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Lorentz transformation of a system carrying ‘‘Hidden Momentum’’
E. Comaya)

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69978, Israel

~Received 14 September 1999; accepted 15 March 2000!

The relations between an energy–momentum tensor and its corresponding energy–momentum
four-vector are discussed. A particular emphasis is put on conditions guaranteeing that spatial
integrals of the energy–momentum densities pertain to a true four-vector. Cases where such
integrals arenot components of a true four-vector are analyzed and the usefulness of the notion of
a false four-vector is pointed out. Results are used for explaining Lorentz transformation properties
of ‘‘hidden momentum.’’ © 2000 American Association of Physics Teachers.

I. INTRODUCTION

As is well known, fields’ energy–momentum density and
their flux density are represented byTm0 andTm i entries of
the fields’ energy–momentum tensor.1 ~Greek indices range
from 0 to 3 and Latin ones range from 1 to 3. The diagonal
metricgmn is ~1,21,21,21!. The symbol ,m denotes the par-
tial differentiation with respect toxm. i, j , andk denote unit
vectors in thex, y, andz directions, respectively.! It follows
that the fields’ overall energy and momentum are related to
the integrals

‘‘ pm’ ’ 5
1

c E Tm0 d3x, ~1!

which is carried out on the entire three-dimensional space.
The four quantities on the left-hand side of~1! are en-

closed in quotation marks because it is not evident that they
transform as entries of a true four-vector. As a matter of fact,
specific examples where the left-hand side of~1! is not a
four-vector are presented in this work. In such cases, the
left-hand side of~1! is called a false four-vector. This issue is
the main topic of this work, which discusses sufficient con-
ditions thatpm is a true four-vector and their implications. It
is further explained why this issue is relevant to the Lorentz
transformation of ‘‘hidden momentum.’’

Section II presents a condition that guarantees that~1! is a
true four-vector.1 Section III includes examples of electro-
magnetic fields that illustrate this condition. One of these
systems contains ‘‘hidden momentum.’’ Some mistakes con-
cerning Lorentz transformations of ‘‘hidden momentum’’
which have been published recently2 are explained in Sec.
IV. Concluding remarks are presented in Sec. V.

II. SUFFICIENT CONDITIONS FOR
ENERGY–MOMENTUM FOUR-VECTOR

As stated above, the four quantitiesTm0 represent energy
and momentum densities, respectively.~A division by c is
required for the momentum density. In an energy–
momentum four-vector, energy is divided byc. It is assumed
that a brief terminology like that of the first statement of this
section will not be misunderstood.! Hence, if one takes the
values ofTm0 at t50 and carries out an integration on the
entire three-dimensional space, the overall energy and mo-
mentum associated withTm0 is obtained.

Consider two inertial frames,S and S8, and the four
quantities ‘‘pm’’ obtained in S. The corresponding integra-

tion carried out inS8 uses the tensorial quantitiesT8m0 as
found in S8 at t850. This point means that the integral car-
ried out inS8 depends not just on the Lorentz transformation
of Tmn from S to S8 but alsoon the time adjustment needed
for having the simultaneous quantities atS8. This kind of
adjustment might affect the integral~1! and is the reason for
the quotation marks used on the left-hand side of this expres-
sion.

Landau and Lifshitz discuss this issue and prove that the
continuity equation for a charge

j ,m
m 50 ~2!

is a sufficient condition for obtaining the same amount of
charge in any inertial frame,3 namely, for regarding the elec-
tric charge as a Lorentz scalar.

In their discussion, Landau and Lifshitz begin with a proof
of charge conservation. The proof uses the four-dimensional
Gauss theorem for an integral carried out on the four-volume
included between two hyperplanes,S1 and S2 , defined by
x05T1 and x05T2 . Later, they state that ‘‘the proof pre-
sented clearly remains valid also for any two integrals
* j mdSm , in which the integration is extended over any two
infinite hypersurfaces~and not just the hyperplanesx0

5const! which each contain all of three-dimensional space.’’
Thus, one concludes that, in particular, the overall chargeQ
takes the same value forx05T at the inertial frameS and at
x805T8 at S8. This outcome means that charge transforms
as a Lorentz scalar.

