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A regular charge-monopole theory is derived from simple and self-evident postulates. It

is shown that this theory provides explanations for effects of strong and nuclear inter-

actions. The theory is compared with Dirac’s monopole theory. Applications to strong

and nuclear interactions are compared with quantum chromodynamics. The results fa-

vor the regular charge-monopole theory and indicate difficulties of the other ones. An

experiment that may provide further evidence helping to decide between the regular

charge-monopole theory and quantum chromodynamics is suggested.

1. Introduction

Classical electrodynamics is regarded as a well established part of physics. The

equations of Maxwell and the Lorentz law of force are the equations of motion of

a system of electromagnetic fields and electrically charged matter. The fields part

of these equations consists of two kinds of entities - namely, the electric and the

magnetic fields. On the other hand, the massive matter part contains a single kind

of electromagnetic entity - the electric charge.

The idea of magnetic monopoles (called just monopoles in the literature) aims

to restore the symmetry between electricity and magnetism. Let us examine the

electromagnetic fields tensor[1,2]

Fµν
(e) =









0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









. (1)

In this work subscripts (e) and (m) denote quantities related to charges and

monopoles, respectively. Units where the speed of light c = 1 are used. The Lorentz
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metric is diagonal and its entries are (1,−1,−1,−1). Greek indices run from 0 to

3. The symbol ,µ denotes the partial differentiation with respect to xµ. i, j and k

denote unit vectors in the x, y and z directions, respectively.

Duality transformations cast a system of fields and charges into a system of

fields and monopoles. These transformations are (see [2], pp. 252, 551)

E → B, B → −E (2)

and

e→ g, g → −e, (3)

where g denotes the monopole strength. (In this work, duality is used in its re-

stricted form of a duality rotation by π/2.) Eq. (3) represents relations between

Lorentz scalars (see a discussion of this issue in Section 4) whereas (2) takes a

relativistic tensorial form

F ∗µν
(m) =

1

2
εµναβF(e)αβ . (4)

Here εµναβ is the completely antisymmetric unit tensor of the fourth rank. Entries

of the monopole dependent fields tensors of (4) are

F ∗µν
(m) =









0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0









. (5)

Historically, classical electrodynamics of charges and fields has been formulated

after a lot of experimental data have been accumulated. Results of these exper-

iments have guided physicists how to construct the theory. Thus, in the case of

electrodynamics of charges and fields, development has taken the inductive way.

(The addition of the Maxwell term makes an exception.) Unfortunately, monopoles

have not been detected in laboratories. Hence, one cannot follow the historical

course of classical electrodynamics of charges and fields. Therefore, the deductive

course must be adopted and the theory should be derive from an appropriate set of

postulates.

Consider two postulates pertaining to this topic:

(A) The theory of monopoles and fields takes a form which is completely dual to

the theory of charges and fields.

(B) Electromagnetic fields of a system of monopoles and those of a system of

charges have identical dynamical properties.
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Hereafter, these postulates are called postulate (A) and (B), respectively. Upper

case letters denote postulates and numbers denote other kinds of items.

One may be tempted to use both postulates (A) and (B) as fundamental elements

of the theory. However, it turns out that this goal is unattainable because different

sets of equations of motion are obtained from postulate (A) (without (B)) and from

postulate (B) (without (A)). Section 4 contains a discussion of this topic.

In Section 2, a regular charge-monopole theory is derived from postulate (A).

The relevance of this theory to strongly interacting particles (called hadrons) and to

nuclear interactions is discussed in Section 3. A comparison of results obtained in

Sections 2 with the Dirac monopole theory (which is consistent with postulate (B))

is presented in Section 4. A comparison of the results of Section 3 with quantum

chromodynamics (QCD) is shown in Section 5. Concluding remarks are the contents

of the last Section.

2. A Regular Charge-Monopole Theory

Postulate (A) means that classical electrodynamics of charges and their asso-

ciated fields is a cornerstone of the charge-monopole theory developed here. For

this reason, let us examine the equations of motion of classical electrodynamics of

charges and fields as well as some of its fundamental relations. The equations of

motion of the fields are Maxwell equations. Their tensorial form is (see [1], pp. 74,

67 or [2], pp. 551)

Fµν
(e) ,ν = −4πjµ

(e) (6)

and

F ∗µν
(e) ,ν = 0. (7)

where F ∗µν
(e) takes the same form as (5) but here it represents fields of charges. The

Lorentz law of force is the equation of motion of charges (see [2], p. 572)

maµ
(e) = eFµν

(e)vν , (8)

where vµ denotes the particle’s 4-velocity, m is its rest mass and e is its charge.

The fields used in (6) and in (7) can be derived from a regular 4-potential

F(e)µν = A(e)ν,µ −A(e)µ,ν . (9)

(Point infinities associated with the introduction of elementary classical point charges

are beyond the scope of this work. A regular solution of point infinity problems is

presented in [3].)
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The 4-potential is an important quantity of the system’s dynamics, because it

is used in the charge-fields interaction term of the Lagrangian density (see [1], p.

