

The Greedy Trap and Learning From Mistakes

David Ginat

CS Group, Science Education Department

Tel-Aviv University, Israel

ginat@post.tau.ac.il

Abstract

Educators’ approach towards their students’ mistakes can have

significant impact on the students. This paper presents a rather

less considered approach of teaching by capitalizing on mistakes.

In the course of teaching our students algorithm design, we

noticed the phenomenon of students’ “over-reliance” on intuition

rather than rigor. In particular, we noticed a repeated erroneous

trend of turning to intuitive, but inadequate greedy algorithmic

solutions. We capitalized on the student errors for influencing

their attitude and beliefs regarding intuition and rigor. The paper

displays the student errors and our capitalization-on-errors

approach, with colorful and novel algorithmic tasks.

Categories & Subject Descriptors

K.3.2: Computer and Information Science Education – Computer

Science Education.

General Terms

Algorithms, Verification.

Keywords

Student Errors, Pedagogy.

1. Introduction

 “You learn from your mistakes”. We all are familiar with this

relevant and very true saying. Some of us would even say: “you

learn better from your mistakes”. However, do we capitalize on

mistakes in our teaching? Do we plan a lesson based on expected

student errors, in order to “make a point”, illustrate a principle, or

affect student beliefs? Some of us probably do, but very little of

this appears in our textbooks and educational literature.

Permission to make digital or hand copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, require prior

specific permission and/or a fee.

SIGCSE 2003, February 19-23, 2003 Reno, Nevada, USA.

Copyright 2003 ACM 1-58113-648-X/03/0002….$5.00

This paper presents work on teaching with capitalization on

student errors. The work is an outcome of our ongoing experience

with students’ tendency to turn too quickly and too decisively to

erroneous greedy solutions in a variety of algorithmic problems,

many of which are optimization tasks. Such tasks are very

common in many CS courses, including the fundamental courses

of CS1, CS2, and “Introduction to Algorithms”.

In teaching algorithm design principles and techniques, at both

CS1 and “Introduction to algorithms” levels, we noticed again and

again that students designed greedy solutions, which they only

intuitively verified. While some solutions were correct, many

were erroneous. Given an algorithmic task, students tended to

examine rather few and limited examples, which they regarded as

“representative input examples”. They derived solutions based on

these examples, and argued that their solutions were correct

“because they make sense, in particular when you look at the

examples”. Some students did not even examine particular

examples, but rather had a strong intrinsic feeling of conviction,

derived from “obvious observations”, which seemed very natural

to them.

There are several approaches one may consider for addressing

such students’ lack of scientific perspective. One may reiterate

that intuitive argumentation and selected input examples are

insufficient for verifying correctness. One may require formal

argumentations of correctness. One may ask students to follow

thorough testing guidelines. One may even send the students to

read the famous Dijksktra et al. debate on the nature of computer

science [3].

We tried the above approaches. They indeed contributed to the

students’ scientific perspective. However, students’ “over-

reliance” on intuition and common sense remained. After all, we

all invoke intuition upon searching for a problem solution, and we

use common sense argumentation throughout our teaching. Yet,

we, the experts, are well aware of the “brittleness” of intuition and

common sense. The students are not – their belief of the relevance

of intuition and common sense argumentation is much beyond

that of a “brittle means”. They often rely on unfounded

convictions.

In order to affect the student beliefs, and effect their realization of

the essential role of rigor, we decided to add a new pedagogical

approach to those mentioned above. Instead of only showing the

students “the right way”, we let them follow “the wrong way” and

realize its outcome. The main theme resulting from this

experience was their realization of the risks of premature

convictions.

11

The objective of this paper is two-fold. We draw the attention to

the phenomenon of repeated erroneous paths that students follow

upon solving optimization tasks, and we demonstrate how these

paths were utilized for obtaining learning from errors.

