 
transition to the classically chaotic behavior. The classical limit of the energy 
gain is then compared to the corresponding classical quantity. 

The rest of this paper is organized as follows: In Sect. 2 we present the 
naive "exact" solution of the model in terms of the transverse gauge. The 
surprising result is that the effects of the ac field are cancelled out over a 
complete period. We discuss the implications of this result. In Sect. 3 we 
explain the origin of the error in this derivation in terms of the algebraic 
properties of the operators involved with respect to their self-adjoint exten- 
sion. Section 4 presents a systematic perturbative expansion around the 
limit in which the naive argument holds. This derivation is based on the 
interaction representation of the P operator. We apply time-dependent 
perturbative methods to calculate the first correction to the apparent exact 
periodicity. Asymptotic analysis of these perturbative results are discussed, 
with particular emphasis on the classical limit. Numerical results are 
presented, which verify the above perturbative derivation and test its range 
of applicability. Conclusions are given in Sect. 5. 

2. FIRST CONSIDERATIONS 

The Hamiltonian considered is 

~2 

H =  2mm + eEf(cot) X (1) 

where f ( t )  is a periodic function whose period is T=2~r/co. The wave- 
function is imposed to satisfy the boundary conditions of vanishing of the 
wave-function at the ends of the well s  0; s = L. This model has been 
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investigated classically for the case f ( t )  = cos(ot) ,  (3' 4. 6) and has been found 
to be chaotic. Using the dimensionless form, i.e., 

X = X/L, r = t (2) 

it can be shown that the classical behavior of this model depends on a 
single parameter  fl -- eE/(mco2L). However, the quantum evolution depends 
also on an additional parameter  the effective h, h~ff=h/(mo)L2). Using the 
dimensionless form, the Hamiltonian reads 

p2 
H= T +  pf(r) X (3) 

where the position representation of the scaled momentum operator  is 
P= -ihe~-(d/dx). We now transform to the transverse gauge, in which the 
Hamiltonian takes the form 

H= �89 flF(r)) 2 (4) 

with 

F(r) = dtf(t) (5) 

The lower limit of the integral is t = 0 since we choose the field to be turned 
on at t = 0, and thus the vector potential should vanish at t = 0. At this 
point, one may naively use the following argument: since the Hamiltonian 
(4) commutes with itself at different times, the Schr6dinger equation may 
be trivially integrated over r, yielding the evolution operator  U(0, r ) =  
exp( - iHen-('c )) where 

f f  P2t f~ 
Ho~r= H(t) d t = ~ - - - f l P  F(t) dt+const (6) 

The diagonalization problem for this effective Hamiltonian is rather trivial 
since for each r it is just the Hamiltonian of a particle in an infinite well 
with a gauge term, whose eigenfunctions are of the form sin(kx) exp(iT(r) x). 

A basic tool for analyzing the chaotic features of classical systems is 
the Poincar6 section. < 8) For  a time-periodic Hamiltonian system with one 
degree of freedom, the Poincar6 surface of the section is just a strobe plot, 
that is, one plots (x, p) once every period r. In particular, if the evolution 
of a system is periodic, the strobe plot will give a one-dimensional curve. 
On the other hand, if the evolution is chaotic, the trajectory will spread 
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over a two-dimensional region. Accordingly, most of the research interest 
in the field of quantum chaos was directed to the study of the Floquet 
operator, which determines the quantum time evolution of periodic systems 
for times which are integer in the driving force period units. 

Apparently, one sees that for our model, namely, the driven one- 
dimensional potential well, the explicit form of the Floquet operator can be 
easily obtained from Eq. (6) to be 

2~  

F= Ho~-(r = 2g) = p27~ -t- tiP fo dtF(t) + const (7) 

One obtains that the stroboscopic behavior of the system is rather trivial, 
i.e., equivalent to that of a particle in an infinite well subjected to a con- 
stant electric field. Moreover, for an appropriate choice of the function 
f(o)t), e.g., f ( r )  = cos(r), the gauge term vanishes, and the Floquet operator 
has no interaction dependence. 

