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It is shown that ‘‘hidden momentum’’ is a real physical entity found in a continuous matter under
pressure when observed from an improper inertial frame. Precisely the same results are obtained
from an analysis of the mechanical motion of microscopic particles that create pressure. Analogous
properties hold in a pressure created by standing electromagnetic waves enclosed between two
parallel mirrors. The significance of the energy-momentum tensor and its divergence is pointed out.
It is also shown that in certain cases there exists an ensemble of particles where the sum of the
energy—momentum 4-vectors of its constituents does not transform as a 4-vector. Using these
results, it is shown that a stationary classical system made of a magnet and electric charges has null
linear momentum. © 1996 American Association of Physics Teachers.

I. INTRODUCTION

The phenomenon of a ‘‘hidden momentum’’ has been dis-
cussed in the literature for more than two decades." It typi-
cally arises in a stationary system which contains a magnet
and a system of electric charges. According to the laws of
electrodynamics, such a system has a nonzero electromag-
netic linear momentum (1/47c)fExBd>r. Considering the
fact that the system is stationary, one is obliged to identify an
additional linear momentum which balances the entire sys-
tem’s momentum. A recent discussion’ indicates that the
problem is not yet settled. The purpose of the present work is
to illuminate the phenomenon of hidden momentum. The
structure and transformation laws of the energy-momentum
tensor are analyzed and used in the derivation of the results.
It is shown that hidden momentum is an inherent relativistic
property of moving macroscopic bodies which carry pres-
sure. An analysis of the relativistic kinematics of particles
whose motion creates the pressure effect confirms this result.
The same situation is found in a pressure created by free
electromagnetic waves enclosed between two mirrors.

In the present work Greek indices range from O to 3 and
Latin ones take the values 1, 2, and 3. The metric g . is
diagonal and its entries are (1,—1,—1,—1); i, §, and k denote
unit vectors in the x-, y- and z directions, respectively. The
symbol ,v denotes a partial differentiation with respect to x".

The discussion utilizes properties of the energy—mo-
mentum tensor of continuous objects T#*. T% is the energy
density and 7% is ¢ times the ith component of the momen-
tum density. Thus, energy and momentum enclosed in a vol-
ume can be obtained as appropriate integrals of T “0_ [Note
that the energy W and momentum p of a particle can be
written as components of a 4-vector P*=(W/c,
Px»Dy,p;)- Hereafter, a statement referring to energy as a
component of a 4-vector should be construed as energy di-
vided by c.] In special relativity energy is conserved. This
means that, in a closed system, 7%"=0 provided this tensor
represents all elements of the system. In the present work,
different elements of the system are discussed separately.
Examples where T%'#0 are analyzed. It is known that in
such cases one cannot be sure that the energy and momen-
tum enclosed in a spatial volume transform as components of
a 4-vector.> Specific devices that demonstrate this law of
special relativity are described below. It is also proved that
analogous properties hold for an ensemble of discrete par-
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ticles enclosed in a finite volume. This outcome means that
in some cases the energy and momentum obtained as inte-
grals of corresponding densities (or as appropriate sums) do
not deserve to be considered as components of a 4-vector.
For this reason the terms ‘‘false 4-vector’”” and ‘‘false
4-momentum’” are used as a notation of such quantities. In
the present work false 4-vectors are written like genuine
ones. Hidden momentum is the difference between the cor-
rect mechanical momentum of an object and the ‘‘naive’’
mechanical momentum Ev/c? one might ascribe to it if one
thought its mechanical energy and momentum transformed
as a true 4-vector. It is relativistic in nature and has to do
with the internal motion of the object’s constituent parts. As
a matter of fact, ‘“hidden energy’’ accompanies hidden mo-
mentum.

The magnets used in demonstrations aiming to show the
need for a hidden momentum are classical objects where
charges move in closed loops. However, for the sake of sim-
plicity and clarity, the present work concentrates on linear
motion. It is shown later that the results can be applied to the
circular motion of a device in which an appropriate pressure
gradient arises. In this way, the momentum problem of a
classical magnet in an external electric field is settled.

