
Antiresonance and localization in quantum dynamics

I. Dana, E. Eisenberg, and N. Shnerb
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 13 July 1995; revised manuscript received 8 July 1996!

The phenomenon of quantum antiresonance~QAR!, i.e., exactly periodic recurrences in quantum dynamics,
is studied in a large class of nonintegrable systems, the modulated kicked rotors~MKRs!. It is shown that
asymptotic exponential localization generally occurs forh ~a scaled\) in the infinitesimal vicinity of QAR
pointsh0. The localization lengthj0 is determined from the analytical properties of the kicking potential. This
‘‘QAR localization’’ is associated in some cases with an integrable limit of the corresponding classical sys-
tems. The MKR dynamical problem is mapped into pseudorandom tight-binding models, exhibiting dynamical
localization~DL!. By considering exactly solvable cases, numerical evidence is given that QAR localization is
an excellent approximation to DL sufficiently close to QAR. The transition from QAR localization to DL in a
semiclassical strong-chaos regime, ash is varied, is studied. It is shown that this transition takes place via a
gradual reduction of the influence of the analyticity of the potential on the analyticity of the eigenstates, as the
level of chaos is increased.@S1063-651X~96!02711-0#

PACS number~s!: 05.45.1b, 71.10.2w, 72.15.Rn

I. INTRODUCTION

The study of ‘‘quantum chaos,’’ i.e., understanding the
‘‘fingerprints’’ of classical chaos in quantum mechanics
@1,2#, has led to the discovery of a variety of new quantum-
dynamical phenomena. Several such phenomena occur in
time-periodic systems described by the general Hamiltonian

H5H01H1f ~ t !, ~1!

whereH0 is some time-independent Hamiltonian,H1 is a
perturbation, and f (t) is periodic with period T,
f (t1T)5 f (t). In many cases,f (t) is chosen, for simplicity,
as a periodic delta functionf (t)5DT(t)[(s52`

` d(t2sT),
giving the well-known class of ‘‘kicked’’ systems. Represen-
tative models in this class are the kicked rotor@3–12#, the
kicked Harper model@13#, and the kicked harmonic oscilla-
tor @14#.

The quantum dynamics of time-periodic systems~1! is
governed by their quasienergy~QE! spectrum~i.e., the spec-
trum of the one-period evolution operator!. Different proper-
ties of the QE spectrum lead to quantum-dynamical phenom-
ena having, in general, no classical analog. A classic
example is the quantum suppression of chaotic diffusion in
the kicked rotor~KR! @3#, accompanied by quasiperiodic re-
currences@5#. An important interpretation of this phenom-
enon has been given@6,7# by showing first that, in the
angular-momentum representation, the QE eigenstates of the
KR satisfy the equation describing a one-dimensional~1D!
tight-binding model with pseudorandom disorder. This pseu-
dorandomness is generic, as it exists for almost all~irratio-
nal! values of a scaled~dimensionless! \, which we denote
here byh. It was found@15# that in several interesting cases
pseudorandom tight-binding models exhibit localization
properties similar to those of truly random ones~Anderson
localization! @16#. Assuming the general occurrence of this
localization, it follows that, generically, the QE eigenstates
are exponentially localized in angular momentum and the
QE spectrum is pure point. This localization in pseudoran-
dom tight-binding models, equivalent to quantum-dynamical

systems with nonintegrable classical counterparts, is called
dynamical localization~DL! @17#. The quantum suppression
of diffusion in the KR is an immediate consequence of DL.
Despite the fact that DL has no classical analog, there exists
a remarkable and simple relation between the classical
chaotic-diffusion coefficientD in the KR and theasymptotic
DL length j in the semiclassical regime~sufficiently small
h): j'D/2 @3,7–9#. For nongeneric, rational values ofh, in
all the kicked systems the phenomenon of quantum reso-
nance occurs@4#, i.e., the quadratic increase of the energy
expectation value with time. This phenomenon is due to an
absolutely continuous QE spectrum, exhibiting a band struc-
ture.

In this paper, DL is approached in the light of a different
kind of phenomenon for systems~1!: exactlyperiodic recur-
rences. This phenomenon is defined, in general, by

Up5e2 ib, ~2!

whereU is the one-period evolution operator for~1!, e2 ib is
some constant phase factor~a c number!, andp is the small-
est positive integer for which~2! is satisfied. ThuspT is the
recurrence period. As it will become apparent in this paper,
the phenomenon~2! may occur, in general, only for very
special values ofh and it is thus nongeneric. In fact, for the
general class of systems introduced in this paper, it occurs
precisely at values ofh5h0 corresponding to quantum reso-
nances@4# in the kicked systems. At the same time, this
phenomenon, manifesting itself in bounded, periodic varia-
tion of expectation values, is diametrically opposite to quan-
tum resonance. We shall therefore refer to~2! as to thequan-
tum antiresonance~QAR! phenomenon.

While this phenomenon is nongeneric, we show in this
paper that, for a large class of nonintegrable systems, it is
generally accompanied by a very interesting effect: In the
immediate vicinity of QAR~infinitesimal h2h0), asymp-
totic exponential localizationwith a pure-point QE spectrum
takes place. The existence of this ‘‘QAR localization’’ is
rigorously established in the framework of a self-consistent
approach, which allows for an exact determination of the
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asymptotic localization lengthj0. For h050, the QAR lo-
calization is associated with an integrable limit of the classi-
cal Hamiltonian. On the other hand, values ofh0Þ0 usually
correspond to the strong quantum regime of a nonintegrable
Hamiltonian, exhibiting chaotic diffusion.

As in the case of the KR and other systems@6–8,10,11#,
we show that our class of systems can be mapped into tight-
binding models with pseudorandom disorder~for h suffi-
ciently irrational!. DL is then expected to occur generically
in our systems. Forh infinitesimally close toh0, the tight-
binding models arenot defined, so that QAR localization
cannotbe viewed, strictly speaking, as a kind of DL. How-
ever, if h is sufficiently irrational and close toh0, one ex-
pects DL to take place and to exhibit approximately the same
features as those of QAR localization. In particular, the DL
length j should be well approximated by the QAR-
localization length j0, and one expects thatj→j0 as
h→h0. We provide strong numerical evidence that this is
indeed the case. Sincej0 can be determined exactly, this
seems to be the first case where a DL lengthj can be found
with arbitrary accuracy in nonintegrable systems.

We also study the dependence ofj on h2h0 for h not
very close toh0. This allows one to understand the transition
from QAR localization to DL in regimes basically different
in nature from QAR. Values ofh sufficiently far fromh0
may correspond to semiclassical regimes of local or global
chaos. As already mentioned, the semiclassical regime of
global chaos in KR systems is characterized by the approxi-
mate relationj'D/2 @3,7–9#. Calculations ofj for the KR
were performed@7,8# by applying the method of minimal
Lyapunov exponent@18# to an equivalent pseudorandom
tight-binding model. The method is based on a finite trunca-
tion of the ~generally infinite! vector of hopping constants,
so that only the first N neighbors are kept. Then
j5 limN→`1/gN , wheregN is the minimal Lyapunov expo-
nent of a 2N-dimensional symplectic map associated with
the truncated model. We show that the truncated model has,
for all N, a well-defined dynamical equivalent exhibiting
QAR. Then, by studying numerically the dependence ofgN
on bothN and h, we show that the transition from QAR
localization to DL in a semiclassical strong-chaos regime
takes place via a gradual reduction of the influence of the
analyticity of the system on the analyticity of the eigenstates,
as the level of chaos is increased.

In the simple case ofN51, i.e., a nearest-neighbor pseu-
dorandom ‘‘Lloyd model,’’ we derive theexact relation
j05D/2. Since many numerical calculations indicate thatj
is independent ofh for such a model~see, e.g., Refs.@7,15#!,
this is strong evidence that the relationj5D/2 holds exactly
for the corresponding dynamical system. A lengthy deriva-
tion of this relation was given in Ref.@9#, based on the as-
sumption that the pseudorandom disorder can be replaced by
a truly random one~this gives the usual Lloyd model@19#!.

The paper is organized as follows. In Sec. II, we discuss
some basic aspects of the QE spectrum at QAR and consider
special cases of QAR occurring in ordinary KR systems. In
Sec. III, we introduce the general class of modulated kicked
rotors~MKRs! and determine values ofh,h0, where QAR of
period p51 occurs forarbitrary kicking potentials~more
general cases of QAR, of periodsp51 andp52, are con-
sidered in Appendix A; in Appendix B, we study QAR of

arbitrary period for integrable versions of the MKRs!. We
show, on the basis of a self-consistent approach, that for
infinitesimal h2h0 asymptotic exponential localization
takes place, with a pure-point QE spectrum. This spectrum
and the QE states are determined from an effective Hamil-
tonian with a periodic potential and the localization length
j0 is fixed by the analytical properties of this potential. If
h050, the effective Hamiltonian turns out to be precisely an
integrable limit (T→0) of the classical MKR Hamiltonian.
In Sec. IV, we consider cases for which exact and closed
results concerning QAR localization~e.g.,j0) and the asso-
ciated QE spectrum can be obtained. Using these results, we
provide strong numerical evidence that QAR localization is
an excellent approximation to DL sufficiently close to QAR.
In Sec. V, we show how MKR dynamical problems can be
mapped, in general, into multichannel tight-binding models
@20# with pseudorandom disorder. In Sec. VI, we study the
transition from QAR localization to DL in a strong-chaos
regime for a simple MKR system equivalent to the KR. This
study is performed by considering the minimal Lyapunov
exponentsgN for successive truncations of the corresponding
pseudorandom tight-binding model. The exact relation
j05D/2 is derived for a nearest-neighbor pseudorandom
Lloyd model. Conclusions are presented in Sec. VII. Some
of our results have been briefly reported in Refs.@21,22#.

