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Antiresonance and localization in quantum dynamics

I. Dana, E. Eisenberg, and N. Shnerb
Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel
(Received 13 July 1995; revised manuscript received 8 July)1996

The phenomenon of quantum antiresonaf@@AR), i.e., exactly periodic recurrences in quantum dynamics,
is studied in a large class of nonintegrable systems, the modulated kicked (fdt6Rs). It is shown that
asymptotic exponential localization generally occurs fota scaledh) in the infinitesimal vicinity of QAR
points 7. The localization lengtlg, is determined from the analytical properties of the kicking potential. This
“QAR localization” is associated in some cases with an integrable limit of the corresponding classical sys-
tems. The MKR dynamical problem is mapped into pseudorandom tight-binding models, exhibiting dynamical
localization(DL). By considering exactly solvable cases, numerical evidence is given that QAR localization is
an excellent approximation to DL sufficiently close to QAR. The transition from QAR localization to DL in a
semiclassical strong-chaos regime,szass varied, is studied. It is shown that this transition takes place via a
gradual reduction of the influence of the analyticity of the potential on the analyticity of the eigenstates, as the
level of chaos is increaseff51063-651X96)02711-0

PACS numbes): 05.45:+b, 71.10-w, 72.15.Rn

[. INTRODUCTION systems with nonintegrable classical counterparts, is called
dynamical localizationDL) [17]. The quantum suppression

The study of “quantum chaos,” i.e., understanding theof diffusion in the KR is an immediate consequence of DL.
“fingerprints” of classical chaos in quantum mechanics Despite the fact that DL has no classical analog, there exists
[1,2], has led to the discovery of a variety of new quantum-a remarkable and simple relation between the classical
dynamical phenomena. Several such phenomena occur @haotic-diffusion coefficienD in the KR and theasymptotic
time-periodic systems described by the general HamiltoniaDL length ¢ in the semiclassical regimesufficiently small

7). é~DJ/2[3,7-9. For nongeneric, rational values gf in
H=Hgy+Hf(t), (1) all the kicked systems the phenomenon of quantum reso-
nance occur$4], i.e., the quadratic increase of the energy
where H, is some time-independent Hamiltoniad, is a  expectation value with time. This phenomenon is due to an
perturbation, and f(t) is periodic with period T, absolutely continuous QE spectrum, exhibiting a band struc-
f(t+T)=1(t). In many cased(t) is chosen, for simplicity, ture.
as a periodic delta functioh(t)=A(t)=3%___8(t—sT), In this paper, DL is approached in the light of a different
giving the well-known class of “kicked” systems. Represen- kind of phenomenon for systen($): exactly periodic recur-
tative models in this class are the kicked rof8r12, the ~ rences. This phenomenon is defined, in general, by
kicked Harper mod€]13], and the kicked harmonic oscilla- i
tor [14]. UP=e™'4, )

The quantum dynamics of time-periodic systefd$ is '
governed by their quasienerg@E) spectrumi.e., the spec- whereU is the one-period evolution operator fd), e 'Bis
trum of the one-period evolution operatoDifferent proper- some constant phase factarc numbey, andp is the small-
ties of the QE spectrum lead to quantum-dynamical phenomest positive integer for whickR) is satisfied. ThupT is the
ena having, in general, no classical analog. A classigecurrence period. As it will become apparent in this paper,
example is the quantum suppression of chaotic diffusion inthe phenomenori2) may occur, in general, only for very
the kicked rotor(KR) [3], accompanied by quasiperiodic re- special values of; and it is thus nongeneric. In fact, for the
currenceg5]. An important interpretation of this phenom- general class of systems introduced in this paper, it occurs
enon has been givef6,7] by showing first that, in the precisely at values of,= 7, corresponding to quantum reso-
angular-momentum representation, the QE eigenstates of tlances[4] in the kicked systems. At the same time, this
KR satisfy the equation describing a one-dimensidial) phenomenon, manifesting itself in bounded, periodic varia-
tight-binding model with pseudorandom disorder. This pseution of expectation values, is diametrically opposite to quan-
dorandomness is generic, as it exists for almostiathtio-  tum resonance. We shall therefore refef2pas to thequan-
nal) values of a scale¢dimensionless?, which we denote tum antiresonancéQAR) phenomenon.
here byy. It was found[15] that in several interesting cases  While this phenomenon is nongeneric, we show in this
pseudorandom tight-binding models exhibit localizationpaper that, for a large class of nonintegrable systems, it is
properties similar to those of truly random on@nderson generally accompanied by a very interesting effect: In the
localization [16]. Assuming the general occurrence of thisimmediate vicinity of QAR (infinitesimal »— 7y), asymp-
localization, it follows that, generically, the QE eigenstatestotic exponential localizatiomith a pure-point QE spectrum
are exponentially localized in angular momentum and thdakes place. The existence of this “QAR localization” is
QE spectrum is pure point. This localization in pseudoran+igorously established in the framework of a self-consistent
dom tight-binding models, equivalent to quantum-dynamicalpproach, which allows for an exact determination of the
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asymptotic localization lengtl,. For 7,=0, the QAR lo-  arbitrary period for integrable versions of the MKR¥Ve
calization is associated with an integrable limit of the classi-show, on the basis of a self-consistent approach, that for
cal Hamiltonian. On the other hand, valuessgf# 0 usually  infinitesimal n— 7, asymptotic exponential localization
correspond to the strong quantum regime of a nonintegrabl@kes place, with a pure-point QE spectrum. This spectrum
Hamiltonian, exhibiting chaotic diffusion. and the QE states are determined from an effective Hamil-
As in the case of the KR and other systeffs-8,10,11,  tonian with a periodic potential and the localization length
we show that our class of systems can be mapped into tight, is fixed by the analytical properties of this potential. If

binding models with pseudorandom disordéor 7 suffi- 170=0, the effective Hamiltonian turns out to be precisely an
ciently irrationa). DL is then expected to occur generically integrable limit (T—0) of the classical MKR Hamiltonian.
in our systems. Fow infinitesimally close tozp,, the tight- In Sec. IV, we consider cases for which exact and closed

binding models areot defined, so that QAR localization results concerning QAR localizatide.g., &) and the asso-
cannotbe viewed, strictly speaking, as a kind of DL. How- ciated QE spectrum can be obtained. Using these results, we
ever, if » is sufficiently irrational and close tg,, one ex- provide strong numerical evidence that QAR localization is
pects DL to take place and to exhibit approximately the saman excellent approximation to DL sufficiently close to QAR.
features as those of QAR localization. In particular, the DLIn Sec. V, we show how MKR dynamical problems can be
length ¢ should be well approximated by the QAR- mapped, in general, into multichannel tight-binding models
localization length &, and one expects thaf—¢&, as [20] with pseudorandom disorder. In Sec. VI, we study the
n— 1. We provide strong numerical evidence that this istransition from QAR localization to DL in a strong-chaos
indeed the case. Sinc& can be determined exactly, this regime for a simple MKR system equivalent to the KR. This
seems to be the first case where a DL lengjttan be found study is performed by considering the minimal Lyapunov
with arbitrary accuracy in nonintegrable systems. exponentsyy, for successive truncations of the corresponding
We also study the dependenceéobn »— 7, for » not  pseudorandom tight-binding model. The exact relation
very close toz,. This allows one to understand the transition {o=D/2 is derived for a nearest-neighbor pseudorandom
from QAR localization to DL in regimes basically different Lloyd model. Conclusions are presented in Sec. VII. Some
in nature from QAR. Values of; sufficiently far from#,  Of our results have been briefly reported in R¢&L,22,.
may correspond to semiclassical regimes of local or global
chaos. As already mentioned, the semiclassical regime of |I. QE SPECTRUM AT QAR: EXAMPLES OF QAR

global chaos in KR systems is characterized by the approxi- IN KR SYSTEMS

mate relationé~D/2 [3,7—9. Calculations of¢ for the KR _ ) _

were performed7,8] by applying the method of minimal AN immediate consequence @) is that the spectrum
Lyapunov exponen{18] to an equivalent pseudorandom Of U consists precisely ofp eigenvalues exptiw),
tight-binding model. The method is based on a finite truncal =0 - - - P—1, where the quasienergies are given by
tion of the (generally infinitg¢ vector of hopping constants,

so that only the firstN neighbors are kept. Then w|='8+277| _ 3)

E=limy_ .. 1/yy, wherevyy is the minimal Lyapunov expo- p

nent of a N-dimensional symplectic map associated with S ]

the truncated model. We show that the truncated model hasince the QE spectrum is finite, each quasien¢Bjymust
for all N, a well-defined dynamical equivalent exhibiting be |nf|r_1|tely degene_rate. An infinite set _of QE states associ-
QAR. Then, by studying numerically the dependenceygf gted with _QE.IeveI is obtained by applying the c_orrespond—
on bothN and 7, we show that the transition from QAR N9 _projection  operator for the cyclic group
localization to DL in a semiclassical strong-chaos regime{elsﬂ PU%s—0,... p-1 to all the statest” in the Hilbert space:
takes place via a gradual reduction of the influence of the
analyticity of the system on the analyticity of the eigenstates,
as the level of chaos is increased.