The paper is organized as follows. A parallel plate capaci-
tor is analyzed in two inertial frames. The transformation
laws of its macroscopic elements are discussed in Sec. IT A.
The same results are obtained in Sec. II B which contains an
analysis of the kinematics of microscopic particles that create
pressure. In Sec. III, it is shown that analogous results are
obtained in the case where the mechanical pressure is re-
placed by a pressure of electromagnetic waves enclosed be-
tween two parallel mirrors. An application to a classical
magnet and motionless charges is described in Sec. IV. Con-
cluding remarks are the contents of Sec. V.

II. A PARALLEL PLATE CAPACITOR

Consider a parallel plate capacitor whose plates are per-
pendicular to the x axis. Let d denote the distance between
the plates and D their thickness. The inner surfaces of the
plates are covered with positive and negative uniform surface
charge density *a, respectively. The attraction between the
plates is compensated by the pressure of a gas which is
stored between them [see Fig. 1(a)]. The electric permittivity
of the gas is equal to that of the vacuum.
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Fig. 1. (a) A cross section of the parallel plate capacitor with the (x,y)
plane. The two plates are covered uniformly with charge density *o, re-
spectively. The electric field E exerts an attractive force f on each plate. This
force is balanced by the pressure 7. (b) The three rectangular parallelepi-
peds Ry, Ry, and R,, whose lengths are d, D, and D, respectively. S de-
notes the area of the appropriate face. Note that here the relative size D of
the plates’ thickness is larger than in (a) (see the text).

The capacitor is motionless in an inertial frame 3. Let us
calculate the energy and momentum of the system. For the
sake of simplicity, the discussion is restricted to the field and
the gas included in a rectangular parallelepiped having two
square faces (whose area is denoted by S) lying on the faces
of the capacitor’s plates. Let R, denote this rectangular par-
allelepiped and V=S4 its volume in 3,. Similarly, the dis-
cussion includes also two identical rectangular parallelepi-
peds (named R, and R,, respectively), each of which
contains the material of one of the plates. These rectangular
parallelepipeds have two square faces like those of R,. Let
Vi= V2 =SD denote the volume of R; and of R, as mea-
sured in 3. R, is placed on the left-hand side of Ro and R, is
on its right-hand side [see Fig. 1(b)].

A. A macroscopic analysis

In this section all elements of the capacitor are treated as
macroscopic bodies. The electrostatic field between the
plates is

E=470oi (1)

One-half of this quantity is associated with the positive
charge located on the left-hand side plate and the second half
is due to the charge on the right-hand side plate. Hence, the
electrostatic attraction on the portion of the plates belonging
to R; and R, is
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f=+2mwo?Si. @
This force is balanced by the pressure I1
=2mo?=E?/8m. 3)

With this proviso, the entire system is stable, and neither
energy nor momentum is exchanged with the environment.

The physical entities inside the rectangular parallelepipeds
are the two plates, the gas, and the electric field. In the ex-
pressions below, the subscripts P, G, and F denote quantities
pertinent to the plates, the gas, and the field, respectively.
The calculation uses the energy—momentum tensor 7" of
the various elements of the system. Generally, an energy—
momentum tensor is a function of the position and time x*.
The energy—momentum tensor of solids and of nonviscous
fluids is*

W= (e+Muru”—TIgh?. 4)

Here, € and I1 denote the proper energy density and pressure,
respectively, and u* is the dimensionless 4-velocity of the
matter in the volume element at which T is calculated. In
3, the capacitor and the gas are motionless, and u*
=(1,0,0,0).

The charge is located on the inner surfaces of the plates.
Thus the plates themselves are free of pressure. Therefore,
their energy—momentum tensor takes the following simple
form:

e 0.0 0
_— 0 0 0 )
P10 00 o0

0 0 0 0

Using (4), one finds that the energy—momentum tensor of the
gas is

€& 0 0 0
— moo 6
G 1o ommo

0 0 0 II

The energy—momentum tensor of electromagnetic fields is>
Wy _ 1 wappBv 1 afl ny
TF _Z—’ﬂ_' FEEF gaﬂ+zF Faﬁg s (7)

where the field tensor is

0 -E, —-E, -E,

P E,. 0 -B, B, . ®
E, B, 0 ~-B,
E, -B, B, 0
In particular,
T%°=§1; (E*+B7) ©
is the energy density and
o_1
Tr =7 (EXB), (10)

is ¢ times the ith component of the momentum density. In
the present case we have no magnetic field and the electric

