
The Novice Programmers' Syndrome of Design-by-Keyword

David Ginat

CS Group, Science Education Department
Tel-Aviv University, Israel

ginat@post.tau.ac.il

ABSTRACT
In the course of reading the description of a given assignment, it is
natural that associations with design patterns directly tied to explicit
keywords or phrases in the assignment text will evolve. However,
explicit keywords may not always be the basis for the desired
solution. Implicit cues may yield a better outcome. This paper
presents a study of novice programmers who are misguided by
explicit keyword associations. The study shows that students'
tendency to "design-by-keyword" may sometime lead them to
incorrect or inefficient programming solutions. The study displays
student solutions to three CS1 problems, each answered in three
different ways. The first two ways reflect undesirable "design-by-
keyword" outcomes, and the third way encloses the desired solution,
which demonstrates the importance of looking for implicit cues.

Categories & Subject Descriptors
K.3.2: Computer and Information Science Education - Computer
Science Education.

General Terms: Algorithms, Performance, Human Factors.

Keywords: Program Design, Student Errors, Pedagogy.

1. INTRODUCTION
Given a programming assignment, how is one's design affected by
selected keywords recognized in the text? Naturally, many of us may
associate particular terms in the task description with familiar design
schemes. Yet, we do not hastily decide on the programming patterns
suitable for the solution. As experts in our domain, we carefully
examine invoked associations, and analyze their pros and cons,
before deciding on the most elegant and efficient solution. Do our
students do the same? Not necessarily.

In the course of examining a group of motivated high-school
students, who completed their CS1 studies, we noticed many who
hastily turned to programming patterns directly associated with
explicit keywords in the text of their programming assignments. This
paper describes our study of this phenomenon, which we call the
design-by-keyword syndrome.

Programming patterns are well advocated, at different levels of
abstraction and complexity, in the fundamental programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'03, June 30-July 2, 2003, Thessaloniki, Greece.
Copyright 2003 ACM 1-58113-672-2/03/0006...$5.00.

courses. Research in computer science education revealed that
experts organize their knowledge in conceptual design schemes that
combine aspects such as cause, rules, representations, and tradeoffs
[4,6,7]. In addressing the unfortunate novices' tendency to focus on
language constructs, educators offered in the last two decades
various methods for incorporating the explicit notion of design
schemes and programming patterns.

The underlying theme in these methods is the elaboration of
recurring and reusable programming constructs, which were called
templates, idioms, plans, or schemas [4,6,7]. Recently, they all are
considered in the category of design patterns [1,5]. These constructs
serve as essential means in teaching fundamental design principles,
with particular emphasis on modularity.

Teaching with emphasis on modularity and design patterns indeed
assists the novice programmer in skillfully organizing programming
knowledge. However, the problem solving process in programming
requires more than skillful knowledge organization. The recognition
of the design patterns relevant for a solution should occur only after
a primary stage of problem analysis. We experts are well aware of
this essential stage. Our novice students are far less conscious of its
importance. This study shows that a non-negligible percentage of
novices skip this stage, and rather rapidly select primary design
patterns that come to mind due to explicit keywords in the
programming assignment text.

The study involved a group of students who were required to solve
three CS1 problems. The problems varied gradually in their level of
difficulty. While we expected the students to perform mildly on the
second and third problems, we were surprised to see that they
already mildly performed on the first problem. The next section
displays the study setup. Sections 3, 4, and 5 display the results of
posing the three problems to the students. Section 6 includes a
discussion of the results and their tie to similar phenomena noticed
in the domain of mathematics education. The section concludes with
a pedagogical suggestion for computer science educators.

2. STUDY SETUP
The study was conducted in the beginning of the year 2002 with a
group of 31 motivated 12* grade students, who were in the middle
of their CS2 studies. The students were preparing to compete in our
national programming contest, which emphasizes the notion of
program efficiency in addition to correctness and modularity.

The students were given three problems, for which they were
requested to provide a hand-written code in the programming
language they prefer (Pascal or C). The amount of time was
sufficient - 120 minutes, plus an extension for those (very few) who
asked for extra time.