II. QE SPECTRUM AT QAR: EXAMPLES OF QAR
IN KR SYSTEMS

An immediate consequence of~2! is that the spectrum
of U consists precisely ofp eigenvalues exp(2ivl),
l50, . . . ,p21, where the quasienergiesv l are given by

v l5
b12p l

p
. ~3!

Since the QE spectrum is finite, each quasienergy~3! must
be infinitely degenerate. An infinite set of QE states associ-
ated with QE levell is obtained by applying the correspond-
ing projection operator for the cyclic group
$eisb/pUs%s50, . . . ,p21 to all the statesC in the Hilbert space:

c l5
1

p(s50

p21

eisv lUsC. ~4!

We recall here that in the case of quantum resonance the QE
spectrum consists of a finite number of bands@4#. The finite
width of each of these bands leads to ballistic motion~qua-
dratic increase of the energy expectation value with time!. In
the QAR case, on the other hand, one has the diametrically
opposite phenomenon of periodic recurrences. This phenom-
enon has nothing to do with localized QE states, since the
infinite basis of states~4! for QE level l can be chosen, of
course, either localized or extended by properly choosing the
stateC. The periodic recurrences may be explained by say-
ing that each of thep infinitely degenerate levels in the QAR
case is the extreme limit case of a quantum-resonance band
of zero width. This point of view will become clearer by the
following examples.

A first case of QAR was noticed by Izrailev and Shepe-
lyanskii @4# in the KR. Consider the general KR Hamiltonian

54 5949ANTIRESONANCE AND LOCALIZATION IN QUANTUM . . .



H5
L2

2I
1 k̂V~u!DT~ t !, ~5!

whereL is the angular momentum,I is the moment of iner-
tia, k̂ is a parameter, andV(u) is a general periodic function
of the angleu. The evolution operator for~5!, from t520 to
t5T20, is

U5e2 i tn̂2e2 ikV~u!, ~6!

where n̂[L/\52 id/du, t[\T/2I , andk[ k̂/\. Quantum
resonances occur, in general, for rational values of
h5t/2p @4#. Consider, however, the special case of
h51/2. Using the relation

e2 ipn̂2e2 ikV~u!5e2 ikV~u1p!e2 ipn̂2, ~7!

which is easily established by comparing the Fourier expan-
sions ofV(u) andV(u1p), one finds in this case that

U25exp$2 ik@V~u!1V~u1p!#%.

Thus the condition~2! for QAR is satisfied withp52 if
V(u)1V(u1p)5b/k identically, for someb. This implies
thatV(u) must have the general Fourier expansion

V~u!5
b

2k
1 (

s52`

`

v2s11e
i ~2s11!u. ~8!

This is, of course, the case for the standard potential
V(u)5cos(u), considered in Ref.@4#. According to~3!, the
QE spectrum consists of two infinitely degenerate levels,
v5b/2,b/21p. By ‘‘switching on’’ even-harmonic compo-
nentsv2s in ~8!, the infinite degeneracy is removed and the
two levels broaden into two bands, corresponding to the ge-
neric spectrum of the 1/2 quantum resonance.

More general results can be obtained for the ‘‘linear’’
version of~5! @23#, which is, however, integrable@24#:

H5
t

T
L1 k̂V~u!DT~ t !, ~9!

wheret is now some dimensionless parameter. The evolu-
tion operator for~9! is

U5e2 i tn̂e2 ikV~u!. ~10!

The pth power ofU in ~10! can be easily given in closed
form

Up5expF2 ik(
s51

p

V~u2st!Gexp~2 iptn̂!. ~11!

Equation ~2! is now satisfied if and only if
(s51
p V(u2st)5b/k and h5t/2p5m/p, for relatively

prime integersm andp. The latter condition~rationalh) is
precisely the general condition for quantum resonance
@4,23#. The former condition gives, however, the opposite
phenomenon, i.e., the QAR. It is easy to see that this condi-
tion is satisfied only if the Fourier coefficientsvn of V(u)
satisfy

v05
b

pk
, vsp50 ~sÞ0!.

In fact, vsp (sÞ0) are precisely the Fourier coefficients that
contribute to the width of a QE band in the case ofm/p
quantum resonance@23#.

These examples show that in ordinary KR systems QAR
may occur only ifV(u) satisfies some restrictive conditions.
In the next section we shall introduce systems in which QAR
occurs forarbitrary kicking potentials, at someh5h0.

III. QAR IN MODULATED KR SYSTEMS
AND ASYMPTOTIC EXPONENTIAL LOCALIZATION

We define the general modulated kicked rotor by the
Hamiltonian

H5
L2

2I
1 k̂V~u! (

j50

M21

cjDT~ t2t j !, ~12!

whereV(u) is an analytic function ofu, cj are arbitrary
coefficients forj50, . . . ,M21, and

0<t j,t j11<T, t050, tM5T.

The Hamiltonian ~12! has the general form~1! with
f (t)5C(t)( j50

M21DT(t2t j ), whereC(t) is a periodic func-
tion with periodT, satisfying theM conditionsC(t j )5cj .
Thus~12! may be viewed as a generalized KR withM kicks
at arbitrary timest j within the basic period and modulated by
the functionC(t). The classical map for~12! is given by

Ls115Ls2 k̂cjV8~us!,

us115us1@~ ts112ts!/I #Ls11 , ~13!

where the integers is uniquely decomposed ass5rM1 j
(r is an integer and j50, . . . ,M21), ts5rMT1t j ,
Ls5L(t5ts20), andus5u(t5ts20). In general, the sys-
tem ~12! with ~13! is classically nonintegrable and exhibits
the transition from local to global chaos whenk̂ is increased,
as in the ordinary KR case@25#; see an example in Fig. 1.
The simple case ofM52, with c052c151 and t15T/2
~the ‘‘two-sided’’ KR!, was studied in detail in Refs.@21,22#.
This case may already be considered as an approximation of
sinusoidal driving potentials corresponding to ac electromag-
netic fields@26#. Better approximations should be achieved
by using the Hamiltonian~12!, with properly chosen coeffi-
cientscj . The study in Refs.@21,22# will now be extended to
the general case of~12!.

The evolution operator for~12!, from t520 to
t5T20, is

U5 )
j50

M21

exp~2 i t j n̂
2!exp@2 ic jkV~u!#, ~14!

where, for j50, . . . ,M21,

t j5
\~ t j112t j !

2I
, ~15!
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and the factors under the product sign in~14! are arranged
from right to left in order of increasingj . Now, when all the
quantities~15! are integer multiples of 2p, i.e., t j52pmj ,
one has exp(2itjn̂

2)51 identically. Then, if the coefficients
cj satisfy the condition

(
j50

M21

cj50, ~16!

we find thatU51 in ~14!, corresponding to a simple case of
fundamental QAR (p51). For simplicity, we shall restrict
ourselves in what follows to this case, characterized by the
conditionst j52pmj and~16!. More general cases, for both
periods p51 and p52, are considered in Appendix A,
where it is conjectured that QAR with periodp.2 does not
exist for the MKR Hamiltonian~12!.

WhenU51, the QE spectrum consists just of a single,
infinitely degenerate level. The natural question is then pre-
cisely how this infinite degeneracy is removed by slightly
perturbingh j near their integer valuesmj . For definiteness,
the perturbation oft j in ~15! will be made by perturbingI
nearI5I 0, leavingt j fixed. Denoting bye the corresponding
perturbation int5\T/2I , the perturbation int j is given by

e j5
t j112t j

T
e. ~17!

Using the operator identity@27#

eABe2A5B1@A,B#1
1

2!
†A,@A,B#‡

1
1

3!
@A,†A,@A,B#‡#1•••

and formally expanding the operators exp(2itj n̂
2)

5exp(2iej n̂
2) in powers of e j , we find, to first order in

e j ,

U'12 (
j50

M21

e j$ i n̂
22djk@2iV8~u!n̂1V9~u!#

1 id j
2k2V82~u!%, ~18!

wheredj5(s50
j cs and the prime onV denotes differentia-

tion with respect tou. Using~17!, the expression in~18! can
be written, to first order ine, as exp(2ieG1), where

G15@ n̂2kd̄V8~u!#21keff
2 V82~u! ~19!

andkeff5kDd. Hered̄ andDd are, respectively, the average
and standard deviation ofdj with ‘‘probability distribution’’
(t j112t j )/T,

d̄5 (
j50

M21
t j112t j

T
dj , ~Dd!25 (

j50

M21
t j112t j

T
dj
22d̄2. ~20!

Using ~20! and the definition ofdj , it is easy to show that
keff ~or Dd) is invariant under cyclic permutations of the
sequencecj @28#.

Assuming for the moment the validity of the expansion
above in powers ofe ~see the discussion below!, the QE
statesc in the limit of infinitesimale are precisely the eigen-
states ofG1,

G1c5gc, ~21!

with quasienergiesv5eg (e→0). Performing on~21! the
gauge transformation

w5exp@2 ikd̄V~u!#c, ~22!

we obtain forw, using~19!, the eigenvalue equation

2
d2w

du2
1keff

2 V82~u!w5gw. ~23!

We thus see that the QE problem for infinitesimale is just
that of a Schro¨dinger equation~23! with a periodic potential.
The spectrumg then has a band structure, but because of the
periodic boundary conditionw(2p)5w(0), only the level
with zero quasimomentum is picked out from each band.
This gives, in general, a point spectrum. Now, being the
solution of the linear differential equation~23!, w(u) is ana-
lytic at least in the domain of analyticity ofV8(u) @29#. Let
g be the smallest distance of a singularity ofV8(u) from the

FIG. 1. Chaotic orbits generated by 30 000 iterations of the
classical Poincare´ map ~13! for a M53 Hamiltonian ~12!, with
V(u)5cos(u), c05c151, c2522, andt j112t j5T/3 for all j : ~a!
local chaos fork̂50.3 and~b! global chaos fork̂50.5.
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real u axis. Then the Fourier-series expansion ofw(u) will
converge at least within an infinite horizontal strip of width
2g, symmetrically positioned around the realu axis @29#. It
follows that the Fourier coefficients ofw andc in ~22! decay
asymptotically at least as exp(2gunu). This means that in the
immediate vicinity of QAR,asymptotic exponential localiza-
tion takes place in the angular momentumn\, with localiza-
tion length j0 not larger than 1/g. In general,j0 is deter-
mined entirely by the analytical properties ofV8(u) ~see
examples in Sec. IV!.