The above result is completely unacceptable physically, since it con- 
ta'adicts the correspondence principle for arbitrary short times (with respect 
to h). In particular although the classical particle in the well reaches (in 
general) a completely different point in phase space after one period of the 
perturbation, we have just shown that the quantum particle develops into 
the state it should have been developed in the absence of the perturbation. 
Thus, according to the correspondence principle, for h-~ 0 the quantum 
mechanical state should correspond to two different classical states, i.e., 
those points in phase space to which the system arrives in the presence and 
in the absence of the driving force. This ambiguity manifests the apparent 
breakdown of the correspondence principle (at least) for times of order of 
the period, no matter how small is h. We therefore turn now to discuss the 
origin of the failure of our derivation. 

3. ALGEBRAIC PROPERTIES OF THE P O P E R A T O R  

In order to find the problematic point in the above arguments, we 
state explicitly the assumptions made above. Apart from simple algebra, we 
used two basic relations i.e., 

[X, P] = ihe~r, [p, p2] = 0 (8) 

The first assumption was used to perform the gauge transformation, and 
the second in the statement that the gauged Hamiltonian (4) commutes 
with itself for different r's. 
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It seems that these two relations are well established. The first is the 
basic principle of quantum mechanics, whose failure leads to the breakdown 
of the whole method of canonical quantization in the system. The second 
assumption is just a manifestation of the associativity of operator multi- 
plication. However, this second assumption turns out to be false, as we 
now explain in detail. 

The simplest way to realize the failure of the relation [P, p2] = 0  is 
through the matrix representation of these operators in the energy basis of 
the unperturbed well. The matrix elements of these matrices are given by 

(p2)m" 2 2 2 = he~.n m 5m~ (9) 

( ~ , 4 m n r n ~ n  ihen ~ - - - 2 ,  m + n odd 
P.,n = - (10) 

m + n even 

One clearly sees that these matrices do not commute. In fact the com- 
mutator gives 

( [ p2, p ] ),,, = _ 4ih 3effTc2mn ( 1 1 ) 

In terms of this matrix representation, the reason for the unassociativity of 
the matrix multiplication is that this multiplication involves summations 
which do not absolutely converge, and thus the sum depends on the order 
of summation. However, since one expects operators to be associative, the 
question still holds whether this strange result really manifests an operator 
property (and if so, why?), or is only an artifact of the particular basis 
used. 

First, we note that the P operator possesses some delicate properties 
when restricted to a finite interval. Physically, due to the uncertainty 
principle and the finite size of the well, an exact measurement of the 
momentum is impossible, and thus there is no eigenstate of P in the Hilbert 
space, as can be seen also by applying the appropriate boundary conditions 
to the differential eigenvalue problem. Moreover, it can be easily seen that 
since P is canonically conjugate to X, it generates spatial translations. Thus 
its domain is restricted to functions which do not leave the well for 
infinitesimal translations. A well-known criterion for the commutativity of 
two operators is the existence of a basis in which the two of them are 
diagonal. As we have seen, P has an empty spectrum and thus cannot be 
diagonalized in any basis. In particular it is not diagonal in the basis in 
which p2 is. Thus they do not commute. 

The reason for this unassociativity is as follows. The operator p2 in 
the Hamiltonian is not really defined as P .  P but rather as the self-adjoint 
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extension of this form. P itself is not an essentially self-adjoint operator 
when restricted to a finite interval, (9) and has therefore no self-adjoint 
extension. (1~ Thus, although the "bare" differential operators P and p2 
(i.e., the operators defined only on the (twice) differentiable functions 
whose derivative vanishes on the boundaries, without the self-adjoint 
extension) commute on their common dense domain, after the procedure of 
self-adjoint extension, the domain of p2 is much larger than that of P. If 
there had been such an extension for the P operator, its square would have 
been the extension of the p 2  operator (uniqueness of the extension). 
However, since due to the above (both mathematical and physical) 
reasons, P cannot be extended to a self-adjoint form, the "bare" P does not 
commute with the extended p2. 

In the next section we study the perturbative expansion with respect 
to the terms obtained due to the uncommutativity. 