We call the students’ erroneous optimization paths that we have

noticed “the greedy trap”, as these paths were directed by an

intuitive, but misleading greedy principle, which appeared in

similar variations. The general theme underlying this principle is:

“maximize the gain in each computation iteration”. This coincides

with the notion of greed underlying the greedy design technique,

led by “making the choice that looks best at the moment” [2].

The next section briefly mentions previous work on errors, in the

domains of computer science and mathematics, and introduces

our approach of capitalization on errors for learning. It also

describes the actual class with which we worked. The next two

sections describe our experience in class with two instances of

“the greedy trap” and learning from mistakes. The algorithmic

tasks in both sections are novel (developed by us for diverting

from the common tasks). The last section involves some

concluding remarks.

2. Learning from Mistakes

Computer science educators widely studied student errors in the

last two decades. Many studies focused on novice mistakes in

basic programming (e.g., [4,7,9]). Novice errors stem from

various reasons. One major source of errors and misconceptions is

the lack of understanding of the computer model or the

programming-language constructs. Another source of errors is

students’ ill-planning of programs, due to lack of modularity,

unsuitable data-types, or inaccurate boundary conditions. A few

studies focused on novice beliefs and the gaps between novice

and expert beliefs (e.g., [5]).

The above studies yielded work that focused on methods and

tools to overcome difficulties (e.g., [7]). Most of these studies

focused on the “right way of doing”, with particular attention to

elements of difficulty. No method, to the best of our knowledge,

focused on capitalization on “the wrong way of doing”.

In the domain of mathematics education, numerous studies were

conducted on errors, and some offered capitalization on errors in

teaching. One proposed method is that of teaching through

conflict, or paradox (e.g., [8,10]). The theme underlying this

method derives from the notion of “colliding conflicting

conceptions”, in order to yield realization of the right conception.

Another teaching method focused on utilizing errors as

springboards for mathematics inquiry [1].

Our scheme of capitalization-on-errors combines elements from

the various studies mentioned above, with particular adaptation to

the CS domain of problem solving:

We identified a repeated erroneous phenomenon among CS

students. Unlike previous CS error studies, the erroneous

phenomenon here is not a computer-model misconception or a

buggy programming construct, but an improper solution

principle.

We posed a relevant algorithmic task, and let students reach

erroneous solutions and argue their justification, usually with

arguments that did not capture the core problem

characteristics.

We indicated that we are not convinced by the student

justification, and we would like to see more solid arguments,

or disconfirmatory evidence.

If proper argumentation was still not provided, then we

repeated asking for disconfirmatory evidence. Once such

evidence was found, an explanation was requested for the

conflict derived from the new evidence.

We asked to correct erroneous solutions, and devise

alternative solutions. This sometimes involved the

examination of different solutions offered in class.

We reached, together with the students, the correct solution,

and obtained its justification, based on rigorous, scientific

arguments.

We led a class discussion of reflection on the solution process

and its lessons. Particular focus was put on the students’

behavior and beliefs.

Several points should be emphasized. First, we consider a

rigorous argument an assertion that captures the core

mathematical characteristics of the problem at hand. Such an

argument does not have to be formal, yet it must capture the

essence.

Second, one main objective in the above scheme is to “push”

students to comprehensively examine test cases and thoroughly

look for counter-evidence. This, we believe is not less important

than rigorous argumentation.

Third, upon realizing their erroneous solutions, students were

encouraged to examine whether they have to perform a radical re-

examination of their solution, and not just local, bug corrections.

They also had the opportunity to compare between correct and

incorrect solutions. This is different from correct-solutions

comparisons, which appear for example in [6].

The final, reflection stage is of particular importance. At this

stage students realize the reasons for their errors, the misguided

solution process, and the difference between their initial incorrect

convictions and the final correct arguments.

We applied the above scheme with a class of 33 students during

the spring semester of 2002, in an “Introduction to Algorithms”

course, which started with a quick review of basic, CS1 design

topics. In what follows we display some of the interactions with

the students, who “fell in the greedy trap” and learnt from their

mistakes.