This exponential ‘‘QAR localization’’ inL, following
from Eq. ~23!, justifiesa posteriori the expansion above in
powers ofe. In fact, the general expansion forU in ~14! can
be formally written as exp(2iG), G5( j51

` e jGj . Here the
Hermitian operatorsGj are polynomials inn̂ and derivatives
of V(u) of order not larger than 2j @the leading operator
G1 is given by~19!#. Thus the highest power ofn̂ contrib-
uted byGj appears in this expansion as (en̂2) j . This means
that by choosinge,nmax

22 , wherenmax@1/g, the eigenstates
of U ~i.e., the QE states! should be very close to those of
G1, at least within the localization domain. In the limit of
infinitesimale, the QE states should coincide with the eigen-
states ofG1. The derivation of Eq.~23! appears then to be
self-consistent.

We now show that the effective Hamiltonian~19! has a
classical counterpart in the limit of very small values of the
quantity T/I52t/\. This limit corresponds to the case of
infinitesimal values oft j in ~15!, i.e., infinitesimally close to
the special QAR pointh5t/2p50 (mj50 for all j ). Con-
sider theM th iteration of the classical map~13!, giving the
map (Ls ,us)→(Ls1M ,us1M). Taking carefully the limit
T→0 in this map at fixed (t j112t j )/T and using the condi-
tion ~16!, we obtain, after a straightforward but tedious cal-
culation, the Hamilton equations

dL

dt
52

]Heff

]u
,

du

dt
5

]Heff

]L
, ~24!

where

Heff5
\2

2I
G15

1

2I
@L2 k̂d̄V8~u!#21

~ k̂Dd!2

2I
V82~u!. ~25!

Equations~24! and ~25! show that the general MKR Hamil-
tonian~12!, with coefficientscj satisfying~16!, is integrable
in the limit T→0, as it reduces precisely to the 1D effective
Hamiltonian~25!. The latter is essentially the QAR effective
Hamiltonian ~19! and, after the canonical transformation
L85L2 k̂d̄V8(u) @analogous to the gauge transformation
~22!#, it becomes essentially the Schro¨dinger Hamiltonian in
~23!. Thus QAR localization in the infinitesimal vicinity of
h50 is associated with a classically integrable limit. AsT is
increased from 0, keeping the quantities (t j112t j )/T fixed
at some rational valuesmj /m (m5( j50

M21mj ), the QAR lo-
calization forh50 will repeat periodically in the infinitesi-
mal vicinity of h5rm, for all integersr . For these values of
h, which are equivalent toh50 but correspond to noninte-
grable systems in a strong quantum regime, the QAR local-
ization is only a ‘‘reflection’’ of the classically integrable
limit T→0. In Appendix A, we show that QARs of periods

p51 andp52 can occur, in general, ift j in ~15! is an odd
multiple of p. Such values oft j are not equivalent to
t j50 sincet jmod2pÞ0. In this case, the QAR localization
is not even a reflection of a classically integrable limit.

It is important to notice that the limitT→0 ~or h→0) at
fixed k̂ ~or k) is not a semiclassical limit. In fact, if the
quantities (t j112t j )/T are kept fixed and the coordinate
transformationL85(T/I )L is performed in the map~13!, it
becomes clear that the classical dynamics depends only on
the parameterK5(T/I ) k̂52tk. The semiclassical limit is
then h→0 at fixed K, not at fixed k̂. However, at fixed
k@1, small values ofh such thatK!1 may be viewed as
corresponding to a semiclassical regime of almost integrabil-
ity.

IV. EXACTLY SOLVABLE CASES

In this section we consider cases of potentialsV(u) for
which the QE problem in the infinitesimal vicinity of QAR
@Eq. ~23!# can be solved in closed form, or at least an explicit
expression can be obtained for the QAR-localization length
j0. Using these exact results, we shall provide strong nu-
merical evidence that the QE spectrum and localization fea-
tures sufficiently close to QAR are well accounted for by the
QAR effective Hamiltonian~19!. As shown in Sec. V, the
MKR dynamical problem can be mapped into pseudorandom
tight-binding models, so that DL is expected to occur if
h5t/2p is sufficiently irrational. If, in addition,h2h0 is
small enough, this DL should look similar to QAR localiza-
tion.

Our first example is the standard potentialV(u)5cos(u),
for which Eq.~23! reduces to theMathieu equation@29,30#

y91@a22q cos~2u!#y50, ~26!

where y5w, a5g2(kDd)2/2, and q52(kDd)2/4. The
problem is then exactly solved in terms of the periodic
Mathieu functions y5cer(u,q) ~symmetric! and
y5ser(u,q) ~antisymmetric!, with corresponding eigenval-
uesa5ar(q) and a5br(q). Explicit expressions for these
functions and eigenvalues, as well as a detailed discussion of
their properties, can be found in Refs.@29,30#. From Eq.~22!
the Fourier coefficientscn and yn of c and y5w, respec-
tively, are related bycn5( j i

j Jj (kd̄)yn2 j , whereJj (kd̄) is
a Bessel function. Since the dominant decay rate of bothJn
and yn with n is like n2n @30#, this is also the dominant
decay rate ofcn . This strong localization inL space, faster
than exponential, could be expected from the fact that
V(u)5cos(u) is an entire function~analyticity-strip width
2g5`), so that the asymptotic localization length
j051/g50.

Let us now check to what extent the QAR effective
Hamiltonian~19! for V(u)5cos(u) reproduces accurately the
quantum dynamics and QE spectrum forh2h05e/2p suf-
ficiently small and irrational. We have studied numerically
the case ofM53, with c05c151, c2522, andt j5t/3 for
all j ~chaotic orbits for this system are shown in Fig. 1!. The
quantum dynamics of a wave packet initially equal to
un50& was investigated using a basis of up to 512 angular-
momentum states aroundn50. The wave packet was propa-
gated in time using well-known algorithms@6#. In Fig. 2, we
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plot the kinetic-energy expectation valueE05^L2/2I & as a
function of the ‘‘real time’’ t5es (s is the number of appli-
cations ofU), for k52.0 (keff[kDd5A8/3) and several ir-
rational values ofe/2p. We observe that almost all the data
fall close to the same curve, even for values ofe as large as
e50.28. For smaller values ofkeff , the data fall much more
accurately on the same curve~see an example forM52 in
Ref. @22#!. This is evidence that, even fore not very small,
the quantum dynamics over a significant time interval can be
well described by the approximate evolution operator
Ūs5exp(2iesG1)5exp(2itG1), generated by the QAR ef-
fective HamiltonianG1. In Fig. 3, we plot the Fourier trans-
form E0(n) of E0(t) for e50.1 and several values ofk. The
positions of the various peaks inE0(n) must correspond to

values ofen equal to the spacings between QE levels. A
comparison with the level spacings corresponding to eigen-
values of the Mathieu equation~26! shows excellent agree-
ment. This is strong evidence that sufficiently close to QAR
the QE spectrum is very well accounted for by the QAR
operatorG1 @i.e., Eq.~23!#.

Dynamical localization@17# in the vicinity of QAR will
now be compared with QAR localization~we assume in what
follows thath050). For this purpose, it will be sufficient to
consider the localization of steady-state probability distribu-
tions ^uc(n)u2& over angular momentumn\. Such a distri-
bution is calculated by propagating an initial angular-
momentum stateun50& for a sufficiently long time interval
and averaging then the results foruc(n)u2 over a subinterval
at the end of this interval. All our numerical calculations in
what follows have been restricted to the simple case of the
M52 MKR with c052c151 and t15T/2 ~the ‘‘two-
sided’’ KR @21,22#!. Figure 4 shows a semilogarithmic plot
of ^uc(n)u2& for V(u)5cos(u), k510, and three irrational
values ofh5t/2p, t51025,1023,1021. For the first two
values of t, corresponding to close vicinity of QAR,
^uc(n)u2& appears to decay faster than exponential, in accord
with the solutions of the Mathieu equation~26! ~i.e., QAR
localization!. On the other hand, the localization for
t51021 looks quite different from QAR localization; it ap-
pears, in fact, to be almost exponential. These results can be
explained as follows. The classical nonintegrability param-
eter is given byK5(T/I ) k̂52tk ~see Sec. III!. Thus the first
two values oft correspond to a semiclassical regime~small
t) of almost integrability~small K) and the observed DL
@17# is then similar to QAR localization, as predicted from
the integrable effective Hamiltonian~19! ~however, a basic
difference between these two localizations is expected, as
pointed out in Sec. VI!. For t51021, on the other hand,
K52, corresponding to a semiclassical regime~small t) of
global chaotic diffusion in theM52 MKR @21#. As in the
KR case@7,8#, the localization observed here should be char-
acterized by a DL lengthj determined by the chaotic-
diffusion coefficient D, j'D/2 ~see Sec. VI!. This is

FIG. 2. Expectation value of the kinetic energyE0 as a function
of the ‘‘real time’’ t5es, for the MKR system described in the
caption of Fig. 1 with k52 and for several values of
e52p(h2h0) (h0 is a QAR point!. The continuous curve corre-
sponds toe50.01, the filled circles toe50.11, the squares to
e50.17, the filled diamonds toe50.25, and the triangles to
e50.28.

