Non-replicating mucosal and systemic vaccines: quantitative and qualitative differences in the Ag-specific CD8+ T cell population in different tissues

Udi Qimron a, Lada Paul a, Erez Bar-Haim b, Noga Bloushtain a, Lea Eisenbach b, Herman F. Staats c, Angel Porgador a,∗

a Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
b Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
c Department of Medicine, Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA

Received 10 April 2003; received in revised form 6 October 2003; accepted 4 November 2003

Abstract

Directed dissemination of Ag-specific CD8+ T cells to infected organs or cancerous tissues is a prerequisite for optimal immunotherapy. Ag-specific CD8+ T cells were quantitated in systemic and mucosal tissues after nasal, rectal, or cutaneous immunization with CTL epitope peptide and the adjuvant cholera toxin (CT). Mucosal and cutaneous immunization induced Ag-specific CD8+ lymphocytes that were detectable in both mucosal and systemic compartments, suggesting a less strict distribution pattern than that known for B cells. However, optimal localization, activation and phenotype of these cells correlated with the route of immunization. In accordance with this observation, protection against a mucosal challenge with a virus expressing the CTL epitope was superior in mucosally-immunized animals.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: Mucosal/systemic vaccines; Non-replicating; CT; CTL; Virus; Cancer

Immunization strategies that induce homing and localization of Ag-specific lymphocytes to mucosal tissues may be required for protection against pathogens that infect at mucosal tissues or cancers that develop at or metastasize to mucosal tissues. The route of immunization might influence the type, magnitude and localization of Ag-specific immunity within mucosal and systemic compartments. We have reported that nasal immunization, but not systemic immunization, induced Ag-specific IgA in mucosal secretions [1,2]. These studies and others have suggested that systemic route of immunization, with a non-replicative vaccine, generates Ag-specific Ab-secreting cells that may not travel to mucosal organs [1–3]. We and others have also reported that mucosal immunization with a non-replicative vaccine, composed from peptide immunogen and CT adjuvant, induced Ag-specific CTL in mucosal and systemic compartments [4–6]. Belyakov et al. further showed that systemic immunization with IFA + peptide induced CTL responses that were detected in systemic tissues only [5]. Similarly, we compared CT + peptide nasal vaccine to CFA + peptide cutaneous vaccine. We observed that in the peritoneal cavity, which is considered a systemic compartment, both vaccines induced similar numbers of Ag-specific CD8+ T cells. Yet, in the lung, a mucosal organ, CT + peptide nasal vaccine potently induced specific CTL and Ag-specific CD8+ T cells, while no CTL activity or Ag-specific CD8+ T cells were detected following the CFA-based cutaneous vaccine (data not shown). Thus, it might be concluded that systemic immunization with a non-replicative vaccine is not capable of inducing a CTL that travel to mucosal sites. However, because cutaneous immunization utilized Freund’s adjuvants while nasal immunization utilized CT as the adjuvant, differences in the accumulation of Ag-specific CTL in different tissues may have been a result of the adjuvant utilized and not the route of immunization. Therefore, to accurately measure the effect of route of delivery, we revisited the issue of CD8+ T cell distribution induced by a non-replicating vaccine, composed of a CTL epitope peptide and the same CT adjuvant.

We analyzed the effect of different routes of immunization on the number and phenotype of CD8+ T cells in non-lymphoid mucosal organs as compared to the spleen. Vaccine composed from the H-2Kb-presented ovalbumin
257–264 aa peptide, SIINFEKL, and the CT adjuvant [4]. C57BL/6 mice were injected i.v. with OT-1 transgenic T cells [7], which are specific for H-2Kb-SIINFEKL complex, and immunized twice via the nasal, rectal or footpad route with CT + SIINFEKL. The number of Ag-specific CD8+ T cells in the lung, spleen and salivary glands (SG) was monitored 9 days after the last immunization (Fig. 1A). To monitor the specific CD8+ T cells responding to immunization with CT + SIINFEKL, we used Cy5-conjugated Kb/β2m/SIINFEKL tetramers that would

![Graph showing tissue distribution of tetramer+, CD45RB dull, and β7+ Ag-specific CD8+ T cells.](image)

Fig. 1. The route of immunization affects the tissue distribution of tetramer+, CD45RB dull, and β7+ Ag-specific CD8+ T cells. OT-1 splenocytes (2 × 10^7) were transferred to C57BL/6 mice by i.v. injection. Mice were immunized intrafootpad, intranasal or intrarectal with CT + SIINFEKL on Days 2 and 16. Nine days after second immunization spleen, lung and SG were removed and mononuclear immune cells were purified as described [4-6]. Cells were: (A) stained with tetramer and anti-CD8, results are shown as the percentage of tetramer+CD8+ T cells of all CD8+ T cells; (B) stained for CD8, CD45RB and Vα2.1 expression, results are shown as the percentage of CD8+Vα2.1+ T cells. All results are the average of three independent experiments. Bars, ± S.D.; (*) immunization route that induces significantly greater: (A) % tetramer+CD8+, (B) % CD45RB dull/CD8+Vα2.1+, (C) % β7+/CD8+Vα2.1+ cells in indicated tissue vs. non-immunized mice, P = 0.05 ANOVA.
differences in significant increase in the percentage of Ag-specific CD8 