4. P E R T U R B A T I V E  A P P R O A C H  

The starting point for the perturbative expansion is the dimensionless 
form of the gauged Hamiltonian 

H =  ( h e f f P - f l F ( T ) ) 2  p 2  
2 =h2n.~--2herr f lF(r)  P + const (12) 

where P here is the dimensionless momentum operator, whose matrix 
elements in the energy representation are 

( p 2 ) m  n 2 2 2 = he f rm rc ~Srn n 

( 4mn 
P,n. = t - ihen ~ - ~ n j '  

(0, 

m + n odd 

m +  n even 

(13) 

(14) 

We now take into account the fact that P and p2 do not commute, 
and treat the P term as a time-dependent perturbation to the Hamiltonian 
Ho = p2/2. We use the interaction picture in which 

Pin,,(z) = (exp .m/h~,~ p exp -- irHo/h eft) mn 

( 4mn . 2 
- ihen-~  Z-n2 exp(i~z(m - n2)), 

/ 
(0, 

m + n odd 

m +  n e v e n  

(15) 
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where ~ = hen-/r2/2. The latter equation can be derived simply by taking the 
matrix element of the whole expression in the middle of the above equa- 
tion, and applying the exponential operators to the bra and ket states 
(these are eigenstates of the exponential operators). However, another way 
to look at this equation is as a sum over the commutator  series as follows: 

(exp( izHo/he~-) P exp( -- irHo/heff) ) .... 

= L (it/2)" 
, = 0  n l [ p 2 ,  e2 , . . . [ p2 ,  P ] . . . ]  m,-, 

L 1 mn (ira)" (m 2 n2) " 
n = o n !  m 2 - - n  2 

mn 
- rn 2 _ n2 exp(i0cz(m 2 -- n2)) (16) 

It is therefore clear that in the perturbative approach one obtains an 
infinite number of commutators in the derivation, and thus the problems 
described in the previous sections are avoided. 

We demonstrate the approach for the calculation of the escape prob- 
ability, i.e., the probability to leave the initial state m after one period of 
the perturbation, to second order in ft. The amplitude for a transition to 
the n state is given by 

A ( m  --, n) = flPmn f]~ dr sin(z) exp(i0~z(rn 2 --n2)) (17) 

The escape probability (integral cross section) is therefore given by 

a = ~  I A ( m ~ n ) l  2 
n 

n 2 
= 32f12m 2 ~ (m2 _ n2) 2 

m + n o d d  

1 -- cos(2n0~(m 2 -- n2)) 
(0c2(m 2 -- n2) 2 -- 1)2 (18) 

Figure 1 presents a comparison of this first-order result for the escape 
probability and the energy gain after one period, with a full numerical solu- 
tion of the Schr6dinger equation obtained through a quality control 
Runge-Kutta  method. The agreement in both cases is quite good. 

In the following, we estimate this sum for the various relevant regimes. 
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Fig. 1. A comparison of the numerical summation of the first-order expression (full lines) 
with the numerical integration of the Schr6dinger equation (symbols). herr=0.02 and 
fl = 0.005. (a) The escape probability; (b) the energy gain. 
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4.1. Low-Energy Regime 

We first consider the regime in which the sum is appropriately 
estimated by taking the continuous limit (this regime will be defined 
precisely later), i.e. replacing the sum by the integral 

2 2 2 3o ( z - x 2 )  2 ( ( x Z - z ) 2 - 1 )  2 dx (19) 

where z = 0~m 2, and x was defined through x = x/~ n. We now consider two 
different subregimes. For  z ~ 1, one may estimate the integral by its value 
for z = 0, which is I = 4.663 .... The condition for replacing the sum by the 
integral is that the spacing of the summation points, i.e., 2 x//~, is suf- 
ficiently small compared to the scale of changes in the function f ( x ) .  In this 
subregime this condition is equivalent to xf~ ~ 1. This, together with the 
condition z ~  1, implies E = 2 z o ( r c 2 ~  1. Thus the regime in which the 
integral approach is appropriate is the low-energy regime. However, where 
z ~ 1, the condition x//~ = x / ~ / m  ~ 1 holds trivially since m, the quantum 
number, is a positive integer, m >~ 1. Thus the limit z ~ 1 is relevant only to 
the low-energy regime. 