71 or [2], p. 596)

Lint = −jµ
(e)A(e)µ. (10)

The reader should note the difference between the inhomogeneous Maxwell equa-

tions (6) and the homogeneous ones (7). As a matter of fact, the homogeneous

equation (7) represents internal mathematical relations between field components

(see [1], pp. 66,67). On the other hand, the inhomogeneous Maxwell equations (6)

are associated with charge-fields interaction and are derived from the Lagrangian

density (see [1], pp. 73-75 or [2], pp 597).

Let us now use postulate (A) and obtain the equations of motion of a system

of monopoles and their associated fields (namely, a system that does not contain

electric charges). This goal is achieved from the application of the duality relations

(2) - (4) to (6) - (8). The results are

F ∗µν
(m) ,ν = −4πjµ

(m), (11)

−Fµν
(m) ,ν = 0. (12)

and

maµ
(m) = gF ∗µν

(m) vν . (13)

One should note that F ∗µν
(m) of (11) takes the form of (5) and Fµν

(m) of (12) takes

the form of (1). Like in the case of charges, the fields of monopoles can be derived

from an appropriate 4-potential

F ∗

(m)µν = A(m)ν,µ −A(m)µ,ν . (14)

For this system, the interaction part of the Lagrangian density is analogous to (10)

Lint = −jµ
(m)A(m)µ. (15)

The reader should note that in the monopole case, the fields tensors take the

opposite role, with respect to that of charges. Thus, F ∗µν
(m) of (11) is related to

the interaction term (15) whereas Fµν
(m) of (12) represents mathematical relations.

At this point we have the equations of motion of two noninteracting systems: a

system of charges and their associated fields and another system which consists of

monopoles and their associated fields. The rest of this Section is devoted to the
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equations of motion of a combined system containing charges, monopoles and their

fields.

Due to the linearity of electrodynamics, one may split the electromagnetic fields

into a sum of field quantities and examine their effects separately. An important

kind of split is the one which examines bound fields and radiation fields separately.

(A decomposition of the electromagnetic fields of a system of charges into these

components can be found in [3].) The first kind of fields is significant near the

charges and decays rapidly at larger distances. Radiation fields decay slower at

larger distances and become dominant there. They represent an entity which is

distinguished from charges. In classical physics they take the form of radiation

energy and in quantum mechanics they appear as real photons.

Radiation fields emitted from a specific source have the following properties

B2 − E2 = 0 (16)

and

E ·B = 0. (17)

(These relations are obtained from eq. (66.8) of [1], p. 172 and from eqs. (9.4)

and (9.5) of [2], p. 392.) Relations (16) and (17) are just a reformulation of the

Lorentz scalar FµνFµν and the pseudoscalar F ∗µνFµν , respectively. An observation

of these quantities proves that in the case of radiation fields, they remain invariant

under the duality transformation (2). This result indicates that radiation fields of

charges and radiation fields of monopoles may be regarded as one and the same

entity. This result is also obtained from the equations of motion of radiation fields.

These equations are the homogeneous Maxwell equations

Fµν
(e) ,ν = 0 (18)

and

F ∗µν
(e) ,ν = 0. (19)

Let us examine the simple example of linearly polarized monochromatic plane

wave (see [1], pp. 114-117 or [2], pp. 273-278) which propagates in the z-direction.

Taking the electric charge point of view, a vector potential of the fields is

A(e) = −iAeiω(z−t)i. (20)

Thus, we have

E = −
∂A(e)

∂t
= ωAeiω(z−t)i (21)
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and

B = ∇×A(e) = ωAeiω(z−t)j. (22)

(Obviously, the real part of these equations represents the quantities that should be

accounted for.) The direction of the linear polarization is that of the electric field

(21).

Let us now take the monopole point of view. Here one examines a vector po-

tential which is parallel to the y-axis

A(m) = −iAeiω(z−t)j. (23)

Using the duality relations (2) as well as (14), one finds

B = −
∂A(m)

∂t
= ωAeiω(z−t)j (24)

and

E = −∇×A(m) = ωAeiω(z−t)i. (25)

It follows that (21) equals (25) and (22) equals (24).

These results indicate explicitly that one may identify radiation fields of charges

with radiation fields of monopoles without arriving at any contradiction. Hence-

forth, radiation fields of charges and radiation fields of monopoles are regarded as

one and the same entity and are denoted by the subscript (w). Thus, for example,

Fµν
(e,w) denotes the tensor of bound and radiation fields of charges and the radiation

fields of monopoles. The symbol Fµν
(m,w) is analogous.

Let us examine bound fields of charges and bound fields of monopoles. A simple

example is the system which consists of one charge and one monopole. The inter-

action term of the Lagrangian density is required. Again, due to the linearity of

electrodynamics, one may write the interaction part of a system which consists of

many charges and many monopoles as a sum of two body interactions. There are

several restrictions imposed on the form of the required quantity:

I. Since the action is a Lorentz scalar, all terms of the Lagrangian density must

be Lorentz scalars too.

II. Due to the linearity of electrodynamics, the charge-monopole interaction term

must be a sum of bilinear quantities containing two factors, one is related to

charges and the other is related to monopoles.

III. Due to the notion of a charge and of a monopole, a system of one motionless

charge and one motionless monopole does not change in time.
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The charge-charge interaction term (10) satisfies requirements I and the appro-

priate analogue of II. Relation (15) is the monopole version of (10). An observation

of a system of one motionless charge and one motionless monopole proves that,

unlike the case of radiation fields, bound fields of these objects differ substantially.