E. Comay 1029



field is parallel to the x axis. Hence, the field’s energy—
momentum tensor is

1 0 0 0
. B0 -1 0 0

T7=gz1lo 0 1 o an
0 0 0 1

As expected, an examination of (5), (6), and (11) shows
that the momentum density 7°°/c vanishes everywhere. The
energy included in the volume considered here is obtained
from the energy density T% of each of these tensors. This
quantity is uniform in each of the corresponding rectangular
parallelepipeds R,, Ry, and R,. Thus, the energy of each
constituent of the system is obtained as a simple multiplica-
tion of the energy density by the corresponding volume of
the rectangular parallelepiped. It follows that the energy—
momentum 4-vector of each physical element of the capaci-
tor is

P4=2V,€p(1/¢,0,0,0), (12)
P4=V,€(1/c,0,0,0), (13)
and
Pi= VoE® (1/¢,0,0,0). (14)
8w

The energy-momentum 4-vector of the entire capacitor is

P#=P$+P5+P§=[2V1€P+ VO(EG+ H)](l/C,0,0,0),
(15)

where relation (3) was used.

The dynamics of the system can be described as follows.
The electric field and the gas do not interact with each other.
Each of these elements exchanges momentum with the plates
but the effects of these interactions cancel each other. Thus it
will be shown that the plates’ expression (12) is a genuine
4-vector. On the other hand, the gas’ expression (13) as well
as that of the field (14) are actually false 4-vectors. Obvi-
ously, the energy and momentum of the entire system (15)
are components of a genuine 4-vector.

Let us now examine the capacitor from another inertial
frame X'. In 2, this frame is seen moving in velocity u
= —ui. The Lorentz transformation from 2, to %' is

y yu/c 0 0

yu/c vy 00
"o 0o 10| (16)
0 0 01

where y=(1—u?/c?)"V2, Assume a 4-vector P* is seen in 3.
Then (16) yields its form in 3’

PE=LLPY, a7
Similarly, a tensor having two indices transforms as follows:
T'#v=LALETP, (18)

Applying this Lorentz transformation to the energy-—
momentum tensors (5), (6), and (11), one obtains the corre-
sponding quantities at 3’
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Yep Yuep/c 0 0
e yzuep/c )/Zuzep/c2 0 0
P 0 0 0o of (19)
0 0 00
Y(eg+u*ll/c?)  Yu(eg+M)/c 0 0
—_— Yu(eg+I)/c  Y*(II+u’eg/c?) 0 0
¢ - 0 m o
0 0 I
(20)
and
1 0 00
o EX|0 -1 .00
TP =8zlo 0o 1 0 @)
0 0 0 1

Note that in the present case, the tensor of the electromag-
netic fields does not change and T¢#* = T4 . This is consis-
tent with Lorentz transformation of electromagnetic fields
which are parallel to the boost. As is well known, in this case
the fields do not change.®

In the frame X', the volume of each of the rectangular
paralielepipeds undergoes a Lorentz contraction by a factor
7. Hence, one multiplies T'#° of (19), (20), and (21) by
2V,/cy or by V,/cy, respectively, and finds that in 3', the
energy—momentum 4-vectors of the capacitor’s constituents
(which are either genuine or false ones) are as follows:

P#=y2V,ep(l/c,u/c?,0,0), @)
Pi=yVy(eg/c+ull/c?u(eg+11)/c20,0),  (23)
and

VoE?
8wy

Summing (22), (23), and (24) and using (3), one obtains the
energy—momentum 4-vector of the entire capacitor

P'#*=9[2V ep+ Vo(eg+I1)1(1/c,u/c?,0,0). (25)

This result agrees with the one obtained from an application
of the Lorentz transformation (16) to the capacitor’s energy—
momentum 4-vector (15).

This outcome reflects the self-consistency of special rela-
tivity. On the other hand, it is interesting to note the different
behavior of the energy and momentum of the capacitor’s
constituents. The plate is matter which is free of pressure,
and in 3’ its energy—momentum 4-vector (22) fits the trans-
formed version of (12). This property does not hold for the
false 4-momenta of the gas and of the electric field. Only the
sum of these quantities transforms as a 4-vector.