intrafootpad route of immunization were associated with a 

P that the distribution of Ag-specific CD8 

might affect the magnitude of the response. It also indicates only the route of immunization, but also the adjuvant used 

rectal immunization. Comparing this result to the obser-

vations with the IFA or CFA adjuvants, indicates that not only the route of immunization, but also the adjuvant used 
might affect the magnitude of the response. It also indicates that the distribution of Ag-specific CD8 

T cells, induced by a non-replicative vaccine, might have a different pattern than that observed for B cells and that a “mucosal barrier” in CTL is not as strict as thought. Intracutaneous vaccination was the only route of immunization to induce a significant increase in the percentage of tetramer 

CD8 

cells in the SG (Fig. 1A). Comparison of intranasal and intracutaneous routes (Fig. 1), indicates that even within the mucosal compart-

ment, distinct routes of vaccination influence differently the outcome of Ag-specific CD8 

T cells. Similarly in the sys-
temic compartment, subcutaneous immunization with CT + peptide results in poor induction of CD8 

T cells activity as compared to cutaneous (intrafootpad) immunization with CT + peptide (Fig. 1 and [4]).

Most of the expanded and activated Ag-specific CD8 

cells in the immunized mice, both in mucosal and systemic compart-

ments, were originated from the transferred OT-1 cells as assessed by their expression of Vα2.1, which is the Vα of the OT-1 transgenic TCR (data not shown). OT-1 CD8 

T cells to be transferred were harvested from the OT-1 spleen and manifest naïve phenotype (CD45RB 

B6) [8] just before transfer. Naïve T cells are preprogrammed to migrate and recirculate through spleen and secondary mucosal or systemic LN [9]. Thus, harvesting naïve OT-1 CD8 

T cells from the OT-1 spleen for the transfer, should not restrict their distribution to mucosal inductive sites in the immunized mice. Indeed, our results indicate that this assumption is correct (Fig. 1A).

The “mucosal barrier” reappears in our results when analyzing the activation phenotype (CD45RB 

B6) [8] and integrins pattern of the Ag-specific CD8 

T cells in the immunized mice. Nasal immunization resulted in activation of 68.5 ± 12.5% of the Ag-specific CD8 

T cells detected in the lung as compared to <20% for all other groups tested (P = 0.05; Fig. 1B). In the spleen, both the intranasal and intrafootpad route of immunization were associated with a significant increase in the percentage of Ag-specific CD8 

T cells expressing an activated phenotype (24.0 ± 2.6% and 34.8 ± 2.4%, respectively; P = 0.05). We did not detect differences in o4β7 expression on the Ag-specific CD8 

T cells isolated from the lung, spleen or salivary gland (data not shown). However, when tested for β7 expression, nasal immunization resulted in a significantly higher percentage of Ag-specific CD8 

T cells expressing β7 in the lung (22.4 ± 0.5%; P = 0.05, Fig. 1C). Staining for αEβ7 integrin revealed similar results (data not shown) suggesting that nasal immu-
nization was associated with induced expression of αEβ7 integrin on Ag-specific CD8 

T cells in the lung. Others have reported that the β7 integrin was required for activated OT-1 T cells to enter the small and large intestinal mucosal and that the αEβ7 integrin appeared to play no role in OT-1 migration during a primary immune response [10]. How-

ever, the association between αEβ7 or o4β7 expression and the migration of activated CD8 

T cells to the lung was not studied in this previously published paper. Although integrin αE-deficient mice had no decrease in the number of CD3 

T cells in the lung as compared to wild-type, the affect of αE-deficiency on Ag-specific CD8 

T cells was not studied [11].

We next compared vaccine-induced CD8 

T induction and spreading in the Peyer’s patches (PP) and spleen as examples of mucosal and systemic inductive lymphoid tis-

sues, respectively. Again, we immunized OT-1-transferred mice with the same vaccine formulation, CT + SIINFEKL, by the intranasal route or intrafootpad route. Immunization via the footpad induced a significantly greater percentage of 

tetramer-positive, CD8 

T cells in the spleen (11.0 ± 5%; 

P = 0.05) as compared to intranasal immunization (2.8 ± 1.9%). However, nasal immunization induced a significantly greater percentage of tetramer 

CD8 

T cells in the PP as compared to footpad immunization, with 31.3 ± 1.2% (P = 0.05) and 11.3 ± 8.5% of the CD8 

T cells that are tetramer positive after nasal and footpad immunization, respectively (Fig. 2A). Our results indicate that mucosal immunization is superior to systemic immunization for the induction of Ag-specific CD8 

T cells that home to mucosal inductive lymphoid tissues such as PP, while systemic immunization is superior to mucosal immunization for the induction of Ag-specific CD8 

T cells that are detectable in systemic lymphoid tissues. Analysis of blood peripheral lymphocytes revealed phenotype similar to the spleen (data not shown).