Thus, the Lorentz scalar (16) B2−E2 < 0 for the case of a charge and B2−E2 > 0

for the case of a monopole.

A simple analysis[4] proves that in the case of bound fields, one cannot create

an interaction term that satisfies I, II and III as well as some other self-evident

postulates. Thus, the following conclusion is obtained:

1. Charges do not interact with bound fields of monopoles and monopoles do

not interact with bound fields of charges. Charges interact with all fields of

charges and with radiation fields emitted from monopoles. Monopoles interact

with all fields of monopoles and with radiation fields emitted from charges.

Henceforth, this conclusion is referred to as conclusion 1. Conclusion 1 yields

the following form of the Lorentz force exerted on charges

maµ
(e) = eFµν

(e,w)v(e)ν . (26)

The corresponding force exerted on monopoles is

maµ
(m) = gF ∗µν

(m,w)v(m)ν . (27)

Explicit expressions of the Lagrangian of the system and of the energy-momentum

tensor can be found in [4]. Since fields of charges and fields of monopoles have

different dynamical properties, it is suggested that fields of monopoles be called

magnetoelectric fields[4].

It is interesting to note that conclusion 1 can be obtained even without the

requirement of having a regular interaction term of the charge-monopole Lagrangian

density. It can be shown[5] that the same result is obtained if one uses the postulate

that, like the electric charge, the magnetic monopole is a Lorentz scalar and not a

pseudoscalar (see [2], p. 253).

Conclusion 1 is the main result of the theoretical analysis carried out in this

section. It explains why postulates (A) and (B) which are written in the introduc-

tion, cannot be used together as elements of a charge-monopole theory. Indeed,

if postulate (B) is adopted (like in Dirac’s charge-monopole theory[6-8]) then the

Lorentz force exerted on a charge must be eFµν
(e,m,w)v(e)ν , contrary to (26). Physical

implications of conclusion 1 are discussed in the next section. In what follows, the

monopole theory outlined here is called the regular charge-monopole theory.
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3. A Discussion of Experimental Data

Consider the 4 different kinds of interactions known in physics: strong, electro-

magnetic, weak and gravitational. The gravitational interaction is practically blind

to many features of matter and “sees” only the matter’s energy-momentum tensor

and that of electromagnetic fields. For this reason, it is not mentioned here any

more. Table 1 shows 2 conservation properties of the other interactions,

strong electromagnetic weak
parity yes yes no
flavor yes yes no

Table 1:
Validity of parity and flavor conservation

under three kinds of interactions

The meaning of parity conservation is that if, for example, a theory of the

specific kind of force contains a Hamiltonian then this Hamiltonian commutes with

the parity operator. Parity conservation indicates similarity between strong and

electromagnetic interactions. Flavor is a property of elementary constituents of

matter: each one of the 3 kinds of charged leptons (electrons, muons and tau mesons)

and each one of the 6 kinds of quarks has its own flavor. Hereafter, the symbol q

is sometimes used as a notation of a quark. All these objects are spin 1/2 Dirac

particles and each one of them has its own antiparticle (generally, an antiparticle

is denoted by a bar over the particle’s symbol). Table 1 shows that strong and

electromagnetic interactions cannot alter flavor properties of matter. Moreover,

experiments show that these interactions “see” quarks and leptons as very small

objects whose radius is less than 10−16cm. As a matter of fact, it is a common belief

that leptons and quarks are pointlike (see [9], pp. 264, 276, 277). Experiments also

show that strong and electromagnetic interactions can perform a process called pair

production. This process results in the creation of a particle and an antiparticle of

the same kind, thereby obeying flavor conservation. Pair production is seen in the

creation of separate charged leptons, like an electron and a positron or, for example,

in the creation of mesons which are qq̄ bound systems. Table 1 indicates that strong

and electromagnetic interactions are similar with respect to flavor conservation too.

On the basis of these results it is postulated here that

(C) Strong interactions are interactions between magnetic monopoles. Thus, all

charged leptons have a unit of electric charge ±e and no magnetic monopole,

whereas quarks have both electric charge and a magnetic monopole unit −g.

Applications of the regular charge-monopole theory and of postulate (C) to



90 E. Comay

experimental data are discussed briefly in this Section. As shown below, several

fundamental properties of the relevant data can be explained in a qualitative man-

ner. This point can be put in a different way. Postulate (C) can be refuted if it fails

to explain qualitative properties of experimental data.

It is obvious that a classical theory cannot go far in explaining properties of

matter. Thus, additional postulates are used below, where required. These postu-

lates look natural and rely on fundamental properties of matter. Putting them in

the status of postulates does not negate the possibility of proving them by means

of a more profound theory. Up to now, only postulates (A) and (C) are used.

1. The regular charge-monopole theory of Section 2 predicts that electromagnetic-

like forces come in pairs, one is charge related and the other pertains to

monopoles. If, for example, 3 different kinds of such interactions are found in

Nature then the regular monopole theory is refuted (or has to find rescue in

an additional postulate which is analogous to the one stating that “monopoles

do not exist”).

Up to now, nothing is said on specific properties of magnetic charges. The

following postulate fills this gap.