In the simple case dil=1, i.e., a nearest-neighbor pseu-
dorandom “Lloyd model,” we derive theexact relation  We recall here that in the case of quantum resonance the QE
£,=DJ/2. Since many numerical calculations indicate that spectrum consists of a finite number of bafdls The finite
is independent of; for such a mode(see, e.g., Ref$7,15]),  width of each of these bands leads to ballistic motiqna-
this is strong evidence that the relatiés D/2 holds exactly  dratic increase of the energy expectation value with Yirtre
for the corresponding dynamical system. A lengthy derivathe QAR case, on the other hand, one has the diametrically
tion of this relation was given in Ref9], based on the as- opposite phenomenon of periodic recurrences. This phenom-
sumption that the pseudorandom disorder can be replaced lgpon has nothing to do with localized QE states, since the
a truly random onéthis gives the usual Lloyd modgl19)). infinite basis of state¢4) for QE levell can be chosen, of

The paper is organized as follows. In Sec. I, we discussourse, either localized or extended by properly choosing the
some basic aspects of the QE spectrum at QAR and considstateW. The periodic recurrences may be explained by say-
special cases of QAR occurring in ordinary KR systems. Ining that each of the infinitely degenerate levels in the QAR
Sec. lll, we introduce the general class of modulated kickeatase is the extreme limit case of a quantum-resonance band
rotors(MKRs) and determine values of, 79, where QAR of  of zero width. This point of view will become clearer by the
period p=1 occurs forarbitrary kicking potentials(more following examples.
general cases of QAR, of periogis=1 andp=2, are con- A first case of QAR was noticed by Izrailev and Shepe-
sidered in Appendix A; in Appendix B, we study QAR of lyanskii[4] in the KR. Consider the general KR Hamiltonian

%o
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L2 _B

H= 57 +kV(6)Ax(D), (5) vo=pgr Usp=0 (s70).

whereL is the angular momentunh,is the moment of iner-  In fact, v, (s+0) are precisely the Fourier coefficients that

tia, k is a parameter, and(6) is a general periodic function contribute to the width of a QE band in the casenafp

of the angled. The evolution operator faB), fromt=—0to  quantum resonande3].

t=T-0, is These examples show that in ordinary KR systems QAR

L, may occur only ifV(6) satisfies some restrictive conditions.
U=e ™M kV(O), (6) Inthe next section we shall introduce systems in which QAR
R occurs forarbitrary kicking potentials, at some= 7,.

wheren=L/A=—id/d8, 7=AT/2l, andk=k/%. Quantum

resonances occur, in general, for rational values of Ill. QAR IN MODULATED KR SYSTEMS

n=r1/2m [4]. Consider, however, the special case of AND ASYMPTOTIC EXPONENTIAL LOCALIZATION

n=1/2. Using the relation
We define the general modulated kicked rotor by the

e~ im%g=ikV(0) — o= ikV(6+ w)e—iwﬁz, 7 Hamiltonian
which is easily established by comparing the Fourier expan- L? . Mt
sions ofV(0) andV(6+ ), one finds in this case that H= E“Lkv( 0) JZO CjAr(t—ty), (12

2_ o
U=exp[—ik[V(0)+V(6+m)]}. where V() is an analytic function off, c; are arbitrary

Thus the condition(2) for QAR is satisfied withp=2 if  Ccoefficients forj=0,... M—1, and
V(0)+V(0+ )= B/k identically, for someB. This implies

: . <t<t,<T, ty= =T.
that V(6) must have the general Fourier expansion 0=ti<tina=T, =0, ty

0 The Hamiltonian (12) has the general form(1) with
v<9)=£+ S e, €20 ) f_(t)=p(t)sz_;OlAT(t—_tj),_whereC(t) is a periodic func-
2k == tion with periodT, satisfying theM conditionsC(t;)=c; .

o _ Thus(12) may be viewed as a generalized KR withkicks
This is, of course, the case for the standard potentiakt arbitrary times; within the basic period and modulated by
V() =cos(), considered in Refl4]. According to(3), the  the functionC(t). The classical map fof12) is given by
QE spectrum consists of two infinitely degenerate levels,

w=BI2,B/2+ . By “switching on” even-harmonic compo- Lesg=Lg— QCJV/(QS)'
nentsv, in (8), the infinite degeneracy is removed and the
two levels broaden into two bands, corresponding to the ge- 0o 1= 0+ [ (tes 1—t)/1 TLesq (13
neric spectrum of the 1/2 quantum resonance. s SoThsTh sTamsTh

More general results can be obtained for the “linear” yynere the integes is uniquely decomposed a@s=rM +
version of(5) [23], which is, however, integrablg4]: (r is an integer andj=0,... M—1), t=rMT+t;,

L=L(t=ts—0), and6s=6(t=t;—0). In general, the sys-
H= %LJFQV( 9)A(1), (9 tem (12 with (13) is classically nonintegrable and exhibits

the transition from local to global chaos whiiis increased,
. . . as in the ordinary KR casi25]; see an example in Fig. 1.
v_vherer is now some dimensionless parameter. The eVOIUThe simple case oM=2, with c,=—c,=1 andt,=T/2
tion operator for(9) is (the “two-sided” KR), was studied in detail in Reff21,22.
U=eimMg-ikv(6) (10) This case may already be considered as an approximation of
' sinusoidal driving potentials corresponding to ac electromag-
The pth power ofU in (10) can be easily given in closed netic fields[26]. Better approximations should be achieved
form by using the Hamiltoniari12), with properly chosen coeffi-
cientsc; . The study in Refd.21,22 will now be extended to

p the general case df.2).
Upzexp{—ikE V(0—sT)|exp(—ip7h). (11 The evolution operator for(12), from t=-0 to
s=1 t=T-0,is

Equation (2) is now satisfied if and only if M-1
>P_,V(6—sr)=pB/k and n=r12m=mlp, for relatively u=11I exp —imn2)exd —ic,kV(6)], (14)
prime integeran andp. The latter conditior{rational ») is j=0
precisely the general condition for quantum resonance )
[4,23). The former condition gives, however, the oppositewhere, forj=0,... M—1,
phenomenon, i.e., the QAR. It is easy to see that this condi-
tion is satisfied only if the Fourier coefficients, of V() _h(tea )

(15

7j

satisfy 2| '
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1.0 ' tiq1—t;
@ =" = Le. (17)

Using the operator identity27]

e"Be A=B+[AB]+ %[A,[A,B]]

L2n

o IAALABID -

and formally expanding the operators expf n?)
=exp(-ig n?) in powers of €j, we find, to first order in
0.0 . €:
0.0 0.5 1.0 i
02n M—1

U~1- _20 e{in—dk[2iV'(0)n+V"(0)]
“

+id?k2V'2(0)}, (18

wheredjzzjszocs and the prime orV denotes differentia-
tion with respect td. Using (17), the expression i18) can

05 | - be written, to first order ire, as exp-ieG;), where

B
o
3 —
Gy=[n—kdV'(8)]2+kZV'2(6) (19
andkqs=kAd. Hered andAd are, respectively, the average
and standard deviation af; with “probability distribution”
, (tj1—t)/T,
0.0 : :
0.0 0.5 1.0  M-1 tog—t, M—1 ot o
621 — J 14 2_ 1 a2 g2
d ,-Zo T ;. (Ad) ;O T—df-d” (20

FIG. 1. Chaotic orbits generated by 30 000 iterations of the
classical Poincarenap (13) for a M=3 Hamiltonian(12), with ~ Using (20) and the definition ofi;, it is easy to show that
V(6)=cos@), co=c,=1,c,=—2, andt;,,—t;=T/3forallj: (8  Kesr (or Ad) is invariant under cyclic permutations of the
local chaos fok=0.3 and(b) global chaos fok=0.5. sequence; [28].
Assuming for the moment the validity of the expansion
and the factors under the product sign(i) are arranged @bove in powers ok (see the discussion belowthe QE
from right to left in order of increasing. Now, when all the ~ States in the limit of infinitesimale are precisely the eigen-

quantities(15) are integer multiples of 2, i.e., 7j=2mm;, states ofG,,
one has exp{irjﬁz)zl identically. Then, if the coefficients _
¢; satisfy the condition Giy=9¢, (21

with quasienergieso=€eg (e—0). Performing on(21) the

M-1 .
gauge transformation

E Cj:O, (16) J—
=0 p=exg —ikdV(6)]y, (22)

we find thatU=1 in (14), corresponding to a simple case of we obtain fore, using(19), the eigenvalue equation
fundamental QAR [f=1). For simplicity, we shall restrict ,

ourselves in what follows to this case, characterized by the dce
conditions7;=27m; and(16). More general cases, for both T de?
periods p=1 and p=2, are considered in Appendix A,
where it is conjectured that QAR with perigd>2 does not We thus see that the QE problem for infinitesinaais just
exist for the MKR Hamiltonian(12). that of a Schrdinger equatiorf23) with a periodic potential.
WhenU=1, the QE spectrum consists just of a single, The spectrung then has a band structure, but because of the
infinitely degenerate level. The natural question is then preperiodic boundary conditiorp(27)= ¢(0), only the level
cisely how this infinite degeneracy is removed by slightlywith zero quasimomentum is picked out from each band.
perturbing»; near their integer valuas; . For definiteness, This gives, in general, a point spectrum. Now, being the
the perturbation ofr; in (15 will be made by perturbingd solution of the linear differential equatid@3), ¢(#6) is ana-
nearl =1, leavingt; fixed. Denoting bye the corresponding lytic at least in the domain of analyticity of’ () [29]. Let
perturbation int=#T/2l, the perturbation inr; is given by  y be the smallest distance of a singularit\df( ¢) from the

