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DOES THE QUADRATIC EQUATION HAVE GREEK ROOTS?
A STUDY OF "GEOMETRIC ALGEBRA", "APPLICATION
OF AREAS", AND RELATED PROBLEMS

Sabetai Unguru and David E. Rowe*

ITL

1. 1In this section, we would like to focus attention on what we believe to be

the central issue surrounding the controversy over 'geometric algebra,' namely the
contention of those writers, who discern an algebraic substructure in the Elements
and elsewhere in Greek mathematics, that the Greeks solved quadratic equations by
utilizing geometry.95 This, we feel, is the real litmus test for the historical
efficacy of the '"geometric algebra" concept. Otto Neugebauer once said that the
problem of "application of areas' is '"the central problem of the geometrical
algebra."96 This makes perfect sense once we realize that it is the "application of
areas''-technique above all else that underlies the propositions in the Elements
(e.g., IT.11 and II.14) that deal with finding unknown magnitudes and that have been
typically associated with "geometric algebra." In other words, the "application of
areas" is, for Neugebauer et al., that subdivision of "geometric algebra" that treats
problems allegedly equivalent to the solution of second degree equations i.e., it is
the subdivision which handles that peculiarly algebraic entity--the unknown quantity.
It is, therefore, only natural that our study should focus on quadratic equations;
one should be aware, however, that the proponents of '"geometric algebra'" have found
that many of the most important problems in Greek geometry amount to nothing more
than the solution to some form of an algebraic equation, be it linear, quadratic,
cubic, or biquadratic. As a typical instance of this sort of interpretation con-

sider the following views of H. G. Zeuthen on Euclid, Book X:

Da nun solche Wurzeln von Gleichungen zweiten Grades,
die mit den gegebenen Grdssen inkommensurabel werden, sich
nicht durch diese und durch Zahlen ausdriicken lassen, so ist

es begreiflich, dass die Griechen bei exakten Untersuchungen

*Continued from Vol. 1.
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keine Niherungswerte einfiihrten. sondern weiter operierten
mit den gefundenen Grissen, die dargestellt wurden durch die
Strecken, die sich aus der, der Lésung der Gleichung ents-
prechenden, Konstruktion ergaben. Es ist das ganz ebenso, wie
wenn wir Wurzeln nicht ausrechnen, sondern uns damit begniigen
diese durch Quadratwurzelzeichen und andere algebraische
Zeichen auszudriicken. Da indessen eine Strecke wie die andere
aussieht, so erhielt man dadurch nicht denselben Uberblick,
den die Zeichensprache uns gewahrt. Deshalb wurde es notwen-
dig eine Klassifikation der irrationalen Grossen vorzunehmen,
die sich durch successive Ldsung von Gleichungen zweiten

Grades ergeben hatten.?’

After citing Tamnery's concurrence with the above, Heath remarks:

Accordingly Book X. formed a repository of results to which
could be referred problems which depended on the solution of
certain types of equations, quadratic and biquadratic but re-

ducible to quadratics.98

Tt may well be that the existence of solutions to geometric problems substan-
tially equivalent to certain algebraic equations would, in fact, constitute very
strong circumstantial evidence favoring the view that there was an underlying alge-
bra motivating Greek geometry. But, as the arguments we present in this section
clearly show, the alleged correspondence between Greek geometry and elementary alge-
braic techniques is not at all good. And, even more importantly, we will indicate
how the attempt to understand Greek mathematics as algebraically motivated leads to
paradoxical conclusions that make nonsense out of what we find in the Greek texts

themselves.

2. The significance of the "application areas'" is attested to by several an-
cient sources who attribute its discovery to the Pythagoreans. The most important

of these is the following testimony of Eudemus, the author of the TewueTpLXN LOTOPED

as reported by Proclus:

Fudemus and his school tell us that these things--the applica-

tion (mapoaRorf) of areas, their exceeding (YmepBorfi), and
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their falling short (gklekwkg)—-are ancient discoveries of the
Pythagorean muse. It is from these procedures that later geo-
meters [notably Apollonius] took these terms and applied them

to the so-called conic lines, calling one of them "parabola,"

" 1

another "hyperbola," and the third "ellipse," although those
godlike men of old saw the significance of these terms in the
describing of plane areas along a finite straight line....

Euclid too in his sixth book [VI.27-29] speaks in this sense
of*“exceeding' and "falling short"; but here [I.44] he needed

"application,"

since he wished to apply to a given straight
line an area equal to a given triangle, in order that we might
be able not only to construct a parallelogram equal to a given
triangle, but also to apply it to a given straight 1ine....99
Further testimony, beyond this account of Eudemus, to the importance of "appli-
cation of areas" can be found in Plutarch, where it is seen as holding a central
place in Pythagorean lore, Now it is true that Walter Burkert has assembled strong
evidence suggesting that such sophisticated mathematics had nothing to do with
Pythagoreanism,100 and indeed it certainly must be admitted that there is a strik-
ingly legendary quality suffusing the passages from Plutarch that we are about to

consider. For example:

Now among the most characteristic theorems, or rather pro-
blems, of geometry is this: given two figures, to construct

a third equal to one and similar to the other. [Cf. Elements,
VI.25, which, as we shall see, plays a pivotal role in the
"application of areas.'] They say, in fact, that Pythagoras
offered sacrifice when he solved this problem; for it is sure-
ly much more elegant and inspired than that famous theorem
which gave the proof that the square on the hypotenuse is
equal to the sum of the squares on the sides enclosing the

right angle.lo1

Regarding this passage, Heath (following Bretschneider and Hankel) points out
that the account of the sacrifice is inconsistent with Pythagorean ritual, which

strictly forbade the practice, but unlike Burkert, he sees no reason to disbelieve

this and other ancient accounts that attribute the discovery of "application of
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: 102 z
areas' and much other sophisticated mathematics to the Pythagoreans. Q And, in
effect, the characteristic Pythagorean mysticism comes prominently to the fore when
the preceding passage is placed in its proper context, namely as part of a discus-—

sion of Pythagorean cosmology. The passage continues:

. . . recall the threefold division, in the Timaeus, of
the first principles from which the cosmos came to birth,
One of them we call, by the most appropriate of names, God,
one matter, and one form. Matter is the least ordered of
substances, form the most beautiful of patterns, and God the
best of causes. Now God's intention was, so far as possible,
to leave nothing unused or unformed, but to reduce nature to
a cosmos by the use of proportion and measure and number,
making a unity out of all the materials which would have the
quality of the form and the quantity of the matter, There-
fore, having set himself this problem, these two being given,
he created a third, and still creates and preserves through-
out all time that which is equal to matter and similar to

103

form, namely, the cosmos,

Thus God created the cosmos by continuous application of Euclid VI.25. Cer-
tainly it would be difficult to imagine a more exalted view of a geometrical pro-
position than this. Another passage in Plutarch alludes to the same incident in-
volving Pythagoras' sacrifice; but this time it is told in order to illustrate the
wild extremes of divine genius. We quote the relevant passage as part of this lar-
ger context, both to illustrate the flavor of Plutarch's account and for the intrin-

sic interest of the legends themselves:

. . FEudoxus prayed to be consumed in flames like Phae-
thon if he could but stand next to the sun and ascertain the
shape, size, and composition of the planets, and when Pytha-
goras discovered his theorem he sacrificed an ox in honour of
the occasion, as Apollodorus says:

When for the famous proof Pythagoras
Offered an ox in splendid sacrifice--
whether it was the theorem that the square on the hypotenuse

is equal to the sum of the squares on the sides of the right
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angle or a problem about the application of a given area,
His servants used to drag Archimedes away from his diagrams
by force to give him his rubbing down with oil; and as they
rubbed him he used to draw the figures on his belly with the
scraper; and at the bath, as the story goes, when he discov-
ered from the overflow how to measure the crown, as if pos-—
sessed or inspired, he leapt out shouting 'I have it'
['ed&nKa' ] and went off saying this over and over.104

When our sources are embedded in such fantastic accounts they do not inspire
confidence in their authenticity, and we are compelled to acknowledge that Burkert's
views are not without merit, Still our purpose here is not so much to evaluate the
claim that "application of areas'" was a Pythagorean discovery as it is simply to
document the immense importance of "application of areas'" in Greek thought., For

this purpose, the foregoing passages are ample enough testimony.

