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Abstract 

Educators’ approach towards their students’ mistakes can have 

significant impact on the students. This paper presents a rather 

less considered approach of teaching by capitalizing on mistakes. 

In the course of teaching our students algorithm design, we 

noticed the phenomenon of students’ “over-reliance” on intuition 

rather than rigor. In particular, we noticed a repeated erroneous 

trend of turning to intuitive, but inadequate greedy algorithmic 

solutions. We capitalized on the student errors for influencing 

their attitude and beliefs regarding intuition and rigor. The paper 

displays the student errors and our capitalization-on-errors 

approach, with colorful and novel algorithmic tasks.  
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1.  Introduction 

 “You learn from your mistakes”. We all are familiar with this 

relevant and very true saying. Some of us would even say: “you 

learn better from your mistakes”. However, do we capitalize on 

mistakes in our teaching? Do we plan a lesson based on expected 

student errors, in order to “make a point”, illustrate a principle, or 

affect student beliefs? Some of us probably do, but very little of 

this appears in our textbooks and educational literature. 
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This paper presents work on teaching with capitalization on 

student errors. The work is an outcome of our ongoing experience 

with students’ tendency to turn too quickly and too decisively to 

erroneous greedy solutions in a variety of algorithmic problems, 

many of which are optimization tasks. Such tasks are very 

common in many CS courses, including the fundamental courses 

of CS1, CS2, and “Introduction to Algorithms”. 

In teaching algorithm design principles and techniques, at both 

CS1 and “Introduction to algorithms” levels, we noticed again and 

again that students designed greedy solutions, which they only 

intuitively verified. While some solutions were correct, many 

were erroneous.  Given an algorithmic task, students tended to 

examine rather few and limited examples, which they regarded as 

“representative input examples”. They derived solutions based on 

these examples, and argued that their solutions were correct 

“because they make sense, in particular when you look at the 

examples”. Some students did not even examine particular 

examples, but rather had a strong intrinsic feeling of conviction, 

derived from “obvious observations”, which seemed very natural 

to them. 

There are several approaches one may consider for addressing 

such students’ lack of scientific perspective. One may reiterate 

that intuitive argumentation and selected input examples are 

insufficient for verifying correctness. One may require formal 

argumentations of correctness. One may ask students to follow 

thorough testing guidelines. One may even send the students to 

read the famous Dijksktra et al. debate on the nature of computer 

science [3]. 

We tried the above approaches. They indeed contributed to the 

students’ scientific perspective. However, students’ “over-

reliance” on intuition and common sense remained. After all, we 

all invoke intuition upon searching for a problem solution, and we 

use common sense argumentation throughout our teaching. Yet, 

we, the experts, are well aware of the “brittleness” of intuition and 

common sense. The students are not – their belief of the relevance 

of intuition and common sense argumentation is much beyond 

that of a “brittle means”. They often rely on unfounded 

convictions. 

In order to affect the student beliefs, and effect their realization of 

the essential role of rigor, we decided to add a new pedagogical 

approach to those mentioned above. Instead of only showing the 

students “the right way”, we let them follow “the wrong way” and 

realize its outcome. The main theme resulting from this 

experience was their realization of the risks of premature 

convictions. 
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The objective of this paper is two-fold. We draw the attention to 

the phenomenon of repeated erroneous paths that students follow 

upon solving optimization tasks, and we demonstrate how these 

paths were utilized for obtaining learning from errors. 

We call the students’ erroneous optimization paths that we have 

noticed “the greedy trap”, as these paths were directed by an 

intuitive, but misleading greedy principle, which appeared in 

similar variations. The general theme underlying this principle is: 

“maximize the gain in each computation iteration”. This coincides 

with the notion of greed underlying the greedy design technique, 

led by “making the choice that looks best at the moment” [2]. 

The next section briefly mentions previous work on errors, in the 

domains of computer science and mathematics, and introduces 

our approach of capitalization on errors for learning. It also 

describes the actual class with which we worked. The next two 

sections describe our experience in class with two instances of 

“the greedy trap” and learning from mistakes. The algorithmic 

tasks in both sections are novel (developed by us for diverting 

from the common tasks). The last section involves some 

concluding remarks. 

 

2.  Learning from Mistakes 

Computer science educators widely studied student errors in the 

last two decades. Many studies focused on novice mistakes in 

basic programming (e.g., [4,7,9]). Novice errors stem from 

various reasons. One major source of errors and misconceptions is 

the lack of understanding of the computer model or the 

programming-language constructs. Another source of errors is 

students’ ill-planning of programs, due to lack of modularity, 

unsuitable data-types, or inaccurate boundary conditions. A few 

studies focused on novice beliefs and the gaps between novice 

and expert beliefs (e.g., [5]). 