+K2V'2(0) p=ge. (23)
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real 6 axis. Then the Fourier-series expansiongd®) will p=1 andp=2 can occur, in general, if; in (15) is an odd
converge at least within an infinite horizontal strip of width multiple of 7. Such values ofr; are not equivalent to
27y, symmetrically positioned around the reabxis[29]. It~ 7;=0 sincer;mod27#0. In this case, the QAR localization
follows that the Fourier coefficients gf and¢ in (22) decay is not even a reflection of a classically integrable limit.
asymptotically at least as exp6in|). This means that in the It is important to notice that the limT—0 (or »—0) at
immediate vicinity of QAR asymptotic exponential localiza- fixed k (or k) is not a semiclassical limit. In fact, if the
tion takes place in the angular momentur, with localiza-  quantities {j+1—t;))/T are kept fixed and the coordinate
tion length &, not larger than . In general,; is deter-  transformationL’=(T/I)L is performed in the magl3), it
mined entirely by the analytical properties Wf (6) (see becomes clear that the classical dynamics depends only on
examples in Sec. IV ) T _ the parameteK=(T/I)k=27k. The semiclassical limit is
This expongntl_a_l QAR quall_zatlon |nL,_ foIIowmg_ then »—0 at fixedK, not at fixedk. However, at fixed
from Eq. (23), justifiesa posteriorithe expansion above in ks>1, small values ofy such thatk <1 may be viewed as

powers ofe. In fact, the general expansion forin (14) can ¢4 regponding to a semiclassical regime of almost integrabil-
be formally written as exp{iG), G=Ei=1eJGj . Here the ity.

Hermitian operator$5; are polynomials im and derivatives
of V(6) of order not larger than j2[the leading operator
G, is given by(19)]. Thus the highest power af contrib-
uted byG; appears in this expansion aenf)!. This means In this section we consider cases of potentid()) for
that by choosing=<n..2,, wheren,,>1/y, the eigenstates which the QE problem in the infinitesimal vicinity of QAR
of U (i.e., the QE statésshould be very close to those of [Eq.(23)] can be solved in closed form, or at least an explicit
G,, at least within the localization domain. In the limit of expression can be obtained for the QAR-localization length
infinitesimal e, the QE states should coincide with the eigen-£,. Using these exact results, we shall provide strong nu-
states ofG,. The derivation of Eq(23) appears then to be merical evidence that the QE spectrum and localization fea-
self-consistent. tures sufficiently close to QAR are well accounted for by the
We now show that the effective Hamiltonid9) has a QAR effective Hamiltonian(19). As shown in Sec. V, the
classical counterpart in the limit of very small values of theMKR dynamical problem can be mapped into pseudorandom
quantity T/ =27/#. This limit corresponds to the case of tight-binding models, so that DL is expected to occur if
infinitesimal values ofr; in (15), i.e., infinitesimally close to 7= /2 is sufficiently irrational. If, in additionn— 7, is
the special QAR pointy= 7/2r=0 (m;=0 for all j). Con-  small enough, this DL should look similar to QAR localiza-
sider theMth iteration of the classical maf13), giving the  tion.
map (Ls,60s)—(Lsiy,0siw). Taking carefully the limit Our. first example is the standard potentsié(le):cos(a),
T—0 in this map at fixedt{, ;—t;)/T and using the condi- for which Eq.(23) reduces to théathieu equatior{29,3Q
tion (16), we obtain, after a straightforward but tedious cal- "
culation, the Hamilton equations y"+[a—2qcog26)]y=0, (26)

IV. EXACTLY SOLVABLE CASES

where y=¢, a=g—(kAd)%/2, and q=—(kAd)?4. The
L (24) problem is then exactly solved in terms of the periodic
dt a9 dt  dL Mathieu functions y=ce(60,q) (symmetrig and
y=se(#6,q) (antisymmetri¢, with corresponding eigenval-

dL  dHer d6  dHeq

where uesa=a,(q) anda=b,(q). Explicit expressions for these

52 1 (RAd)Z functions and eigenvalues, as well as a detailed discussion of
Heﬁz—Gl=—[L—§a/’(0)]2+ V'2(0). (25) their propernes, can be found in Ref29,30. Fr_om Eq.(22)

2l 2l 2l the Fourier coefficients), andy, of  andy= ¢, respec-

tively, are related by//anjiiJj(kd)yn,j, whereJ;(kd) is

Equations(24) and (25) show that the general MKR Hamil- a Bessel function. Since the dominant decay rate of Bgth
tonian(12), with coefficientsc; satisfying(16), is integrable  andy,, with n is like n=" [30], this is also the dominant
in the limit T—0, as it reduces precisely to the 1D effective decay rate ofj,,. This strong localization it space, faster
Hamiltonian(25). The latter is essentially the QAR effective than exponential, could be expected from the fact that
Hamiltonian (19) and, after the canonical transformation v(¢)=cos(@) is an entire function(analyticity-strip width

"=L—kdV’'(#) [analogous to the gauge transformation2y=«), so that the asymptotic localization length
(22)], it becomes essentially the Schioger Hamiltonian in ~ £,=1/y=0.
(23). Thus QAR localization in the infinitesimal vicinity of Let us now check to what extent the QAR effective
7n=0 is associated with a classically integrable limit. Ass ~ Hamiltonian(19) for V() = cos() reproduces accurately the
increased from 0, keeping the quantitids, ¢ —t;)/T fixed quantum dynamics and QE spectrum ptr 5= e/27 suf-
at some rational values); /m (m:E}V';Olmj), the QAR lo- ficiently small and irrational. We have studied numerically
calization for»=0 will repeat periodically in the infinitesi- the case oM =3, withcy,=c;=1, c,=—2, andr;= 7/3 for
mal vicinity of »=rm, for all integersr. For these values of all j (chaotic orbits for this system are shown in Fig. The
7, which are equivalent tag=0 but correspond to noninte- quantum dynamics of a wave packet initially equal to
grable systems in a strong quantum regime, the QAR locallh=0) was investigated using a basis of up to 512 angular-
ization is only a “reflection” of the classically integrable momentum states aroumd=0. The wave packet was propa-
limit T—0. In Appendix A, we show that QARs of periods gated in time using well-known algorithni]. In Fig. 2, we
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FIG. 4. Steady-state probability distributiofig/(n)|?) over the

FIG. 2. Expectation value of the kinetic energy as a function ~ angular momenturm# for the M=2 MKR (co=-c;=1 and
of the “real time” t=es, for the MKR system described in the t;=T/2) with V(#)=cos@) and k=10. The three curves corre-
caption of Fig. 1 with k=2 and for several values of spond to three irrational values of=r/2m: 7=10° (solid line),
e=2m(n— 1) (7 is @ QAR poinj. The continuous curve corre- 7=10"2 (dashed ling andr=10"" (dotted ling. The saturation of
sponds toe=0.01, the filled circles toe=0.11, the squares to (|#(n)|?) around 10%°is due to numerical noise.
€=0.17, the filled diamonds te=0.25, and the triangles to

€=0.28. values ofev equal to the spacings between QE levels. A

comparison with the level spacings corresponding to eigen-
plot the kinetic-energy expectation vallig=(L?/2l) as a values of the Mathieu equatidi26) shows excellent agree-
function of the “real time”t=es (s is the number of appli- ment. This is strong evidence that sufficiently close to QAR
cations ofU), for k=2.0 (ker=kAd=/8/3) and several ir- the QE spectrum is very well accounted for by the QAR
rational values ok/27. We observe that almost all the data operatorG, [i.e., Eq.(23)].
fall close to the same curve, even for valuesds large as Dynamical localizatior{17] in the vicinity of QAR will
€=0.28. For smaller values &, the data fall much more now be compared with QAR localizatigwe assume in what
accurately on the same curysee an example foM =2 in  follows that »,=0). For this purpose, it will be sufficient to
Ref.[22]). This is evidence that, even fernot very small, consider the localization of steady-state probability distribu-
the quantum dynamics over a significant time interval can b&ions (|(n)|?) over angular momentum#. Such a distri-
well described by the approximate evolution operatorbution is calculated by propagating an initial angular-
US=exp(—iesG,)=exp(—itG,), generated by the QAR ef- momentum statgn=0) for a sufficiently long time interval
fective HamiltonianG,. In Fig. 3, we plot the Fourier trans- and averaging then the results fgr(n)|* over a subinterval
form Eq(v) of Eq(t) for e=0.1 and several values &f The  at the end of this interval. All our numerical calculations in
positions of the various peaks Ey(») must correspond to what follows have been restricted to the simple case of the

M=2 MKR with cg=—c;=1 and t;=T/2 (the “two-

sided” KR [21,22). Figure 4 shows a semilogarithmic plot

02 of (Jy(n)|?) for V(8)=cos(@), k=10, and three irrational
— woa values of »=7/27, 7=107°10 3,10 1. For the first two
e k2.0 values of 7, corresponding to close vicinity of QAR,
Sheydi {|(n)|?) appears to decay faster than exponential, in accord
i #k=2.0; Exact with the solutions of the Mathieu equatid86) (i.e., QAR
o1y | ] localization. On the other hand, the localization for
2 =101 looks quite different from QAR localization; it ap-
u l pears, in fact, to be almost exponential. These results can be
, explained as follows. The classical nonintegrability param-
;{J\L u\ eter is given byK=(T/1)k=27k (see Sec. I)l. Thus the first
0.0 "O - o, Y two values ofr correspond to a semiclassical regifsenall
7) of almost integrability(small K) and the observed DL
o . . - 4?0 " - [17] is then similar to QAR localization, as predicted from

the integrable effective Hamiltoniafi9) (however, a basic
difference between these two localizations is expected, as