The foregoing discussion is extended later to energy–
momentum tensors and their corresponding global
four-vectors,4 where the four components of the latter are
spatial integrals of the corresponding tensor components.
They find that

T,n
mn50 ~3!

guarantees energy–momentum conservation. This relation is
calculated and used by Landau and Lifshitz for proving
energy–momentum conservation of a system which consists
of charged matter and electromagnetic fields.5 As in the case
of charge,~3! can also be used for proving that spatial inte-
grals of Tm0 ~divided by c! are components of the energy–
momentum four-vector.

It should be noted that the calculation of Landau and Lif-
shitz proves that the energy–momentum tensor of electro-
magnetic fields

1007 1007Am. J. Phys.68 ~11!, November 2000 http://ojps.aip.org/ajp/ © 2000 American Association of Physics Teachers



TF
mn5

1

4p S FmaFbngab1
1

4
FabFabgmnD ~4!

doesnot satisfy ~3! but

T,n
mn52

1

c
Fmn j n . ~5!

Evidently, this relation is inconsistent with condition~3!,
which requires a null four-divergence. Hence, one concludes
that, excluding particular cases,energy and momentum of
electromagnetic fields should not be regarded as entries of a
true four-vector.

Examples illustrating this conclusion are presented in the
following section. Special attention is devoted to the case of
‘‘hidden momentum.’’

III. EXAMPLES OF LORENTZ TRANSFORMATION
OF ELECTROMAGNETIC FIELDS

In the examples of this section, effects of the following
Lorentz ‘‘boost,’’

Ln
m5S g gu/c 0 0

gu/c g 0 0

0 0 1 0

0 0 0 1

D , ~6!

are examined.u denotes the three-velocity of the boost
which is parallel to thex axis andg5(12u2/c2)21/2. This
transformation casts quantities measured in an inertial frame
S into another frameS8.

As is well known,6 in the case of electromagnetic fields,
the energy density is

T005
1

8p
~E21B2! ~7!

and the momentum density is

1

c
Ti05

1

4pc
~EÃB! i . ~8!

A. A free electromagnetic wave

Let us consider a monochromatic plane electromagnetic
wave7 traveling in thex direction. In the frameS, the fields
are

E5E sin~kx2vt !j , ~9!

B5B sin~kx2vt !k, ~10!

whereB5E andk5v/c. The wavelength of this field is

l52p/k. ~11!

This system does not contain charges and the energy–
momentum tensor of the fields satisfies the null four-
divergence~3!. Hence, one expects that the overall energy
and momentum of the fields are components of a true four-
vector.

Let us calculate the energyE and the momentump en-
closed in a rectangular parallelpiped having a base whose
area is unity and its height~which takes thex direction! is l.
It means that this rectangular parallelpiped contains one
complete wavelength. Due to the symmetry of the system,

the rectangular parallelpiped correctly represents the general
problem. The calculation is carried out att50. Using ~7!,
~9!, ~10!, and~11!, one finds

E5E
0

lE
0

1E
0

1 1

8p
~E21B2!dx dy dz5

l

8p
E2. ~12!

In a similar manner, one replaces~7! with ~8! and obtains for
the x component of the momentum

px5
1

c E0

lE
0

1E
0

1 1

4p
EyBz dx dy dz5

l

8pc
E2. ~13!

Other components of the momentum vanish. Now, the
energy–momentum four-vector is written by means of the
energy and momentum8

Pm5~E/c,p!. ~14!

Using these results, one realizes that the expected true four-
momentum is

Pm5
E2l

8pc
~1,1,0,0!. ~15!

Let us apply the Lorentz transformation~6! and calculate
the fields atS8 for t850. Using the appropriate formulas,9

one obtains

Ey85g~11u/c!Ey , ~16!