' as we remarked earlier, should be taken as a

3, The "application of areas,'
litmus test for assessing the historical and mathematical cogency of the entire edi-
fice of "geometric algebra." The essential ingredients of this technique can be
understood by examining two important trains of thought in the Elements that culmi-
nate with the proofs of Propositions VI,27-29, These two chains of ideas can be
discerned in the following propositions, which we must study in detail:

1) TI.42 - I.45 - VI,25 - VI,28 and 29.

2) I.45 - I.47 - II,5 and 6 - II.1l1l and 14 - VI,27-29,.

Before considering the above chains of propositions, however, a few comments

'i.e.,

should be made pertaining to the remaining results in ''geometric algebra,'
those which are relatively unrelated to "application of areas.'" If "application of
areas'" is the subdivision of 'geometrical algebra' that allegedly develops techni-
ques for solving "equations." it is only natural to ask: What about the 'purpose'
of other "geometrical-algebraic’ propositions like I1I,1-4, II,7-10, and II,12-13,
that have nothing to do with equations? The answer, we are told, is that they are
algebraic identities;lo5 their only purpose is to demonstrate various relationships
that arise in the process of transforming two-dimensional figures, particularly
rectangles., It should, however, be noted that there is a grey area here, contain-
ing propositions like II,5 and 6 which are also indentities, but which we have ear-

marked for further study precisely because of their importance for "application of

areas," Another example is provided by propositions I,47 and I.48, the "Pythagorean
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theorem" and its converse, which, viewed algebraically, are simply identities in-
volving the given sides of a right triangle. Viewed as a geometric transforma-
5193,106 I.47 states that in a right triangle the square on the hypotenuse can be
transformed into the two squares on the sides forming the right angle and vice-versa.
I.48, on the other hand, says that if a square can be so transformed, then the sides
of the three given squares comprise three sides of a right triangle. Although I.47
and 48 both express mathematical facts that are relatively deep, compared with most
of the results in Book II, from the point of view of 'geometric algebra," they too
are mere identities bearing only an incidental relationship to the machinery for
solving equations, viz., "application of areas."

Thus, the first ten propositions in Book II of the Elements are, from the point

1 1

of view of 'geometric algebra," nothing but algebraic identities.l?7 Furthermore,
IT.12 and II.13 are identities in the same sense that I.47, 48 are, since they are
the geometric formulations of what today is treated as a single theorem, namely the
Law of Cosines, a result that generalizes the Pythagorean theorem to the case of an
arbitrary triangle (i.e., not necessarily right-angled). This leaves only two prop-
ositions in Book II, II.11 and II.14, and these form part of the nucleus of results
that was allegedly used for the Euclidean solution of algebraic equations.

Now the ability to solve first-and second-degree equations is of paramount
importance in elementary algebra. It is our contention, in fact, that a mathemati-
cal technique that fails to develop this far is better regarded as advanced arith-
metic rather than as elementary algebra. Even for a "geometrical algebraist,” the
first ten propositions of Book II, for example, do not, in and of themselves, go
beyond the stage of generalizing certain arithmetical relations formulated in geo-
metric terms. None of these relations requires anything comparable to the notion of
an unknown quantity, i.e., a magnitude whose value can be found via a coherent pro-
cess of formal arithmetical procedures. Yet it is this very idea that, according
to Freudenthal,108 is most fundamental and basic, even characteristic, of the entire
algebraic enterprise, and it is for this reason that "application of areas,'" the
"subdiscipline" that allegedly deals with solving equations, i.e., finding unknowns,

"geometric algebra.'" If this assess-

is the crucial test for the entire concept of
ment of the nature of algebra is correct, then there is every reason to believe that
the two key chains of propositions presented above, displaying as they do the logico-
mathematical underpinnings leading to the fundamental propositions having to do with
"application of areas" (VI.27-29), are of the utmost importance in answering the

question: "Just how algebraic is 'geometric algebra'?" It is, therefore, time that
g g g 3
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we examine them in detail, The conclusion of our investigation will show, among
other things, the ahistoricity involved in seeing VI,27-29 as Greek solutions to

quadratic equations,

4, We begin with the first chain of propositions, I.42 - I,45 - VI,25 - VI,28
and 29, Proposition I.42 is, in effect, a lemma required in order to prove I.44

which reads:

To a given straight line to apply, in a given rectili-
109

neal angle, a parallelogram equal to a given triangle,.
The lemma, I.42, differs only in that the parallelogram need not be applied to a

given line, i.e., it need not have one side equal to a prescribed length:

To construct, in a given rectilineal angle, a parallelo-
110

gram equal to a given triangle,

Let us now apply this result to the proof of I,44., Thus we are given (see fig.
III.1) a straight line AB, a triangle C, and a rectilineal angle D, We wish to
apply a parallelogram to AB in an angle equal to D and in such a way that the para-
llelogram is equal (in area) to the given triangle C,

For the proof, first use I,42 to construct parallelogram BEFG equal to C with
BE extending AB and with angle EBG equal to D. Next, draw parallelogram AHGB,
using I.31,lll and join HB.
We then observe that angle BHG
together with angle HFE is less
than angle AHF together with angle \&_ji_~
HFE, whereas the latter two equal G
the sum of two right angles, by
1.29.112 Thus Postulate 5113 im- H A L
plies that when HB and FE are
produced, they will eventually
intersect (say in K). We can now Fig, ITI.1

reapply I.31, extend GB

to M, and construct parallelogram HFKL, Since angle GBE is equal to angle ABM, by

I.lS,114 it follows that angle ABM is equal to D, Further, I,43 states that:

In any parallelogram the complements of the parallelo-
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grams about the diameter are equal to one another.115
Thus LB equals BF which equals triangle C, and therefore ABML is the desired paral-
lelogram since it satisfies all the required conditionms,
As a fairly immediate corollary to this, there is the following Proposition,

I:45:

To construct, in a given rectilineal angle, a parallel-
116

ogram equal to a given rectilineal figure.