For  the z > 1, one should notice that the integrand in (19) is a highly 
peaked function around the region x 2 = z _+ 1 (see Fig. 2). The maximum of 
the function is obtained at x 2 = z and its value is 292z, while for x 2 = z + 1 
the integrand is ( g z / 2 ) ( z  + 1), i.e., about a one-fourth of the maximum. The 
decrease of the function away from this region is O((x 2 -  z) 6), and thus 
one may neglect the contributions to the integral from any region other 
than the maximum. The width of the peak is therefore approximated by the 
distance between the two points x 2 = z +_ 1 i.e., A = 1/x/~. Thus one obtains 
for the z > 1 regime the estimate I ~ 2;~ 2 X//z. Numerical integration shows 
that while the z dependence of the integral is as stated above, a more 
accurate value of the coefficient is 

I=14 .8044x /~  (20) 

The condition for the validity of the integral approximation in this case is 
that the spacing of the sum is less than the peak width, i.e., 2 x /~  ~ 1/xS, 
which implies E = 2zo~/g 2 ~ 1. 

Accordingly, the following results for the escape probabilities in the 
low-energy limit are obtained: 

~6.8058flZE/h~/~ 2, z ~ 1 
a = ~9.7268,62E3/Z/h~ ' z ~> 1 

(21) 
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The function/(x), the integrand used for the integral approximation, for various 
values of z. The function is scaled by a factor 1/z. 

In Fig. 3 we show the results of a numerical summation of the 
l st-order series, compared to the two asymptotes. The transition between 
the two regimes is clearly seen. 

The nature of the transition from the extreme quantum regime where 
the system is almost periodic (as implied by the wrong argument of Sec. 2) 
to the classical regime where the dynamics turns out to be chaotic over 
larger and larger time scales can now be clearly seen. As one approaches 
the classical limit herr --+ 0, the approximate periodicity of the system is lost, 
since the escape probability, i.e., the deviation from periodic behavior, 
diverges as hen- approaches zero. One may also define the time scale after 
which the periodicity is ruined as the inverse of the escape probability, i.e., 

%hao,io ~ T/a (22) 

and this time scale vanishes in the classical limit. It is interesting to note 
that while the existence of an upper limit (in time) for the correspondence 
principle to hold is well established and discussed in recent years, {1, 2) the 
system under consideration exhibits the opposite type of behavior, i.e., a 
lower bound on the time in which correspondence holds. 

825/27/2-2 
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Fig. 3. Exact summat ion  of the first-order expression for the escape probability, compared 
to the two asymptotes. The stars correspond to the exact summat ion results and the lines to 
the asymptotes. The (dimensionless) energy is 5 . 10  5. 

We now apply similar arguments to the calculation of the energy 
change of the driven particle after one period. This quantity has a concrete 
classical meaning and thus this example may further clarify the nature of 
the classical limit. Moreover, the energy absorption of the quantum well is 
also an experimentally measurable quantity, and thus one may study 
experimentally the complete transition from the extreme quantum regime 
to the classical limit, by changing the parameters of the well such that hen" 
is in the appropriate regime. The arguments concerning the integral estima- 
tions are quite similar to those described above, and the results are 

~ 20.426flZE/x//~a-, z ~ 1 
AE = [ 17.772/~2x/@ ' z >> 1 (23) 

Figure 4 shows the energy gain per period as a function of hen', obtained 
from a numerical summation of the appropriate l st-order sum. The two 
asymptotes are also indicated on the graph, and the agreement seems quite 
good. 
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Fig. 4. Same as the previous figure for the energy gain. The thick line corresponds to exact 
summation results and the straight thin fines, to the asymptotes. 

One can clearly see that for a fixed energy E, as he~ ~- ~ 0, z = E/hen. 
approaches infinity. Thus the relevant regime to the classical limit is the 
second one, in which the quantity converges to the well-defined limit AE 
(classical) = 17.77232:4,62 w/-E. In Fig. 5 Monte. Carlo calculation for the 
local diffusion constant as a function of fl is presented. The functional form 
is indeed O(fl 2) as implied by the quantum calculation, and the value of the 
coefficient (scaled by ,~/@)is. 17.77 _+ .04. 

We wish to note here one more point. Considering the high-frequency 
limit of this problem, it is clearly seen that  while ~o >> 1, both hee and fl 
approach zero. Thus, the pertubative, classical-limit calculation holds and 
one may conclude that the high-frequency asymptote of  the absorption is 
O(o) 4) rather than the usual O(e) 2). This is another manifestation of the 
approximate periodicity of the system in the extreme quantum regime. 