We further determined if Ag-specific CD8 

T responses induced by mucosal or systemic immunization were able to protect against an infectious challenge at a mucosal surface. Mice (without pre-transfer of OT-1 cells) were immunized twice with CT + SIINFEKL by the nasal or intrafootpad route and then infected rectally with a recombi-

nant vaccinia expressing ovalbumin and β-galactosidase (rVV-OVA-β-gal) 9 days after the last immunization. This vaccinia strain has been found to home and replicate best in the ovaries; however, its pathway to the ovaries after intrarectal application involves gut inductive sites such as the PP. β-Galactosidase activity was monitored in the ovary 3 days after challenge and used as a surrogate marker for viral load. Both routes of immunization showed pro-
tection against intrarectally administered rVV-OVA-β-gal
Immune responses induce protection against a mucosal viral challenge. (A) Flow cytometry-based quantitation of parenteral and nasal routes of CT + SIINFEKL vaccine in PP and spleen. OT-1 splenocytes (2 × 10^5) were transferred to C57BL/6 mice by i.v. injection. Mice were immunized intrafootpad or intranasal with CT + SIINFEKL on Days 2 and 16. Nine days after second immunization, spleen and PP were removed and mononuclear immune cells were purified as described [4–6]. Cells were stained with tetramer and anti-CD8. Results are shown as the percentage of tetramer+ CD8+ T cells. (B) Quantitation of intrarectal challenge with vaccinia expressing SIINFEKL abolished the growth and dissemination of any intrarectal challenge of vaccinia, regardless of OVA antigen expression. This is possibly due to the induction of innate immunity by the rectal application of CT [12]. Others have shown that intrarectal immunization, but not cutaneous immunization with peptide and adjuvant, protected against an intrarectal challenge with vaccinia expressing the CTL antigen [13]. Our results confirm that mucosal (nasal) immunization is superior to systemic immunization for protection against a rectal viral challenge.

Our results suggest that not only the route of immunization but also the adjuvant formulation affects the induction and distribution of Ag-specific CD8+ T cells induced by non-replicating vaccines. The observations also imply that systemic immunization with an appropriate adjuvant can evoke immune response in mucosal organs. However, optimal localization, activation and phenotype of the cells correlated with the route of immunization. Ag-specific CD8+ T cells at mucosal tissues may play an important role in protection against pathogens that infect via mucosal tissues and, therefore, more studies regarding tissue distribution and phenotype of vaccine-induced T cells are needed.

Acknowledgements

This study was supported by grants from the USA-Israel Binational Science Foundation, Israel Science Foundation, Israel Cancer Research Foundation and Israel Cancer Association. This work was also supported by the Co-operation Program in Cancer Research of the Deutsches Krebsforschungszentrum (DKFZ) and Israel’s Ministry of Science (MOS). U.Q. was supported by the Kreitman Foundation in BGU.

References

systemic, enteric, and nasal immunizations. A molecular basis for
the compartmentalization of effector B cell responses. J Clin Invest

immunization with CTL epitope peptides from HIV-1 or ovalbumin
and the mucosal adjuvant cholera toxin induces peptide-specific
CTLs and protection against tumor development in vivo. J Immunol

et al. Mucosal immunization with HIV-1 peptide vaccine induces
mucosal and systemic cytotoxic T lymphocytes and protective
immunity in mice against intrarectal recombinant HIV-vaccinia

[6] Staats HF, Bradley CP, Greaves WM, Jackson SS, Sempowski GD,
Liao H-X, et al. Cytokine requirements for induction of systemic
and mucosal cytotoxic T lymphocytes after nasal immunization. J

Carbonne FR. T cell receptor antagonist peptides induce positive

subsets and the persistence of antigen—a unifying concept. Immunity

[9] Kunkel EJ, Butcher EC. Chemokines and the tissue-specific migration

MP, et al. The role of beta7 integrins in CD8+ T cell trafficking
1611–8.

et al. Mucosal T lymphocyte numbers are selectively reduced in intregan alpha E (CD103)-deficient mice. J Immunol

Chen Z, et al. Induction of innate immunity by nasal influenza
vaccine administered in combination with an adjuvant (cholera toxin).

B, et al. The importance of local mucosal HIV-specific CD8+ 
cytotoxic T lymphocytes for resistance to mucosal viral transmission
in mice and enhancement of resistance by local administration of

[14] Belyakov IM, Hel Z, Kelsall B, Kuznetsova VA, Atikov JD, Naca J,
et al. Mucosal AIDS vaccine reduces disease and viral load in gut
reservoir and blood after mucosal infection of macaques. Nat Med