FIG. 3. Fourier transformE0(n) of E0(t) ~see the caption of
Fig. 2! for e50.1 and several values ofk ~see the legend!. The
symbols at the bottom are the theoretical predictions for the peaks
positions, based on the eigenvalues of the Mathieu equation~26!.
The peaks fork50.01 andk51.0 have been rescaled by a factor of
100 000 and 10, respectively, for visibility.

FIG. 4. Steady-state probability distributions^uc(n)u2& over the
angular momentumn\ for the M52 MKR (c052c151 and
t15T/2) with V(u)5cos(u) and k510. The three curves corre-
spond to three irrational values ofh5t/2p: t51025 ~solid line!,
t51023 ~dashed line!, andt51021 ~dotted line!. The saturation of
^uc(n)u2& around 10230 is due to numerical noise.
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in contrast with QAR localization, which is completely de-
termined by the analytical properties of the potential. The
transition from QAR localization to DL, ast is varied in a
semiclassical regime at fixedk, will be studied in more detail
in Sec. VI.

Our second example is the potential

V~u!5A arctan@k cos~u!2k0#, ~27!

where A, k, and k0 are some constants. The QAR-
localization lengthj0 for ~27! can be determined exactly as
follows. The functionV8(u) assumes simple polesu0 satis-
fying the equationk cos(u0)2k056i. The distance of any of
these poles from the realu axis is g5uIm(u0)u, and we
easily find that

2k cosh~g!5@11~k01k!2#1/21@11~k02k!2#1/2. ~28!

Consider now the Fourier-series expansion for the solutions
w(u) of Eq. ~23!. We claim that in the case of~27! the
Fourier coefficientswn must decayasymptoticallyaswn
exp(2gunu). The QAR-localization length is thenj051/g.
To show this, we observe that the simple polesu0 corre-
spond toregular singularities@29# of order 2 of Eq.~23!.
The exponentsr1 and r2 for these singularities are easily
determined from the quadratic ‘‘indicial’’ equation@29# for
~23!: r15r251/2. Since the exponents are equal, the general
solution of ~23! aroundu5u0 assumes the form@29#

w~u!5~u2u0!
1/2$R1~u2u0!1R2~u2u0!

3@b11b2ln~u2u0!#%, ~29!

whereR1(u) andR2(u) are analytic~can be expressed as
Taylor expansions! aroundu5u0 andb1 andb2 are arbitrary
constants. It follows from~29! that all the derivatives of
w(u) diverge atu5u0. Let us now continue the Fourier-
series expansion forw(u) into the complexu plane. Defining
the complex variablez5eiu, one gets a Laurent expansion in
z that converges at least in a ‘‘ring’’ excluding the singulari-
ties of Eq.~23! @29#, i.e., for uIm(u)u,Im(u0)5g. However,
since all the derivatives of~29! diverge asu→u0, this must
be also the case for the derivatives of the Laurent expansion.
By a simple consideration of the latter derivatives, the de-
sired relationwn exp(2gunu) is obtained.

Figures 5 and 6 show semilogarithmic plots of
^uc(n)u2& for the M52 MKR ~defined as above! with the
potential~27! (A51, k51, andk050) and for several val-
ues ofk and t. The straight thick line in both figures has
slope22g, whereg is determined from Eq.~28!. For t
sufficiently small, this slope is expected to be close to the
asymptotic rate of exponential decay of^uc(n)u2&. We see
that this is indeed the case whenever the classical parameter
K52tk is small enough,K,1, corresponding to almost in-
tegrability or local chaos. In particular, fork52 ~Fig. 5! the
decay rate appears to be equal to 2g for all three values of
t. In fact, for k52 andA51 the potential~27! leads to a
nearest-neighbor pseudorandom tight-binding model whose
DL lengthj appears to be independent oft ~see Sec. VI and
Fig. 8!. On the other hand, fork510 ~Fig. 6! the DL length
is quite sensitive to the value oft. In the case oft51021,
corresponding to a semiclassical regime of global chaotic

diffusion (K52), the observed DL looks quite different
from QAR localization, with an asymptotic DL length
j'D/2Þj0. This case is similar to that oft51021 in Fig. 4.

V. MULTICHANNEL PSEUDORANDOM
TIGHT-BINDING MODELS

We now show how the MKR dynamical problem with
~12! can be mapped into a pseudorandom tight-binding
model, in analogy to the ordinary KR case@6#. For simplic-
ity, we shall assume that the quantities~15! are all equal,
t j5t/M for all j ~i.e., the kicks are equidistant in time!. Let
uj

6(u), j50, . . . ,M21, denote a QE state with quasienergy
v at time t5t j60. The following relations hold:

uj
1~u!5exp@2 ic jkV~u!#uj

2~u! , ~30!

FIG. 5. Same as in Fig. 4, but for the potential~27! with
A51, k51, k050, andk52. The straight thick line has slope
22g, where g is determined from Eq.~28!. For t sufficiently
small, this slope is expected to be very close to the asymptotic rate
of exponential decay of̂uc(n)u2&. We observe that this is the case
even fort not very small,t51021 ~dotted line!. In fact, this system
corresponds precisely to a pseudorandom Lloyd model, whose DL
lengthj seems to be independent oft ~see Sec. VI and Fig. 8!.

FIG. 6. Same as in Fig. 5, but fork510. The four curves cor-
respond to four irrational values ofh5t/2p: t51027 ~solid line!,
t51025 ~dashed line!, t51023 ~dot-dashed line!, and t51021

~dotted line!. The straight thick line has slope22g, whereg is
determined from Eq.~28!.
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uj ,n
2 5e2 i tn2/Muj21,n

1 ~0, j<M21!,

u0,n
2 5ei ~v2tn2/M !uM21,n

1 , ~31!

whereuj ,n
6 is theL representation ofuj

6(u). We define, in
some analogy with Ref.@6#,

uj~u!5ei j v/M
uj

1~u!1uj
2~u!

2
, e2 ic j kV~u!5

11 iWj~u!

12 iWj~u!
,

~32!

so thatWj (u)52tan@cjkV(u)/2#. Simple manipulations of
relations ~30!–~32! yield a system ofM equations for the
L representationuj ,n of uj (u), j50, . . . ,M21:

uj11,n2 i(
r
Wj11,n2ruj11,r

5ei ~v2tn2!/MS uj ,n1 i(
r
Wj ,n2ruj ,r D , ~33!

where uM ,n[u0,n and Wj ,n is the L representation of
Wj (u). Unless otherwise specified, the indexr in ~33! runs
over all the integers. We now introduce the Fourier trans-
forms ūs,n and W̄s,n of uj ,n andWj ,n , respectively, in the
variable j :

ūs,n5
1

M (
j50

M21

uj ,ne
2p i js/M, ~34!

W̄s,n5
1

M (
j50

M21

Wj ,ne
2p i js/M. ~35!

Using the expressions~34! and~35! in ~33!, we obtain, after
simple algebraic manipulations,

Tn
~s!ūs,n1(

rÞn
W̄0,n2r ūs,r1(

r
(
s8Þs

W̄s2s8,n2r ūs8,r5Eūs,n ,

~36!

where, fors50, . . . ,M21,

Tn
~s!52tan@~tn222ps2v!/2M #, ~37!

the indexs8 takes all the integer valuess850, . . . ,M21
with the exception ofs85s, andE52W̄0,0. Equations~36!
describe a tight-binding model of anM -channel strip@20#.
The on-site potential in channels is given byTn

(s) , while the
hopping constants within a channel areW̄0,n . The hopping
constants from channels to channels8Þs are given by
W̄s2s8,n .

A particularly interesting case arises whencj assumes
only the values 0,6c for some constantc, which will be
chosen, without loss of generality, equal to 1. From relation
~35! and the definitionWj (u)52tan@cjkV(u)/2#, it follows
then that

W̄s,n5c~s!Wn[
1

M (
j50

M21

cje
2p i js/MWn , ~38!

wherec(s) is defined by~38! andWn is theL representation
of W(u)[2tan@kV(u)/2#. Relations~38! and ~16! imply
now that the hopping constantsW̄0,n within a channel are
identically zero, including, of course,E52W̄0,0. In thissin-
gular case, the model~36! loses much of its physical mean-
ing. In Appendix C, we consider in some detail nearly sin-
gular cases of~36!, for which the hopping constantsW̄0,n are
nonzero but small. Notice that theM52 case is always sin-
gular, sincec052c1 from ~16!. In this case, however, a
physically meaningful two-channel model@22# can be de-
rived directly from Eq.~33!, without the need of the Fourier
transforms~34! and ~35!. Simple manipulations of Eq.~33!
give in this case

Tnu0,n1Snu1,n1(
rÞ0

Wn2ru0,r5Eu0,n ,

2Tnu1,n2Snu0,n1(
rÞ0

Wn2ru1,r5Eu1,n , ~39!

where Tn5cot(zn), Sn521/sin(zn), zn5(tn22v)/2, and
E52W0. The on-site potential and hopping constants
within each channel are, respectively,Tn andWn , while Sn
are the coupling constants between the channels. As shown
in Sec. VI, theM52 MKR is essentially equivalent to an
ordinary KR if the potential satisfiesV(u1p)52V(u). In
this case, the dynamical problem can be conveniently ap-
proached using the well-known tight-binding models for the
KR @6,7#.

For irrationalh5t/2p, Tn
(s) in ~37! @or Tn andSn in ~39!#

is a pseudorandom sequence@6,15# that, by arguments simi-
lar to those used in the KR case@6#, may lead to Anderson-
like localization of the eigenstates of~36! @or of ~39!#. This is
the DL @17# of the corresponding QE states in angular mo-
mentum. Another source of randomness, which does not in-
volveh but may contribute significantly to DL, is the depen-
dence of the hopping constantsW̄s,n on the distances
between channels, especially in the limit of very largeM .
This may reflect a possible randomness of the sequencecj in
the ‘‘time index’’ j .