Bz85g~11u/c!Bz . ~17!

It means that the electric and magnetic fields increase by the
same factorg(11u/c) and that their product increases by
the square of this quantity.

Let us now synchronize the time atS8. In S, a point on
the left-hand side of the rectangular parallelpiped is

xL
m5~0,0,y,z! ~18!

and a corresponding point on its right-hand side is

xR
m5~0,l,y,z!. ~19!

Applying the Lorentz transformation~6!, one finds that~18!
remains unchanged, whereas the transformation of~19! takes
the form of

xR8
m5~lgu/c,lg,y,z!. ~20!

This result indicates that a time synchronization is required
before an integration ont850 values can take place.

The fields travel at the speed of lightc. Hence, att850,
the right-hand side of the rectangular parallelpiped is at

x̄R8
m5~0,lg~12u/c!,y,z!. ~21!

This outcome means that in the case of free electromagnetic
waves, the rectangular parallelpiped contracts by the factor
g(12u/c). Combining this result with the factor represent-
ing the increase of the fields as given in~16! and ~17!, one
finds

P8m5g3~11u/c!2~12u/c!Pm5g~11u/c!Pm. ~22!

The same result is also obtained from the application of the
Lorentz transformation~6! to the four-momentum~15!.
Therefore, this analysis illustrates the claim that for free elec-
tromagnetic fields whose energy–momentum tensor satisfies
the null four-divergence~3!, the overall energy and momen-
tum are components of a true four-vector.
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B. A parallel plate capacitor

A parallel plate capacitor is discussed here. The system
contains fields and charges and relation~5! holds for the
four-divergence of the energy–momentum tensor of electro-
magnetic fields. Hence, the null four-divergence~3! does not
hold at some points of space. For this reason, one expects
that the overall energy and momentum of electromagnetic
fields are entries of a false four-vector. The calculation pre-
sented below confirms this expectation.

This device has been used in discussions of Lorentz trans-
formations of fields and matter under pressure~Refs. 10 and
11!. Relevant calculations required here can be found in
these articles. Hence, several points are cited here and the
derivation procedure is omitted. The capacitor consists of
three parts: its plates, the electric field emerging from the
positively charged plate and ending on the negatively
charged one,uEu5Ex , and a gas enclosed between the
plates. The pressure of this gas balances the electrostatic at-
traction between the plates.

The energy and momentum enclosed inside a rectangular
parallelpiped whose bases lie on the two plates, respectively,
are calculated. As in the previous example, this rectangular
parallelpiped represents the general problem correctly. Let
V0 denote the volume of this rectangular parallelpiped. The
capacitor is motionless inS and the energy of the electric
field is V0E2/8p. The magnetic field of the system vanishes
and, therefore, the electromagnetic momentum vanishes, too.
It follows that the electromagnetic energy and momentum
can be written as a false four-vector,

‘ ‘ PF
m’ ’ 5

V0E2

8pc
~1,0,0,0!. ~23!

Let us use the Lorentz transformation~6! and find the
respective quantities inS8. As is well known, the electric
field component which is parallel to the ‘‘boost’’ is un-
changed and yields no magnetic field.9 On the other hand,
the self-volumeV0 of the rectangular parallelpiped contracts
by a factorg21. Therefore, inS8, the energy and momen-
tum of the electromagnetic fields are

‘‘ PF8
m’ ’ 5

V0E2

8pg
~1,0,0,0!. ~24!

On the other hand, if one treats~23! as a true four-vector and
applies the Lorentz transformation~6! to it, one obtains

‘‘ P̄F8
m’ ’ 5

V0E2g

8p
~1,u/c,0,0!. ~25!

Evidently, ~24! and ~25! are not the same, proving that~23!
is a false four-vector.

It is further proved10,11 that the energy and momentum of
the gas enclosed between the plates~or of another material
under pressure, used for balancing the electrostatic attraction
between the plates! also belongs to this class, namely they
are components of a false four-vector. Only thesumof these
two false four-vectors is a true four-vector, thereby illustrat-
ing the self-consistency of special relativity.