3. The Greedy Trap – Illustration-1

The following learning interaction took place in an early stage of

the course. We posed the following task.

Wire Connections

N white dots and N black dots are interleaved in some

arbitrary order on a straight line. The distance between every

two adjacent dots on the line is 1 hop. An electrician is

required to connect each white dot with a different black dot,

so that the total length of the N connections will be minimal.

12

Develop an algorithm whose input is the interleaved order of

the 2N dots, and its output is the minimal connection length.

Example: For the sequence of dots: the output

should be 7. When we number the dots from left to right,

starting with 1, one way to obtain the minimal length is with

the connections: 1-3, 2-5, 4-6. Notice that there are other

ways to yield the minimum.

Over one third of the students (14 out of 33) decided that they

“see” the solution rather quickly, without carefully examining

examples beyond the one in the task statement. They all devised a

greedy solution based on the same underlying principle:

“repeatedly scan the input, and in each scan create as many

minimal-length connections as possible”. Thus, in the first scan,

create as many 1-hop connections as possible (between adjacent

dots of complementing colors). In the next scan create as many

minimal-length connections as possible between the remaining

dots, and so on. According to this principle, the dots in the task-

statement example will be connected as follows: first 2-3 and 4-5,

and then 1-6.

We asked for justification. The students confidently argued: “by

repeatedly connecting as many nearest dots as possible in each

iteration, you obtain maximal reduction of the problem size,

with minimal connection-length”. This intuitive argument may

sound convincing, but it lacks rigor. We asked for more rigorous

justification, or alternatively – disconfirmatory evidence.

The students offered more examples, which served as supporting

evidence: the examples were a bit larger but very similar to the

one in the task statement. Neither rigorous justification nor

disconfirmatory evidence was provided.

We suggested that they try to characterize the examples generated

so far, and generate some new pattern. One outcome was:

 . Their solution indeed yields the minimum length for

this example (with the connections: 4-5, 3-6, 2-7, 1-8), and they

became even more convinced with the correctness of their

solution.

One student offered the example: . At first they

all felt that this example only yields further support, but

surprisingly it did not! Their solution yields the connections: 2-3,

4-5, 6-7, and 1-8, with a total length of 10, but the minimum

total-length here is 8 (obtained for example by: 2-3, 1-4, 6-7, 5-8).

They had to explain the conflict between what they perceived as

the right algorithm and the disconfirmatory evidence. Some

argued that it is just a special case, which can be treated

separately, without abandoning the current solution. Such reaction

is often common to many students! A few tried to understand the

difficulty more carefully, and realized that there is a deeper

pattern.

In the last example, some students conjectured that “one way for

obtaining the minimal length is by viewing the required

connections as legal connections between corresponding

parenthesis”. These students expressed a radical change of

conception. They offered to perform the computation similarly to

the way “a parenthesis expression is checked for validity”. Every

white dot will be considered “open”, and every black dot -

“close”, and every “open” will be connected to its corresponding

“close”.

Thus, the sequence will be viewed and

handled as two sub-sequences of the form: . The

sequence will be handled as the sub-

sequences: and . Each sub-sequence of length

greater than 2 will be further divided and handled according to the

above principle. Notice that the students’ original solution fails in

these two examples.

Learning from their recent experience, the students were much

more careful with the new solution’s correctness. They carefully

looked for disconfirmatory evidence, but did not find any. They

noticed that the parenthesis-matching is based on decomposition.

Some looked at the parenthesis-matching from an “untying

perspective”. They claimed that the transformation of any given

connection structure to the parenthesis-matching can be viewed as

“untying of crossing connections”, and will never increase the

total connection length. The rigorous argument underlying this

claim is that if you take any two white dots and two black dots

that are not connected according to the parenthesis-matching, and

“untie” their connection, the total connection length will not

increase.

Calculation of the parenthesis-format length can be very elegantly

done using a stack, with only one pass over the input. This on-the-

fly solution is one way for obtaining the desired result. There are

additional ways.