Clearly, the pseudorandomness is not defined in the in-
finitesimal vicinity of QAR ~infinitesimal e5t mod2p), so
that QAR localization is not DL, strictly speaking. However,
when approaching a QAR pointh0, the pseudorandomness is
guaranteed by choosinge/2p in a sequence of ‘‘strong’’ ir-
rationals e l /2p, l51,2, . . . , converging to 0 @e.g.,
e l52p/( l1%), where% is the golden mean#. It is then quite
possible that fore5e l the model~36! @or ~39!# will have
exponentially localized eigenstates. In fact, the numerical
evidence presented in Sec. IV~see also Sec. VI! strongly
indicates that this is indeed the case forl sufficiently large.
Then, provided the QAR condition~16! is satisfied, the
quasienergyv in ~37! should be given approximately by
v5eg, where g is an eigenvalue of the leading operator
G1 in ~19!. Moreover, in theM52 case of~39!, one can
easily determine, using~30!, ~32!, and~22!, the accurate re-
lation expected between the solutions of Eqs.~23! and ~39!
for small e: u0(u)'cos@kV(u)/2#w(u).

For rational values ofh5m/p (m and p are relatively
prime integers!, the on-site potentialTn

(s) in ~37! @or Tn in
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~39!# is periodic inn with periodp. Then, by straightforward
application of Bloch theorem, one can easily show that the
QE spectrumv is, in general, absolutely continuous, consist-
ing of p bands. This corresponds to usual quantum resonance
@4#. However, when the QAR conditions are satisfied, either
for p51 or p52 @see~16! and Appendix A#, a QE band
‘‘collapses’’ to an infinitely degenerate level.

VI. TRANSITION FROM QAR LOCALIZATION
TO DYNAMICAL LOCALIZATION
IN A STRONG-CHAOS REGIME

In this section, we study the dependence of the DL length
j on the distanceh2h0 from the QAR pointh050. This
study will be performed in a natural way at fixedk, so that
h050 is associated with a classically integrable limit~see
Sec. III!. If k is sufficiently large, the classical parameter
K52tk54phk may correspond to a case of global chaotic
diffusion already for small values ofh,1, i.e., in the semi-
classical regime. The approximate relationj'D/2 @7,8#,
whereD is the diffusion coefficient@see definition~49! be-
low#, should then hold. The transition from QAR localization
to DL in a strong-chaos regime, ash is increased from 0, can
be understood in a most illuminating way if the problem is
approached by using a suitable pseudorandom tight-binding
model, equivalent to the dynamical system. This approach is
also most convenient for an accurate calculation ofj.

For simplicity, we shall restrict ourselves to theM52
MKR (c052c151, t15T/2) with potentials satisfying
V(u1p)52V(u) ~as in the numerical examples in Figs.
4–6!. We denote byU2KR(t) the evolution operator for this
system at a given value oft. Similarly, we denote by
UKR(t) the evolution operator~6! for the ordinary KR. Us-
ing relations~14! and~7! with V(u1p)52V(u), it is easy
to derive the exact relation

UKR
2 ~p1e/2!5U2KR~e!. ~40!

Relation ~40! means that the quantum dynamics of the
M52 MKR at distancee from the QAR pointt50 is es-
sentially equivalent to that of the ordinary KR at distance
e/2 from t5p. The latter value oft is precisely aperiod-2
QAR point for the KR~see Sec. II and Appendix A!. This
equivalence between the two systems enables one to study
the M52 MKR using the simple tight-binding models for
the KR @6,7#, instead of the two-channel model~39!.

Our basic potential is the standard one,V(u)5cos(u). A
convenient tight-binding model for the KR with this poten-
tial was proposed by Shepelyansky@7#:

(
r52`

`

Jr~k/2!sin@~tn22v1pr !/2#ūn1r50, ~41!

whereJr(k/2) is the Bessel function,v is the quasienergy,
andūn is related to the angular-momentum representation of
the QE states. Using relation~40! in ~41!, we obtain the
corresponding tight-binding model for theM52 MKR:

(
r52`

`

Jr~k/2!sin$@~2p1t!n22v12pr #/4%ūn1r50, ~42!

where all the quantitiest, v, and ūn now refer to the
M52 MKR. Let us briefly recall how the asymptotic DL
length j can be calculated from such tight-binding models
@7,8#. The hopping constants in~42!, given by the Bessel
function Jr(k/2), decay faster than exponentially for
ur u.k/2:

Jr~k/2!;H ~4/pk!1/2cos~k/22pr /22p/4! for ur u,k/2

~1/2pur u!1/2~ek/4r ! ur u for ur u.k/2.
~43!

It is therefore reasonable to approximate~42! by restricting
r to the finite rangeur u<N, for sufficiently largeN. This
truncated form of Eq.~42! can be easily written as a transfer-
matrix problem@7,8#

ss115Gsss , ~44!

where ss is the 2N-dimensional vector with components
ss
(r )5ūs2r , r52N11, . . . ,N, andGs is a 2N32N sym-

plectic matrix. One may interpret~44! as a map describing a
Hamiltonian dynamical system withN degrees of freedom
@18#. The vectors0 is mapped intosn , for arbitraryn.0,
by the product matrix

Ln5Gn21Gn22•••G0 . ~45!

Since the matrix~45! is, obviously, symplectic, its eigenval-
ues l(n) come in N reciprocal pairs @l r(n),l r

21(n)#,
r51, . . . ,N, and we can always assume the ordering
1<ul1(n)u<ul2(n)u<•••ulN(n)u. The minimal Lyapunov
exponentfor the map~44!,

gN5 lim
n→`

1

n
lnul1~n!u, ~46!

determines then anNth-order approximationjN51/gN to the
asymptotic DL lengthj. Since an accurate calculation of
gN becomes extremely time consuming asN is increased,
important questions are how fastjN converges to its limit
valuej asN is increased and whetherjN has a well-defined
quantum-dynamical meaningper se.

We have therefore studiedgN as a function of bothN and
h near QAR. The value ofk was fixed atk510 and several
values oft were considered in the interval 1026<t<2. We
have calculatedgN for N<15, using the well-known method
@7,8,18# for determining the Lyapunov spectra of products of
matrices such as~45!. The method is based on direct appli-
cation of the map~44! a large numbern5nmaxof times, such
that for n;nmax the matricesGn can be considered as ran-
dom. This randomness should be realized to some extent by
the pseudorandom term tn2/4 in ~42! if
t@(n11)22n2#/4;2p or n5nmax;4p/t. In practice, it
was sufficient to usenmax<106 for all the values oft consid-
ered. We have checked that this choice ofnmax yields well-
converged results by calculating and comparinggN for dif-
ferent values ofn<nmax, e.g.,n5105, 23105, . . . ,106 for
nmax5106. The final results are shown in Fig. 7. We observe
that gN clearly decreases in the intervalN<3 for all values
of t. For larger values ofN and for very smallt ~immediate
vicinity of QAR!, gN appears to increase without bounds
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with N. For t>0.1, gN appears to ‘‘saturate’’ around some
limit value that decreases ast is increased. Fort;1, the
saturation occurs almost immediately afterN.3.

The apparently unbounded increase ofgN with N for very
small t is consistent with the fact that the asymptotic QAR-
localization length forV(u)5cos(u) is j050 ~analyticity-
strip width 2g52g`5`). We now show thatgN has a well-
defined quantum-dynamical meaning also for finiteN. This
is because the truncated version of the tight-binding model
~42! turns out to be exactly equivalent to the dynamical prob-
lem ~KR or M52 MKR! with a potentialVN(u) replacing
V(u)5cos(u). ThenjN51/gN is the DL length for this po-
tential, reducing to the QAR-localization lengthjN,0 in the
limit t→0. For very smallt ~e.g.,t51026 andt51025 in
Fig. 7!, jN should be an excellent approximation tojN,0 . The
potential VN(u) can be easily determined from the
g-function approach of Shepelyansky@7#:

WN~u!5gN~u!exp@2 ikVN~u!/2#5 (
r52N

N

Jr~k/2!eir ~u2p/2!,

~47!

where gN(u) is some real function. Solving Eq.~47! for
VN(u), we obtain

VN~u!52
2

k
arctanF (

r52N

N

Jr~k/2!sin~ru2rp/2!

(
r52N

N

Jr~k/2!cos~ru2rp/2!
G .

~48!

Using J2r(k/2)5(21)rJr(k/2), it is easy to see that~48!
satisfiesVN(u1p)52VN(u), so that relation~40! between
the KR and theM52 MKR holds for the potentialVN(u).

ForN51, ~48! reduces to~27! with k050 ~see below!. The
QAR-localization length for~48! can be determined as in the
case of the potential~27!. It is easily shown thatVN8 (u) as-
sumes simple polesu0 satisfying the equation

WN~u0!5 (
r52N

N

Jr~k/2!eir ~u02p/2!50,

or gN(u0)50, since the exponential function in~47! can
never vanish. The QAR-localization length forVN(u) is
given byjN,051/gN

(0) , wheregN
(0) is the smallest distance of

a poleu0 from the realu axis. It is also the half-width of the
strip of analyticity ofVN(u) ~Fourier-series representation!.
Sinceg5` for V(u)5cos(u), limN→`gN

(0)5`, so thatgN
(0)

must generally increase withN, as is clear from Fig. 7 for
very smallt.