C. A device containing ‘‘hidden momentum’’

Let us examine a device containing ‘‘hidden momentum.’’
It is designed so that electric and magnetic fields take simple

expressions and integrals and other calculations are straight-
forward. This feature of the discussion facilitates the presen-
tation of the underlying laws of physics.

The device contains a solenoid and a parallel plate capaci-
tor whose magnetic and electric fields are perpendicular to
each other. Again, as in the previous example, the system
contains charges and currents that yield~5! for the four-
divergence of the electromagnetic energy–momentum ten-
sor. Hence, the null four-divergence of the energy–
momentum tensor,~3!, does not hold. Therefore, one expects
that the electromagnetic energy and momentum obtained
from the integration of their corresponding densities are
components of a false four-vector.

Let us examine a closed pipe that takes the form of a
circumference of a square. The pipe is made of an insulating
material and contains an incompressible positively charged
fluid that flows frictionlessly along it~see Fig. 1!. ~This kind
of uniformly charged fluid is just a hypothetical matter which
enables a simple mathematical treatment of the problem.!
The pipe is covered with a negative electric charge that
screens the electric field of the charged fluid. Hence, in the
inertial frameS where the closed pipe is motionless, only
magnetic field is generated by the closed loop. The cross
section of the pipe is small with respect to its length.

The corners of the pipe are placed at four points whose
coordinates areX561 and Y561, respectively. An infi-
nitely long pile of such pipes makes a solenoid whose axis
coincides with thez axis. ~As in a standard treatment of
solenoids, the insulating material used for building the pipes
is thin enough, so that the current can be regarded as uniform
on the solenoid’s circumference.! In its interior, this solenoid
generates a uniform magnetic field in thez direction

B5Bk, ~26!

whereas the external field vanishes.
Let r denote the charge density of the fluid,s the area of

the pipe’s cross section, andv the fluid’s velocity. Thus the
electric current along the pipe isI 5rvs. Let N denote the
number of closed pipes per unit length in thez direction.
Thus the magnetic field~26! is

B5
4p

c
Nrsvk . ~27!

Fig. 1. A solenoid whose cross section is a square, is motionless in a frame
S, and its axis coincides with thez axis. The solenoid is placed between the
plates of a capacitor. The four arrows denote the electric current along the
solenoid~see the text!.
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The other component of the device is a parallel plate ca-
pacitor whose plates are parallel to the~x, z! plane and are
placed atY,21, Y.1, respectively~see Fig. 1!. The plates
are made of an insulating material, each of which is covered
uniformly with a surface charge density6rc , respectively.
In the region between the plates, the capacitor generates a
uniform electric field in they direction,

E5Ej . ~28!

In a discussion of quantities related to ‘‘hidden momen-
tum,’’ one has to consider interaction terms of the solenoid
and the capacitor. For this reason, self-interaction terms of
the solenoid with itself, as well as those of the capacitor are
ignored. Moreover, since the capacitor’s plates are made of
an insulating material, the self-energy of the capacitor’s
charges is independent of the solenoid. Similarly, since the
hypothetical solenoid’s uniformly charged fluid is incom-
pressible, its electric state is assumed here to be unaffected
by the electric field of the capacitor.

The electromagnetic interaction dependent momentum
density is bilinear in the magnetic field~27! and in the elec-
tric field ~28!. The calculation is restricted to the volumeV0

inside a cube21<x<1, 21<y<1, 21<z<1 ~henceV0

58 is used below!. Evidently, due to the symmetry of the
device, this cube represents the entire problem correctly.