The above studies yielded work that focused on methods and 

tools to overcome difficulties (e.g., [7]). Most of these studies 

focused on the “right way of doing”, with particular attention to 

elements of difficulty. No method, to the best of our knowledge, 

focused on capitalization on “the wrong way of doing”. 

In the domain of mathematics education, numerous studies were 

conducted on errors, and some offered capitalization on errors in 

teaching. One proposed method is that of teaching through 

conflict, or paradox (e.g., [8,10]). The theme underlying this 

method derives from the notion of “colliding conflicting 

conceptions”, in order to yield realization of the right conception. 

Another teaching method focused on utilizing errors as 

springboards for mathematics inquiry [1]. 

Our scheme of capitalization-on-errors combines elements from 

the various studies mentioned above, with particular adaptation to 

the CS domain of problem solving: 

We identified a repeated erroneous phenomenon among CS 

students. Unlike previous CS error studies, the erroneous 

phenomenon here is not a computer-model misconception or a 

buggy programming construct, but an improper solution 

principle. 

We posed a relevant algorithmic task, and let students reach 

erroneous solutions and argue their justification, usually with 

arguments that did not capture the core problem 

characteristics. 

We indicated that we are not convinced by the student 

justification, and we would like to see more solid arguments, 

or disconfirmatory evidence. 

If proper argumentation was still not provided, then we 

repeated asking for disconfirmatory evidence. Once such 

evidence was found, an explanation was requested for the 

conflict derived from the new evidence. 

We asked to correct erroneous solutions, and devise 

alternative solutions. This sometimes involved the 

examination of different solutions offered in class. 

We reached, together with the students, the correct solution, 

and obtained its justification, based on rigorous, scientific 

arguments. 

We led a class discussion of reflection on the solution process 

and its lessons. Particular focus was put on the students’ 

behavior and beliefs. 

Several points should be emphasized. First, we consider a 

rigorous argument an assertion that captures the core 

mathematical characteristics of the problem at hand. Such an 

argument does not have to be formal, yet it must capture the 

essence. 

Second, one main objective in the above scheme is to “push” 

students to comprehensively examine test cases and thoroughly 

look for counter-evidence. This, we believe is not less important 

than rigorous argumentation.  

Third, upon realizing their erroneous solutions, students were 

encouraged to examine whether they have to perform a radical re-

examination of their solution, and not just local, bug corrections. 

They also had the opportunity to compare between correct and 

incorrect solutions. This is different from correct-solutions 

comparisons, which appear for example in [6].  

The final, reflection stage is of particular importance. At this 

stage students realize the reasons for their errors, the misguided 

solution process, and the difference between their initial incorrect 

convictions and the final correct arguments. 

We applied the above scheme with a class of 33 students during 

the spring semester of 2002, in an “Introduction to Algorithms” 

course, which started with a quick review of basic, CS1 design 

topics. In what follows we display some of the interactions with 

the students, who “fell in the greedy trap” and learnt from their 

mistakes. 

 

3.  The Greedy Trap – Illustration-1 

The following learning interaction took place in an early stage of 

the course. We posed the following task.  

Wire Connections 

N white dots and N black dots are interleaved in some 

arbitrary order on a straight line. The distance between every 

two adjacent dots on the line is 1 hop. An electrician is 

required to connect each white dot with a different black dot, 

so that the total length of the N connections will be minimal. 
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Develop an algorithm whose input is the interleaved order of 

the 2N dots, and its output is the minimal connection length. 

Example: For the sequence of dots:           the output 

should be 7. When we number the dots from left to right, 

starting with 1, one way to obtain the minimal length is with 

the connections: 1-3, 2-5, 4-6. Notice that there are other 

ways to yield the minimum. 

Over one third of the students (14 out of 33) decided that they 

“see” the solution rather quickly, without carefully examining 

examples beyond the one in the task statement. They all devised a 

greedy solution based on the same underlying principle: 

“repeatedly scan the input, and in each scan create as many 

minimal-length connections as possible”. Thus, in the first scan, 

create as many 1-hop connections as possible (between adjacent 

dots of complementing colors). In the next scan create as many 

minimal-length connections as possible between the remaining 

dots, and so on. According to this principle, the dots in the task-

statement example will be connected as follows: first 2-3 and 4-5, 

and then 1-6. 

We asked for justification. The students confidently argued: “by 

repeatedly connecting as many nearest dots as possible in each 

iteration, you obtain maximal reduction of the problem size, 

with minimal connection-length”. This intuitive argument may 

sound convincing, but it lacks rigor. We asked for more rigorous 

justification, or alternatively – disconfirmatory evidence. 