FIG. 3. Fourier transfornEy(v) of Eq(t) (see the caption of Pointed out in Sec. VI For 7=10 11_ on the other hand,
Fig. 2) for e=0.1 and several values df (see the legend The K=2, corresponding to a semiclassical regitamall 7) of
symbols at the bottom are the theoretical predictions for the peakglobal chaotic diffusion in the =2 MKR [21]. As in the
positions, based on the eigenvalues of the Mathieu equé2en KR casg]7,8], the localization observed here should be char-
The peaks fok=0.01 anck=1.0 have been rescaled by a factor of acterized by a DL length¢é determined by the chaotic-
100 000 and 10, respectively, for visibility. diffusion coefficient D, é&~D/2 (see Sec. ML This is

v
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in contrast with QAR localization, which is completely de-

termined by the analytical properties of the potential. The 10

transition from QAR localization to DL, as is varied in a

semiclassical regime at fixéd will be studied in more detail

in Sec. VI. "
Our second example is the potential

V(6)=Aarctaf x coq 0) — k], (27)

where A, «, and «y are some constants. The QAR-
localization lengthé, for (27) can be determined exactly as
follows. The functionV’(8) assumes simple pole, satis-
fying the equation« cos(,) — ko= =i. The distance of any of 107 ‘ ‘ .

these poles from the rea axis is y=|Im(6)|, and we 0 64 1'?]8 192 256
easily find that

_ 212 2712 FIG. 5. Same as in Fig. 4, but for the potenti@7) with

2k cosiy) =[1+(ko+ k)" +[1+ (ko= K)°]7% (28 A=1, k=1, ko=0, andk=2. The straight thick line has slope

) . . ) . —2v, where y is determined from Eq(28). For 7 sufficiently
Consider now the Fourier-series expansion for the solutiongy, i, this siope is expected to be very close to the asymptotic rate
¢(0) of Eq. (23). We claim that in the case dR27) the  f exponential decay ofj¥(n)|2). We observe that this is the case
Fourier coefficientsp, must decayasymptoticallyas ¢,>< even forr not very small,-=10"" (dotted ling. In fact, this system
exp(—yn|). The QAR-localization length is thegi,=1/y. corresponds precisely to a pseudorandom Lloyd model, whose DL
To show this, we observe that the simple polgscorre-  |ength& seems to be independent ofisee Sec. VI and Fig.)8
spond toregular singularities[29] of order 2 of Eq.(23).
The exponentp, and p, for these singularities are easily diffusion (K=2), the observed DL looks quite different
determined from the quadratic “indicial” equatidi29] for  from QAR localization, with an asymptotic DL length
(23): p1=p,=1/2. Since the exponents are equal, the generag~D/2+ &,. This case is similar to that af=10"1 in Fig. 4.
solution of (23) around#= 6, assumes the forrf29]

V. MULTICHANNEL PSEUDORANDOM
@(0)=(0— 0)"ARy(6— 0p) + Ry(0— 6o) TIGHT-BINDING MODELS

X[by+byIn(6—6o)]}, (29 We now show how the MKR dynamical problem with

i (12) can be mapped into a pseudorandom tight-binding
whereRy(0) andR,(¢) are analytic(can be expressed as model, in analogy to the ordinary KR caf@. For simplic-
Taylor expansionsaround¢= 6, andb, andb, are arbitrary  jty, we shall assume that the quantitiekb) are all equal,
constants. It follows from(29) that all the derivatives of __ /M for all j (i.e., the kicks are equidistant in time.et
¢(6) diverge atd=6,. Let us now continue the Fourier- u(6),j=0,... M—1, denote a QE state with quasienergy
series expansion fas( 6) into the complexd plane. Defining w‘ at timet=t;+0. The following relations hold:
the complex variable=e'?, one gets a Laurent expansion in !

z that converges at least in a “ring” excluding the singulari- ui+(9) =exg —ic;kV( 9)]Uj_(0) , (30)
ties of Eq.(23) [29], i.e., for|Im(6)|<Im(6,) = y. However,
since all the derivatives dR9) diverge asf— 6, this must
be also the case for the derivatives of the Laurent expansion. 107
By a simple consideration of the latter derivatives, the de-
sired relationp,<X exp(—{n|) is obtained.

Figures 5 and 6 show semilogarithmic plots of
{|#(n)|?) for the M=2 MKR (defined as aboyewith the 107
potential(27) (A=1, k=1, andxy,=0) and for several val- 3
ues ofk and 7. The straight thick line in both figures has
slope —2vy, where y is determined from Eq(28). For 7
sufficiently small, this slope is expected to be close to the 10
asymptotic rate of exponential decay @f/(n)|?). We see
that this is indeed the case whenever the classical parameter
K=27k is small enoughK <1, corresponding to almost in-
tegrability or local chaos. In particular, fée=2 (Fig. 5) the 0 64 128 192 256
decay rate appears to be equal tp fr all three values of n
7. In fact, fork=2 andA=1 the potential(27) leads to a
nearest-neighbor pseudorandom tight-binding model whose g|G, 6. Same as in Fig. 5, but fée=10. The four curves cor-
DL length & appears to be independentofsee Sec. VI and  respond to four irrational values of= 7/27: 7=10"" (solid line),
Fig. 8). On the other hand, fdk=10 (Fig. 6) the DL length =105 (dashed ling 7=10"3 (dot-dashed ling and 7=10"*
is quite sensitive to the value of In the case ofr=10"1, (dotted ling. The straight thick line has slope 2y, wherey is
corresponding to a semiclassical regime of global chaotidetermined from Eq(28).

<hy|

—22
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u- =g MMyt (0<j<M-1), wherec(s) is defined by(38) and\_/Vn is theL represe_ntation
Jn J=in of W(#)=—tar{kV(6)/2]. Relations(38) and (16) imply
. (31) now that the hopping constanW®,,, within a channel are
' identically zero, including, of cours&= —W; 4. In thissin-
whereufn is the L representation Oﬁji(g)_ We define, in gular case, the modeB6) loses much of its physical mean-

R 2
- _ ai(w—m4/M),,+
Uo‘n—e Upm

some arfalogy with Ref6], ing. In Appendix C, we consider in some detail nearly sin-
gular cases 0f36), for which the hopping constan®,, are
N ur(0)+uj_(0) . 1+iW;(0) nonzero but small. Notice that thé =2 case is always sin-
. a)zeljw/M e—lcjkV(e): _ . —_ .
u;( 2 , 1-iW,(0)’ gular, sincecg ¢, from (16). In this case, however, a

(32) physically meaningful two-channel modg22] can be de-
rived directly from Eq.(33), without the need of the Fourier
so thatW,(6) = —tar{ c;kV(6)/2]. Simple manipulations of transforms(34) and (35). Simple manipulations of E¢(33)
relations (30)—(32) yield a system ofM equations for the give in this case
L representatiomw; ,, of u;(#), j=0,... M—1:

Tnuo,n+ Snul,n+ ZO Wn—ruo,r = EuO,n )
Uj+1n—1l 2 Wj+1,n—ruj+1,r

. —ToUn—SyUont > Wo_ Uy, =Euy,, (39)
:el(m—Tnz)/M uj,n+i2 Wj’n_ruj‘r ' (33) nY1ln n“0,n 4 n—rYir 1in

_ _ where T,=cot(,,), S,=—1/sin¢y), {,=(mM?’—w)/2, and
where uy n=Ug, and W;, is the L representation of E—_w, The on-site potential and hopping constants
W;(0). Unless otherwise specified, the indexn (33) runs  wjthin each channel are, respectively, andW,, while S,
over all the integers. We now introduce the Fourier transyre the coupling constants between the channels. As shown
forms ug, and Ws , of u; , and W, ,, respectively, in the in Sec. VI, theM=2 MKR is essentially equivalent to an
variablej: ordinary KR if the potential satisfieg(6+ 7)=—V(6). In
this case, the dynamical problem can be conveniently ap-

_ 'Y 2mijsIM proached using the well-known tight-binding models for the
Uslnzmgo Uj’ne ) (34) KR [6,7]
For irrationalp= 7/27, T in (37) [or T, andS, in (39)]
. qMz? ) is a pseudorandom sequeriégl5| that, by arguments simi-
WS'”:M,ZO W; ,e2mIs/M, (35 lar to those used in the KR caBg], may lead to Anderson-

like localization of the eigenstates (&6) [or of (39)]. This is
the DL [17] of the corresponding QE states in angular mo-
mentum. Another source of randomness, which does not in-
volve 7 but may contribute significantly to DL, is the depen-
- - _ o o dence of the hopping constan®,, on the distances
Tﬁs)us,ﬁz WO,n—rus,r+E > Ws_ g/ n—rUs/ r=EUgp, between channels, especially in the limit of very laige
ren ros'#s 36 This may reflect a possible randomness of the sequernice
(36 the “time index” j.
Clearly, the pseudorandomness is not defined in the in-

Using the expression®4) and(35) in (33), we obtain, after
simple algebraic manipulations,

where, fors=0,... M—1, L o S T
finitesimal vicinity of QAR (infinitesimal e= 7 mod2s), so
T = —tar{ (mn2— 27s— w)/2M], 37y  that QAR localization is not DL, strictly speaking. However,
when approaching a QAR poiny,, the pseudorandomness is
the indexs’ takes all the integer values =0,... M—1  guaranteed by choosing2w in a sequence of “strong™ ir-
with the exception o' =s, andE= — W, . Equations(36) rationals ¢/27, 1=1,2,..., converging to O [e.g.,

describe a tight-binding model of avi-channel strip20]. €= 27/(I+¢), whereg is the golden mednlit is then quite
The on-site potential in channglis given byT( , while the possible that fore=¢ the model(36) [or (39)] will have

hopDi tants withi h | The hoooi exponentially localized eigenstates. In fact, the numerical
opping constants within a channe a,%'“‘ € hopPpPINg - yjigence presented in Sec. Iiee also Sec. Vlstrongly
constants from channed to channels’#s are given by

indicates that this is indeed the case faufficiently large.
Ws—sn- ) ) ] . Then, provided the QAR conditionil6) is satisfied, the
A particularly interesting case arises whep assumes g asienergyw in (37) should be given approximately by
only the values G-c for some constane, which will be ,— .4 \whereg is an eigenvalue of the leading operator
chosen, without loss of generality, equal to 1. From reIanrG1 in (19). Moreover, in theM =2 case of(39), one can
(35) and the definitionV;(0) = —tar{c;kV(6)/2], it follows  gasjly determine, using80), (32), and(22), the accurate re-

then that lation expected between the solutions of E@8) and (39)
M—1 for small e: ug(8)~cogkV(6)/2]¢(0).