The interaction dependent momentum of the electromag-
netic fields is obtained from the integration of the momentum
density on the volume. Only thex component of the momen-
tum is nonzero and the calculation is straightforward,

px~elec!5E
21

1 E
21

1 E
21

1 1

4pc
EyBz dx dy dz5

8

c2
NrsvEy ,

~29!

where~27! is used.
This electromagnetic momentum is compensated by the

mechanical momentum of the system.11–13 The mechanical
momentum is included in the charged fluid that moves along
the closed pipes of the solenoid. This quantity is calculated
below.14

The force exerted by the capacitor’s electric field on the
moving charges of the fluid is balanced by a mechanical
pressure gradient. The fluid’s pressure difference,DP, be-
tween a point atY51 and a point atY521 renders a force
exerted on the portion of the fluid which flows along the
pipes’ segments atx561. The force is

f152DPsj . ~30!

~Note that j is a unit vector and not a current.! This force
balances the force exerted by the capacitor’s field on this
portion of the charged fluid

f252srEj , ~31!

where 2s is the volume of the charged fluid at each of the
X561 segments of a pipe. In this way one finds an expres-
sion for the pressure difference

DP52rE. ~32!

The energy–momentum tensor of a macroscopic body at
rest depends on its energy densitye and its pressureP,14

Tmn5S e 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P
D . ~33!

This tensor is used here for the fluid that moves parallel to
the x axis. Performing a Lorentz transformation on~33! for
the fluid at theY521 segment, one finds

Tmn5S e ~e1P!v/c 0 0

~e1P!v/c P 0 0

0 0 P 0

0 0 0 P
D , ~34!

where terms proportional tov2 and higher powers ofv are
omitted, due tov!c.

Analogous expressions are obtained for the liquid at the
Y51 segment. Here the motion is leftward and the factorv
is replaced by2v. The pressure at each of theY561 seg-
ments is uniform. It follows that the integration of the me-
chanical momentum density is straightforward. Thus one
finds that the mechanical momentum enclosed within the
cubeV0 is

px~mech!524DPsNv/c2528rEysNv/c2, ~35!

where~32! is used. This result proves that, as expected,12 the
sum of the electromagnetic momentum~29! and the me-
chanical momentum~35! vanishes for the motionless system
discussed.

Now let us turn to the inertial frameS8 and use the Lor-
entz transformation~6! for the quantities obtained above. As
stated, only the interaction part of components associated
with the solenoid with those of the capacitor are treated here.
The volume of the cube undergoes a Lorentz contraction by
the factorg,

V085V0 /g. ~36!

The magnetic field of the solenoid increases by a factorg
and also yields an electric field in they direction,9

B~sol!8 5gBk, ~37!

E~sol!8 5gB
u

c
j , ~38!

whereB is the quantity used in~26!.
Similarly, the fields of the capacitor are

E~cap!8 5gEj , ~39!

B~cap!8 5gE
u

c
k, ~40!

whereE is the quantity used in~28!.
The foregoing expressions show that inS8, the interaction

part of the electromagnetic momentum density consists of
two terms: the product of~39! and~37! and that of~38! and
~40!. The integration of the momentum density is just a mul-
tiplication by the volume~36!. Hence, using the above-
mentioned products and~29!, one finds

px~elec!8 5
1

4pc
8gBE~11u2/c2!5g~11u2/c2!px~elec! .

~41!
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This interaction part of the electromagnetic momentum is a
counterpart of the ‘‘hidden momentum’’ as seen inS8.

Let us turn to the mechanical part, namely to the ‘‘hidden
momentum.’’ The interesting element is the fluid at theY
561 segments of the solenoid. TheY521 side is treated
first. At S, the four-velocity of the liquid is (1,v/c,0,0)
~here, as above, powers ofv which are greater than 1 are
ignored!. Thus, using the Lorentz transformation~6!, one
finds that atS8, this four-velocity takes the form

n~y521!8m 5g~11uv/c2,~u1v !/c,0,0!. ~42!

Now one has to synchronize the time atS8. Assume that the
time at S is t50. Thus the four-vector of a point on the
bottom left part is

XL
m5~0,21,21,z! ~43!

and at the right end of theY521 segment

XR
m5~0,1,21,z!. ~44!