The proof involves the following ideas. First, a rectilineal117 figure can be
"triangulated," i.e., decomposed D
completely into triangles., It F G L
follows that if we can prove the
result for an arbitrary quadri- A
lateral (i.e., two triangles),
an n-fold application of the same
proof will prove the theorem in Fig. TI1.2 K H M
general,

To prove the result for the quadrilateral pictured in Fig, III,2, one simply
applies I.42 to obtain parallelogram KHGF equal to triangle ABD with angle FKH equal
to E. Then, utilizing I.44, apply to GH a parallelogram HMLG equal to triangle BDC
and with angle GHM equal to E, The remainder of the proof is a routine check that
the figure KMLF so obtained satisfies the conditions of the theorem, Now, the im-

portance of I.45 should be judged in light of the following remarks of Proclus:

It is my opinion that this problem is what led the an-
cients to attempt the squaring of the circle, For if a par-
allelogram can be found equal to any rectilinear figure, it
is worth inquiring whether it is not possible to prove that
a rectilinear figure is equal to a circular area.118

The next step along our path is the beautiful Proposition VI,25 alluded to in

the passages cited from Plutarch:

To construct one and the same figure similar to a given

rectilineal figure and equal to another given rectilineal



Sabetai Unguru and David E. Rowe 9

The proof in the Elements is as
follows. We are given (see Fig. III.3)

two rectilineal figures ABC and D. We \\\\\ /;/A\\\
L e

must construct a figure similar to the

first and equal to the second. To be- b ¢

gin with, we use I.44 to apply to the

A K
line BC parallelogram BE equal to tri-
angle ABC (the angle of application is 5 F
arbitrary). Next, we use I1.45 (actually
L

C
I1.45A, cf. our discussion above in sec- E g G i
tion I, #7) to apply parallelogram CM
to CE, i
, in such a way that CM equals D Fig. III.3

and angle FCE is equal to angle CBL.

Now construct GH, the mean proportional to BC and CF by using VI.13120 (or, we may

say, II.14), and taking the newly formed line GH, construct figure KGH similar to

ABC by applying VI.18.121 Now BC:GH = GH:CF; hence, by the Porism to VI.l9],'22 BC:

CF = (fig. ABC): (fig. KGH). But by VI.1, 2> BC:CF = (Z7BE):(CJEF), from which it

follows that (AABC):(AKGH) = (LFBE):(ZEF), and as ABC is equal to [JBE, it follows
that KGH equalsl‘_'7EF.124 Therefore, the triangle KGH, which is similar to ABC, and
also equal toJJEF = D, satisfies the conditions of the theorem.

The fact that there is no loss of generality in letting the first rectilineal
figure be a triangle is not explained in the text, and, as a matter of fact, there
seems to be no simple way of advancing from this special case to the proof of the
general result. Probably the best way to remedy this flaw in the proof is to re-
place ABC by an arbitrary rectilinear figure and use I.45A rather than I.44 in order
to obtain the parallelogram BE. If this minor modification is made, the rest of
the proof goes through, more or less, as before.125

The last 1link in this particular chain of theorems is represented by Proposi-
tions VI.28 and 29, both of which require VI.25 as a key step in their respective
Proofs. These two propositions are almost identical in form, but VI.28 is compli-
cated by the necessity of stating a S10p10U0C (here,a condition for possibility of
solution) which is worked out heforehand in Proposition VI.27. Because VI.28 and 29
are so similar, it will be sufficient for our purposes to consider only one of them.
We have decided to focus our attention on VI.29, because it requires no SLoptoué¢ and,

in addition, is intimately related to an important result in Book II (Proposition
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IT1.11). But first let us record what Heath has to say concerning the significance

of these propositions:

The importance of VI.27-29 from a historical point of
view cannot be overrated. They give the geometrical equiva-
lent of the algebraical solution of the most general form of
quadratic equation when that equation has a real and positive
root. It will also enable us to find a real negative root of
a quadratic equation; for such an equation can, by altering
the sign of x, be turned into another with a real positive
root, when the geometrical method again becomes applicable.
It will also, as we shall see, enable us to represent both
roots when both are real and positive, and therefore to rep-
resent both roots when both are real but either positive or

negative.

This blatantly algebraic interpretation, then, sees the significance of VI.27-
29, the very culmination of "application of areas," as lying in the Greek solution
to the general quadratic equation. Later, we will spell out the precise grounds
upon which Heath's interpretation rests, and offer a critique of his position; here
we only wish to register our dissent with it. But, although we emphatically disa-
gree with Heath's rationale for thinking VI.27-29 so significant, we are, neverthe-

: . Loaond . .
less, in complete agreement (at least in spirit) et with his subsequent remarks:

The method of these propositions was constantly used by
the Greek geometers in the solution of problems, and they con-
stitute the foundation of Book X. of the Elements and of
Apollonius' treatment of the conic sections.... [Heath then
quotes Sims~.'s views on this matter]... "These two problems
[VI.28 and 29], to the first of which the 27th Prop. is nec-
essary, are the most general and useful of all in the Elements,
and are most frequently made use of by the ancient geometers

in the solution of other problems ...128

Let us now consider the enunciation and the main ingredients in the proof of

Proposition VI.29:
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To a given straight line to apply a parallelogram equal
to a given rectilineal figure and exceeding by a parallelo-
grammic figure similar to a given one.129

For the proof, we are given straight line AB, rectilineal figure C, and parallelo-
ogram D (Fig. III.4). First
we bisect AB at E (by I.10).
Next we utilize VI.18130 to A B K H
construct a parallelogram BF,
similar and similarly situated
to D, on EB. Now for the cru-
cial step wherein VI.25 comes
into play: we construct paral-
lelogram GH equal to the sum of
BF and C but similar to D. By
producing FL to M and FE to N,
so that FM = KH and FN = KG

(which clearly can be done), and

by completing MN, we obtain the
figure pictured above where MN is

ig. ITI.
both equal and similar to GH. Now Fig: LLL:4

VI.21131 implies that MN is similar to EL, hence, by VI.26,132 MN and EL are about

the same diameter, FO. AN equals NB, by I.36,133 while NB equals BM by 1.43.134
Since from the above it follows that gnomon XWV is equal to C, it is necessary that
AO be also equal to C. Finally, by VI.24,135 BO is similar to EL, and hence simi-
lar to D. Therefore, we have applied the desired parallelogram A0, to AB. For AOQ

is equal to C and the "excess,"

parallelogram BO, is similar to D,q.e.f. We will
return to this important result momentarily, but first we must pursue the analysis

of our second chain of ideas.

5. The second chain consists of the following theorems:
2) T1.45 - T.47 - II.5 and 6 - II1.11 and 14 - VI.27-29. As we have already given a
detailed account ofrI.45, we turn to I.47, the '"Pythagorean theorem':
In right-angled triangles the square on the side subtend-
ing the right angle is equal to the squares on the sides con-

taining the right angle.l36
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The idea motivating Euclid's
proof, which is carefully fashioned
so as to avoid the use of proportion
theory, can be seen in the "windmill" A
diagram shown at right (III.5). The ; ™
argument shows that BL equals AF and 1]

LC equals AK, hence BL plus LC (which
equals BE) also equals AF plus AK as

required. To show that BL equals AF,
observe that BL = 2(ABD) and AF = 2(FBC) D L E

by 1.41,137 while the triangles ABD and

and FBC are equal because they are con- Fig. III.5

gruent by 1.4.138 It follows that BL = AF. Exactly the same reasoning shows that
LC = 2(ACE) and AK = 2(BCK), whereas triangles ACE and BCK are equal, hence LC = AK.
This completes the proof.