W. . =c(s)W.= — c.e2misiMyy 38 For rational values ofp=m/p (m and p are relatively

sn=C(SWn=1g ,2::0 ! : 38 prime integers the on-site potential® in (37) [or T, in
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(39)] is periodic inn with periodp. Then, by straightforward where all the quantitiesr, w, and u, now refer to the
application of Bloch theorem, one can easily show that thevi=2 MKR. Let us briefly recall how the asymptotic DL
QE spectrunw is, in general, absolutely continuous, consist-length ¢ can be calculated from such tight-binding models
ing of p bands. This corresponds to usual quantum resonand&,8]. The hopping constants i%2), given by the Bessel
[4]. However, when the QAR conditions are satisfied, eitherfunction J,(k/2), decay faster than exponentially for
for p=1 or p=2 [see(16) and Appendix A, a QE band |r|>k/2:
“collapses” to an infinitely degenerate level.

(4lmk)Y2cog ki2— mr 12— wld)  for |r|<k/2

J.(k/2)~
VI. TRANSITION FROM QAR LOCALIZATION (kf2) (127 |r|) Y3 ekian)' for |r|>k/2.

TO DYNAMICAL LOCALIZATION (43

IN A STRONG-CHAOS REGIME . . L
It is therefore reasonable to approxim#&é®) by restricting

In this section, we study the dependence of the DL lengthr to the finite rangdr|<N, for sufficiently largeN. This
¢ on the distancep— 7, from the QAR pointny=0. This  truncated form of Eq(42) can be easily written as a transfer-
study will be performed in a natural way at fixé&d so that matrix problem[7,8]
170=0 is associated with a classically integrable lirtsee
Sec. lll). If k is sufficiently large, the classical parameter os+1= 150, (44)
K=27k=4mnk may correspond to a case of global chaotic ) ] ] .
diffusion already for small values af<1, i.e., in the semi- Where o is the 2N-dimensional vector with components
classical regime. The approximate relatigr-D/2 [7,8], o’=Us,, r=—N+1,... N, andl'5 is a 2NX 2N sym-
whereD is the diffusion coefficienfsee definition(49) be-  plectic matrix. One may interpré44) as a map describing a
low], should then hold. The transition from QAR localization Hamiltonian dynamical system with degrees of freedom
to DL in a strong-chaos regime, asis increased from 0, can [18]. The vectoray, is mapped intoo,, for arbitraryn>0,
be understood in a most illuminating way if the problem isbPy the product matrix
approached by using a suitable pseudorandom tight-binding
model, equivalent to the dynamical system. This approach is Ap=Tn-1ln-2---To. (45
also most convenient for an accurate calculatior.of

For simplicity, we shall restrict ourselves to tid=2
MKR (co=-c,=1, t;=T/2) with potentials satisfying
V(6+m)=—-V(6) (as in the numerical examples in Figs.
4—6). We denote byJ,kg(7) the evolution operator for this
system at a given value of. Similarly, we denote by
Ukr(7) the evolution operatof6) for the ordinary KR. Us-

Since the matrix45) is, obviously, symplectic, its eigenval-
ues \(n) come in N reciprocal pairs[)\,(n),kr‘l(n)],
r=1,... N, and we can always assume the ordering
1<|\y(n)|<|\p(n)|<---|An(n)|. The minimal Lyapunov
exponenfor the map(44),

ing relations(14) and(7) with V(6+ 7)=—V(#), it is easy yn= lim Eln|)\l(n)|, (46)
to derive the exact relation nooll
UZp(7+ €/2)=Ur(€). (40)  determines then aNth-order approximatiogy = 1/yy to the

asymptotic DL lengthé. Since an accurate calculation of

Relation (40) means that the quantum dynamics of theyn becomes extremely time consuming ldsis increased,
M =2 MKR at distancee from the QAR point7=0 is es- important questions are how fag converges to its limit
sentially equivalent to that of the ordinary KR at distancevalue¢ asN is increased and whethéy has a well-defined
€/2 from 7= 7. The latter value ofr is precisely gperiod-2  quantum-dynamical meaninger se
QAR point for the KR(see Sec. Il and Appendix)AThis We have therefore studieg as a function of botiN and
equivalence between the two systems enables one to studynear QAR. The value df was fixed ak=10 and several
the M=2 MKR using the simple tight-binding models for values ofr were considered in the interval 10< 7<2. We
the KR[6,7], instead of the two-channel mod&9). have calculatedy, for N<15, using the well-known method

Our basic potential is the standard oMé#)=cos@). A  [7,8,18 for determining the Lyapunov spectra of products of
convenient tight-binding model for the KR with this poten- matrices such aé45). The method is based on direct appli-
tial was proposed by Shepelyandki: cation of the mag§44) a large numben=n,,, of times, such
that for n~n,,, the matriced",, can be considered as ran-
. dom. This randomness should be realized to some extent by
> J(k2)sif(m?—w+ar)/2Ju,,,=0, (4) the pseudorandom term mn%4 in (42  if
e [ (n+1)2=n2]/4~27 or n=np~4n/7. In practice, it
was sufficient to use,, =10 for all the values ofr consid-
red. We have checked that this choicengf,, yields well-
onverged results by calculating and comparipgfor dif-

[’

where J,(k/2) is the Bessel functiony is the quasienergy,
andu, is related to the angular-momentum representation og
the QE states. Using relatio@0) in (41), we obtain the

o ) - - ) ferent values oh=<n,,,, €.g.,,n=10°, 2x10°, ... ,1¢ for
corresponding tight-binding model for thé =2 MKR: Nmax=10°. The final results are shown in Fig. 7. We observe
o that yy clearly decreases in the intervdi<3 for all values

J(KI2)sin([ (27 + )%= w+ 271 /AU, . =0, (42 of 7. For larger values o and for very small- (immediate
Eoo (K2)SIN[(2m+ 1)~ 0+ 21 J/4}Un 42 vicinity of QAR), yy appears to increase without bounds
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0.8 ForN=1, (48) reduces tq27) with k;=0 (see below The
QAR-localization length fof48) can be determined as in the
case of the potentigR7). It is easily shown thaV|(6) as-

0.6 - sumes simple poleg, satisfying the equation

N
Wy (o) = Jr(ki2)e" (o= =0,
Y oul n(00)= 2 3i(k2)

or gn(6g)=0, since the exponential function i#7) can
0.2t never vanish. The QAR-localization length f&fy(6) is

given by &y o=1/7{?, wherey{?) is the smallest distance of

a poled, from the reald axis. It is also the half-width of the
00 = ' _~ o strip of analyticity ofVy(6) (Fourier-series representatjon

N Since y= for V(6)=cos), limy_..y\=, so thaty{
must generally increase witN, as is clear from Fig. 7 for
FIG. 7. Minimal Lyapunov exponeny, associated with the Ve€ry smallr.
Nth-order truncation of the tight-binding modét2) (i.e., r re- We thus see that in the limit—0, vy is both the minimal
stricted to|r|<N) with k=10. This model is equivalent to the Lyapunov exponent of al2X2N symplectic matrix and the
M =2 MKR in Fig. 4. The several curves correspond, in descendindhalf-width of analyticity of the potential/\(6) for the trun-
order atN=15, to the following values ofr in (42): 7=10"%,  cated problem. A\ increases, the region of analyticity of
10°°%, 1074, 1073, 102, 2x10°2, 5x10 % 0.1, 0.125, 0.15, V,(#) increases without bounds and the QAR-localization
0.175, 0.2, 0.25 1.0, and 2(dashed ling Notice the near coinci- |ength &no—0. With this in mind, we now consider the
dence of the curves far=10® andr=10"%, indicating very close  cases wherey appears to saturate foF not too large in Fig.
proximity to QAR. See details concerning the calculationygfin 7. As in the KR casé7,8], we expect that in the global-chaos
the text. regime the saturated value of the DL length=1/yy is
, . . given approximately by¢~D/2, whereD is the classical
with N. For 7=0.1, yy appears to “saturate” around some chaotic diffusion coefficient. In complete analogy with Refs.

limit value that decreases asis increased. For~1, the [3,7], we shall defineD for the MKR map(13) as
saturation occurs almost immediately afiér3.