Applying the Lorentz transformation~6!, one finds that at
S8, these points are

XL8
m5~2gu/c,2g,21,z!, ~45!

XR8
m5~gu/c,g,21,z!. ~46!

The time synchronization is done so that all events atS8
are examined att850. It follows that the four-vector~46!
must be shifted byDt52gu/c2. Using ~42!, one finds that
in S8, the liquid’s three-velocity is

vx5
u1v

11uv/c2 . ~47!

Thus, the fluid element, which inS was at~46!, is seen inS8
at t850 at

XR9
m5S 0,

1

g~11uv/c2!
,21,zD . ~48!

A similar calculation yields for point~45! the t850 values

XR9
m5S 0,

21

g~11uv/c2!
,21,zD . ~49!

This calculation shows that the charged liquid at theY
521 side undergoes a Lorentz contraction by a factor

a5
1

g~11uv/c2!
. ~50!

On the other hand, the charge which is distributed uni-
formly on the insulating material of the pipes is motionless
in S ~and there screens the electric field of the charged fluid!.
The static charge undergoes the ordinary Lorentz contraction
of 1/g. It means that inS8, the complete screening does not
hold any more and the net charge density per unit area at
Y521 is

r~area!8 5r~area!@g~11uv/c2!2g#5r~area!guv/c2, ~51!

where

rarea5rsN ~52!

is the density of the positive charge inS. This outcome must
be consistent with the solenoid’s electric field~38!, as seen in
S8.

Indeed, inS8, the nonvanishing electric field emanating
from the Y521 side of the solenoid indicates that the
charge density at this part is nonzero, too. The following
calculation shows that the charge density obtained above is
the precise quantity.

Taking the uniform electric field at the inner part of the
moving solenoid~38!, the value of the magnetic field~27!
and relation~51! for the charge density atS8, one obtains

E~sol!8 5
gu

c2 4pNrsv j5
guv
c2 4pr~area!j54pr~area!8 j . ~53!

Thus one finds that~51! and ~38! are consistent with the
Maxwell equation divE54pr. This is an example of the
self-consistency of relativistic electrodynamics.

The nonzero charge density~53! is a relativistic effect
which emphasizes the claims presented above. Although the
mean charge density vanishes inS, the currentj m is nonzero
there. Hence a nonzero charge arises inS8 and yields a
nonzero three-force.

The mechanical ‘‘hidden momentum’’ is obtained from
the pressure-related terms of the Lorentz transformation of
the tensor~34! and from the corresponding tensor which per-
tains to theY51 part of the solenoid, where2v replacesv
of ~34!. Performing the calculations for the terms which are
proportional to the pressureP, one finds the required tensor
component forY521,

T~press!810 5g2
v
c S 11

u2

c2DPY521 . ~54!

For theY51 part of the solenoid, one replacesv by 2v
in ~54! and obtains an analogous expression.

As in the previous cases, the integration of each part of
Y561 reduces to a multiplication by the volume of the fluid
~which contracts by a factorg21!. Thus one adds the contri-
bution of the two sides and finds

px~press!524gS 11
u2

c2D vDPNs/c25gS 11
u2

c2D px~press! ,

~55!

where~35! is used. Hence, as inS, one finds that inS8, too,
the mechanical part~55! of the ‘‘hidden momentum’’ bal-
ances its electromagnetic counterpart~41!.

IV. A PREVIOUS DISCUSSION OF LORENTZ
TRANSFORMATION OF ‘‘HIDDEN MOMENTUM’’

The problem of Lorentz transformation of ‘‘hidden mo-
mentum’’ has been discussed recently in the literature.2 Sec-
tion III of Ref. 2 contains a general discussion of this prob-
lem, where the following Lorentz transformation formulas
are postulated:

Uelm5g~U01v"P0!, ~70!

Pelm5g~P01U0v/c2!, ~71!

Umech5g~m0c21v"Ph!, ~73!