We thus see that in the limitt→0, gN is both the minimal
Lyapunov exponent of a 2N32N symplectic matrix and the
half-width of analyticity of the potentialVN(u) for the trun-
cated problem. AsN increases, the region of analyticity of
VN(u) increases without bounds and the QAR-localization
length jN,0→0. With this in mind, we now consider the
cases wheregN appears to saturate forN not too large in Fig.
7. As in the KR case@7,8#, we expect that in the global-chaos
regime the saturated value of the DL lengthjN51/gN is
given approximately byj'D/2, whereD is the classical
chaotic diffusion coefficient. In complete analogy with Refs.
@3,7#, we shall defineD for the MKR map~13! as

D5 lim
r→`

^~LrM2L0!
2&

rM
, ~49!

where ^ & denotes an average over an ensemble of initial
conditions $(L0 ,u0)%. In a strong-chaos regime, we may
assume, as usual, that the anglesus are independent and
random, giving vanishing force-force correlations
^V8(us)V8(us8)&50. Using then~13! in ~49!, we obtain the
following expression forD:

D5
k2

M
lim
r→`

1

r K F (
r 850

r21

(
j50

M21

cjV8~u r 8M1 j !G 2L
5k2^c2&E

0

2p

V82~u!
du

2p
, ~50!

where ^c2&5( j50
M21cj

2/M and, as in Ref.@7#, we use units
such that\51, giving k̂5k. For theM52 MKR, ^c2&51
and, with k510 andV(u)5cos(u), we find from ~50! that
D550. The minimal saturated value ofgN in Fig. 7 is
gN'0.034 ~dashed line!, so that the maximal DL length is
j'29'D/2. We have checked that the approximated rela-
tion j'D/2 holds also for other values ofk andt.

We observe that the minimal saturated value of
gN'2/D is attained almost immediately after the decrease of
gN in the intervalN<3. This behavior was observed also for
other values ofk, with N in the intervalN,k/2. The de-
crease ingN may be due to the fact that forur u,k/2 the
hopping constants~43! are of the same order of magnitude,
so that the effect of each additional hopping constant is to

FIG. 7. Minimal Lyapunov exponentgN associated with the
Nth-order truncation of the tight-binding model~42! ~i.e., r re-
stricted to ur u<N) with k510. This model is equivalent to the
M52 MKR in Fig. 4. The several curves correspond, in descending
order atN515, to the following values oft in ~42!: t51026,
1025, 1024, 1023, 1022, 231022, 531022, 0.1, 0.125, 0.15,
0.175, 0.2, 0.25 1.0, and 2.0~dashed line!. Notice the near coinci-
dence of the curves fort51026 andt51025, indicating very close
proximity to QAR. See details concerning the calculation ofgN in
the text.
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increase the DL length. Forur u.k/2, on the other hand, the
hopping constants~43! decay faster than exponentially and
their effect ongN turns out to be negligible in the strong-
chaos regime, as shown in Fig. 7. This fact was used in Ref.
@7# to justify the truncation of the tight-binding model for the
KR at N'k/2.

We see in Fig. 7, however, that the effect of the exponen-
tially small hopping constants forur u.k/2 is not negligible
in regimes where the chaos is not strong enough. In sharp
contrast with the case ofN,k/2, these small hopping con-
stants have the somehow paradoxical effect toincrease
gN , i.e., to decreasethe localization lengthj. This effect
appears to continue up to a maximal valueN* of N. For
N.N* , gN saturates to a value approximately equal to
gN* . BothN* andgN* increase ast or k decrease.

While we are unable to provide at this point a quantitative
explanation of these phenomena, it will become apparent
from the following discussion that they are quite natural. We
already know that the truncated tight-binding model is ex-
actly equivalent to a dynamical problem with a potential
VN(u) @see ~48!#. The region of analyticityRN of VN(u)
increases withN for N sufficiently large (N.k/2). The strip
of analyticity RQE,N of the QE states has a width 2gN ,
wheregN depends ont and determines the rate of exponen-
tial decay of the QE states in angular-momentum space. In
the infinitesimal vicinity of QAR,RQE,N5RN , so that an
increase in the analyticity of the potential results in a corre-
sponding increase of the analyticity of the QE states. For
finite t, however, the increase ofRN leads to an increase of
RQE,N only up to N;N* , where gN saturates to a value
gN* . As the strength of chaos is increased by increasingt ~or
K), gN* decreases~the DL lengthj increases!. At the same
time,N* decreases, so that the influence of the analyticity of
VN(u) on the analyticity of the QE states is gradually re-
duced. The extreme case corresponds to the strong-chaos re-
gime. Here the increase ofRN does not lead to any increase
in RQE,N andgN* is totally determined by the diffusion co-
efficient D. This case of DL in a semiclassical regime of
global chaos is thus completely different in nature from that
of QAR localization. We may now say that the transition
between these two kinds of quantum localization takes place
via a gradual reduction of the influence of the analyticity of
the system on that of the QE states, as the level of chaos is
increased.

This characterization of the transition is quite natural as it
has a well-known classical analogue. When a nonintegrabil-
ity parameter is increased, the analyticity of functions repre-
senting classical structures~e.g., Kol’mogorov-Arnol’d-
Moser tori and periodic orbits! generally decreases. A
famous example is the golden-mean torus in the standard
map. When the parameterK approaches from below the
critical valueKc'0.9716 for the disappearance of this torus,
the widthDGM of the strip of analyticity of functions repre-
senting the torus shrinks to zero asKc2K ~for K sufficiently
close toKc) @31#. At K5Kc , the torus is a continuous non-
differentiable curve and forK.Kc it becomes a cantorus
allowing for global chaotic diffusion. The decrease ofDGM
asK is increased is analogous to the decrease ofgN* . Unlike
DGM , however, the minimal value ofgN* , in the strong-
chaos regime, is not zero but only inversely proportional to
D@1.

According to this picture, a saturation ofgN around an
asymptotic value approximately equal togN* should occur
for arbitrarily low level of chaos~arbitrarily smallt or k),
but N* and gN* may be very large. We thus expect that,
unlike QAR localization, the DL decay can never be faster
than exponential, but it should always feature an asymptotic
exponential tail. For very smallt, this asymptotic behavior
may start only at very small value of the wave function and
the decay may look faster than exponential above this value.
This is probably what one sees in Fig. 4 fort51025 and
t51023. Here an exponential tail may be observed only
much below the level of numerical noise (;10230). Because
of computational limitations, we were not able to verify the
existence of the saturation effect and the associated exponen-
tial tail in the DL decay fort,0.1.

In Fig. 8, we plotgN for N512 andN51 as a function of
t near QAR. Whileg12 changes significantly from its maxi-
mal value~near QAR! to its minimal DL value'2/D, g1
appears to be independent oft. In fact, the small fluctuations
in g1 are of the same order of magnitude as the numerical
error in this quantity. The case ofN51 corresponds to a
nearest-neighbor pseudorandom Lloyd model@6,7,9,15#. The
independence of the localization lengthj51/g on t for such
a model has been verified numerically@7,15# for many val-
ues of a coupling constant~e.g.,k). The potentialV1(u) in
~48! is a special case of~27!,

V1~u!52
2

k
arctan@k cos~u!#, ~51!

where k522J1(k/2)/J0(k/2). For A522/k and arbitrary
k0, the potential~27! leads to nearest-neighbor hopping con-
stants also in the originalM52 tight-binding model~39!:
Wn50, exceptW615k/2. This is a two-channel pseudoran-
dom Lloyd model~see some generalizations of this model in
Appendix C!.

FIG. 8. Minimal Lyapunov exponentsgN512 ~solid line! and
gN51 ~dashed line! as a function oft near QAR for the same model
as in Fig. 7. Notice thatg1 appears to be almost independent of
t, assuming the value corresponding to QAR localization (t→0)
for all t.
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In Ref. @9#, the relationj5D/2 was derived for the KR
with the potential~51! by assuming that the pseudorandom
disorder can be replaced by a truly random one, giving the
usual Lloyd model@19#. The validity of this assumption was
verified in Ref.@15#. We now give an alternative and simpler
‘‘proof’’ of this relation, based on theexactresultj05D/2,
which is derived below. The relationj5D/2 is an immediate
consequence of the latter result and the numerically observed
independence ofg1 on t. The derivation below ofj05D/2
makes use, of course, of the fact that the KR with the poten-
tial ~51! exhibits QAR~of period 2!. As shown in Sec. II, this
QAR can occur only ifV(u1p)1V(u)5const. This condi-
tion is satisfied by the potential~27! only if k050 with
const50, which is precisely the case of~51!. As shown be-
low, the relationj5D/2 is valid also for the equivalent sys-
tem of theM52 MKR with ~51!.

To derive the relationj05D/2, we first perform explicitly
the integral in~50! for the potential~51!. The final result can
be easily expressed in terms ofg in ~28!:

D52^c2&F1g 1
1

2
1O~g2!G , ~52!

where we have assumed the strong-chaos regimek@1 for
~51!, corresponding to very smallg in ~28!. Now, the QAR-
localization lengthj0 for ~51! is j051/g ~see Sec. IV! and
^c2&51 for both the KR and theM52 MKR. The relation
j05D/2 for these systems follows then from Eq.~52! in the
strong-chaos regime.

From Fig. 7 it appears thatg2 is also independent oft for
the particular value ofk chosen. The case ofN52 corre-
sponds to a next-nearest-neighbor pseudorandom model.
Such a model was investigated by Brenner and Fishman
@15#, who found that its localization properties are quite dif-
ferent from those of its truly random counterpart. In particu-
lar, the localization length strongly depends on the irrational
number~analogous toh5t/2p) defining the pseudorandom
disorder. Figure 7 suggests, however, that it may be possible
to define pseudorandom tight-binding models withN.1
neighbors, whose localization length is almost independent
of t. Such models should exhibit localization properties
quite similar to those of their truly random counterparts. The
existence of these models and related problems are planned
to be investigated in a future work@32#.