(D) Like the case of electric charge, the elementary unit g of magnetic charge is

quantized. Moreover, the size of g is rather big g2 � e2 ' 1/137. Experimen-

tal data indicate that g2 ' 1 (see [9], p. 20).

The reader should note that in Dirac’s charge-monopole theory which is derived

in accordance with postulate (B) of the introduction, there is a numerical relation

between the size of the elementary electric charge and of its magnetic counterpart

and g2 = 137/4[6-8]. This relation, which imposes a restriction on the size of the

elementary magnetic charge, does not hold in the regular charge-monopole the-

ory derived in Section 2. Here the size of the elementary magnetic unit is a free

parameter.

Let us proceed further, using postulate (D).

2. Experiments show that elementary particles that have just electric charges,

like the electron, do not participate in strong interactions[10]. Moreover, the

electric charge of proton’s quarks is not identical to the corresponding quantity

of the neutron. It turns out that energetic electrons interact differently with

quark constituents of protons and neutrons (see [10], p. 200 and [11]). On

the other hand, energetic real photons interact strongly with quark targets of

protons and neutrons and, in these interactions, protons and neutrons look

very much alike[12]. These properties of Nature fit like a glove Conclusion 1
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of the regular charge-monopole theory outlined in Section 2. Indeed, one has

just to replace the terms ’electric charge’ by ’electron’, ’magnetic charge’ by

’quark’ and use Postulate (D) which means that the monopole charge of quarks

dominates the process. The reader should note that Conclusion 1 is obtained

from a pure theoretical analysis that relies on simple postulates which have

(at least apparently) no relevance to the experimental data mentioned here.

Further aspects of this issue are discussed in Section 5.

In order to proceed further, we need the following postulate, which relies on well

established experimental data (see [9], pp. 275-277)

(E) Quarks are spin 1/2 Dirac particles.

This postulate enables us to make further deductions.

3. Theory predicts and experiments show bound states of an electron and a

positron, called positronium. Now, by the postulates which we already have

at hand, one predicts strongly bound qq̄ states whose total spin and parity

are analogous to the states of the positronium. The fact that there are 6

different kinds of quarks, all of which are assumed to have the same elemen-

tary magnetic charge, indicates that mesonic states are much richer than the

positronium ones, because the quarks of a qq̄ pair may or may not have the

same type of flavor. This prediction is supported by experimental data of

mesons[13].

4. Mesons whose quantum states cannot be created by a qq̄ system are called

exotic. Binding forces between 2 mesons, namely a qqq̄q̄ system, are expected

to be much weaker than the qq̄ bond. This conclusion is analogous to the

relation between the value of the binding energy of electrons in atoms and

that of the molecular (or van der Waals) forces between neutral atoms (and

neutral molecules). In particular, the lowest qq̄ state (called π meson) has a

total spin=0 and is analogous to an atom of a noble gas. Thus, one expects

that if bound states of a π meson and another hadron exist at all then their

binding energy must be very small. Also in this case, predictions are supported

by experimental data[13].

A set of particles called baryons is found in Nature. Proton and neutron are the

lowest energy states of baryons. Quantum states of baryons are characterized by

means of 3 quarks, called valence quarks. In order to explain bound states of this

kind by means of magnetic monopole forces, one makes another postulate. Thus,

by analogy of atoms, it is assumed that

(F) Baryons have a core whose magnetic charge is +3g.



92 E. Comay

This assumption provides an explanation of baryons, using the baryonic core and

3 quarks attracted to it by the dual Coulomb force which exists between magnetic

monopoles. The sign of the monopole charge of the core and that of quarks is

defined here in order to keep an analogy with the sign of the electric charge of

nuclei and electrons, respectively.

The structure of the baryonic core is beyond the scope of the present work. It

may be an elementary object or, more probably, a complex system of closed shells

of strongly interacting objects whose overall magnetic charge is +3g (see a remark

on this issue in the last Section).

Experiments show that baryons do have a core. Thus, it is found that in an

appropriate Lorentz frame, quarks and antiquarks carry only about one half of the

nucleon’s momentum (see [9], p. 282). Hence, something else exists in a nucleon

and here it is called a core.

Postulate (F) leads to further predictions.

5. Like in the case of mesons, bound states of baryons that cannot be created

by 3 quarks are called exotic. Arguments that correspond to those of point 4

above lead to the claim that strongly bound states that make exotic baryons

do not exist.

This prediction is confirmed experimentally. The lowest bound state of a baryon

and another hadron is the deuteron which consists of one proton and one neutron.

The binding energy of the deuteron is about 2.2 MeV, whereas gaps between bary-

onic energy levels are measured by hundreds of MeV. Other bound states of baryons

are nuclei. Here the binding energy is generally about 8 MeV per nucleon. Another

aspect of this point is the similarity between the form of the nuclear forces and the

van-der-Waals ones. This is the reason for the success of the nuclear liquid drop

model[14].

Another issue is the existence of antiparticles in the system. This is a relativistic

effect which may be found more easily in a system where interaction energies are very

high. Thus, experiments show that, beside the 3 valence quarks, antiquarks exist

in nucleons, too. Here antiquarks are associated with the existence of additional qq̄

pairs in the baryonic wave function (see [9] pp. 282). It turns out that antiquarks

occupy a rather narrow region of the variable x used for characterizing relations

between Lorentz invariant quantities of experiments (see [9], p. 281).