The apparently unbounded increaseygfwith N for very  {(Lim—Lo)?d
small 7 is consistent with the fact that the asymptotic QAR- D=lim————, (49
localization length forV(6)=cos(@) is £&,=0 (analyticity- r—ee

strip width 2y=2y,,=x). We now show thaty, has a well- o
defined quantum-dynamical meaning also for fiiteThis ~ Where () denotes an average over an ensemble of initial
is because the truncated version of the tight-binding modefonditions{(Lo,6o);. In a strong-chaos regime, we may
(42) turns out to be exactly equivalent to the dynamical prob-25SUme, as usual, that the anglgsare independent and
lem (KR or M=2 MKR) with a potentialVy(6) replacing random, giving vamshmg fotce-force corrglatlons
V(6)=cos). Then&y=1lyy is the DL length for this po- (V' (69V'(6s))=0. Using then(13) in (49), we obtain the
tential, reducing to the QAR-localization lenggy o in the ~ following expression foD:

limit 7—0. For very smallr (e.g.,7=10"°% and7=10"° in

2 r-1 M—1 2
Fig. 7), £y should be an excellent approximation&@o. The _ k_ P VL _
potential Vy(6) can be easily determined from the D Mrlm ZO ,Zo GV (Grms)
g-function approach of Shepelyansky|:
N —K%(c?) f RVET (50
B 0 277’

Wy (0)=gn(0)exd —ikVy(6)/2]= r;N J,(k/2)er(6=m12)
2

47 where(c?)=3"'cf/M and, as in Ref[7], we use units
such thath =1, giving k=k. For theM =2 MKR, (c?)=1

where gy(6) is some real function. Solving Eq47) for  and, withk=10 andV(6)=cos(), we find from (50) that

Vn(6), we obtain D=50. The minimal saturated value ofy in Fig. 7 is
N vn=~0.034 (dashed ling so that the maximal DL length is
> J, (kI2)sin(r 6—r m/2) &~29~D/2. We have checked that the approximated rela-
V()= — —arcta r=-N tion £~D/2 holds also for other values &fand 7.
k N We observe that the minimal saturated value of

> Ji(kl2)codr o—rml2) yn~2/D is attained almost immediately after the decrease of
r=—N . . . .
(48) vy in the intervalN s_3. Th[s behqwor was observed also for
other values ofk, with N in the intervaIN<k/2. The de-
Using J_,(k/2)=(—1)"J,(k/2), it is easy to see tha®8) crease inyy may be due to the fact that fdr|<k/2 the
satisfiesVy(0+ 7) = —Vy(6), so that relation40) between  hopping constant&43) are of the same order of magnitude,
the KR and theM =2 MKR holds for the potentiaV/\(#).  so that the effect of each additional hopping constant is to
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increase the DL length. Fdr|>k/2, on the other hand, the
hopping constant$43) decay faster than exponentially and
their effect onyy turns out to be negligible in the strong-
chaos regime, as shown in Fig. 7. This fact was used in Ref.
[7] to justify the truncation of the tight-binding model for the
KR at N~k/2.

We see in Fig. 7, however, that the effect of the exponen-
tially small hopping constants fdr|>k/2 is not negligible v
in regimes where the chaos is not strong enough. In sharp
contrast with the case dfi<k/2, these small hopping con- 02t
stants have the somehow paradoxical effectirtorease
YN, I-€., to decreasethe localization lengthé. This effect
appears to continue up to a maximal valNé& of N. For
N>N*, vy saturates to a value approximately equal to 0.0 -
yn+- Both N* and yy« increase as or k decrease. 10 10 10

While we are unable to provide at this point a quantitative T
explanation of these phenomena, it will become apparent
from the following discussion that they are quite natural. We
already know that the truncated tight-binding model is ex-
actly equivalent to a dynamical problem with a potential
Vn(6) [see(48)]. The region of analyticityRy of Vy(6)
increases withN for N sufficiently large N>k/2). The strip
of analyticity Roen Of the QE states has a widthyg, ] o ]
whereyy depends o and determines the rate of exponen- According to this picture, a saturation g4 around an
tial decay of the QE states in angular-momentum space. |ASymptotic value approximately equal 4@« should occur
the infinitesimal vicinity of QAR,Roen=TRy, SO that an for arbitrarily low level of chaogarbitrarily small 7 or k),
increase in the analyticity of the potential results in a correbut N* and yn» may be very large. We thus expect that,
sponding increase of the analyticity of the QE states. Foknlike QAR localization, the DL decay can never be faster
finite 7, however, the increase @y leads to an increase of than exponential, but it should always feature an asymptotic
Roen Only up to N~N*, where yy saturates to a value exponential tail. For very smalt, this asymptotic behawor
v+ As the strength of chaos is increased by increasimy ~ May start only at very small value of the wave functlpn and
K), yn+ decreaseéthe DL lengthé increases At the same the_ dgcay may look faster than e>§pon_ent|al above 5thls value.
time, N* decreases, so that the influence of the analyticity ofl NS |sgprobably what one sees in Fig. 4 for10"> and
V(6) on the analyticity of the QE states is gradually re- 7=10 °. Here an exponential tail may be observed only
duced. The extreme case corresponds to the strong-chaos FauUch below the level of numerical noise-(0™*). Because
gime. Here the increase &, does not lead to any increase of _computatlonal I|m|tat]ons, we were not able to verify the
in Rogn and yys is totally determined by the diffusion co- existence of the saturation effect and the associated exponen-
efficient D. This case of DL in a semiclassical regime of tial tail in the DL decay forr<0.1. _
global chaos is thus completely different in nature from that !N Fig. 8, we plotyy for N=12 andN=1 as a function of
of QAR localization. We may now say that the transition 7 €ar QAR. Whiley,, changes significantly from its maxi-
between these two kinds of quantum localization takes placBal value(near QAR to its minimal DL value~2/D, y,
via a gradual reduction of the influence of the analyticity of aPpears to be independentxofin fact, the small fluctuations
the system on that of the QE states, as the level of chaos i8 71 are of the same order of magnitude as the numerical
increased error in this quantity. The case =1 corresponds to a

This characterization of the transition is quite natural as itnearest-neighbor pseudorandom Lloyd mdée7,9,13. The
has a well-known classical analogue. When a nonintegrabilindependence of the localization lengti 1/y on 7 for such
ity parameter is increased, the analyticity of functions repre@ model has been verified numericall§;15] for many val-
senting classical structurege.g., Kol'mogorov-Arnol'd- ~ues of a coupling constarié.g., k). The potentiaV,(6) in
Moser tori and periodic orbijsgenerally decreases. A (48) is a special case dR7),
famous example is the golden-mean torus in the standard
map. When the parametdd approaches from below the
critical valueK .~0.9716 for the disappearance of this torus,
the widthA gy of the strip of analyticity of functions repre-
senting the torus shrinks to zeroldas— K (for K sufficiently
close toK,.) [31]. At K=K, the torus is a continuous non-
differentiable curve and foK>K, it becomes a cantorus where k= —2J,(k/2)/Jo(k/2). For A=—2/k and arbitrary
allowing for global chaotic diffusion. The decrease/fy, Ko, the potential27) leads to nearest-neighbor hopping con-
asK is increased is analogous to the decreasg@f Unlike  stants also in the origindll =2 tight-binding model(39):
Agm, however, the minimal value oy, in the strong- W,=0, exceptW..;=«/2. This is a two-channel pseudoran-
chaos regime, is not zero but only inversely proportional todom Lloyd model(see some generalizations of this model in
D>1. Appendix Q.

04

L
—2

FIG. 8. Minimal Lyapunov exponentyy-,, (solid line) and
vn=1 (dashed lingas a function ofr near QAR for the same model
as in Fig. 7. Notice thaty; appears to be almost independent of
7, assuming the value corresponding to QAR localizatien-Q)

for all 7.

Vi(0)=— éarctalﬁ kcog6)], (52
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In Ref. [9], the relationé=D/2 was derived for the KR established in the framework of a self-consistent approach
with the potential(51) by assuming that the pseudorandomfor both period-1 and period-2 QARsee Sec. Il and Ap-
disorder can be replaced by a truly random one, giving thependix A; it seems that QARs of period larger than 2 do not
usual Lloyd mode[19]. The validity of this assumption was exist for nonintegrable MKRs This approach leads to the
verified in Ref[15]. We now give an alternative and simpler pasic equatior(23) [or (A11) in Appendix A] for the QE
“proof” of this relation, based on thexactresult{o=D/2,  problem in the infinitesimal vicinity of QAR. It follows from
which is derived below. The relaticf]: D/2 is an immediate th|s equa‘[ion that the QE Spectrum iS pure point for infini-
consequence of the latter result and the numerically observegsimal 5— 5, and that the asymptotic QAR-localization

independence o, on 7. The derivation below 0€y=D/2  |angth¢, is completely determined from the analytical prop-
makes use, of course, of the fact that the KR with the poteng s of the potential appearing in the equatiggs1/y,

tial (51) exhibits QAR(of period 3. As shown in Sec. I, this . . : : )

QAR can occur only iV(6+ )+ V(6)=const. This condi- }[/vh(;,\_rel;/ 1S t?ﬁ sma:;est .d|sltance of .atsmgltjllanty of the poh

tion is satisfied by the potentidl?) only if xo=0 with .o oM e reay axis. n many interesiing cases, suc
0 as the potential§27) and (48), £,=1/y exactly.