Proclus seems to credit Euclid himself with this very pretty proof, and there
is good reason to believe that he is right.139 For, by using results from the pro-
portion theory of Book VI, one can obtain a very straightforward proof of this fam-
ous theorem.140 It is therefore not unreasonable to think that the author of the
Elements, who clearly required I.47 in several of the arguments appearing in Book
IT, i.e., prior to the introduction of proportion theory, was motivated to discover
this ingenious argument by the organizational dictates he sought to follow in writ-
ing his great masterpiece. For, by delaying the introduction of proportion theory
until Book V, he made an immense contribution to the creation of a streamlined pre-
sentation of the fundamental results of Greek geometry, a presentation that has
served as the supreme model of elegant reasoning for over two thousand years.

Turning now to Propositions II.5 and II.6, we are once again presented with a

pair of related results, the first analogous to VI.28, the second to VI.29. Propo-

sition II.5 reads:

If a straight line be cut into equal and unequal segments,
the rectangle contained by the unequal segments of the whole
together with the square on the straight line between the

points of section is equal to the square on the half.141

Even more important, for our purposes, is Proposition II.6, as it ties in with
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the results leading up to VI.29. Proposition II.6 reads:

If a straight line be bisected and a straight line be
added to it in a straight line, the rectangle contained by the
whole with the added straight line and the added straight line
together with the square on the half is equal to the square on
the straight line made up of the half and the added straight
line.142

Both of these propositions strike the unwary reader as terrifically confusing and
have the outward appearance of difficult theorems. But, in reality, they are very
simple results that only look complicated because the Greeks were forced to render
their mathematics in ordinary language, enunciating all the operations leading to
the final diagrammatic construction in complete sentences, rather than merely start-
ing with the finished product and arguing from it.l43

In II.5, the final figure looks like this (Fig. III.6):
AB has been cut in two equal pieces:

AC and CB (.°. AD # DB). 1II.5 asserts

that DK plus EH is equal to BE (the - sl .
last two rectangles are squares). But ¢
this is obvious (once we have the dia-

gram!). For CH equals HF by 1.43,144 N )() M
so if DM is added to each, we see that K B ki

CM equals DF. Hence AL (which is equal E G "
to CM) equals DF, and by adding CH to

both we have DK equals gnomon NOP. Fig. III.6

Finally, we add in the square EH and conclude that DK plus EH equals BE as desired.
The key observation in the proof is a simple one, namely, that the rectangle AH
equals the gnomon NOP because their intersection, CH, subtracted from both leaves
equal rectangles (AL = DF).

Exactly the same considerations are involved in the proof of I1.6 where the

diagram (Fig. III.7) looks like this:



14 Does the Quadratic Equation Have Greek Roots?

Again, AB is the given line, bi-

Sected at C and extended to D, and the

A € B D
theorem asserts that rectangle AM plus -
square EH equals square ED. And, once (/H 1 iy
again, the key observation in the proof K L NP o
involves a gnomon. Here rectangle AM
equals gnomon NOP, since their intersec-
tion, subtracted from both, leaves AL and E Aﬁ‘__b F
HF which are equal. Thus by adding EH to
both AM and the gnomon we obtain the de- Fig. III.7

sired result: AM plus EH equals ED.

Much more could be said here concerning II.5 and 6, as both have been heavily

45
nl But we must pass on, and

exploited by the practitioners of 'geometric algebra.
turn now to the first alleged instance in the Elements of a solution to a quadratic

equation, Proposition II.11:

To cut a given straight line so that the rectangle con-
tained by the whole and one of the segments is equal to the
square on the remaining segment.146

For the proof, apply 1.46147 to describe square ABDC (Fig. III.8) on the given
line AB. Bisect AC at E, using I.10,
and let BE be joined. Now produce CA

to F so that EF equals EB and describe
the square AFQH on AF. Then, the claim
is that AB has been cut at H so that the A H

rectangle contained by AB, BH is equal ////,/”
to the square on AH.

Confirming this claim requires both

I.47 and II.6. Since AE equals EC, II.6 C K D

applies, hence the rectangle on CF, FA

together with the square on AE is equal

to the square on EF. But I.47 says that

the square on BE is equal to the sum of Fig. III.8

the squares on AB and AE, and since BE

equals EF, it follows that (1) the rectangle on CF, FA together with the square on
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AE is equal to the sum of the squares on AB and AE. Thus by subtracting the square
on AE from both equal expressions in (1) above, the rectangle on CF, FA (i.e., CQ)
is equal to the square on AB. If now rectangle AK (which is common) is subtracted
from both of these, we have that the square on AH is equal to the rectangle HD =
rectangle on AB, BH as desired.

Proposition II1.14 is another result that is believed to have been motivated by
the desire to solve a quadratic equation. We are told by Heath and others that this

result gives the Greek method for extracting ''square roots.'" The proposition reads:

" i 148
To construct a square equal to a given rectilineal area.

The proof begins by applying I.45
to obtain a rectangle BD equal to the
given figure A (Fig. III.9). If the
rectangle turns out to be a square, we
are done. If not, produce the longer
side, BE, to F so that EF equals ED. A
Bisect BF at G (I.10) and form the

semicircle BHF on BF as diameter.

Extend DE to H where it intersects

the semicircle. Since BG equals GF,

IT.5 applies and asserts that the Fig. III.9

rectangle on BE, EF, together with

the square on GE, is equal to the square on GF. Now GF equals GH. Thus by utiliz-
ing I.47 to assert that the square on GE plus the square on HE equals the square on
GF, while remembering that the square on FG is also equal to the rectangle on BE? g*AT
EF plus the square on GE, and subtracting the square on GE from both sides, it fol-
lows that the rectangle on BE, EF (which equals A) is also equal to the square on

HE (or, in symbols, [Rect. (BE,EF) + Sq.(GE) =Sq.(GF) = Sq.(GH) =Sq.(HE) +Sq. (GE) ]=
Rect. (BE,EF) = Sq.(HE). Thus a square can be constructed, namely that on HE, equal
to the given rectilinear figure A.

Heath sees II.14 as the culminating result in the '"geometric arithmetic':

As 11.12, 13 [for the modern mathematician the geometri-
cal analogues of the law of cosines] are supplementary to I1.47,

so II.14 completes the theory of transformation of areas so

far as it can be carried without the use of proportions. As
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we have seen, the propositions I.42, 44, 45 enable us to con-
struct a parallelogram having a given side and angle, and
equal to any given rectilineal figure [this is I.45A]. . . .
Further, I.47 enables us to make a square equal to the sum of
any number of squares or to the difference between any two
squares. The problem still remaining unsolved is to transform
any rectangle (as representing an area equal to that of any
rectilinear figure) into a square of equal area. The solution
of this problem, given in IT.14, is of course [!] the equiva-
lent of the extraction of the square root, or of the solution
of the pure quadratic equation

XZ _ ab.149

Implicit in this interpretation of II.14 as the extraction of a square root or
as the solution of x2 = ab, 1is the view, which for us is clearly untenable, that
the Greek "operation" of rectangle formation was seen by the Greeks as multiplica-
tion of general magnitudes. Once this latter assumption is rejected, it becomes
obvious that II.14 can no longer be seen as "equivalent" to the solution of a quad-
ratic equation. Rather, the motivation for IT.14 seems to stem primarily from pro-
portion theory, as, basically, the same construction is applied to prove VI.13:

el Indeed, Aristotle re-

"To two given straight lines to find a mean proportional."
marks in this connection that squaring should be better defined as the finding of
the mean proportional rather than the making of a square equal to a given rectangle,
because the former gives the cause of the result, whereas the latter gives the
conclusion only.151