Now, a narrow x pertains to a small Fermi motion in the volume occupied by

the baryon. Thus, due to the uncertainty principle, one concludes that antiquarks

occupy a larger volume than quarks do (see [9], pp. 266-271).

The magnetic monopole theory discussed here explains this point very easily:

6. If qq̄ pairs are found in a baryonic wave function then quarks are attracted
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to the core and antiquarks are pushed away from it. This result is related to

the fact that near the center, the field of the core’s magnetic charge is not

completely screened by quarks. Hence, antiquarks, whose magnetic charge

takes the same sign as that of the core, are pushed away to outer regions.

Let us examine the interaction between quarks in a baryon. Like the interac-

tion between electrons in an atom, this interaction is repulsive and increases the

energy of baryonic states. Hence, if in certain quantum states, this interaction is

reduced then these states should have a higher binding energy. Since electrons and

quarks are spin-1/2 Dirac particles, their total quantum state is antisymmetric.

Now, electronic states whose total spin is symmetric have a spatial state which is

completely antisymmetric. These states yield a smaller repulsive energy between

electrons than corresponding states where the spatial part is symmetric. Indeed,

let us examine 2 electrons and r12 = r1 − r2 be chosen as a dynamical coordinate.

Hence, for r12 = 0, an antisymmetric wave function must vanish. This property

indicates that at a region where r12 is very small and the repulsive interaction is

highest, spatially antisymmetric wave functions yield a smaller contribution. This

effect is related to the Hund rule in atomic states[15,16]. Antisymmetric spatial

wave function of 3 quarks must be created from 3 different single particle wave

functions. Hence, excited single particle wave functions are used and the system’s

kinetic energy increases. Let us have a very rough estimate of this quantity. For

this purpose, consider 2 terms of the state JP = 3/2+, where the spin and isospin

are symmetric

ψ = ψ1 + ψ2. (28)

Here ψ1 is the obvious state ψ1 = φ1φ2φ3, where the φi are single particle S-

waves, φ1 is the ground state and the other ones are the first and the second radial

excitations, respectively. ψ2 = φ1(χ1χ2, L = 1). χi are single particle P-waves

which are coupled to the antisymmetric state[17] L = 1. For each of these χi, one

finds from the spatial angular momentum

1 = l =| r× p |=⇒ pT =
1

0.8
fm−1 ' 250MeV, (29)

where pT is the momentum component which is perpendicular to r and 0.8fm is

an estimate of the effective radius. Using the relation between momentum and

kinetic energy, ∆P > ∆Ek, one finds from (29) that the increase of the kinetic

energy of ψ2 is about 500 MeV. Here the Hamiltonian is evaluated for JP = 3/2+

functions. As is well known, the lowest state obtained after diagonalization of the

Hamiltonian matrix, is lower than the diagonal entry of each of the basis functions.

To this reduction one has to add the expected contribution of the magnetic monopole

analogue of the Hund effect.
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Hence,

7. The mass of the ∆1232 baryon, which is higher than the nucleonic mass by

about 300 MeV, is understood.

Conclusion 1 and the related equations of motion (26) and (27) indicate that

static electric field of a charge and electric field of a moving monopole have different

dynamical properties. The same conclusion holds for the corresponding magnetic

fields. A special case of this distinction is found in the electric field of a polar dipole

(which is made of two displaced electric charges having equal strength and opposite

sign) and that of an axial electric dipole of a spinning monopole. The axial electric

dipole of spinning monopoles is discussed here.

The neutron is known to be a spin-1/2 electrically neutral composite particle. Its

nonvanishing magnetic dipole moment demonstrates that not all effects of its elec-

trically charged constituents vanish. The duality relations between electric charges

and magnetic monopoles provide the basis for the following statement. If quarks are

dyons (namely, particles that have both electric and magnetic charge) and strong in-

teractions are interactions between magnetic monopoles then, it is highly reasonable

that neutrons (and protons) should have a large axial electric dipole moment which

is associated with spinning monopoles. Indeed, it is extremely unlikely that the

overall electric dipole moment of a system of spinning monopoles vanishes whereas

the total spin is nonzero. This discussion indicates that the very low upper bound

measured for the electric dipole moment of the neutron[18,19] should not be re-

garded as a major argument against a hadronic theory where quarks are magnetic

monopoles obeying (26) and (27). Indeed, all experiments carried out for the mea-

surement of the electric dipole moment of the neutron are eventually based on the

interaction of electric field of charge with the searched electric dipole moment of

the neutron[18,19].

Thus, the very low upper bound measured for the electric dipole moment of neu-

trons is, as a matter of fact, an upper bound for its polar electric dipole moment.

These measurements provide no information on the magnitude of the neutron’s

axial electric dipole moment. Hence, results of measurements of the neutron’s elec-

tric dipole moment are not incompatible with the regular charge-monopole theory

presented in this work whose main results are (26) and (27).

As pointed out above, a nucleon is expected to have a nonvanishing axial electric

dipole moment, due to its spinning quarks. In this way, one finds an explanation

for the tensor interaction between nucleons[20,21]

VT = {3(σ1·r)(σ2·r) − r2σ1·σ2}U(r), (30)

where r=r2-r1 and σ is the spin operator. This expression is a generalization of
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the dipole-dipole interaction between two static point dipoles µ1 and µ2 (see [2], p

143).