154

Each of the three problems can be solved in more than two different
ways, which significantly vary efficiency-wise. The naive solution
for each problem can be directly derived from the problem
description. The most involved solution requires capitalization on
underlying characteristics that are implicit in the problem
description. The underlying characteristics are all derived from
simple implicit cues.

We collected data in two ways. First, by simple statistics of the
various student solutions, and then from explanations of specific
students, whom we interviewed on their solutions. The interviews
focused on the students who provided the less efficient solutions.

The following three sections present the problems posed to students,
in the order they were presented - problem-1 is displayed in section
3, problem-2 in section 4, and problem-3 in section 5. After the
presentation of each problem, we display the students' diverse
solutions and describe some of their explanation. In the description,
we draw the attention to the students' reference to explicit keywords
that appear in the text of the problem descriptions.

3. KEYWORDS VS. EXTREMAL CUES
Problems-1 involves the question of whether some pair of elements,
out of a possibly long sequence of elements, satisfies a sought-after
property.

Problem-l. Develop a program whose input is a sequence of N
sizes of boxes and its output is a message notifying whether
there is a pair of boxes in which one box is at least twice the
other.
Your program should be as efficient as possible, time-wise and
space-wise. Assume that N may be very large (e.g., 1,000,000).

Example. For the input 17 13 15 21 the output should be
"No", and for the input 18 29 34 13 the output should be
"Yes".

The problem was solved in three different ways, which we call: all-
pairs, semi-extremal and extremal. We describe the three solutions,
and particularly elaborate on the first, more interesting solution with
respect to the paper's topic - the design-by-keyword syndrome.

All-pairs solution. Eleven students (35%) solved the problem by
examining all combinations of box pairs. They indicated that the
explicit text phrase in the problem description "... whether there is a
pair of boxes ..." inspired them to follow such examination. Their
solution saves the input sequence in memory, generates all the
combinations of box pairs and compares the elements in each pair
with one another. This solution requires computation time of O(N2)
and space of O(N)-

We interviewed some of these students, and asked them to elaborate
on the way they reached this solution. Many of them indicated that
they figured out from the text of the problem description that a pair
of elements with a particular property must be sought-after. In their
view, the text yielded an "explicit cue" in this direction, which they
followed.

Associating this explicit reference in the text with their (organized)
knowledge of design patterns, they realized that they could invoke a
"pair generator" pattern and solve the problem by examining all the
generated pairs. They indicated that this association occurred rather
rapidly, and created the feeling of correct and clear solution
direction.

We asked whether they noticed that the input sequence might be
very long, and not fit as a whole in memory. Some indicated that
they noticed this possibility, and were not sure how to handle it.
They wondered whether there might be a more elegant and efficient
way to solve the problem, yet decided that their approach is "sound
enough".

Semi-extremal solution. Six students (19%) provided the
unexpected solution of first finding the minimum and then
comparing each of the sequence elements to the minimum. These
students recognized an implicit cue leading to an extremal
characteristic, and capitalized on it. However, they did not follow it
all the way and therefore provided a solution that reduced the
computation time to O(N), but still required O(N) space.

Extremal solution. Fourteen students (46%) provided the elegant
and most efficient solution of finding both the minimum and the
maximum and then determining the output by comparing them to
one another. These students fully followed the implicit cue of
extremal characteristics and recognized the underlying min-max
pattern. This solution requires only one scan of the input, in O(N)
computation time and 0(1) space.

Notice that the last solution is not only more efficient time-wise and
space-wise, but also the only relevant solution in case the input
sequence is very long (1,000,000 elements). Although the possibility
of very long input is explicitly stated in the problem description,
only 46% of the students solved the problem for such case.

4. KEYWORDS VS. ORDERING CUES
Problems-2 is our colorful, novel invention. It involves computation
of distances between elements in a sequence.