Pmec5g~Ph1m0v!. ~74!
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HereU0 andP0 are the system’s rest frame electromagnetic
energy and momentum, respectively.m0 is the mechanical
rest mass,Ph is the rest frame mechanical momentum, and
Uelm andPelm ~Umec andPmec! are the system’s electromag-
netic ~mechanical! energy and momentum, respectively.
~The numbering of the quoted equations is as in Ref. 2.!

The analysis carried out in this work clearly proves that
these equations are incorrect. The capacitor of Sec. III B can
be used as a counterexample to~70!–~74!. Evidently, in the
rest frame of the capacitor there is no electromagnetic mo-
mentum and no mechanical~‘‘hidden’’ ! one. Thus one sub-
stitutesP05Ph50 in ~70!–~74! and examines the outcome
in the frameS8. Equation~24! clearly shows that inS8 there
is no electromagnetic momentum, contrary to~71! which is
Pelm5gU0v/c2 ~note that the electromagnetic energyU0

Þ0!. Similarly, as ~24! shows, inS8, the electromagnetic
energyreducesby the factorg, unlike ~70!.

Moreover, the mechanical quantities do not transform like
~73! and ~74!. This is proved in detail in Refs. 10 and 11.
Only thesumof the mechanical and electromagnetic energy
and momentum false four-vectors transforms as a true four-
vector.

A system containing ‘‘hidden momentum’’ is discussed in
Sec. III C. The results found there can also be used for dis-
proving ~70!–~74!. Thus, in S8, the ‘‘hidden momentum’’
part of the mechanical momentum is given in~55!. As seen,
it is g(11u2/c2) times the mechanical ‘‘hidden momen-
tum’’ of the rest frame. This outcome negates~74!. More-
over, ~41! above shows that the interaction part of the elec-
tromagnetic momentum is increased by the same factor
g(11u2/c2), contrary to~71!.

Obviously, the postulated equations~70!–~74! are incon-
sistent with the null four-divergence condition of~3!. This
point casts a new light on the significance of this condition in
the case of a relativistic treatment of energy and momentum
of classical systems.

V. CONCLUDING REMARKS

The usefulness of the notion of false four-vectors is ex-
plained. These objects are associated with spatial integrals of
energy and momentum density, as given by an energy–
momentum tensor which does not satisfy the null four-
divergence~3!. Following a discussion of Landau and Lif-
shitz, it is proved here that a null four-divergence is a
sufficient condition for having a true energy—momentum
four-vector whose components are obtained from spatial in-
tegrals of corresponding densities. Examples illustrating this
subject are presented in Sec. III. It is shown there that in the
case of a free electromagnetic wave, whose energy–
momentum tensor has a null four-divergence, the integrals of
the appropriate densities are related to a true four-vector. On
the other hand, in examples of systems of fields and charges
~or currents!, integrals of energy and momentum densities of
electromagnetic fields are related to a false four-vector. This
property also holds for the mechanical sector of the system.
Only the sum of the mechanical and electromagnetic false
four-vectors is a true four-vector.

Note added (Received 6 March 2000): In his Response to
this work,15 Hnizdo claims that the problem discussed above
can be treated in two alternative~and mutually contradictory!
ways. One method of calculation treats quantities in the stan-
dard way and shows that only the overall energy and mo-

mentum of the system transform like components of a four-
vector, whereas energy–momentum of fields as well as those
of matter, transform like a false four-vector. The other
methodpostulatesthat the electromagnetic and the mechani-
cal parts do transform like four-vectors. The second ap-
proach is called the covariant method. The domain of valid-
ity of each method is the main topic of this note.~For a
discussion of the notion of the domain of validity of a theory,
the reader is referred to Rohrlich’s book.16!

The starting point of this note is the validity of Maxwell-
ian electrodynamics for a system whose charge density is
bounded. This matter is denoted below by the term standard
Maxwellian basis. Moreover, even in cases which do not
belong to the domain of validity of classical physics, this
theory is assumed to bemathematicallycorrect. In such
cases, only mathematical aspects of the theory are consid-
ered.