The students offered more examples, which served as supporting 

evidence: the examples were a bit larger but very similar to the 

one in the task statement. Neither rigorous justification nor 

disconfirmatory evidence was provided. 

We suggested that they try to characterize the examples generated 

so far, and generate some new pattern. One outcome was:     

    .  Their solution indeed yields the minimum length for 

this example (with the connections: 4-5, 3-6, 2-7, 1-8), and they 

became even more convinced with the correctness of their 

solution. 

One student offered the example:         .  At first they 

all felt that this example only yields further support, but 

surprisingly it did not! Their solution yields the connections: 2-3, 

4-5, 6-7, and 1-8, with a total length of 10, but the minimum 

total-length here is 8 (obtained for example by: 2-3, 1-4, 6-7, 5-8).  

They had to explain the conflict between what they perceived as 

the right algorithm and the disconfirmatory evidence. Some 

argued that it is just a special case, which can be treated 

separately, without abandoning the current solution. Such reaction 

is often common to many students! A few tried to understand the 

difficulty more carefully, and realized that there is a deeper 

pattern. 

In the last example, some students conjectured that “one way for 

obtaining the minimal length is by viewing the required 

connections as legal connections between corresponding 

parenthesis”. These students expressed a radical change of 

conception. They offered to perform the computation similarly to 

the way “a parenthesis expression is checked for validity”. Every 

white dot will be considered “open”, and every black dot - 

“close”, and every “open” will be connected to its corresponding 

“close”. 

Thus, the sequence             will be viewed and 

handled as two sub-sequences of the form:     . The 

sequence            will be handled as the sub-

sequences:        and   . Each sub-sequence of length 

greater than 2 will be further divided and handled according to the 

above principle. Notice that the students’ original solution fails in 

these two examples. 

Learning from their recent experience, the students were much 

more careful with the new solution’s correctness. They carefully 

looked for disconfirmatory evidence, but did not find any. They 

noticed that the parenthesis-matching is based on decomposition. 

Some looked at the parenthesis-matching from an “untying 

perspective”. They claimed that the transformation of any given 

connection structure to the parenthesis-matching can be viewed as 

“untying of crossing connections”, and will never increase the 

total connection length. The rigorous argument underlying this 

claim is that if you take any two white dots and two black dots 

that are not connected according to the parenthesis-matching, and 

“untie” their connection, the total connection length will not 

increase. 

Calculation of the parenthesis-format length can be very elegantly 

done using a stack, with only one pass over the input. This on-the-

fly solution is one way for obtaining the desired result. There are 

additional ways. 

 

4.  The Greedy Trap – Illustration-2 

The following learning interaction took place in a rather advanced 

stage of the course.  

Gold Collection 

Golden coins are spread in different cells of an N M matrix 

platform. These coins should be collected by robots, which 

are located in the platform’s top-left cell. The robots’ 

destination is the bottom-right cell. The robots can only move 

in two directions – down and right. That is, a robot step is 

either horizontally to the cell on the right or vertically to the 

cell below. Upon visiting a cell with golden coins, the robot 

collects the coins in that cell. The objective is to collect all 

the golden coins with a minimal number of robots. 

Develop an algorithm whose input is the locations of the cells 

with golden coins, and its output is the minimal number of 

robots for performing the task. 

Example: For the 7 8 platform, and 10 golden-coin cells: 2,6  

3,2  3,8  4,3  4,5  5,2  5,5  6,8  7,5  7,6   the output should 

be 3. The coin layout is illustrated in the figure below. 

        

     G   

 G      G 

  G  G    

 G   G    

       G 

    G G   
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There are various aspects that one may consider in solving this 

non-trivial task. One aspect is the representation of information: 

the matrix may be processed directly or transformed into a 

directed (acyclic) graph in which the nodes represent the golden 

coin cells. Another aspect is that of task analysis, with respect to 

seeking underlying regularities: one may try to identify an 

underlying mathematical pattern, as a basis for the solution. A 

third aspect involves the actual algorithm design: one may try to 

relate the task solution to some fundamental graph algorithm or a 

common design pattern. Algorithm design techniques, such as 

greedy computation or dynamic programming, may be relevant as 

well. 

Although there are diverse aspects for consideration, most 

students quickly decided that they have a “grip on the problem at 

hand” and devised a solution. Twenty-one of the 33 students 

suggested the following greedy ‘min-max’ optimization that 

seemed very natural to them: “since the objective is to minimize 

the number of robots, we should maximize the amount of coins 

collected by each robot. That is, the first robot will visit a 

maximal number of coin cells. The second will visit a maximal 

number of the remaining coin cells, and so on …”. 