4. The Greedy Trap – Illustration-2

The following learning interaction took place in a rather advanced

stage of the course.

Gold Collection

Golden coins are spread in different cells of an N M matrix

platform. These coins should be collected by robots, which

are located in the platform’s top-left cell. The robots’

destination is the bottom-right cell. The robots can only move

in two directions – down and right. That is, a robot step is

either horizontally to the cell on the right or vertically to the

cell below. Upon visiting a cell with golden coins, the robot

collects the coins in that cell. The objective is to collect all

the golden coins with a minimal number of robots.

Develop an algorithm whose input is the locations of the cells

with golden coins, and its output is the minimal number of

robots for performing the task.

Example: For the 7 8 platform, and 10 golden-coin cells: 2,6

3,2 3,8 4,3 4,5 5,2 5,5 6,8 7,5 7,6 the output should

be 3. The coin layout is illustrated in the figure below.

 G

 G G

 G G

 G G

 G

 G G

13

There are various aspects that one may consider in solving this

non-trivial task. One aspect is the representation of information:

the matrix may be processed directly or transformed into a

directed (acyclic) graph in which the nodes represent the golden

coin cells. Another aspect is that of task analysis, with respect to

seeking underlying regularities: one may try to identify an

underlying mathematical pattern, as a basis for the solution. A

third aspect involves the actual algorithm design: one may try to

relate the task solution to some fundamental graph algorithm or a

common design pattern. Algorithm design techniques, such as

greedy computation or dynamic programming, may be relevant as

well.

Although there are diverse aspects for consideration, most

students quickly decided that they have a “grip on the problem at

hand” and devised a solution. Twenty-one of the 33 students

suggested the following greedy ‘min-max’ optimization that

seemed very natural to them: “since the objective is to minimize

the number of robots, we should maximize the amount of coins

collected by each robot. That is, the first robot will visit a

maximal number of coin cells. The second will visit a maximal

number of the remaining coin cells, and so on …”.

Most students examined very few examples, and did not

thoroughly look for disconfirmatory evidence. They were

confident with their ‘min-max’ greedy approach, and did not look

for a rigorous mathematical pattern. They all felt that the ‘min-

max’ argumentation is compelling and sufficient. The common

theme with all these students was a global perspective that was

not carefully checked. It seemed that a coercive process led them

to their solution, with a strong feeling of certainty. The doubts we

raised did not really diminish their feeling of conviction.

Directed by us, they sought disconfirmatory evidence, but did not

find any. The lack of such evidence only strengthened their

intrinsic conviction, as it yielded more supporting evidence. Yet,

they could not provide any rigorous justification. Finally, one

student who continued looking for a disconfirmatory evidence

noticed that a “very fruitful collection by one robot may divide

the remaining occupied cells into undesired disjoint areas”. He

illustrated it with the following example:

 G G

G G G G G

 G

 G G

 G

In this example, the maximal path by the first robot (through 7

coin cells) will leave 4 occupied cells that require two additional

robots, implying a total of 3 robots. However, the optimal solution

requires only 2 robots. This indeed shows that the suggested ‘min-

max’ greedy scheme is incorrect.

Some students still tried to provide modifications that will solve

“special cases” like the above. They were reluctant to abandon

their initial conviction. Other students tried to carefully learn the

characteristics of the displayed example. They realized that they

need a radical change of conception, and indeed noticed that the

correct solution for the displayed example can be viewed as

“peeling the next leftmost strip from top to bottom”. In the latter

example it implies that the first robot will collect the coins from

the three leftmost occupied cells in line-3, the coins in line-5, and

the coin in line-6.

Justification still remained. It involved a mathematical pattern and

the notion of disjoint occupied cells. Two occupied cells are

considered disjoint if one of them is to the left and below the

other. Coin collection from such two cells requires two robots.

The length of the “longest chain” of disjoint occupied cells

(where the first and the second cells in the chain are disjoint, the

second and the third are disjoint, etc.) bounds the minimum

number of robots from below. The “peeling principle” yields a

decrease of 1 in the chain length by each robot, and therefore

implies optimality.