The phenomenon of charge quantization motivates the in-
troduction of particles carrying a quantized quantity of
charge into the theory. Two kinds of charged particles are
discussed here. Particles of the first kind are tiny objects
whose volume is small~say, a sphere whoser .0!. The other
kind is an elementary classical point charge. Particles of
these kinds are called hereinafter extended charges and point
charges, respectively. Four cases are discussed below.

A. A single extended charge

This system falls within the domain of validity of the stan-
dard Maxwellian basis. The particle is stabilized by means of
a Poincare´ force. The energy—momentum of the entire sys-
tem transforms like a four-vector and the electromagnetic
and the mechanical parts of the energy–momentum trans-
form like false four-vectors.~References and discussions of
the Poincare´ force can be found on the appropriate pages of
Refs. 16 and 17.!

B. A single point charge

In classical physics, an elementary particle is pointlike
~see Ref. 1, pp. 43 and 44!. Hence, in this case, no Poincare´
forces can exist. If one applies the laws of the standard max-
wellian basis to a point charge, then very serious problems
arise. Two of these problems are the infinite energy and the
4/3 factor obtained for the momentum components, if a Lor-
entz transformation is applied to a motionless charge. The
covariant method solves the latter problem. If this approach
is augmented by a mass renormalization procedure which
removes the infinite energy of the fields, then results agree
with those obtained from a different analysis.18 Here, the
interaction of fields of a single particle is removed from the
system’s energy–momentum tensor.

C. A system which consists of more than one extended
charge

This system, like that of caseA, is explained perfectly by
the standard Maxwellian basis, because its charge density is
bounded.

D. A system which consists of more than one point
charge

A self-consistent solution of this problem can be achieved
if its two-particle interaction is the same as the limit of an
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analogous system of extended charges whose radius tends to
zero. Thus, as in case C, the energy of the interaction fields
transforms as shown by the standard Maxwellian basis. An
attempt to do it differently is inconsistent with special rela-
tivity. Indeed, the kinematics of particles entails a unique
Lorentz transformation of their position and velocity. Hence,
the mechanical energy and momentum of the system trans-
form like those of an analogous system belonging to caseC.
It follows that there is no room for ambiguity of the laws of
transformation of mechanical energy and momentum. For
this reason, the postulate used for~73! and ~74! of Ref. 2 is
wrong. Illustrations of this matter are given in Refs. 10 and
11. In particular, see Ref. 11, Sec. II B, pp. 1030–1032.

The foregoing discussion shows that the covariant method
applies to caseB and to theself-interactionof particles be-
longing to caseD. ~A self-consistent presentation of a theory
where self-interactions of point charges are removed from
the energy–momentum tensor can be found in Ref. 18.! Un-
like ~73! and ~74! of Ref. 2, the mechanical part does not
transform covariantly. In his Response,15 Hnizdo does not
even try to settle this contradiction.

Now, the overall energy–momentum~which is the sum of
the mechanical and the electromagnetic parts! transforms co-
variantly. Hence, since the mechanical part does not trans-
form covariantly, the electromagnetic part must follow suit,
in order to compensate for noncovariant effects of the me-
chanical part.

In Ref. 4 of his Response, Hnizdo discusses results ob-
tained from an analysis of infinitely long devices. His claims
do not affect the validity of this work, because, in special
relativity, energy density is defined locally and one may ex-
amine appropriate finite volumes, which are parts of the en-
tire device. This approach is analogous to a standard text-
book discussion of a parallel-plate capacitor. This issue can
be explained briefly as follows.̀ is not a number but a limit

of a sequence. Let the device be enclosed within a cube
whose linear size isL. The integration of field quantities is
carried out within another cube, which is concentric with the
former, and whose linear size is 1020L. Now consider a se-
quence of such devices whereL→`. Everything is OK for
every element of the sequence and the results are valid.
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