PyF= (1/¢,0,0,0). (24)

B. A microscopic analysis of pressure

Let us consider the microscopic constituents of the gas.
For simplicity assume that we have a ‘‘gas’” made of point
particles which move parallel to the x axis. These particles
are reflected elastically from the plates and do not interact
with each other. Consider one particle M of this gas whose
rest mass is m. The purpose of the calculation is to find the
mean energy and mean momentum of M, in 3 and in the %’
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and the relations between these quantities. Ignoring negli-
gible fluctuations, one finds that the sums of mean energy
and mean momentum of the entire ensemble of particles cor-
respond to the instantaneous values of these quantities.

In the inertial frame 3, the velocity of M, is

vy=vi (26)
and its 4-momentum is
P4 =my,(c,v,0,0). 27N

(In this section, a subscript appended to 7y indicates the spe-
cific velocity pertaining to it.) The duration of this motion is

ty=d/v. (28)

After hitting the right-hand plate, M reverses its velocity
and we have

v_=-vi (29)
The 4-momentum takes the form

Pt=my,(c,~v,0,0). (30)
The duration of this motion is the same as (28)

t_=t,=d/v. (31)

Using these expressions, one finds that in the frame %, the
mean energy—momentum of M, is

P*=my,(c,0,0,0), (32

where the bar denotes a mean value. This quantity is calcu-

lated for a time interval consisting of a complete cycle,
T=t,+t_ .1t is shown below that (32) is a false 4-vector.

Let us now calculate the mean energy and momentum of
this particle in the frame 3’. The transformation of v,
yields’

, U +u 3

U+ T THou/c (33)

The 4-momentum is obtained by application of the Lorentz
transformation (16) to (27)

PFr=my,y,(c+uv/c,u+v,0,0). (34)

In 3, M, is seen moving toward the right plate with ve-
locity (33), whereas this plate recedes with velocity u (see
Fig. 2). The distance between the plates undergoes a Lorentz
contraction and we have

d'=dly,. (35)

The time elapsed while the particle moves toward the right
plate is obtained from the relation v ¢}, =d’+ut’ . [An al-
ternative method is to apply the Lorentz transformation (16)

to the 4-vector (¢, ,d,0,0)]. Hence, using (33) and (35), one
finds

£

N d 3 Y.d(1+uv/c?)
Yu(v'—u) v '

Repeating the calculation for the motion toward the left-
hand plate, one finds

(36)

,  u-v
v- 1—vu/c®’ (37)
P*=my,y,(c—uv/c,u—v,0,0), (38)
and
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Fig. 2. The capacitor’s plates and a particle M, as seen from X'. u denotes
the uniform velocity of the plates. v/, is the velocity of M, at an instant
when it moves to the right. v’ is its velocity at another instant when it
moves to the left. The direction of v refers to the case where ju|<|v] (see
the text).

_ v d(1- uv/c?)
= - .

The quantities (33), (34), and (36)—(39) enable the calcu-
lation of the mean energy and the mean momentum of the
particle, as seen in 3'. Using the relativistic expression for
the energy of a particle W= cP®=mc?y, one finds the mean
value of P'°

tl

(39)

Yor tht v, tl
P'*=me T =mcy,v,(1+u*v?/c?),
(40)
where
Yo', = Yu¥u(1Euv/c?). (41)

The calculation can also be done for the x component of the
relativistic momentum P’'=m v, . Thus the mean of the x
component of the momentum is

! 14 ! ]
" v+7v'+t++v—7u'_t—
P'l=m

=my,y,u(1+v?/c?).

(42)

At this point it is possible to compare the results of the
corpuscular analysis carried out here with those of the con-
tinuous one presented in Sec. I A. To this end, let us define
the mean energy density of the particle M, in 3 on the basis
of (32)

EG=mc2yv/V0. (43)
Similarly, the mean pressure of M, is

th+tl

M=my,v¥/Vo=v%e;/c. (44)
Substituting these expressions into (40) and (42), one finds
P'%= 1y, V(€ /c+ull/c?), (45)
P''=yuVy(és+II)/c (46)

Results (45) and (46) agree completely with the corre-
sponding components of (23) (note that ¥ of Sec. II A is
denoted here as 7,). This outcome proves that the apparent
violation of covariance in the transformation of the false

E. Comay 1031



4-momentum of the gas (13) and (23) is just a wrong impres-
sion and that these expressions have a solid covariant foun-
dation. Indeed, as shown here, these results stem from the
mechanical properties of the particles whose motion creates
the gas’ mean energy and momentum.