Problem-2. 2N dots are spread over a long line, such that the
distance between every two adjacent dots is 1 hop. N of the
dots are red, and N are blue. The dots of each color are
numbered 1..N. The 2N dot numbers are randomly permuted,
except for one condition - for each i, i-red is to the left of i-blue
(yet, i-red may be to the right of j-blue, for any j other than i).
Every i-red dot has to be connected to its paired i-blue dot. The
total connection lengths should be calculated.

Develop a program whose input is the description of the dot
permutation, and its output is the sum of the N distances
between pairs of the same-index-dots; i.e., the number of hops
between 1-red and 1-blue plus the number of hops between 2-
red and 2-blue, etc.
Your program should be as efficient as possible, time-wise and
space-wise, as the input may be very long.

Example. For the input 4r 2r 2b 3r 4b lr 3b lb, the output
will be 10. (The distance 2 between the two l's, plus the
distance 1 between the two 2's, etc.)

This problem was solved in three different ways, which we call:
repeated-scanning, locations-array, and ordered-colors. We display
the three solutions and elaborate on the first two.

Repeated-scanning solution. Seven students (23%) solved the
problem by saving the input in an array and scanning it N times -
once for every red-blue pair. The students indicated that they
extracted from the text the requirement to calculate the distance
between every i-red and i-blue, and therefore separately scanned the
data for each i. This solution requires O(N2) time and O(N) space.

155

The students explained that the text in the problem description
explicitly requires distances between pairs of elements, and therefore
the most natural way to follow is to design the calculation
accordingly. Repeated scanning - one scan for each pair of dots -
was their first association, and the obvious design pattern to use.
They speculated that there might be a more elegant and efficient
solution, but did not come up with one. As in the previous problem,
we asked them how their solution will cope with very long inputs.
They realized the difficulty, but were nevertheless satisfied with "the
reasonable approach of their solution".

Locations-array solution. Fifteen students (48%) solved the
problem by scanning the input only once, using an array that records
for each i the location of i-red. These students noticed that when the
location of i-red is recorded, the distance between i-red and i-blue
can be calculated upon finding the location of i-blue. Thus, in the
single scan over the input, reading i-red yields recording of the
location of the first element in a pair, and reading i-blue yields the
addition of this pair's distance to the total sum of distances. Both
time and space complexities are O(N).

These students were very fond of their one-input-scan solution. They
felt that compared to repeated scanning their solution is very elegant
and nicely capitalizes on the notion of'location recording'.

We mentioned that we doubt whether their solution sufficiently
capitalizes on the pair property described in the problem description
(i-red to the left of i-blue). Nevertheless, they were very satisfied
with the design pattern they applied, and conjectured that one cannot
do better than that, since one has to somehow record the location of
the first element in each pair. We questioned the latter argument, and
they insisted that "one has to perform a calculation per pair" and
therefore one must know the location of the first pair-element upon
finding the location of the second element.

Ordered-colors solution. Nine students (29%) provided the very
elegant and most efficient solution of scanning the input only once
and adding the location of each input element according to its color
- a red element with a minus sign and a blue element with a plus
sign. These students noticed that the input characteristic that i-red
always appears before i-blue implies that the contribution of a red
location to its pair-distance is always negative, and the contribution
of a blue location is always positive. Capitalizing on this implicit
ordering cue, they determined that there is no need to separately
calculate the distance for each pair, but rather accumulate the
location of each dot in a negative or a positive sign, according to its
color. This pattern implies a very simple solution of 0(1) space.

5. KEYWORDS VS. AVERAGE CUES
Problems-3 involves the generation of elements that satisfy a
particular, given property.

Problem-3. a. Develop a program whose input is a positive
integer N, N<100, and its output is all the triples of positive
integers with average N. b. Output for the input of part-a all the
sets of three distinct positive integers with average N. (Notice
that there is no difference between sets like {1,2,3} and
{2,1,3}, whereas the triples <1,2,3> and <2,1,3> are different,
since the order of elements in a triple matters.)

Your program should be as efficient as possible, time-wise and
space-wise.