VDIPOLE = −{3(µ1·r)(µ2·r) − r2µ1·µ2}/r
5. (31)

Evidently, the nuclear tensor interaction cannot be exactly a dipole-dipole one,

because nucleons are not point dipoles but composite particles whose size is not

much smaller than the distance between nucleons in a nucleus. For this reason the

form of the function U(r) of (30) is determined phenomenologically. It is interesting

to note that the sign of U(r) of (30) is negative (see [21], p. 103), like the sign of

(31). It can be concluded that

8. The origin of the nuclear tensor force is understood.

The size of the nucleonic volume inside a nucleus can be deduced from the

nucleonic quarks’ momentum. It is found that the larger the number of nucleons

A in a nucleus, the larger is the mean self volume of nucleons of this nucleus. In

other words, as the nucleus becomes heavier its nucleons swell. This property is

compatible with the EMC effect[22,23].

On the other hand, the success of the nuclear liquid drop models is an indica-

tion that nuclear density is practically constant (see [14] and [20], pp. 6,7). The

swelling of the mean volume occupied by quarks of a nucleon with the increase of

the number A of nucleons in nuclei, is compatible with screening properties of elec-

trodynamics. Consider a nucleon Ni in a nucleus. A part of the wave function of

quarks of neighboring nucleons penetrates into the volume occupied by Ni. Thus,

the attracting field of the core of Ni is partially screened by quarks belonging to

neighboring nucleons. It follows that, in this case, quarks of Ni “see” a weaker field

attracting them to the core of Ni and settle in a larger volume. As the number

of nucleons of a nucleus, A, increases, the average number of neighbors of a typi-

cal nucleon increases too and the screening effect becomes more significant. This

situation explains the EMC effect. Thus,

9. screening effects cause self volume of quarks of each nucleon to increase inside

rather large nuclei.

The 3 valence quarks of the proton are uud. Thus, one may write a truncated

sum of terms of the proton’s full wave function as follows:

ψproton = λ0φ0(uud) + λ1φ1(uuduū) + λ2φ2(uuddd̄). (32)

Here φ0 of (32) denotes a wave function of the 3 valence quarks (and the completely

full “sea” of negative energy states of quarks). In φ1, one u quark is excited from
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the “sea” into a positive energy state. φ2 is analogous. Every φi is normalized

and each of the λi is a numerical coefficients. Obviously, each of these terms has

the proton’s quantum numbers. Since the valence quarks of the proton contain 2 u

quarks and only one d quark, it is obvious that the additional d quark of φ2 finds

a lower energy state than the additional u quark of φ1. Hence, the absolute value

of the coefficient λ2 should be greater than that of λ1. It can be concluded that

10. the regular charge-monopole theory provides an explanation for the extra d̄

found in a proton, called flavor asymmetry[24].

The 10 issues pointed out in this Section should be considered as an illustration

of the ability of the regular charge-monopole theory to explain phenomena related

to strong interaction.

4. A Comparison of Magnetic Monopole Theories

This Section contains a discussion of the Dirac monopole theory and its compari-

son with the regular charge-monopole theory outlined in Section 2. An introductory

part is needed for clarifying some general aspects. A physical theory is a mathe-

matical structure that has a physical domain of validity [25]. Hence, in principle,

a theory can be refuted if its mathematical structure leads to a contradiction. Its

physical meaning can be rejected if it fails to explain results of physical measure-

ments carried out within its domain of validity. It should be pointed out that in the

latter case, the theory cannot be saved by an attempt to gerrymander its validity

domain[25]. The foregoing arguments indicate that one cannot refute a theory by

means of another theory. Indeed, assume that theories A and B yield contradictory

predictions within a common validity domain. In this case it may be concluded

that at least one of these theories is wrong but it is still unknown which theory is

the wrong one. Thus, a comparison with experimental data is required.

There is another aspect of a theory which is not directly connected to its correct-

ness and has also a subjective personal side. It is generally accustomed to regard a

theory as a neat one if it relies on a minimal set of postulates which are based on

general properties of Nature. One also generally expects that a neat theory is more

likely to be correct when compared to another theory which does not look neat. For

this reason, the specific postulates used by theories are mentioned too.

The origin of problems of the Dirac charge-monopole theory is that it does not

start with the simple case of a system of monopoles without charges. As shown

in Section 2, an examination of this case together with postulate (A) leads to the

regular charge-monopole theory where the Lorentz force takes the form of ( 26)

and (27). Let us turn to some problematic points of the Dirac charge-monopole

theory. These points show that Dirac’s charge-monopole theory differs drastically

from electrodynamics.
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1. The Dirac theory yields a kind of irregularity which is not found in other

parts of classical electrodynamics. Indeed, let us examine a magnetic charge

density ρm and the Dirac’s vector potential, which is used for fields of charges

and for fields of monopoles

4πρm = ∇ ·B = ∇ · (∇× A) = 0. (33)

This relation states that monopoles do not exist if the vector potential A

is regular. Hence, in Dirac’s monopole theory the vector potential must be

singular. For this reason, Dirac has introduced the notion of a string that

extends from a monopole g to infinity or ends at another monopole having a

magnetic charge −g. Moreover, the system should obey what is called Dirac’s

veto which forbids charges from entering regions of space occupied by strings

(see [6], p. 1374). Strings are a new notion introduced into the theory. Thus,

the following postulate enables their acceptability.