The corroboration of the covariance of the transformation
laws of the gas carries implications for those of the electro-
magnetic part of the system. Indeed, at this point the plates
and the gas transformations, (22) and (23), are accepted as
correct relativistic expressions. The transformation (25) of
the entire capacitor is obviously a correct covariant expres-
sion. It follows that the false 4-vector of the electromagnetic
part (14) and its transformation (24) should not be altered.
Thus the analysis of the capacitor provides an example of the
correctness of the general expression of the electromagnetic
energy—momentum tensor (7) and of that of macroscopic
matter (4) as well.

Summarizing: It is shown that in X' the correct expression
of the gas’ energy and momentum is (23). This expression,
together with (44), shows that the relative ‘‘correction’’ to
the transformed momentum is I1/e;=v?/c?. For example, if
one considers the pressure of air at room temperature, the
correction is on the order of 1072, In (23), the correction to
the energy density is much smaller because of the additional
factor u”/c?. It should be noted that a E!)art of the results
found above have been published earlier.>’

III. STANDING WAVES

It is proved here that the same results are obtained in a
system where standing electromagnetic waves replace the
(one-dimensional) gas and act as a source of pressure. To
this end, assume that the inner faces of the capacitor’s plates
are perfect reflectors. The standing wave is polarized in the y
direction and its fields are!”

E,=A sin(wx/c)sin wtj, (47)

B,,=A cos(wx/c)cos wtk (48)
and the angular frequency o satisfies

wd/c=nm, (49)

where n is a (large) integer. The amplitude A will be deter-
mined later. Note that the subscript w distinguishes between
the fields of the standing wave and the electrostatic field (1).

The energy-momentum tensor (7) of the fields of the
standing wave is

N 2E,8, 0 0
1 |2E,B, A 0 0
0

Y

v 8w 0 0 -7
0 0 0 =nx

In order to reduce the size of some arrays, the following
notation is introduced:

A=E2+B2, (51)
n=E,~Bj, (52)

Note that there is also a time-dependent Poynting vector as-
sociated with the constant electric field (1) and the magnetic
field (48) of the standing wave: cEXB, /47 However, the
mean value of this quantity vanishes. The same is true for the
E,E,, terms of the total energy—momentum tensor of the
fields. Therefore, cross terms between the electrostatic field

(50)
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(1) and the standing waves (47) and (48) can be ignored in
the energy—momentum tensors discussed here.

Let us find a condition on A which renders the plates free
of external force. The x component of the electromagnetic
force exerted on the plates is associated with the T'! compo-
nent of the electromagnetic energy—momentum tensors'!
(11) and (50). Using (47)—(49), one finds that on the plates
E,=0 and

B,=A cos wtk. (53)

Thus the mean value of B2 at the plates is 4% Examining
T'! of the energy—momentum tensor (11) of the electrostatic
field and (50), one finds that the mean force exerted on the
plates vanishes, provided the amplitude A of (47) and (48)
satisfies the following relation to the electrostatic field (1):

A=VIE|. (54)

The energy of the standing wave located within the rect-
ar(l)gular parallelepiped R, is obtained from the integration of
T of (50) on the volume V. Using (54), one finds

1
P9V=% : f (EL+Bl)d*x=E*V,/8mc. (55)
Notice that the final quantity is time independent. Note also
that the component 7" =E B, integrates to zero. Hence, the
overall momentum of these fields vanishes. Thus the energy
and momentum of the standing wave (which are components
of a false 4-momentum) at the rectangular parallelepiped R,
are

P*‘—EZV0 1/¢,0,0,0 56
w_87_r(/c797)' ()
Adding (14) and (56), one obtains the entire electromagnetic
part of the energy—momentum 4-vector

u _E2V0

Let us examine the energy and momentum of the standing
wave in 3'. Here one can use the Lorentz transformation
(16) to transform the fields (47) and (48). Using these fields,
one constructs the energy—momentum tensor (7). An alter-
native and equivalent method is to transform the energy—
momentum tensor (50) which is written in terms of the fields
in 2. The latter method is adopted here because it is shorter.
(The reader is invited to try the first method.) For notational
simplicity the components T and T'° of (50), which inte-
grate to zero, are omitted. Applying the Lorentz transforma-
tion (16) to the tensor (50), one finds