Example. For the input 3, the output for part-a will include
triples such as <1,1,7>, <3,4,2>, <1,7,1>, and many more, and
the output for part-b will be exactly the three sets: {1,2,6},
{3,5,1}, {2,4,3}.

This problem was solved in more than three different ways, some of
which were erroneous. We display the three main solution
approaches - brute-force, distance-perspective, and sum-perspective
- and elaborate on the first two.

Brute-force solution. Eleven students (35%) solved part-a of the
problem by generating all positive triples from <1,1,1> to
<3N,3N,3N>, checking for each generated triple whether the
average of its elements is N. The students indicated that they viewed
the problem requirement of triples of the same average as a
condition that has to be checked for all generated triples in the
relevant range (some bounded the range a bit differently from the
above). They wrote three nested loops, in i, j , and k, bounded each
of them by 3N, and checked the average of each generated triple
<ij,k>. Their solution requires O(N3) time.

Part-b was solved only by some of these students. Those who solved
it followed one of two approaches. One approach involved the
checking of element distinction in addition to average=N. Each set is
output six times, rather than one, since the same three distinct
integers are repeatedly generated, in different orders. A few students
tried to take an approach that avoids this repetition, by marking in
memory "the sets output-so-far". This implies 0(N3) space, and very
careful programming, which some of them did not display.

The students indicated that they figured out from the text of the
problem description that the problem is a generation problem, and
since a particular property has to be satisfied, each generated tuple
(triple / set) should be checked for satisfying the property. As in the
previous problems, in their view the text yielded an "explicit cue" - a
particular property, which they addressed.

Associating the "explicit text cue" with their (organized) knowledge
of design patterns, they decided that a triple-generator will embody
the underlying design template. Here again, they mentioned that this
association occurred rather rapidly.

We indicated to them that in their solution many tuples are generated
and not displayed, and it would be much more efficient to directly
generate only the necessary tuples. They agreed, but mentioned that
they did not have an association with a relevant design pattern that
yields the necessary selective generation.

We asked why they did not capitalize on some implicit cues, tied to
properties of the average. They noted that they did not recognize
helpful cues, and their experience yields successful designs by
extracting the important information that can be interpreted from
explicit clauses of the problem description.

Distance-perspective solution. Eight students (26%) tried to solve
both parts by orderly generating one element i "on one side of the
average" and the other two j , k "on the other side". These students
capitalized on the property that the sum of the distances of the three
elements in a triple (set) from the average is 0. They did not generate
unnecessary triples. However, their focus on the "total-distance 0"
property as the underlying principle for the solution design yielded
many erroneous solutions. Almost all of them had some computation
error. The time required for their solutions varied from the order of
the output size up to O(N3).

156

These students noticed the average characteristic of "total-distance
0", or "average as a point of balance", and tried to capitalize on this
characteristic. However, it seemed that they were caught-up with the
term "average", and did not pay attention to another characteristic:
"average=N is equivalent to sum=3N". This characteristic shifts the
view from average to sum, and considerably simplifies the
computation. Being occupied with the keyword "average", which
appeared in the text of the problem description, they did not perform
this perspective shift. Their association involved the generation of
the relevant elements "around the average".

Sum-perspective solution. Twelve students (39%) provided the
elegant solution of systematically generating three integers that sum
to 3N. They realized the equivalence between average=N and
sum=3N, and noticed that a design based on the latter is much
simpler. For part-a, they "ran" the first triple element i from 1 to 3N-
2, and generated for each value of i all the j,k pairs that sum to 3N-i.
For part-b, they generated all the triples of integers in which i<j<k.
Their solutions were mostly correct, and yielded optimal
computation time.

6. DISCUSSION
In reflection on the various solutions of the three problems, we
observe that the first one or two solutions of each problem were
directly derived from keywords, phrases, or clauses, explicitly
mentioned in the problem descriptions. These solutions were
sometimes inappropriate for some of the inputs and less efficient
than the better, optimal solutions. The better solutions were derived
from implicit cues in the problem descriptions.