Most students examined very few examples, and did not 

thoroughly look for disconfirmatory evidence. They were 

confident with their ‘min-max’ greedy approach, and did not look 

for a rigorous mathematical pattern. They all felt that the ‘min-

max’ argumentation is compelling and sufficient. The common 

theme with all these students was a global perspective that was 

not carefully checked. It seemed that a coercive process led them 

to their solution, with a strong feeling of certainty. The doubts we 

raised did not really diminish their feeling of conviction. 

Directed by us, they sought disconfirmatory evidence, but did not 

find any. The lack of such evidence only strengthened their 

intrinsic conviction, as it yielded more supporting evidence. Yet, 

they could not provide any rigorous justification. Finally, one 

student who continued looking for a disconfirmatory evidence 

noticed that a “very fruitful collection by one robot may divide 

the remaining occupied cells into undesired disjoint areas”. He 

illustrated it with the following example: 

        

  G   G   

G G  G   G G 

       G 

   G G    

       G 

        

In this example, the maximal path by the first robot (through 7 

coin cells) will leave 4 occupied cells that require two additional 

robots, implying a total of 3 robots. However, the optimal solution 

requires only 2 robots. This indeed shows that the suggested ‘min-

max’ greedy scheme is incorrect.  

Some students still tried to provide modifications that will solve 

“special cases” like the above. They were reluctant to abandon 

their initial conviction. Other students tried to carefully learn the 

characteristics of the displayed example. They realized that they 

need a radical change of conception, and indeed noticed that the 

correct solution for the displayed example can be viewed as 

“peeling the next leftmost strip from top to bottom”. In the latter 

example it implies that the first robot will collect the coins from 

the three leftmost occupied cells in line-3, the coins in line-5, and 

the coin in line-6.  

Justification still remained. It involved a mathematical pattern and 

the notion of disjoint occupied cells. Two occupied cells are 

considered disjoint if one of them is to the left and below the 

other. Coin collection from such two cells requires two robots. 

The length of the “longest chain” of disjoint occupied cells 

(where the first and the second cells in the chain are disjoint, the 

second and the third are disjoint, etc.) bounds the minimum 

number of robots from below. The “peeling principle” yields a 

decrease of 1 in the chain length by each robot, and therefore 

implies optimality. 

 

5.  Conclusion 

We introduced a study of a common error phenomenon and an 

approach of learning from errors. The common phenomenon, 

which we called “the greedy trap”, occurred in a variety of 

algorithmic problem-solving occasions, in particular with 

optimization tasks. We capitalized on this phenomenon for 

teaching students the “brittleness” of intuition and the essential 

role of rigor. 

In this paper we displayed only two illustrations of “the greedy 

trap”. Yet we noticed it repeatedly in diverse tasks. Students 

turned again and again to variants of the intuitive principle: 

“maximize the gain in each computation iteration”. One may view 

this principle as related to the heuristic optimization technique of 

“Hill Climbing”. The principle may yield good results, but does 

not always guarantee the optimum. 

An example simpler than those in the illustrations is the task of 

returning change with minimal number of coins. The intuitive 

approach, influenced by our daily life, is to first take as many 

quarters as possible, then as many dimes as possible, etc. Thus, a 

change of 62 will be composed of two quarters, a dime, and two 

cents. However, this approach does not yield the optimum for any 

potential coin system (e.g., the coin system 1,6,10, and the change 

12). 

We mentioned students’ “over-reliance” on intuition, and 

described our attempt to influence their beliefs regarding the 

importance of rigor, beyond intuition. The students gradually 

learnt, in repeated occasions, the risks of no-rigor. They realized 

it again and again during the class interactions; first, by seeking 

counter-evidence to their solutions; then, through radical 

modifications of their solutions, followed by rigorous 

argumentation; and finally, through reflection on the whole 

process. The reflection involved metacognitive elements, as the 

students looked back at their own (often erroneous) reasoning and 

decision making along the solution process.  

In the end of the study (course) they explicitly indicated that their 

beliefs have been affected. In particular, they thoroughly looked 

for counter evidence and underlying, rigorous patterns. In 

addition, they denoted a significant point which we did not a-

priori plan. They noticed a few times that the characteristics of the 

counter evidence they found to their initial, erroneous solutions 
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helped them to gain valuable insight into the correct solution. This 

could be seen in the illustrations in the previous sections. 

This study focused on teaching with capitalization on a particular, 

recurring error. Yet, the learning-from-errors approach presented 

here can be utilized with other errors, of different types. It is our 

hope that this study will encourage additional capitalization-on-

errors studies for improving understanding and affecting beliefs. 
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