T,}=LALiToF

Y2(1+u*/c)\ 27*uN/c 0 0

1 29%uN/c Y(1+u?/cHN 0 0
8 0 0 -7 0
0 0 0 7

(58)

Integrating T.“° over the volume V{ of Ry (where V
= V,/7y) and using (47), (48), (51), and (54), one obtains the
false 4-momentum

YE*V,

= (/e +u?/c3,2u/c?,0,0). (59)

re_
P r=
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Adding the false 4-momentum of the static field (24) and that
of the standing wave (59), one finds

YE 2 Vo

47

This result is precisely the 4-vector obtained by applying the
Lorentz transformation (16) to the 4-vector (57). This out-
come shows that the discussion of the present section is con-
sistent with that of Sec. II.

Ppl= (1/c,u/c?,0,0). (60)

IV. AN APPLICATION

The main result of the present work is that matter in mo-
tion which is under pressure carries within itself an addi-
tional amount of momentum (and of energy as well), as
given in Eqgs._(46) and (45). The additional part of the mo-
mentum y,ul1Vy/c?, is called hidden momentum.

At this point one can analyze the system of static electric
and magnetic fields? whose overall electromagnetic field mo-
mentum (1/47r¢)fEXBd>r is finite. This problem has al-
ready been discussed in the literature'? and will be men-
tioned here only briefly. Let us examine an incompressible
charged fluid flowing inside a circular tube. The tube is a
charged insulator that screens the electric field of the charged
fluid. This system is a model for a classical magnetic dipole.
The linear momentum associated with the magnetic field of
sul%h a tube and the electrostatic field of a system of charges
is

1
PEMzgf f <DJd3x, (61)

where ® is the electrostatic potential and J is the electric
current that produces the magnetic field.

In order to balance the Lorentz force exerted by the elec-
trostatic field of the electric charges, a pressure gradient
builds up in the charged fluid. By now the reader will be
familiar with this situation: there will be a mechanical hidden
momentum in the moving fluid, a hidden momentum that
precisely cancels (61). Thus the fotal linear momentum of a
stationary system vanishes.

V. CONCLUDING REMARKS

The analysis carried out in this work confirms that the
total energy—momentum 4-vector of the closed systems ex-
amined transforms as a 4-vector. Thus they can be viewed as
examples illustrating a theorem of special relativity.'* The
example discussed in Sec. II is of particular interest. Here
one has two distinct forces which cancel one another, a me-
chanical one and an electromagnetic one. There can be no
doubt concerning the transformation laws of the mechanical
motion of the gas’ particles, and yet, the mechanical part of
the 4-momentum, by itself, does not transform as a 4-vector.
A glance at (13) and (23) confirms this conclusion. The same
is true for the electromagnetic part of the energy—momentum
4-vector, as can be seen in (14) and (24). The analogous
result is obtained in Sec. III, where the pressure is itself
electromagnetic (due to standing waves).

The fact that the energy and momentum of each constitu-
ent of the system do not transform as a 4-vector should not
be considered a surprise. Indeed, as pointed out in Sec. L, it
can be shown® that the energy and momentum obtained from
an energy—momentum tensor transform as 4-vector if the
energy—momentum tensor is divergenceless T"’=0. This
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condition holds for any closed system. In the present ex-
amples, it holds also for the tensor of the capacitor’s plates
(5). On the other hand, it does not hold separately for the
gas’ and fields’ tensors (6) and (11). Indeed, the gas’ pres-
sure vanishes outside the inner capacitor’s volume, proving
that this pressure behaves like a step function at the vicinity
of the inner part of the plates. It follows that T75",#0 on the
boundaries of the inner capacitor’s volume. An analogous
relation holds for T4¥ of the electrostatic field. These ex-
amples show that the condition T%’=0 may be violated for
the energy—momentum tensors of separate components of
the system, and in the cases discussed here, the correspond-
ing energy and momentum do not transform as a 4-vector. It
is also shown that besides the hidden momentum, a false
4-momentum carries hidden energy.