The statistical data show that a significant number of students
designed the less desired solutions. The interviews that were held
with some of these students revealed that they often followed initial
associations they had upon reading the problem description. The
students indicated that particular, explicit terms in the text invoked
their associations, sometimes rather rapidly. These associations led
them to design patterns with which they were familiar, and yielded
the programming patterns (schemes) of their solutions.

When we asked these students about implicit cues and characteristics
that could be inferred from the explicit problem descriptions they
mentioned that they wondered about such cues, did not find any
useful ones, and felt satisfied with their developed solutions. While
some of them sensed that there might be a solution better than theirs,
they felt that their way of directly associating design patterns with
text descriptions embodies a "natural and effective approach".

Their "effective approach" led them to generate all the pair
combinations in Problem-1 due to a text phrase of the type "... is
there a pair that satisfies some condition ...". This approach led
them to generate all the triple combinations in Problem-3 due to a
text phrase of the type "... all the triples that satisfy some condition
...". It also led them to view the notion of "a pairs of elements",
mentioned in the text of Problem-2, as an atomic, inseparable unit,
with respect to the computation of its inner distance.

The students who did not follow this approach identified and
followed cues that were implicit in the problem descriptions, and
yielded characteristics and properties on which they could very
elegantly capitalize.

The approach described above, of directly translating the problem
description text into a solution, reflects a design-by-keyword

[8]

syndrome that characterizes a non-negligible amount of novices.
While such an approach may be the right one to follow in the
solution of some programming tasks, it might also yield unsatisfying
outcomes.

Unsurprisingly, this approach is not unique to computer science
students. In the domain of mathematics education studies have
shown that less competent students demonstrate a keyword approach
in problem solving. Briars and Larkin called it "the keyword
method" [2]. Hegarty et al. describe this strategy as a short-cut
approach, and call it the "direct-translation strategy" [3]. They show
that in the solution of word problems, less competent students
combine numbers and keywords based on direct (often erroneous)
translation of the problem text, as opposed to more competent
students, who follow a "problem model strategy".

Although our study focused on high-school 12th grade students, we
believe that the phenomenon we describe also occurs among college
and university students. We conjecture that such a phenomenon is
typical of students who are rather rapidly occupied with keywords or
phrases in the problem description. While this occurrence may
sometimes be considered natural, and yield reasonable results,
students should be aware of its potentially less desired outcomes, as
shown in this paper.

Computer science educators should notice their students' "design-
by-keyword" syndrome and address it. While we all advocate the use
of modularity and design patterns, we should realize that some
unfavorable student tendencies might evolve. It is important to show
the students that problem analysis is an essential stage, prior to
design. Good design should capitalize on thorough analysis, which
should involve the cues implicit in the problem description. The
three problems presented in this paper may serve as useful examples
for illustrating the significant role of implicit cues and the less
desired outcomes of hasty "design-by-keyword".

REFERENCES
[1] Astrachan O., Berry G., Cox L., and Mitchener G., Design

patterns: An essential component of CS curricula, Proc of the
28th SIGCSE Technical Symposium on CS Education, (1998),
153-160.

[2] Briars D.J. and Larkin J.H., An integrated model of skill in
solving elementary word problems Cognition and Instruction,
(1984), 245-296.

[3] Hegarty M., Mayer R., and Monk C, Comprehension of
arithmetic word problems: A comparison of successful and
unsuccessful problem solvers, Journal of Educational
Psychology, 87, (1995), 18-32.

[4] Linn M.C. and Clancy M.J., The case for case studies of
programming problems, Comm of the ACM, 35, (1992), 121-
132.

[5] Linn M.C. and Clancy M.J., Patterns and pedagogy, Proc of the
29th SIGCSE Technical Symposium on CS Education, (1999),
37-42.

[6] Rist S.R., Schema creation in programming, Cognitive Science,
75,(1989), 389-414.

[7] Soloway E., Learning to program = learning to construct
mechanisms and explanations, Comm of the ACM, 29, (1986),
850-858.

157