5. Conclusion

We introduced a study of a common error phenomenon and an

approach of learning from errors. The common phenomenon,

which we called “the greedy trap”, occurred in a variety of

algorithmic problem-solving occasions, in particular with

optimization tasks. We capitalized on this phenomenon for

teaching students the “brittleness” of intuition and the essential

role of rigor.

In this paper we displayed only two illustrations of “the greedy

trap”. Yet we noticed it repeatedly in diverse tasks. Students

turned again and again to variants of the intuitive principle:

“maximize the gain in each computation iteration”. One may view

this principle as related to the heuristic optimization technique of

“Hill Climbing”. The principle may yield good results, but does

not always guarantee the optimum.

An example simpler than those in the illustrations is the task of

returning change with minimal number of coins. The intuitive

approach, influenced by our daily life, is to first take as many

quarters as possible, then as many dimes as possible, etc. Thus, a

change of 62 will be composed of two quarters, a dime, and two

cents. However, this approach does not yield the optimum for any

potential coin system (e.g., the coin system 1,6,10, and the change

12).

We mentioned students’ “over-reliance” on intuition, and

described our attempt to influence their beliefs regarding the

importance of rigor, beyond intuition. The students gradually

learnt, in repeated occasions, the risks of no-rigor. They realized

it again and again during the class interactions; first, by seeking

counter-evidence to their solutions; then, through radical

modifications of their solutions, followed by rigorous

argumentation; and finally, through reflection on the whole

process. The reflection involved metacognitive elements, as the

students looked back at their own (often erroneous) reasoning and

decision making along the solution process.

In the end of the study (course) they explicitly indicated that their

beliefs have been affected. In particular, they thoroughly looked

for counter evidence and underlying, rigorous patterns. In

addition, they denoted a significant point which we did not a-

priori plan. They noticed a few times that the characteristics of the

counter evidence they found to their initial, erroneous solutions

14

helped them to gain valuable insight into the correct solution. This

could be seen in the illustrations in the previous sections.

This study focused on teaching with capitalization on a particular,

recurring error. Yet, the learning-from-errors approach presented

here can be utilized with other errors, of different types. It is our

hope that this study will encourage additional capitalization-on-

errors studies for improving understanding and affecting beliefs.

Acknowledgement

Many thanks to the anonymous reviewers for their helpful

comments.

References

[1] Borasi R., Reconceiving Mathematics Instruction: A

Focus on Errors, Ablex Pub (1996).

[2] Cormen T.H., Leiserson, C.E., and Rivest, R.L.,

Introduction to Algorithms, MIT Press, Massachusetts,

(1991).

[3] Dijkstra E.W. et al., A debate on teaching computing

science, Comm of the ACM, 32, (1989), 1397-1414.

[4] Du Boulay B., Some difficulties of learning to program,

Journal of Educational Computing Research, 2, (1986),

57-73.

[5] Fluery A.N., Student beliefs about Pascal programming,

Journal of Educational Computing Research, 9, (1993),

355-371.

[6] Linn M.C. and Clancy M.J., The case for case studies of

programming problems, Comm of the ACM, 35, (1992),

121-132.

[7] Mayer R.E. (Ed.), Teaching and Learning Computer

Programming: Multiple Research Perspectives,

Lawrence Erlbaum, (1988).

[8] Movshovitz-Hadar N. and Hadas R., Perspective

education of math teachers using paradoxes,

Educational Studies in Mathematics, 21, (1990), 265-

287.

[9] Soloway E. and Sphorer J.C. (Eds.), Studying The

Novice Programmer, Lawrence Erlbaum, (1989).

[10] Swan M., Teaching Decimal Place Value: A

Comparative Study of ‘Conflict’ and ‘Positive Only’

Approaches, Shell Center for Mathematical Education,

University of Nottingham UK, (1987).

15