const=0, which is precisely the case #1). As shown be- . . - ! : )
low, the relationé=D/2 is valid also for the equivalent sys- Being associated with the 1D time-independent Schro

tem of theM =2 MKR with (51) dinger equatiori23), QAR localization is of an “integrable”
To derive the relatios,=D/2, we first perform explicitly ~ Nature. In fact, ifo=0 is a QAR point, the Hamiltonian in

the integral in(50) for the potential51). The final result can (23 IS precisely the integrable limiflt— 0 at fixedk) of the
be easily expressed in terms ¢fin (28): classical MKR Hamiltonian(12). On the other hand, DL is

associated with the difference equatid86) [or (39)] for the

pseudorandom tight-binding models. These equations de-
) (52 pend not only on the dimensionless kicking paramktpas-

sentially the only parameter i23)], but also onz, which
where we have assumed the strong-chaos regima@ for ~ determines the pseudorandom disorder. This pseudorandom-

(51), corresponding to very smajl in (28). Now, the QAR-  ness, which is absent in the angular-momentum representa-
localization lengthé, for (51) is £,=1/y (see Sec. Iyand  tion of (23), introduces “nonintegrable” features in DL.
(c?)=1 for both the KR and thtl =2 MKR. The relation Thus, while the asymptotic QAR-localization lengthis
£,=D/2 for these systems follows then from E§2) in the ~ completely determined by the analytical properties of the
strong-chaos regime. potential in (23), the asymptotic DL lengti¢ depends, in
From Fig. 7 it appears that, is also independent affor ~ general, also ok and 7. Starting from the integrable case
the particular value ok chosen. The case ®=2 corre- 7= 70=0 and increasing the level of classical chaos by in-
sponds to a next-nearest-neighbor pseudorandom modéireasingz at fixedk>1, we find that the sensitivity of to
Such a model was investigated by Brenner and Fishmaan increase in the analyticity of the potentiakhibited by
[15], who found that its localization properties are quite dif- the hopping constants in the tight-binding madel gradu-
ferent from those of its truly random counterpart. In particu-ally reduced. This phenomenon, which has been considered
lar, the localization length strongly depends on the irrationain detail in Sec. VI and is clearly shown in Fig. 7, is a vivid
number(analogous tap= 7/27) defining the pseudorandom Manifestation of classical chaos in quantum dynamics. As
disorder. Figure 7 suggests, however, that it may be possibRoon as one reaches a semiclassical regigeX) of strong
to define pseudorandom tight-binding models wih>1  chaotic diffusion K=4m7k>1), £ becomes totally unaf-
neighbors, whose localization length is almost independerfécted by any increase in the analyticity of the potential. In
of 7. Such models should exhibit localization propertiesthis regime, ¢ is completely determined by the classical
quite similar to those of their truly random counterparts. Thechaotic-diffusion coefficienD, {~D/2.
existence of these models and related problems are planned While QAR localization is basically different from DL,
to be investigated in a future wofi82]. these localizations are expected to look quite similay i
sufficiently irrational and close tgg. The numerical results
shown in Figs. 2—7 strongly support this expectation. In par-
ticular, Figs. 5-7 show that in cases where the QAR-
In this paper, the problem of quantum localization in 1.5localization length¢, is finite ({§,#0) the DL length¢ is
degrees of freedortiminimal chaos”) has been studied in a well approximated by, if » is sufficiently close tor,. In
large class of systems exhibiting classical chaotic diffusionthe case of the potentigbl), corresponding to a pseudoran-
the modulated kicked rotors. These systems feature two balom Lloyd model ¢ appears to be independent ®f so that
sically different kinds of asymptotic exponential localization £= £&,. Using then the fact that the KR with the potential)
in angular-momentum spacda) dynamical localization, exhibits QAR andé,=D/2 exactly, the relatioF=D/2 for
which, as in the case of the KR and other systemshis system follows immediately. Referenf@] presents a
[6-8,10,1], is the localization exhibited by pseudorandom much lengthier derivation of this relation, based on the as-
tight-binding models for irrational values of (a scaledh) sumption that the pseudorandom disorder can be replaced by
[17], and(b) QAR localization, which is the localization oc- a truly random one.

D=2(c?

1+1+O 2
512 (v9)

VIl. CONCLUSION

curring for % in the infinitesimal vicinity of pointsy,, where In summary, the presence of QAR in nonintegrable sys-
the quantum dynamics is exactly periodiuantum antireso- tems is quite useful for studying several interesting aspects
nance. of DL, in particular the transition from DL in local-chaos or

The existence of QAR localization has been rigorouslyalmost-integrability regimes to DL in the global-chaos re-
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gime, and for obtaining exact lower boungisto the asymp-
totic DL length &.
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APPENDIX A: GENERAL QAR OF PERIOD 1
AND PERIOD 2 IN NONINTEGRABLE MKRs

Y
In Sec. lIl, we have restricted our attention, for simplicity, ¥n

to a case of period-1 QAR occurring whenin (15) is a

multiple of 27, 7;=27m;. Here we shall consider the more

general case of; equal to a multiple ofr, 7j=m;, giving

both period-1 and period-2 QARs. We believe, but are un-
able presently to give an exact proof, that this is actually the ]

most generatase of QAR in the nonintegrable MKR%2).
We derive the QAR effective Hamiltoniapanalogous to

=m;_y . From the definitions oij’ andm;, we see that

m/=m;_y—my for j=M. Using the last relation ifA5),
we find thatv?'=2v,5 M 'c; for n even andv(?’=0 for
n odd. The conditions for period-2 QAR, i.eJ?=1 or

)=0 for all n, are therefore

c; arbitrary if V(6+m)=—-V(0),

M-1

c;j=0 otherwise. (AB)
=0

Thus, if V(6+ )= —V(6) andm, is odd, one has period-2

(19)] in this general case and obtain an interesting relatioRAR for arbitrary values ofc; . This is a considerable gen-

[relation (A14) below] between the values &+ associated
with period-1 and period-2 QARs in thd =3 MKR.

By repeated application of relatiof7), we find that for
7j=m; the evolution operatofl4) can be expressed as

M-1

U=exp{—ik EO c;V(0+mm) |exp( —imgmh?), (A1)
=

where m;=3'm,. Consider first period-1 QAR. It is
clear from(Al) that this QAR may be possible onlyiif is
even. In this case, one hbs=exd —ikV(6)], whereV(0) is
the function having Fourier coefficients

M—-1
vp=v, >, e (A2)

j=0
Herev, are the Fourier coefficients af(6#). We denotec;
by ¢ ; Or C, j, depending on whether the correspondimgs
even or odd, respectively. The sum over aj; (or all
Co,j) Will be denoted byc,=3cg; (Or c,=2C, ). Relation
(A2) can then be written as

v_n: vn[Cet (—1)"c,]. (A3)

Now, period-1 QAR, i.e.J=1 [without loss of generality,
we assume thgB8=0 in (2)], implies thatv,=0 for all n.
From relation(A3) we then obtain the following conditions
for period-1 QAR, corresponding to two different cases:

Ce—Co=0 if V(O+m)=—-V(0),

C.=C,=0 otherwise. (A4)
Notice that the second conditigfor generalV(#6)] leads to

the trivial resultc;=0 for all j if each of the set$c, ;} and

eralization of the period-2 QAR in the KRsee Sec. )|
discovered by lzrailev and Shepelyansdi. The second
condition in (A6) [for V(6+ m)# —V(6)] is precisely con-
dition (16) in Sec. Il

We now consider small perturbations ef near their
QAR valuesm;w. For definiteness, we shall work out in
detail here the case of period-1 QAR, i.mg even, but we

shall show at the end how to extend the results to period-2

QAR. Writing 7j=m; 7+ ¢ in (14) and formally expanding
in powers ofe; as in Sec. Ill, we find, to first order ig;,
M-1
U~1- > e{in?—k[2iV/(0)A+V](0)]+ik?V ()},
i=o
(A7)
where V;(6) ==1_.cV(6+mgm). Using (17), the expres-

sion in (A7) can be written, to first order ine, as
exp(—ieG,), where

G1=[N—KkVL(O) >+ KAV’ (6)]° (A8)
Here
M-1e ¢
Va(0)= 2 —1vi(0),
M-l ¢
[AV/(0)P= 3 L=V~ VA0). (A9)

The QE problem in the infinitesimal vicinity of QAR is
Gi¥=gy, and after the gauge transformation

e=exf —ikV,(0) ],

it reduces to the 1D Schdinger equation

(A10)



2

A% o2

The analysis of Eq(All) is similar to that of Eq.23) in

Sec. lll and the conclusions are the same: the QAR-
localization lengthé, is entirely determined from the analyti-

cal properties of the functiopAV’ (6)]2.