(A’) Strings connected to monopoles account for the irregularities of the theory.

Charges are not allowed to enter regions of space occupied by strings.

2. Unlike ordinary classical electrodynamics and the regular charge-monopole

theory outlined in Section 2, Dirac’s charge-monopole theory cannot be de-

rived from a regular Lagrangian[4,26]. Hence, the definition of canonical vari-

ables is unclear and the ordinary method of constructing the Hamiltonian

cannot be used. For this reason, the form of quantum mechanics of Dirac’s

charge-monopole theory is not self-evident. Analogous conclusions have al-

ready been published[27-29].

Let us examine the angular momentum of a Dirac charge-monopole system. A

ring made of an insulating material is placed in the (x, y) plane and its center

coincides with the origin. The ring is covered uniformly with charge density ρ

and it can rotate around the z-axis. A monopole g moves along the z-axis from

−∞ towards ∞ (see fig. 1) and carries its string along its path. The motion is

legitimate according to Dirac’s veto, because charges of the ring do not touch the

z-axis. Now, the motion of the monopole is accompanied with a circular electric

field which is dual to the circular magnetic field of a uniformly moving charge. Due

to Dirac’s monopole theory, this field accelerates charges along the ring. Hence, the

value of the angular momentum of the ring at the final time differs from its value

at the initial time. It turns out that this variation of the angular momentum is

compensated by the interaction part of a charge-monopole system (see [2], p. 256

and [6], pp. 1365, 1366. Note the different units used in [2] and [6]). Thus, in
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Dirac’s monopole theory, the angular momentum of a static system of a charge and

a monopole is

j = egr/r (34)

where r denotes the radius vector from the charge to the monopole. This angular

momentum depends on the direction of the line connecting the charge and the

monopole but is independent of the distance between the particles. It follows that

3. in Dirac’s charge-monopole theory there is an interaction dependent quantity

whose value does not vanish even if the particles are infinitely far apart. This

result is strange and unconvincing.

4. Eq. (34) as well as other arguments yield the results that in Dirac’s monopole

theory, a magnetic charge g transforms not like a scalar but like a pseudoscalar

(see [2], p. 253). It is not clear how this outcome affects the theory. In

particular, by analogy with charges (see [1], p. 70, [2], p. 549), one expects

that the monopole 4-current is ρmv
µ/γ, where ρm is the monopole density

and γ = (1 − v2)−1/2. Now, one expects that the 4-current behaves like a

4-vector, contrary to the pseudoscalar property assigned to monopoles.

Assume that, in spite of what is said in item 2 of this section, one finds a way for

introducing monopoles into quantum mechanics. In this case, the self consistency of

the theory is doubtful because the theory is not derived from a regular Lagrangian.

The following example illustrates this issue. Let us examine a spin 1/2 charged

particle which is attracted to a center of force by a non-electromagnetic interaction

(henceforth denoted by NEMI). NEMI is much stronger than all electromagnetic

forces and the latter are evaluated by perturbation calculations. A peculiar feature

of NEMI is that its spin-orbit interaction is very strong and its l = 3 j = 7/2 state

is its ground state. An external field of the NEMI performs a split of the m states,

g
Figure 1: A monopole g moves through a ring (see text).
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which is analogous to the Zeeman effect. Thus, the state l = 3, j = 7/2, mj = 7/2

is the ground state. This is a quantum mechanical analogue of the ring of fig. 1. A

magnetic monopole g moves along the z-axis from z = −Z0 to z = Z0 and returns

back along a semicircle whose center is at the origin (Z0 is very large). Evidently,

the final state equals the initial one, except for the energy gained by the monopole

while moving along the z-axis. (Energy involved with the motion along the arc can

be ignored because on this line the magnetic field of the magnetic dipole of the

j = 7/2 charge behaves like r−3.) Hence,

5. quantum mechanics of the Dirac monopole theory does not conserve energy.

6. Another aspect related to the Dirac monopole theory is the usage of mea-

surement of fields by charges and by monopoles. It can be shown that if the

laboratory is located in a noninertial frame of reference (like a rotating labo-

ratory) then fields measured by charges and fields measured by monopoles are

different entities [30]. Hence, it is not clear why, in Dirac’s charge-monopole

theory, these different entities are derived from the same 4-potential.

7. Beside the foregoing theoretical difficulties, there is the experimental situation

stating that, in spite of prolonged efforts, Dirac monopoles have not been

detected[13,31]. This outcome has been predicted on the basis of S-matrix

considerations[27] and by using the regular charge-monopole theory outlined

in Section 2[32]. This is probably the only monopole related prediction that

still holds till now.

8. It should be mentioned that, in addition to the problematic points of the Dirac

monopole theory, this theory explains a basic phenomenon of Nature which is

charge quantization. However, Dirac’s value of the elementary monopole unit

g2 ' 34 appears to be very high.

Charge quantization clearly cannot be derived from the regular monopole theory

of Section 2. However, it can be argued that it is very far from being self-evident

that a proof of charge quantization is an inseparable part of the validity domain of

an acceptable charge-monopole theory.