We are now ready to forge the final link in our second chain of propositions by
showing the connection between II1.6, II.11 and VI.29. This last link can be seen
best by returning to the proof of the last of these propositions, VI.29. The first
chain of results, 1.42 - I.45 - VI.25 - VI.28 and 29, that we examined led straight-
away to one of the two key ideas in the proof of VI.29, namely the application of
VI.25. The second chain, I.45 - I.47 - I1.5 and 6 - II.11 and 14 - VI.27-29, leads
to the second key idea behind VI.29, but the connection this time is much more subtle.
Once VI.25 had been applied in the proof of VI.29 (cf. Fig. III.4), it was a routine

matter to arrive at the following figure (ITII.10):
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The remainder of the proof involved
the assertion that the gnomon XWV
is equal to AO. But this is ex-
actly the key ingredient in the
proof of II.6, when it is general-
ized to a parallelogram.152 What

is more, there is absolutely no

A
difficulty in extending II.6 to the /

more general result (II.6A) involv-
ing parallelograms, as all the nec-
essary ingredients for doing so are
already available in Book I! For,

since A0 intersects gnomon XWV in

Fig. III.10

EO, it suffices to show that AN

equals BM. But AN equals NB by I.36153

and NB equals BM by I.43,154 so AN equals

BM, and therefore A0 equals XWV as desired. To complete the proof of IT.6A, simply
add EL to both figures obtaining A0 plus EL equals MN.

Thus, IT1.6, or more precisely our II.6A, is the second key idea in the proof of
VI.29. We have seen already that II.6 is a key ingredient in the proof of II.11,
but what is the connection between IT.11 and VI.29? Simply this, II.11 corresponds
to the special case of VI.29 wherein the "excess" is a square.155 If we return for
a moment to Fig. III.8, we shall notice that if AC rather than AB is taken as the
given line, then II.11 can be interpreted as the application to AC of the parallelo-
gram CQ equal to the rectilinear figure AD and exceeding by the Figure AQ similar to
a given square figure. Since II.14 can be used to find a square (viz. AD) equal to
a given rectilineal figure, it will be observed that, on this interpretation IT1.11
is precisely the special case of VI.29 wherein the "excess" is required to be simi-
lar to a given square!

One final observation: almost everything that has been said here concerning
the relationship between II.6 and VI.29 carries over verbatim to the case of IT.5
and its cognate result, VI.28. Moreover, VI.28 itself is entirely analogous in for-
mat with VI.29, except for the fact that it is an application that '"falls short"

rather than "exceeding':

To a given straight line to apply a parallelogram equal

to a given rectilineal figure and deficient by a
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parallelogrammic figure similar to a given one: thus the given
rectilineal figure must not be greater than the parallelogram
described on the half of the straight line and similar to the

defect.l56

The qualifying clause at the end of the proposition refers to VI.27 which is a

61op1ouég.157 It reads:

Of all the parallelograms applied to the same straight
line and deficient by parallelogrammic figures similar and
similarly situated to that described on the half of the straight
line, that parallelogram is greatest which is applied to the

1
half of the straight line and is similar to the defect. -

VI.27 says, then, that the largest area that can be obtained via an application
that '"falls short" occurs when the applied parallelogram utilizes, for its base,
half the given line. Clearly if VI.28 is to have a solution, the given rectilineal
figure in VI.28, to which the applied parallelogram is to be made equal, must not
exceed the maximum area such a parallelogram can attain, and this maximum area is
known from VI.27.

”

This completes our survey of the key ideas involving the technique of "appli-

cation of areas' as they appear in Euclid's Elements. A more thorough study of
this subject would not overlook the important applications of this technique made
by the Greeks. In Book X, for example, it is used in the proofs of four important

theorems: implicitly in X.17 and X.18, explicitly in X.33 and X.34, both of which
depend on VI.28.159 The most prominent example is, of course, Apollonius's use of
"application of areas'" in Propositions 11-13 of Book I of his Conics to derive the

: . 160 .
symptoma of the conic sections. As is well known, these curves were named by

"non U "

Apollonius "hyperbola, parabola," and "ellipse'" as they correspond to the three

" "application," and "falling-short' in the terminology of

cases of "exceeding,
"application of areas."

6. Having discussed the key ideas that appear in the Elements pertaining to
"application of areas," it is time to deal with their alleged use as solutions to
quadratic equations. In this regard, we shall now consider the algebraic interpre-
tation of Proposition IT.11:

Let AB = a in Fig. III.11, then we wish to find x so that 0 < x < a and

a(a-x) = x2 or x2 + ax = azn Now in II.11, AC is bisected and the right triangle
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ABE is formed. If we let BE = c, Fox
2
then, by I.47, c2 = a2 + (a/2)".

Since BE = FE, we obtain the desired A X B
x by forming FA = FE minus AE. Hence //////)
x = ¢ - (a/2). To check that this B

x works, we use II.6 which says that R
x(x+a) + (a/2)2 s cz; since c2 = a2 a

+ (a/Z)2 we obtain x(x+a) + (a/2)2 =

2 2
a2 + (a/2)2, whence x + ax = a as
desired. Fig. III.11
Now Heath, following Simson, shows that the algebraic formulation of this propo-

sition, as well as the proof, generalize line for line to give a solution to the

b . .
equation x2 + ax = bz.161 For let a and be given, Fig.

IIT1.12, and let c2 = b2 + (a/2)2 using I.47; then x=c - (a/2) is the desired
solution. For by II.6, x(x+a)+—(a/2)2=

c2= b2+ (a/2)2, hence x(x+a) = x2 +ax= b2.

But what Heath is careful not to do

is to take his own views on the ''geome-

trick arithmetic" seriously in this con- b

nection, for had he done so, he would

have soon found that the so-called Greek a a

algebra, i.e., ''geometric algebra," is

b
nothing like our own (it's not very Greek Figure III.12

either!). As we have previously seen,
Heath's conception of the '"geometric arithmetic' is largely motivated by the belief
that, in much of Greek mathematics, geometric considerations are subordinate to

questions of pure magnitude. This is the fundamental fallacy that constantly lurks

behind the double phantasm of "geometric arithmetic" and "geometric algebra." It is
true that, for the most part, this viewpoint remains rather submerged throughout

1
Heath's commentary, A2 but occasionally it surfaces fairly clearly, as in his re-

marks pertaining to the '"great importance" of I.44 and I1.45 as a means for repre-
senting a given rectilineal figure as a rectangle "with one side of any given length,
e.g., a EEEEAlength."l63 As we pointed out in section I, this "great importance"
seems, however, to have been lost on the Greeks, because there is not a shred of

hard evidence indicating that they ever employed these propositions for this (Heath's)
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purpose.16b Simply put, the Greek geometers had no conception of magnitude as gen-
eralized number, and, what is more, their interest in magnitude was (except in Book
V) always bound to a specific geometric context.

