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The original derivation of the electric Aharonov-Bohm effect is analysed. The underlying reasons for the inherent incompati-
bility of this derivation with the law of energy conservation is pointed out.

It has recently been shown that the original deri-
vation of the electric Aharonov-Bohm (AB) effect
[1,2] is incompatible with the law of energy con-
servation [3]. The objective of the present Letter is
to reveal the underlying physical error which is in-
herent in that derivation of the effect. A conse-
quence of this analysis is that the counter-example
presented in ref. [3] is not accidental.

Classical physics teaches us that energy conser-
vation of a system is associated with the time in-
dependence of the hamiltonian function [4]. A
corresponding relation holds in quantum mechanics.
In particular, it is shown that the wavefunction of a
closed system is an eigenfunction of the hamiltonian
(ref. [5], p. 28). In quantum mechanics Heisen-
berg’s uncertainty relation

AE At~H (1)

holds (ref. [5], pp. 150-153). Thus, conservation of
energy is approached if the entire system can be left
uninterrupted for a sufficiently long time.

Equiped with these theoretical foundations of
quantum mechanics, let us examine the original de-
rivation of the electric AB effect [2]. This effect
measures the interference pattern of a charge moving
in a nonsimply connected field-free region of space
where the electric potential varies in time. Hence-
forth, this charge is called “the moving electron”. It
is assumed that other charges of the system are not
electrons so that no antisymmetrization is required

for the moving electron. This assumption simplifies
notation but does not affect the results of the follow-
ing analysis. It is also assumed that particles move
slowly and the nonrelativistic limit holds.

In the experiment, the moving electron is chopped
into rather short wave packets, each of which is split
later into two coherent subpackets. The subpacket P;
runs through a very long hollow cylinder while P,
runs at the cylindrical outer region (see figs. 1 and
2 of ref. [3]). The cylinder consists of two layers
made of insulating materials which are covered uni-
formly with the same amount of positive and neg-
ative charges, respectively. The initial difference
between the radii of the cylindrical layers is infini-
tesimal. When P, is well inside the cylindrical inner
region, a special device releases a fixed amount of
energy which pushes the cylindrical flexible layer and
reduces its radius. Thus, P; as well as P, move in a
field-free region of space. However, while P, travels
in a region where the electric potential vanishes
identically, P; “sees” a nonzero electric potential.
Hereafter, the cylinder and its charges are sometimes
called “the source”.

The hamiltonian of the system is

H=H,+H.+V, (2)

where H operates on the coordinates of the source,
H. is the single-particle hamiltonian of the moving
electron and V' denotes the interaction energy of the
moving electron with the source (see eq. (11) of ref.
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[2]). The authors of ref. [2] aim to derive the effect
when the moving electron as well as the source are
treated quantum mechanically (see section 3 of their
work). They claim to prove that the wavefunction of
the entire system can be written in the form of a sin-
gle product

W=¢(yl"“aynst)‘1”(xa [)9 (3)

where the single-particle wavefunction of the mov-
ing electron factors out (see top of page 1518 and
also the text after (19)). In (3), y,, ..., ¥, denote the
coordinates of the charges at the source and x is that
of the moving electron. Assuming that their approx-
imations holds, the authors of ref. 2 use the multi-
plicative wavefunction (3) to derive the electric AB
effect.

In the following lines, the multiplicative wave-
function (3) is examined. To this end, let us write
it in the form

S”=¢(y|,,y,,,t)[Wl(x,t)-i-Wo(x, [)]9 (4)

where y; and ¥, denote the inner and the outer sub-
packets, respectively. Operating on (4) with the
hamiltonian (2), one finds

HY=(H.+H.+ V¥
=(H )y, + (H0)wo+0(Heyr) +0(H W)
+Vow, + Vow,. (5)

At the location of y, the potential V" is nonzero
during the relevant period whereas it vanishes iden-
tically for w,. Hence, the last term of (5) can be
eliminated. The moving electron travels in a field-free
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region of space which is macroscopically far from the
cylindrical charges. Therefore, due to the validity of
the classical limit, one finds that the third and the
fourth terms of (5) make the same contribution to
the required eigenvalue. This conclusion obviously
holds for the first two terms of (5) where H, operates
on the same function ¢. Therefore, it is proved that
(4) is not an eigenfunction of the hamiltonian (2)
and that the size of the discrepancy is V.

Another point is the time duration of the energy
imbalance. This period is measured between f,, when
P, is far from the cylinder and ¢,, which denotes an
instant when P, is inside the cylinder and “sees” the
potential V. This time difference can be as long as
one likes if the moving electron is slow enough.
Hence, AE Af can be made bigger than any preas-
signed value. It follows that the wavefunction used
by AB violates the basic requirements of Landau and
Lifshitz (ref. [5], pp. 28, 150-153). This analysis
proves that the incompatibility of this wavefunction
with the law of energy conservation is inherent in the
original derivation of the AB effect [2]. Hence, the
example of ref. [3] is not a trick but an illustration
of this substantial inconsistency.
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