The device discussed in Sec. II contains a gas under pres-
sure. In Sec. III electromagnetic radiation takes the gas’ role.
Analyzing separately the energy—momentum tensors of
bound fields and of radiation, one arrives at the same con-
clusions as in Sec. II. This outcome proves that a property of
the energy—momentum tensor, namely, T%'#0, yields false
4-momenta that conceal hidden momentum. It is explained
here that hidden momentum emerges as a result of applying
an unjustified intuition which is inconsistent with relativity.
This hidden momentum is associated with the mechanical
subsystem. However, the analogy between the one-
dimensional gas of Sec. II B and the radiation of Sec. III
indicates that, in principle, one might arrive at analogous
unjustified conclusions pertaining to energy—momentum of
the electromagnetic subsystem.

Romer’s Question? has stimulated this work. Three
Answers'>17 to this Question have been published before
the completion of the revised version. It appears that all au-
thors agree on the key role of the energy—momentum tensor
of the entire system, which satisfies 7%,"=0. One of the main
results obtained here is that there exists a mechanical sub-
system (like the gas discussed in Sec. II) whose energy and
momentum do not transform as components of a genuine
4-vector, thereby emphasizing the usefulness of the notion of
a false 4-vector. This outcome pertains to the standard defi-
nitions of the electromagnetic energy and momentum densi-
ties of a system whose charge density can be treated as a
continuous object. These definitions can be relied upon as
valid expressions which hold in all frames. The results ob-
tained here are compatible with the relevant arguments of
one Answer'’ but differ in some respects from the other
two, 1516

An application of the outcome of this work is discussed in
Sec. IV. It is explained there how this outcome settles the
problem of the linear momentum of a stationary classical
system of a magnet and charges.
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The general form of a nonspreading wave packet in one-dimensional free space is derived from first
principles, employing a decomposition of the quantum mechanical evolution operator of the free
particle. In agreement with the classical analysis of Berry and Balazs, the corresponding probability
density is proportional to the square of an Airy function, and the packet propagates with constant
acceleration. © 1996 American Association of Physics Teachers.

I. INTRODUCTION

Though the Airy wave packet, introduced by Berry and
Balazs' as a solution of the free particle Schrodinger equa-
tion which propagates with uniform acceleration and without
spreading, has been the subject of some subsequent
discussion,™* a formal derivation of this expression and a
quantum mechanical proof of its uniqueness are yet to be
supplied. Berry and Balazs! drew attention to the fact that the
one-dimensional free particle Schrodinger equation (for con-
venience, we use atomic units such that m=f=1)

l/l(x t)—- 4 2P(x,1) 1

admits a nonstationary solution

(iB*1/2)(x—B>16) A § B3‘2)

Plx,)=e Al Blx———1, @)
where B is an atbitrary positive constant, whose probability
density accelerates toward positive x without change of
shape. They further pointed out that a classical analysis of
trajectories correspondmg to this Airy packet leads to the
conclusion that this is the only solution having this property.
In this paper, we present a fully quantum mechanical proof
of this assertion, which also constitutes a derivation from
first principles of Eq. (2).
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II. GENERAL FORM OF A NONSPREADING WAVE
PACKET IN FREE SPACE

The time evolution of the wave function ¢(x,t), Eq. (1), is
formally given by

W(x, )= e P Py(x,0). 3)

If ¢(x,t) is to be a nonspreading wave packet, we should
have |¢(x,t)|=|¥(x+ 7n(1),0)|, where # (¢) is a function of
t. The simplest decomposition of the evolution operator
which accomplishes this, if it exists, would be of the form

e it 2= gi8(0) i V(g (X gin()p @)

where &, 7, and 7 are scalar (¢ number) functions of ¢, and g
is some function of x. This, however, is impossible, as can be
seen on operating with exp(—i7(¢)p) from the right on both
sides of Eq. (4). We, therefore, look for a general decompo-
sition of the form

e~ itP2— ois(1)oiv(NE(X) inO)p o if (NH(x,P) 5)

where H is an operator depending on x and p, but not on ¢,
whose form can be determined as described below. If we
now choose ¥(x,0) to be an eigenfunction of H satisfying
Hy(x,0)=E (x,0), Eq. (3) becomes

P(x,1) = e TRV y(x + (1), 0); (6)

that is, we have a nonspreading wave packet.
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