The results(A8) and (All) are valid also in the case of

period-2 QAR (M, odd), but all the sums ovef [see(A7)
and (A9)] run now from j=0 to j=2M—1 (tj=tj_y
for j=M) and V() is defined as V()
=3L_csV(6+mlm).
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The evolution operator for(Bl), from t=-0 to
t=T-0, can be expressed as

M—-1
U= HO exp(—i7n)exd —ic;kV(6)]
=
—exp( —imh)exd —ikV(6)], (B2)
WhereTj:(tj+1_tj)T/T,
o M-1
V(6)= ;O c;V(8+x))], (B3)

As an interesting example, we consider tfle=3 MKR

with V(6+ )= —V(6) andm; independent of=0,1,2. For  y,==I"%+ for j=1, andy,=0. By comparing the last ex-
m; =2, one has the simple case of period-1 QAR treated irpression folU in (B2) with Eq. (10), we see that the problem
Sec. lll, provided, of coursegy+c;+c,=0. The value of has been reduced, essentially, to that of the linear[RR
Ketr in (19) can be easily expressed in terms of two indepenyith an “effective” potential V(6). Thus, from the discus-
dent coefficients, sayc, and c;, using (200 [(tj+1  sjon at the end of Sec. II, it follows that QAR with arbitrary
—t))/T=1/3 for all j : period p occurs precisely at rational values of
=1/2w=m/p, providedv,,=0 for all s. Herev, are the

_ 2 .24 12
Ketr=K[2(CoHC1+CoCe)/9] Fourier coefficients o¥/(#6) in (B3) and are given by

(Al12)
Suppose now that the periddis halved, T—T/2, leaving
all other parameteréincluding ¢;) unchanged. Them;=1
for all j and sincemy=3 (0dd) one now has period-2 QAR.
The “real-time” period remains thefi. Notice also that the
conditioncy+c;+c,=0 is consistent wit{A6) (c; can be
chosen arbitrarily in this cageUsingV(6+ 7)=—V(#) in
(A9) [with M—2M and V;(6)==._,cV(0+mim)], we

M-1
V=0, 2, e, (B4)
=0

wherev, are the Fourier coefficients &f(6). It is now clear
from (B4) that, in contrast with the linear KR cassee Sec.
I), the requirement,=0 does not necessarily imply the

get vanishing ofv,. For simplicity, let us assume in what fol-
5 lows that all 7;’s are equal,7;=7/M for all j, so that
K2[AV'(0)1*=[KEH1?V'(0), Xj=j /M. Then, with 7=2mm/p, the conditionvs,=0 is
satisfied for alls if
where

M-1

2) _ 2, 2 1/2 _
ket =k[5(c5+ci+cocy)/6] "2 C= 'Eo cjexp(2mijsm/M)=0.
=

(A13) (B5)
By comparing(A13) with (A12), we obtain the simple rela-
tion, valid for all values ofcy andc,, Now, if m andM are relatively prime, the sequenceg in
@ (B5) is, up to some rearrangement for# 1, the Fourigr
Lﬁ=(15/4 112 (A1) f[rangform ofc; (j,s=0,... M —1_). T_h_enc5=0 nec_essarlly

' implies thatc; =0 and the QAR is trivial for generic poten-
tials V(6). If, on the other handn andM have a maximal
We were not able to discover similar Simple relations forcommon factoﬁ>1’ the Conditiorazo |mp||es On|y that
other MKR systems.

keff

m-1
APPENDIX B: GENERAL QAR > Ci+rm'=0 (B6)
IN INTEGRABLE MKR SYSTEMS =0
It is instructive to study the QAR phenomenon in a “lin- for j=0,... M’—1, whereM’=M/m. To summarize, the

ear” version of the MKR, defined by the general Hamil- M’ equations(B6) are the necessary and sufficient condi-

tonian
M-1

T ~
H=—L+kV(8) X, cjAr(t—t)). (B1)
T J:O

tions for QAR of periodp in the linear MKRs with equal
7i's (1j=27m/pM) and arbitrary potentials/(6). These
conditions lead to nontrivial results only mh>1. It should
be noticed that the conditioi86) do not depend op, i.e.,
they are the same as those for the fundamemtal) QAR

We show that the systeifB1) is equivalent, effectively, to With 7=27m.

the linear KR(9), which is integrabld24] and exactly solv- We now consider small perturbations ofnear the con-
able to a large extefi3]. We then derive general conditions ditions(B6). Since the evolution operat@B2) is the same as
for QAR of arbitrary period in (2) and show rigorously the that of a linear KR with effective potential(6), an exact
existence of exponential localization in the infinitesimal vi- expression of the QE states for irrationglcan be immedi-
cinity of QAR. ately written using the results of RdR3]:
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() =exdie(0)], (B7) APPENDIX C: NEARLY SINGULAR CASES
OF MULTICHANNEL TIGHT-BINDING MODELS
where, for all integers, ¢,(6)=16+ ¢(6), and ¢(6) is a

periodic function with Fourier coefficients Clearly, all the hopping constan®y;,, $#0, in the sin-

gular cas¢Eq. (38)] have the same range im(i.e., the range
v of W,). Itis thus interesting to consider nearly singular cases
qﬁn:m (n#0), (B8)  of (36) (M>2) for which the hopping constant¥,,, within

a channel are nonzero, whiW, , for s#0 still have ap-
proximately the same range m The simplest possible case

v, being the Fourier coefficients 07(0), andzo is arbi- ; -
trenlry. The corresponding quasienergy is given byWhere this may happen is whes takes only the values

w,= v+ 7. Now, in the ordinary case of the linear KR, the .= 1,+2. In this case, the Fourier transforiV(6) of
result analogous t6B8) [with v, replaced by the given co- Ws, assumes the relatively simple form

efficientsv,, of V(6)] is clearly not defined fon=sp and

n=m/p, i.e., at quantum resonance. In our case, however, (D) 2 W(6)

with the coefficients),, given by(B4), it is easy to show that Ws(8)=c(s)W(6) +c (S)Wz(g)1 (CY)
the expression{B8) for n=sp is well defined in the QAR

limit 7—m/p, the limit being taken on some sequence ofwherec(*)(s) andc(?)(s) are, respectively, the contributions
irrational 7's converging to m/p. In fact, writing  of the terms withc;= =1 andc;=*+2 toc(s) in (38). Using
7=(27m+ €)/p and using the condition®6), we find from 1))+ ¢c(2(0)=0 [relation (16)], we find that

(B4) (with x;=] /M) that

W3(9)

Wz(a). (CZ)

M/ -1 ™1 Wo(6)=—cM(0)
U_Sp: Vsp E eZ#ijsm'lM ! E Cj Y I(eiS(jJrrM "YelM __ 1)
1=0 =0 (B9) As an example, consider the case W 0) = kx cos()— «q,
which corresponds to the potenti€?7) (A=—2/k) and
After substituting(B9) into (B8) and using(B6), we obtain  9ives a nearest-neighbdrloyd) model (39) for M=2, i.e.,
W,,=0, exceptW..;= «/2 (such a model is studied in Sec.
M1 = VI). We see from{C1) and(C2) that there are two interesting
kvsp 27ijsm’IM’ _ limits. If xg>max(k,1), all the hopping constant4/; ,, are
— 2 e 2 rCiyrm’- (B10) . ) ! :
= approximately nearest neighbor iny and E=cM(0)«,. If,
on the other hand, maxfxy)<1, W, are approximately
Relation(B10) shows that the QE states are well defined inpearest neighbor fa+#0, WhileWO,n are approximately next
the infinitesimal vicinity of the QAR of arbitrary periog. to next nearest neighbor arfite c(l)(O)KS. The localization
We see from(B8) and (B10) that these QE states are local- |ength ¢=1/y, however, depends only ow(6), and it is
ized inL space with the same localization length of taea-  ajways given exactly by relatio(28).
lytic) potentialV(#6). In accordance with this, the QE spec- |t should be noticed, however, that the choice
trum of UP in the limit of infinitesimal € is pure point, W(6) = k cos)— k, is not a good one for obtaining a nearly
wmod2mr=el. nearest-neighbor model in the strong-chaos regibe-1).
These rigorous results, which have no analog in the ordiThis is because Egs.(52 and (28) imply that
nary case of the linear KIR3], can be derived by an alter- || |x/ko|>1 in this regime, so that W(6)
native approach, similar to that used for the nonintegrable- , cos)— x,=1 for some#, leading to a singularity in Egs.
MKRs in Sec. Ill. The basic evolution operatf” can be  (C1) and(C2). Let us choose instead
expressed in the fornjll) with V(6) replaced byV(#6).
Then, forpr=2mm+ €, one easily finds, usingB6), that

lim ¢gp=— _
n—mip m j=0

S : : : 2W(6
UP is given, to first order ire, by exp(-ieG,), where W(Z()a): —tarkV(6)]=«kcog6)—k,, (C3)
G,=n—¢4(0), (B11) ie.
with ¢o(0)=Ilim__op(6). In the case of the fundamental
QAR (p=1), with 7;=2mm; in (B2) as in Sec. lll, we find W(6)= K €08 6) — Ko )
that ¢o( ) =kdV(6). Thus the operatofB11) may be con- 1+{1+[kcog ) — ko]*}"

sidered as the linear version (f9). Its eigenvalues are sim-

ply all the integerd and its eigenstates are given ly7) It is clear from (C4) that in the strong-chaos regime
with ¢(6) replaced byp,(6). We then see that in the limit |W(6)|~1 for almost allg. EquationgC1)—(C3) imply then
€—0 the QE spectrum and eigenstates of the approximatthat the hopping constanW/s ,, are all nearest neighbor in
evolution operatotJP=exp(—ieG,) agree precisely withthe n to high accuracy, i.e., Wg,~0 except Wg.,
rigorous ones obtained above. This may be evidence that thec'?)(s)«x/4. The corresponding tight-binding modé36)
results obtained by the self-consistent approach in Sec. liinay thus be naturally viewed as a multichannel pseudoran-
are, in fact, rigorous. dom Lloyd model for the strong-chaos regime.
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