Let us, however, just for the sake of argument, take Heath's position at face
value in order to see the kinds of difficulties it leads to. It is our contention
that if one is motivated to solve quadratic equations involving pure magnitudes, it
is a simple enough matter to apply the technique of II.1l1 to solve, for example, the
equation x2 + ab = bl Of course, this equation makes no sense geometrically, since
the left side is two—dimensioﬁal, whereas the right side is only one-dimensional.
If, however, we view this, 4 la Heath, as a statement about pure, dimensionless mag-
nitudes, then it not only makes sense, but it can even be handled with complete ease,
utilizing "Greek'" tools. For this same equation can be translated into an equiva-
lent one that does make sense geometrically,

x2 + ax = b.1,

where b.1 represents the rectangle with one side of length b and the other of
unit length! Now simply apply II.14 to obtain a square, call it cz, equal to the

rectangle b.l1 and we have:
x2 + ax = c2,

which is precisely the equation we solved a moment ago by mimicking the proof of
IT.41.

0f course, this is pure fantasy, and neither Heath nor anyone else would blun-
der so badly as to mistake this for a Greek solution to a quadratic equation. The
point, however, is (and it is a point worth emphasis) that such a solution is per-
fectly plausible once we take the assumptions of 'geometric algebra" seriously.
This "reconstruction" is perfectly consistent with the dictates of "geometric alge-

bra,"

which entitle us, indeed require us, to couple freedom of expression (form)
with a virtually total lack of concern for the ontological commitments inherent in
Greek mathematics. If one can, in effect, ignore the dimension of the magnitudes

involved when "multiplying,"

then why not do it here?

The tendency to formulate this kind of reconstructive argument has, indeed, run
rampant in the literature of the history of ancient mathematics, and although such
arguments have gained an honorable place in the discipline, they are gounded on as-
sumptions that are radically different from the prevailing thought of the culture

under consideration and ought, therefore, to be clearly recognized as having no
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historical value. But, as we are presently engaged only in the process of exploding
an ahistorical myth, our only obligation for the moment is to play the game accord-
ing to the prevailing rules; so let us pursue this fantasy one step further. This
time, and again we are using the assumptions of ''geometric arithmetic' alone, we

will solve the general quadratic,
ax2 + bx = ¢,

where the magnitudes are, of course, all positive (lines).

The agenda is the same as before; first we must convert the equation to an

"equivalent' one that makes sense geometrically. Write bx = (b.1) x and c¢ = c.l%

where b.l1 1is the rectangle with the sides of length b and 1 as before, while
l2 is the unit square, then we obtain:

ax2 + (b.1) x = c.lz

which makes sense geometrically. Now use T.45A to write b.l1 as a.p:

ax2 + (a.p) x = c.12

Using now the three-dimensional analogue of II.l165 we obtain:

a [x2 + px] = c.l2

Since equals divided by equals are (presumably) equal:

a [x2 + px] _ c.l2 _ 6.l

a a a

¢ L

Al
Again, using I1.45A, c¢ = Ejl- and we have:

1
x2 + px =c¢ .1

; 4
Finally apply II.14 to transform c .1 to dz and now:

x2 + px = d2

which is solved again using the proof in II.11. We have thus '"solved" the general
quadratic by using nothing more than Book II-style techniques, i.e., bypassing al-

together Greek proportion theory. Now that is geometric algebra!

7. Let us now get our feet at least halfway back on the ground again by re-
turning to the algebraic interpretation of some propositions that actually occur in
the Elements, We have seen that 1II,11 is a special case of VI.29 and that it also
"corresponds' to the equation x2 + ax = a2. We shall now indicate what is involved

in interpret in., Propositions VI.28 and VI.29 algebraically, i.e., seeing them as the
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Euclidian versions of the solutions to the general quadratic equations ax J g x2= c
respectively. Recall that in VI.28 and 29 we are given (Fig. III.13) a line AB,

a rectilinear figure C, and a parallelogram D, and we are asked to construct
(Fig. II1.14) a para-

llelogram equal to C

on the base AE (where

A, B, and E are co-

linear) so that either t !
the 'defect" (VI.28),
or the "excess" (VI.29),
i.e., the parallelogram
in the same parallels Fig., III.13
as the construced para-
llelogram, but with base BE, is similar to the given parallelogram D,
The interpretation (ol F H

of these propositions as { { /gum_" "Defect"
algebraic equations re-

A E B
quires, first of all, that _—
we make the restriction that T v " .

<——— "Excess

the parallelogram D be S

A B E

a rectangle.166 This re- Fig. III.l4

striction is motivated by

the desire to express the 'defect' or "excess'" in VI.28 and 29 as a 'product,"

using
the fallacious rectangular representation which, as we have already argued, never
meant '"multiplication" to the ancient Greeks. If, now, the ratio of the sides in
the given rectangle D 1is b:c, then this must also be the ratio of the sides of

the "defect" ("excess'"). By letting one side be x (cf. Fig, III.15), and using

VI,lZ,167 we can solve for the fourth proportional to obtain the other side, say y.
Thus
b:c = y:x
and, by VI.16, Rect. (b,x) =Rect. (c,y) . D
which in the '"geometric arithmetic' reads x
bx = cy.
Dividing both sides by ¢ (use I,45A) we b y = %‘X
obtain .
;- EE._ Fig, III.15
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Now, to measure the "defect" ("excess'") we multiply:

.x = b—x - X
y P .
But %§-= LA x,l68 hence
b 2169
y P .

Plugging all this into the framework of VI.28 and 29, with the given line AB = a
we obtain (cf. Fig. III.16):

VI.28: Parallelogram AEFG - Rectilinear Figure C

ax - E‘xz =C
VI.29: ax +%x2 =c

which are the quadratic equations II.11 corresponding to the case of VI.29 where

the "excess'" is a square. B F H

If we review now this procedure care- >3 EX
fully, it would seem that it is not without A E B
some difficulty that the statements of VI.28 G H F
and 29 can be interpreted as equivalent to % %X
quadratic equations. As noted above, one A B E

must first restrict these theorems to the Fig. III.16

case where the given parallelogram D is a

rectangle. Moreover, one must be careful about expressing the appropriate equation
in its "proper" form. Obviously, the usual form for the general quadratic,

ax2 + bx + ¢ =0, will not do, as a, b, ¢, and x must all be nonnegative.
Neither will it do to express it in the form ax2 + bx = ¢, as ax2 is three-
dimensional, bx two-dimensional, and ¢ only one-dimensional. The above inter-
pretation manages to "overcome" this difficulty by writing the general quadratic in
the form ax } g-xz = C. Here the three coefficients in the equation are repre-
sented by three mathematically distinct entities: a 1is a magnitude associated
with an arbitrary line segment, C a magnitude represented by an arbitrary rectili-
neal figure, and g» is the ratio of two given lines (namely the sides of the rec-
tangle D ''given" in VI.29).