5. Problems of Quantum Chrodynamics

At present, quantum chrodynamics (QCD) is regarded as the theory of strong

interactions (see [9], p. 20). It relies on several postulates that have not been

used previously. By analogy with the discussion in Section 3, these postulates are

described below.
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A”. It uses the Young-Mills idea which extends the gauge procedure and enables

the replacement of complex numbers of the phase by matrices belonging to a

certain group. In the case of QCD, the group is SU3.

B”. It relies on a certain procedure called after Higgs, which enables the theory

to take an acceptable form. The Higgs procedure requires the existence of

particles called Higgs mesons.

C”. It assigns to each quark a new kind of charge called color. There are 3 kinds

of color, called red, green and blue, each of which has its own anticolor. The

theory further assumes that particles found in laboratories must be white,

namely, they should have equal amount of positive and negative values of

each color or equal amount of all the 3 colors.

Let us make a list of problematic points of QCD. The list has a certain resem-

blance to some of the points discussed in Section 3, where the utilization of the

regular charge-monopole theory to strong interactions is described.

1. In spite of a long experimental search, the Higgs mesons have not been found

[13].

2. QCD provides no explanation to the participation of real photons in strong

interactions. It should be pointed out that the approach called Vector Meson

Dominance as well as similar ideas have been discussed recently. It is proved

that these approaches have no theoretical basis[33].

3. QCD does not rule out the existence of exotic states (see, e.g. [13] pp. 754,

755, [34]). However, the validity of these states is not established by experi-

ments.

4. The fact that quarks carry only about one half of the nucleon’s momentum

is explained in Section 3 by the introduction of the baryonic core (see the

discussion that follows postulate (F)). In QCD, this is explained by the claim

that gluons (the QCD analogue of electromagnetic bound fields) carry the rest

of the momentum. These different explanations can be tested by an analysis

of sufficient data obtained from colliding beams of π mesons and electrons.

Here, the monopole theory used in Section 3 predicts that quarks of a π meson

should carry all momentum whereas QCD expects that gluons of the qq̄ pair

of the π meson should take a portion of the momentum.
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6. Concluding Remarks

This work shows how a regular charge-monopole theory can be derived from the

self-evident duality postulate. It is also shown that this theory can be applied to the

field of strongly interacting particles. This application relies on very simple and self-

evident postulates and explains several qualitative properties of strong and nuclear

interaction. Thus, it removes the asymmetry between electricity and magnetism in

contemporary electrodynamics.

The idea that baryons contain a magnetic charge has already been published.

Even before the discovery of quarks, it has been suggested by Dirac that nucleon

constituents contain monopoles [8]. Schwinger has proposed a model of hadrons

where quarks are dyons[35,36]. This course has been examined by other authors,

too [37,38]. However, since all these authors have used the Dirac charge-monopole

theory, they could not overcome difficulties. For example, the Dirac monopole the-

ory cannot explain why electrons do not “see” the monopole field but real photons

do “see” it (see item 2 of Section 3). Similarly, it cannot explain why the axial elec-

tric dipole moment associated with spinning monopoles is not detected in neutron

measurements (see the discussion that follows item 7 of section 3).

Problems and difficulties of the Dirac monopole theory are discussed in Section

4. These difficulties and the failure of the experimental quest for Dirac monopoles,

indicate that it is unlikely that the Dirac charge-monopole theory is correct. Several

kinds of experimental data which are not explained by QCD are discussed in Section

5. The data certainly belongs to the domain of validity of QCD or to the wider

theory called the Standard Model. Thus, the interaction of a real photon with

a hadron belongs to the combined domain of electrodynamics and QCD, both of

which are elements of the Standard Model. As proved elsewhere [33], QCD does

not provide an acceptable explanation for this phenomenon.

Other points, like the failure to detect the Higgs mesons as well as exotic states

of hadrons belong to the validity domain of QCD. Moreover, QCD has not predicted

the EMC effect [22]. It is shown in Section 3 how easily the monopole theory of

hadrons explains the similarity between the van der Waals forces and the nuclear

ones, as well as the nuclear tensor force, including its sign. On the other hand, in

spite of intensive work carried out during more than 30 years, standard textbooks

on QCD[9,10] do not discuss these topics.

Similarly, if the baryonic core is assumed to consist of a magnetic monopole

central object and closed shells of inner quarks then the enhancement found in

the cross section of very high energy collisions[39,40] is understood. These experi-

ments indicate the existence of an energy threshold above which additional quarks

at the nucleonic target begin to participate in the interaction with the projectile.

The analysis of deep inelastic scattering of electrons on π mesons may provide new
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evidence concerning the different interpretations of the portion of momentum car-

ried by nucleonic quarks. In QCD the rest of the momentum is ascribed to gluons

whereas in the monopole theory outlined here, it is ascribed to the baryonic core

that carries also 3 units of monopole charge. In the case of mesons, there is no

core and the monopole theory predicts that all momentum is carried by quarks and

antiquarks. On the other hand, according to the QCD approach, a portion of the

π meson’s momentum is expected to be carried by gluons.

A theory differs from a model by the fact that a theory is expected to fit accu-

rately results of experiments carried out within its validity domain. For this reason,

it can be concluded that QCD’s inability to describe correctly well established ex-

perimental data casts doubts on its correctness.
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