VII. CONCLUSION

In this paper, the problem of quantum localization in 1.5
degrees of freedom~‘‘minimal chaos’’! has been studied in a
large class of systems exhibiting classical chaotic diffusion,
the modulated kicked rotors. These systems feature two ba-
sically different kinds of asymptotic exponential localization
in angular-momentum space:~a! dynamical localization,
which, as in the case of the KR and other systems
@6–8,10,11#, is the localization exhibited by pseudorandom
tight-binding models for irrational values ofh ~a scaled\)
@17#, and~b! QAR localization, which is the localization oc-
curring forh in the infinitesimal vicinity of pointsh0, where
the quantum dynamics is exactly periodic~quantum antireso-
nance!.

The existence of QAR localization has been rigorously

established in the framework of a self-consistent approach
for both period-1 and period-2 QAR~see Sec. III and Ap-
pendix A; it seems that QARs of period larger than 2 do not
exist for nonintegrable MKRs!. This approach leads to the
basic equation~23! @or ~A11! in Appendix A# for the QE
problem in the infinitesimal vicinity of QAR. It follows from
this equation that the QE spectrum is pure point for infini-
tesimal h2h0 and that the asymptotic QAR-localization
lengthj0 is completely determined from the analytical prop-
erties of the potential appearing in the equation:j0<1/g,
whereg is the smallest distance of a singularity of the po-
tential from the realu axis. In many interesting cases, such
as the potentials~27! and ~48!, j051/g exactly.

Being associated with the 1D time-independent Schro¨-
dinger equation~23!, QAR localization is of an ‘‘integrable’’
nature. In fact, ifh050 is a QAR point, the Hamiltonian in
~23! is precisely the integrable limit (T→0 at fixedk) of the
classical MKR Hamiltonian~12!. On the other hand, DL is
associated with the difference equations~36! @or ~39!# for the
pseudorandom tight-binding models. These equations de-
pend not only on the dimensionless kicking parameterk @es-
sentially the only parameter in~23!#, but also onh, which
determines the pseudorandom disorder. This pseudorandom-
ness, which is absent in the angular-momentum representa-
tion of ~23!, introduces ‘‘nonintegrable’’ features in DL.

Thus, while the asymptotic QAR-localization lengthj0 is
completely determined by the analytical properties of the
potential in ~23!, the asymptotic DL lengthj depends, in
general, also onk andh. Starting from the integrable case
h5h050 and increasing the level of classical chaos by in-
creasingh at fixedk@1, we find that the sensitivity ofj to
an increase in the analyticity of the potential~exhibited by
the hopping constants in the tight-binding model! is gradu-
ally reduced. This phenomenon, which has been considered
in detail in Sec. VI and is clearly shown in Fig. 7, is a vivid
manifestation of classical chaos in quantum dynamics. As
soon as one reaches a semiclassical regime (h,1) of strong
chaotic diffusion (K54phk@1), j becomes totally unaf-
fected by any increase in the analyticity of the potential. In
this regime,j is completely determined by the classical
chaotic-diffusion coefficientD, j'D/2.

While QAR localization is basically different from DL,
these localizations are expected to look quite similar ifh is
sufficiently irrational and close toh0. The numerical results
shown in Figs. 2–7 strongly support this expectation. In par-
ticular, Figs. 5–7 show that in cases where the QAR-
localization lengthj0 is finite (j0Þ0) the DL lengthj is
well approximated byj0 if h is sufficiently close toh0. In
the case of the potential~51!, corresponding to a pseudoran-
dom Lloyd model,j appears to be independent ofh, so that
j5j0. Using then the fact that the KR with the potential~51!
exhibits QAR andj05D/2 exactly, the relationj5D/2 for
this system follows immediately. Reference@9# presents a
much lengthier derivation of this relation, based on the as-
sumption that the pseudorandom disorder can be replaced by
a truly random one.

In summary, the presence of QAR in nonintegrable sys-
tems is quite useful for studying several interesting aspects
of DL, in particular the transition from DL in local-chaos or
almost-integrability regimes to DL in the global-chaos re-

54 5959ANTIRESONANCE AND LOCALIZATION IN QUANTUM . . .



gime, and for obtaining exact lower boundsj0 to the asymp-
totic DL lengthj.
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APPENDIX A: GENERAL QAR OF PERIOD 1
AND PERIOD 2 IN NONINTEGRABLE MKRs

In Sec. III, we have restricted our attention, for simplicity,
to a case of period-1 QAR occurring whent j in ~15! is a
multiple of 2p, t j52pmj . Here we shall consider the more
general case oft j equal to a multiple ofp, t j5mjp, giving
both period-1 and period-2 QARs. We believe, but are un-
able presently to give an exact proof, that this is actually the
most generalcase of QAR in the nonintegrable MKRs~12!.
We derive the QAR effective Hamiltonian@analogous to
~19!# in this general case and obtain an interesting relation
@relation ~A14! below# between the values ofkeff associated
with period-1 and period-2 QARs in theM53 MKR.

By repeated application of relation~7!, we find that for
t j5mjp the evolution operator~14! can be expressed as

U5expF2 ik (
j50

M21

cjV~u1m̄jp!Gexp~2 im̄0pn̂
2!, ~A1!

where m̄j5(s5 j
M21ms . Consider first period-1 QAR. It is

clear from~A1! that this QAR may be possible only ifm̄0 is
even. In this case, one hasU5exp@2ikV̄(u)#, whereV̄(u) is
the function having Fourier coefficients

v̄n5vn (
j50

M21

cje
inm̄j . ~A2!

Herevn are the Fourier coefficients ofV(u). We denotecj
by ce, j or co, j , depending on whether the correspondingm̄j is
even or odd, respectively. The sum over allce, j ~or all
co, j ) will be denoted byce5(ce, j ~or co5(co, j ). Relation
~A2! can then be written as

v̄n5vn@ce1~21!nco#. ~A3!

Now, period-1 QAR, i.e.,U51 @without loss of generality,
we assume thatb50 in ~2!#, implies thatv̄n50 for all n.
From relation~A3! we then obtain the following conditions
for period-1 QAR, corresponding to two different cases:

ce2co50 if V~u1p!52V~u!,

ce5co50 otherwise. ~A4!

Notice that the second condition@for generalV(u)# leads to
the trivial resultcj50 for all j if each of the sets$ce, j% and

$co, j% containsonly oneelement. This may happen only if
M52 andm0 andm1 are both odd. Conditions~A4! for
t j5mjp are a generalization of condition~16! in Sec. III.

If m̄0 is odd, we show that period-2 QAR takes place. We
find in this case thatU25exp@2ikV̄(2)(u)#, whereV̄(2)(u) has
Fourier coefficients

v̄n
~2!5vn (

j50

2M21

cje
inm̄j8. ~A5!

Herem̄j85(s5 j
2M21ms andcj andmj are ‘‘extended’’ beyond

j5M21 by defining, for j>M , cj5cj2M , and mj

5mj2M . From the definitions ofm̄j8 and m̄j , we see that
m̄j85m̄j2M2m̄0 for j>M . Using the last relation in~A5!,
we find that v̄n

(2)52vn( j50
M21cj for n even andv̄n

(2)50 for
n odd. The conditions for period-2 QAR, i.e.,U251 or
v̄n
(2)50 for all n, are therefore

cj arbitrary if V~u1p!52V~u!,

(
j50

M21

cj50 otherwise. ~A6!

Thus, ifV(u1p)52V(u) andm̄0 is odd, one has period-2
QAR for arbitrary values ofcj . This is a considerable gen-
eralization of the period-2 QAR in the KR~see Sec. II!,
discovered by Izrailev and Shepelyanskii@4#. The second
condition in ~A6! @for V(u1p)Þ2V(u)# is precisely con-
dition ~16! in Sec. III.

We now consider small perturbations oft j near their
QAR valuesmjp. For definiteness, we shall work out in
detail here the case of period-1 QAR, i.e.,m̄0 even, but we
shall show at the end how to extend the results to period-2
QAR. Writing t j5mjp1e j in ~14! and formally expanding
in powers ofe j as in Sec. III, we find, to first order ine j ,

U'12 (
j50

M21

e j$ i n̂
22k@2iV j8~u!n̂1Vj9~u!#1 ik2Vj8

2~u!%,

~A7!

whereVj (u)5(s50
j csV(u1m̄sp). Using ~17!, the expres-

sion in ~A7! can be written, to first order ine, as
exp(2ieG1), where

G15@ n̂2kVa8~u!#21k2@DV8~u!#2. ~A8!

Here

Va~u!5 (
j50

M21
t j112t j

T
Vj~u!,

@DV8~u!#25 (
j50

M21
t j112t j

T
Vj8

2~u!2Va8
2~u!. ~A9!

The QE problem in the infinitesimal vicinity of QAR is
G1c5gc, and after the gauge transformation

w5exp@2 ikVa~u!#c, ~A10!

it reduces to the 1D Schro¨dinger equation
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2
d2w

du2
1k2@DV8~u!#2w5gw. ~A11!

The analysis of Eq.~A11! is similar to that of Eq.~23! in
Sec. III and the conclusions are the same: the QAR-
localization lengthj0 is entirely determined from the analyti-
cal properties of the function@DV8(u)#2.

The results~A8! and ~A11! are valid also in the case of
period-2 QAR (m̄0 odd!, but all the sums overj @see~A7!
and ~A9!# run now from j50 to j52M21 (t j5t j2M
for j>M ) and Vj (u) is defined as Vj (u)
5(s50

j csV(u1m̄s8p).
As an interesting example, we consider theM53 MKR

with V(u1p)52V(u) andmj independent ofj50,1,2. For
mj52, one has the simple case of period-1 QAR treated in
Sec. III, provided, of course,c01c11c250. The value of
keff in ~19! can be easily expressed in terms of two indepen-
dent coefficients, sayc0 and c1, using ~20! @(t j11
2t j )/T51/3 for all j #:

keff5k@2~c0
21c1

21c0c1!/9#1/2. ~A12!