b
The term E‘xz is the most problematic feature in this arrangement. Tt re-

quires that we view ratio as a sort of pure, dimensionless magnitude, and seems to
imply that ratios are capable of being multiplied with magnitudes of definite dimen-
sion. The immediate difficulty this presents stems from the fact that multiplica-

tion of a ratio by a magnitude is never defined and never performed anywhere in the
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Elements (or in all of Greek geometry, so far as we know!). The most plausible
attempt to make sense of g-xz in Greek terms is to follow De Morgan and "[t]reat
ratio . . . as an engine of operation. Let that [ratio] of A to B suggest the

wl70

power of altering any magnitude in that ratio. This seems to be in tune with

the spirit of the Greek view, which would utilize the fourth proportional to find

the geometrical entity corresponding to E—xz as follows: We are given b:c and
xz, hence we must find a two-dimensional magnitude Y such that b:c = Y:xz. This
would seem to be a simple enough matter, for, by VI.lZ,171 we can find a line p so

that b:c = p:x. Thus, by VI.1,172 p:x = Rect. (p,x):Sq. on x, so . . b:ic =
Rect. (p,x):Sq. on x, and we have found our Y(= Rect. (p,x)). This easy argu-
ment, twisted & la grecque, would appear to answer any doubts one might have about
the Greek interpretation of %»xz, except for one embarrassing detail fygich, by
now, should sound familiar)--it never appears anywhere in the Elements. Thus,
the key proposition that would enable us to see the 'real meaning" of Propositions
VI.28 and 29 must itself be reconstructed, as the only format in Euclid for finding
the fourth proportional is that given in VI.12, where its use is restricted to lines.
Certainly, if this more general version for finding the fourth proportional had
played such an important role in what Simson called the "most general and useful
[problems] of all in the Elements,'" i.e. VI.27-29, it is, indeed, difficult to under-
stand how it could have been completely omitted.

Of course, none of this causes any difficulty for the practitioners of '"geome-

1

trical algebra." Their approach is simply to ignore the constraints of the Greek

approach to ratio and proportion, and proceed along their merry, modern way. One
moment we have a pure, dimensionless quantity called ratio, the next moment a con-
crete representation by line segments which can be manipulated via the method of
"application of areas."l74 To make sense of E—- X2 using this approach, we have
a number of options open to us! The argument already given is one; another is to

use three dimensions. The fact that g-' x2 .o suggests that the way to proceed

c
would be to transform the rectangular prism bx2 into an equal prism, but with one
side of length c¢. But, for the geometrical algebraist, this is utterly trivial.

All one has to do is apply I.45A to obtain the rectangle cd = xz. Thus bx2 = bcd,

2
bx” _ bed ' . . . . -
and s @ - bd: Of course, again, nothing like this appears anywhere in the
Elements, wherein three-dimensional techniques involving transformation of volumes
1
seem to be altogether absent. L Still it is very hard to imagine why, if the

"

Creeks in fact possessed a ''geometric arithmetic," they should have restricted its
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use to the plane. If a line times itself was a §quare, surely one could "multiply"
again and obtain a cube!176
There is another option that '"geometric arithmetic' makes available in dealing
with E—- xz, namely, to invert the order of operations: first divide x2 by ¢,
and then multiply by b. This has the added advantage that the operations are per-
formed, 3 la Heath, without ever having to leave the plane. Thus we see that, using
"geometric arithmetic," one has all the flexibility in the world, and a problem like
finding E—- x2 when given b:c and x2 is, in effect, just about as natural as
manipulating the expression algebraically! And indeed this is the reason for the
irresistible appeal carried by "geometric arithmetic'" with ''geometrical algebraists."
But let us look back a minute. We have seen that by restricting VI.29 to the
special case where the given parallelogram is a rectangle, by representing each of
the coefficients in the equations ax + E—xz = C by a different geometric entity,
and by employing dubious reasoning to interpret what is meant by 2—- x2, one can
indeed reconcile these equations with the statement of Propositions VI.28 and 29.
Notice that nothing has yet been said concerning the solution of these equations
using VI.28 and 29, although we are assured by Ivor Bulmer-Thomas that ". . . the
geometrical method is precisely equivalent to the algebraical method of completing

the square. . . .”177

We will consider the merits of this viewpoint momentarily,
but here we would simply like to say that judging from the above, it is not without
considerable effort that one can reconcile even the enunciations of VI.28, 29 with
the equations ax + E_XZ = C, let alone the proofs of these statements.

8. Let us now take a look at the solutions of the above equations using VI.28,
"

29 as a guide. According to Heath, we should find an '". . . exact correspondence

between Fuclid's geometrical and the ordinary algebraical method of solving the
178 b 2
"

equation[s] . . . But if we naively set about to solve ax + - X = C alge-
braically, we will see that the correspondence is far from "exact." For convenience
let C = dz, by using II.1l4, then, algebraically:
ax + l—)-xz = d2
e
%2 + B 5= cd’
b b
2.2 2 2 2
and completing the square, x2 + %?»x b B = %?» tea
4b2 L»bz
< + &2 z _ cbd2 i c2a2
2b 2 2
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S

L T e e
2b 2b

x = —.ca t v 4cbd2 + c2a2

2b

If, now, we look again at the proof of VI.29 (making all the necessary algebra-
ic substitutions, etc.) it soon becomes apparent that there must be some other "ex-
act" correspondence, for clearly this one does not work! Of course, anyone who
knows the first thing about Greek mathematics would have recognized at once that
this naive, but straightforward, algebraic approach was doomed to failure right from
the start. For there is nothing in Greek mathematics that bears even the slightest
resemblance (no matter how one looks at it) to the operation of multiplying both
sides of a geometric equality by a general ratio.179 So what, pray tell, is the
correspondence that Heath, Thomas, and others have in mind? To answer this, we must
first translate the proof of VI.29 into algebraic terms.

The first step in proving VI.29 was

to construct (see Fig. III.17) parallel-

ogram EL similar to D. Supposing now

all the parallelograms to be rectangles,

a ¢ a a2c . D o
EL =+ 77.>-=—-—— . Next we used VI.25
2 b2 4b E B

to construct parallelogram (now rectangle) X

MN equal to EL plus C = (dz) and si-

milar to D. Thus, as can be seen from
the diagram, we have MN = 5— + d" = Fig. III. 17

rg-x + %J[x + %%J. Now to obtain =x we must compute FN by using the fact that

b a c 2 f c a € 2 C a c 2
FN) (— J| = — + < = —- |— 4 = - = = | =—=+d7|-

ac 180
2b °
The corresponding algebra is obtained by completing the square in the equation
b
ax + E'xz = dz without altering the coefficients:
2 2
b 2 € a 2 e a
= + + =« = = = .
o X ax b A d” + b 4
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whence, E = \Jd~ + 5—

as above.

1"

And now what is the "exact correspondence' between this solution and Fuclid's?

According to Heath, it is due to the fact that Euclid geometrically obtains the quan-

tity %ﬁf- (the parallelogram--actually the rectangle--EL) in order to '"complete the
square." This seems to make sense when we look at the diagram and take note of the
fact that VI.25 is employed precisely in order to produce a gnomon equal to the given
rectilineal figure C that "fits" around parallelogram EL, thus "completing' the

figure. But does this correspondence go any further?