4.2. High-Energy Regime 

As we have shown above, in the high-energy regime or~ly the limit 
z >> 1 should be considered. We can then maintain the picture of a highly 
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Fig. 5. The energy gain after one period, as obtained from averaging over 8.107 classical 
paths at energy E =  5 .10  -5. The best fitted coefficient is 17.77--0.04. 

peaked function f(x) as in the low-energy case. However, here the function 
values are taken in large steps compared to the peak width. Since the decay 
o f f ( x )  away from the peak is extremely fast, we can approximate the sum 
by the contribution of the closest points, i.e., n = m _  1. This implies (for 
simplicity we assume that the initial state m is not close to the ground 
state, m >> 1) 

32f12E 
a -- h2ffre2(2re2 E _ 1) ~ (1 - cos(zd x / / ~ ) )  (24) 

The E dependence of a (hen" fixed) is presented in Fig. 6, as obtained from 
summation of the first-order series. The transition between the three dif- 
ferent regimes is clearly seen. For  low energies, z ~ 1 and the behavior is 
O(E). In the intermediate regime E is still small, but z is large and one 
obtains an O(E 3/2) dependence [See Eq. (21)]. For  E >  1 the oscillatory 
behavior of Eq. (24) dominates. The peaks height decays like E 1, as 
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Fig. 6. The escape probability ~r/fl 2 as a function of E. The effective h value is 0.02. The right 
dotted line corresponds to the maximum values in the high-energy regime, as obtained 
through the closest-points approximation. The other lines correspond to the two low-energy 
asymptotes. 

implied by Eq. (24). The straight  dot ted  line cor responds  to the funct ion 

64f12E 
h~-rc2(2rc2E- 1 )2 

and passes th rough  the m a x i m a  obta ined  f rom Eq. (24). 
A similar analysis is done  for the energy absorpt ion.  Again, we 

calculate the classical limit o f  the q u a n t u m  result and get 

A E  - 16E(2 v / ~  rc 2 sin 2re 2 x / ~  (2Tc2E-- 1) -- (2re2E + 3)(1 -- cos 27c 2 V / ~ ) )  
(2rceE - 1 ) 3 

(25) 

This result is ob ta ined  using just  the above  analytical  a rgument  and m u c h  
tedious but  s t ra ight forward series expansions.  
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5. C O N C L U S I O N  

The ac-driven particle in an infinite potential well is considered. This 
system, which is classically chaotic presents a rich quantum behavior. 

In the first sections we have shown that all the nontrivial properties of 
the system are related to the fact that in the infinite potential well the rela- 
tion [p ,  p2] = 0  does not hold. If it did, the evolution would become 
exactly periodic, which contradicts the chaotic behavior in the classical 
limit. It is worth noting that here the classical limit depends upon some 
noncommutativity property, which seems to be a pure quantum-mechanical 
effect. 

Apart from being crucial for the analysis of our system, the noncom- 
mutativity of P and pZ may turn out to be of importance in many cases in 
which the response of quantum wells and other finite quantum systems to 
electric and magnetic fields is studied. 

In the second part of the paper, a perturbative expansion around the 
limit in which the system is periodic was developed. The various regimes 
were considered, and the analytical estimates for the different asymptotes 
were obtained. These were tested with respect to an exact summation. The 
classical limit was also discussed. It was shown how the approximate peri- 
odicity breaks down as hea---+ 0. A classical limit for the absorption was 
obtained from the classical limit of the quantum calculations, and it was 
shown that it agrees with the classical result obtained from integrating the 
classical equations of motion. 

Finally we note that this system, including all the various regimes 
above, is experimentally realizable, using quantum wells radiated by a 
laser. Different values of the width of the well and the laser frequency 
control the parameters het~" and fl such that the whole parameter space is 
accessible. The influence of perturbations caused by impurities and imper- 
fections in the well, dissipation due to phonon excitation, finiteness or 
distortion of the well, motion in the plane of the well, and even electron 
electron interactions were discussed in Ref. 11 and subsequent works, and 
it is claimed that the one-particle, 1D, ideal system effects can in fact be 
realized. 
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