Suppose now that the periodT is halved,T→T/2, leaving
all other parameters~including cj ) unchanged. Thenmj51
for all j and sincem̄053 ~odd! one now has period-2 QAR.
The ‘‘real-time’’ period remains thenT. Notice also that the
conditionc01c11c250 is consistent with~A6! (cj can be
chosen arbitrarily in this case!. UsingV(u1p)52V(u) in
~A9! @with M→2M and Vj (u)5(s50

j csV(u1m̄s8p)#, we
get

k2@DV8~u!#25@keff
~2!#2V82~u!,

where

keff
~2!5k@5~c0

21c1
21c0c1!/6#1/2. ~A13!

By comparing~A13! with ~A12!, we obtain the simple rela-
tion, valid for all values ofc0 andc1,

keff
~2!

keff
5~15/4!1/2. ~A14!

We were not able to discover similar simple relations for
other MKR systems.

APPENDIX B: GENERAL QAR
IN INTEGRABLE MKR SYSTEMS

It is instructive to study the QAR phenomenon in a ‘‘lin-
ear’’ version of the MKR, defined by the general Hamil-
tonian

H5
t

T
L1 k̂V~u! (

j50

M21

cjDT~ t2t j !. ~B1!

We show that the system~B1! is equivalent, effectively, to
the linear KR~9!, which is integrable@24# and exactly solv-
able to a large extent@23#. We then derive general conditions
for QAR of arbitrary periodp in ~2! and show rigorously the
existence of exponential localization in the infinitesimal vi-
cinity of QAR.

The evolution operator for~B1!, from t520 to
t5T20, can be expressed as

U5 )
j50

M21

exp~2 i t j n̂!exp@2 ic jkV~u!#

5exp~2 i tn̂!exp@2 ikV̄~u!#, ~B2!

wheret j5(t j112t j )t/T,

V̄~u!5 (
j50

M21

cjV~u1x j !], ~B3!

x j5(s50
j21t j for j>1, andx050. By comparing the last ex-

pression forU in ~B2! with Eq. ~10!, we see that the problem
has been reduced, essentially, to that of the linear KR@23#
with an ‘‘effective’’ potential V̄(u). Thus, from the discus-
sion at the end of Sec. II, it follows that QAR with arbitrary
period p occurs precisely at rational values ofh
5t/2p5m/p, provided v̄sp50 for all s. Here v̄n are the
Fourier coefficients ofV̄(u) in ~B3! and are given by

v̄n5vn (
j50

M21

cje
inx j , ~B4!

wherevn are the Fourier coefficients ofV(u). It is now clear
from ~B4! that, in contrast with the linear KR case~see Sec.
II !, the requirementv̄sp50 does not necessarily imply the
vanishing ofvsp . For simplicity, let us assume in what fol-
lows that all t j ’s are equal,t j5t/M for all j , so that
x j5 j t/M . Then, witht52pm/p, the conditionv̄sp50 is
satisfied for alls if

c̄s[ (
j50

M21

cjexp~2p i jsm/M !50. ~B5!

Now, if m andM are relatively prime, the sequencec̄s in
~B5! is, up to some rearrangement formÞ1, the Fourier
transform ofcj ( j ,s50, . . . ,M21). Thenc̄s50 necessarily
implies thatcj50 and the QAR is trivial for generic poten-
tials V(u). If, on the other hand,m andM have a maximal
common factorm̄.1, the conditionc̄s50 implies only that

(
r50

m̄21

cj1rM 850 ~B6!

for j50, . . . ,M 821, whereM 85M /m̄. To summarize, the
M 8 equations~B6! are the necessary and sufficient condi-
tions for QAR of periodp in the linear MKRs with equal
t j ’s (t j52pm/pM) and arbitrary potentialsV(u). These
conditions lead to nontrivial results only ifm̄.1. It should
be noticed that the conditions~B6! do not depend onp, i.e.,
they are the same as those for the fundamental (p51) QAR
with t52pm.

We now consider small perturbations oft near the con-
ditions~B6!. Since the evolution operator~B2! is the same as
that of a linear KR with effective potentialV̄(u), an exact
expression of the QE states for irrationalh can be immedi-
ately written using the results of Ref.@23#:
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c l~u!5exp@ iw l~u!#, ~B7!

where, for all integersl , w l(u)5 lu1f(u), andf(u) is a
periodic function with Fourier coefficients

f̄n5
kv̄n

12eint ~nÞ0!, ~B8!

v̄n being the Fourier coefficients ofV̄(u), and f̄0 is arbi-
trary. The corresponding quasienergy is given by
v l5 v̄01 l t. Now, in the ordinary case of the linear KR, the
result analogous to~B8! @with v̄n replaced by the given co-
efficientsvn of V(u)# is clearly not defined forn5sp and
h5m/p, i.e., at quantum resonance. In our case, however,
with the coefficientsv̄n given by~B4!, it is easy to show that
the expression~B8! for n5sp is well defined in the QAR
limit h→m/p, the limit being taken on some sequence of
irrational h ’s converging to m/p. In fact, writing
t5(2pm1e)/p and using the conditions~B6!, we find from
~B4! ~with x j5 j t/M ) that

v̄sp5vsp (
j50

M821

e2p i jsm8/M8(
r50

m̄21

cj1rM 8~e
is~ j1rM 8!e/M21!.

~B9!

After substituting~B9! into ~B8! and using~B6!, we obtain

lim
h→m/p

f̄sp52
kvsp
m̄

(
j50

M821

e2p i jsm8/M8(
r50

m̄21

rc j1rM 8. ~B10!

Relation~B10! shows that the QE states are well defined in
the infinitesimal vicinity of the QAR of arbitrary periodp.
We see from~B8! and ~B10! that these QE states are local-
ized inL space with the same localization length of the~ana-
lytic! potentialV(u). In accordance with this, the QE spec-
trum of Up in the limit of infinitesimal e is pure point,
v lmod2p5e l .

These rigorous results, which have no analog in the ordi-
nary case of the linear KR@23#, can be derived by an alter-
native approach, similar to that used for the nonintegrable
MKRs in Sec. III. The basic evolution operatorUp can be
expressed in the form~11! with V(u) replaced byV̄(u).
Then, for pt52pm1e, one easily finds, using~B6!, that
Up is given, to first order ine, by exp(2ieG1), where

G15n̂2f08~u!, ~B11!

with f0(u)5 lime→0f(u). In the case of the fundamental
QAR (p51), with t j52pmj in ~B2! as in Sec. III, we find
thatf0(u)5kd̄V(u). Thus the operator~B11! may be con-
sidered as the linear version of~19!. Its eigenvalues are sim-
ply all the integersl and its eigenstates are given by~B7!
with f(u) replaced byf0(u). We then see that in the limit
e→0 the QE spectrum and eigenstates of the approximate
evolution operatorŪp5exp(2ieG1) agree precisely with the
rigorous ones obtained above. This may be evidence that the
results obtained by the self-consistent approach in Sec. III
are, in fact, rigorous.

APPENDIX C: NEARLY SINGULAR CASES
OF MULTICHANNEL TIGHT-BINDING MODELS

Clearly, all the hopping constantsW̄s,n , sÞ0, in the sin-
gular case@Eq. ~38!# have the same range inn ~i.e., the range
ofWn). It is thus interesting to consider nearly singular cases
of ~36! (M.2) for which the hopping constantsW̄0,n within
a channel are nonzero, whileW̄s,n for sÞ0 still have ap-
proximately the same range inn. The simplest possible case
where this may happen is whencj takes only the values
0,61,62. In this case, the Fourier transformW̄s(u) of
W̄s,n assumes the relatively simple form

W̄s~u!5c~1!~s!W~u!1c~2!~s!
W~u!

12W2~u!
, ~C1!

wherec(1)(s) andc(2)(s) are, respectively, the contributions
of the terms withcj561 andcj562 to c(s) in ~38!. Using
c(1)(0)1c(2)(0)50 @relation ~16!#, we find that

W̄0~u!52c~1!~0!
W3~u!

12W2~u!
. ~C2!

As an example, consider the case ofW(u)5k cos(u)2k0,
which corresponds to the potential~27! (A522/k) and
gives a nearest-neighbor~Lloyd! model ~39! for M52, i.e.,
Wn50, exceptW615k/2 ~such a model is studied in Sec.
VI !. We see from~C1! and~C2! that there are two interesting
limits. If k0@max(k,1), all the hopping constantsW̄s,n are
approximately nearest neighbor inn, andE5c(1)(0)k0. If,
on the other hand, max(k,k0)!1, W̄s,n are approximately
nearest neighbor forsÞ0, whileW̄0,n are approximately next
to next nearest neighbor andE'c(1)(0)k0

3. The localization
length j51/g, however, depends only onW(u), and it is
always given exactly by relation~28!.

It should be noticed, however, that the choice
W(u)5k cos(u)2k0 is not a good one for obtaining a nearly
nearest-neighbor model in the strong-chaos regime (D@1).
This is because Eqs.~52! and ~28! imply that
uku,uk/k0u@1 in this regime, so that W(u)
5k cos(u)2k051 for someu, leading to a singularity in Eqs.
~C1! and ~C2!. Let us choose instead

2W~u!

12W2~u!
52tan@kV~u!#5k cos~u!2k0 , ~C3!

i.e.,

W~u!5
k cos~u!2k0

11$11@k cos~u!2k0#
2%1/2

. ~C4!

It is clear from ~C4! that in the strong-chaos regime
uW(u)u'1 for almost allu. Equations~C1!–~C3! imply then
that the hopping constantsW̄s,n are all nearest neighbor in
n to high accuracy, i.e., W̄s,n'0 except W̄s,61

'c(2)(s)k/4. The corresponding tight-binding model~36!
may thus be naturally viewed as a multichannel pseudoran-
dom Lloyd model for the strong-chaos regime.
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