In algebra, the technique of completing the square has a definite object, namely
to factor the equation in the form (x + a)2 = b, whereupon taking square roots of
both sides, a solution is obtained. Thus completing the square, i.e., transforming
the equation px2 + gx = r into the form (x + a)2 = b has as its only raison
d'étre, the possibility of extracting square roots as the next step in the procedure.
What we find in the proof of VI.29, needless to say, is nothing of the kind! There
are no squares in the proof of VI.29 so, to begin with, it is a misnomer to speak in
this connection of '"completing the square.'" But beyond this, the whole idea behind
completing the square is totally foreign to the method of proof found in Euclid. The
only "factorizations'" that one can transcribe from the set-up in VI.29 (once one is
no longer dealing with general parallelograms) involve, as we saw, rectangles, e.g.,

2
C%?—+ a/2)(x + %%— = %ﬁ§-+ dz, not squares. If VI.29 involved "completing a square,’

one would expect to find IT.14 (the so called "equivalent of the extraction of the
81

1 . : :
square root') employed in the argument, but, of course, nothing even mildly resem-
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bling ITI.14 is ever used. Perhaps the best way to make our point is to give an
illustration of what '"completing the square" really looks like geometrically. 1In
doing so, another interesting question arises, namely, why is there nothing compar-
able to the following simple solution of a quadratic equation anywhere in Greek math-
ematics, if, as claimed, the Greeks solved equations geometrically?

To solve x2 + bx = C, first apply II.14 to get d2 = C. Next '"complete the

square' as follows:

x2 + bx = x2+2(g-x) = d2, b

182 * 2
hence, by II.4 , adding b s

2 —‘[:::::::::::
2
(292 . to both sides X d
2 4
produces a perfect square, s
2 b

; 5 _
1.4 x2 + Z(E-x) + L. 2 - - J e

2 A b X b

2
b2 _ 42,0 2 2
(x+2) d+4. 5
Geometrically this amounts z
Fig. III.18

to completing the diagram

below (cf. Fig. III.18).

Using I.47, we can find s such that d2 + (392 = s2 simply by constructing a right
triangle with d and b/2 as sides. It follows that (x + 302 = s2, hence
x + §-= s, and x = s - b/2.

As long as we are at it, we might as well make the additional observation that

this technique (mixed with a pince of '"'geometric arithmetic') will give a solution

L, b 12

to the general quadratic ax + Z’X = C. The idea here amounts to transforming the

given equation into another equation whose '"'squared" term has a coefficient of one,
; . 18 2

using what van der Waerden, et al., call a change of variable, 3 Thus x = yc,

by I1.45A, hence E—Xz = b§£>= by. Now use II.14 to obtain z2 = by, and I.45A again

to obtain dz = ax. This gives us the equation 22 + dz = C, which we solve as

we then work backwards noting that — x” = by = 22, which

above. Having found -

Z,
is known. Thus x2 = %’22, hence x is known, by II.1l4.
There is another, even simpler, solution to the general quadratic available to
us, based on an idea of Heath's. Recall that in section II, #5 we discussed Heath's
theory that the Greeks utilized ratios instead of magnitudes in order to solve alge-

braic equations, or, more generally, in order to circumvent the limitations imposed
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by the necessity of having to manipulate magnitudes in the context of two-, or at
most three-dimensional space. This theory would seem to suggest that the Greeks
recognized the '"validity'" of propositions like II.1-10 when applied to ratios, rather
than just to line segments. Indeed, the transference would seem to be automatic,
since, according to Heath, the Greeks viewed the operation of forming the rectangle
on two given lines as being completely equivalent to the operation of compounding
their "corresponding" ratios. But if this is true, the Greeks could also have solved
the equation ax2 + bx = C by doing exactly what Heath claims is done (but, in fact,
is not done) in VI,29, namely, by completing the square without altering the coeffi-

cients. Thus

ax2 + bx = ¢
2 b2 _ b2
ax~ + bx + i c + s
2
Gax + 27 = e + 2= (/)7 + () = &
2Va 2v/a
Vax + ol = s
2Va
fax = g -t
2vVa
b
s - 2
B 2/a
X = - .
Va

Notice that there is nothing problematic about interpreting any of these symbols be-
cause they are ratios--pure, dimensionless quantities that require no geometric
representation, The justification for the steps in the argument depends upon nothing
more than taking Heath's views seriously, and simply putting them into practice.
Thus writing (/E.)2 = ¢ simply requires a ratio-theoretic version of II.14, finding

2 . . . g . "
s, a ratio-theoretic version of I.47, dividing by /a, a ratio-theoretic counter-

s
part to I.45A, and so on.

Again, this is fantasy, not history, certainly not history of Greek mathematics,
but it clearly illustrates the kind of dangers that present themselves when one em-
ploys the full power of an unbridled '"geometric arithmetic" dressed a la grecque to
solve problems in ''geometric algebra.'" It also shows that it is not at all difficult,
using ''geometric arithmetic," to develop a geometric analogue to the algebraic tech-

nique of completing the square. Quite clearly this is not the method of Proposition
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VI.29!

There is still a good deal more that must be said concerning the algebraic in-
terpretation of the proof of VI.29. If we reread the statement of VI,29, it will be
observed that (unlike II.11, for example) nothing is said that would lead one to be-
lieve that the proposition is in any way concerned with finding something unknown,
i.e., algebraically, obtaining an explicit solution for the unknown line segment Xx.
Of course, finding x is mathematically equivalent to constructing the desired para-
llelogram referred to in the enunciation of VI.29, but, as a matter of fact, if we
reexamine the proof of VI.29, it will readily be seen that there is no reference to
the line x there either. Finally, if we turn to Heath's reconstruction, we begin
to see how misleading his claim (that there is an "exact correspondence' between
Euclid and the technique employed using algebra) really is. The '"correspondence'

consists, in fact, of one step in the algebraic solution to the equation! For, after

constructing parallelogram EL = [itf}’ see fig. III,17 above, which is added to
2 2

b .2 2 b .2 ac_g42,2ac
c c

both sides of the equation x” + ax = d”, we obtain X" + ax + 4{2 AN

12 2
The next step algebraically is [jg x + J%j' %J = d2 + %ﬁf" but geometrically

this has absolutely nothing to do with the proof in Euclid!

This same remark holds true for the solution that finds x by observing that

2 2
b _ac 2 _ _ [c lac 2 ac : .
(FN){C FN] = 7ﬁ;>+ d”, hence x = FN - TE = 5 {7ﬁ;~+ d } ET One will not find

it in Euclid! The fact is, and it is a significant fact that bears repeating, that
neither the statement nor the proof of VI.29 have anything to do with finding a cer-
tain x explicitly, rather they are concerned with the construction of a certain
parallelogram, Moreover, the means employed for performing that construction (pri-
marily VI.25) are very powerful and general, and, of course, they have to be in order
to handle a proposition in which one of the givens is an arbitrary rectilineal figure.
If, in fact, there were a good correspondence between VI.29 and the solution to the
general quadratic equation, one would expect to find a clear-cut geometric procedure
for comstructing the unknown x, i.e., one would expect to find something geometri-

cally comparable to the quadratic formula, What we find instead, is that not only

is there no such procedure given in the proof, but the proposition itself appears to

be only marginally concerned with producing that x at alll
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What should be, by now, manifestly clear is that the interpretation of Proposi-
tions VI.27-29 as solutions to algebraic equations has been made at considerable cost
to their geometric content. But, before closing this discussion, we should observe
one final feature in VI.29 that makes it highly unsuitable for 'solving an equation,”
namely its use of the given rectilineal figure C. As the reader is by now well
aware, the Greeks had Proposition II.14 at their disposal, so that, had they wanted
to, they could have replaced the given rectilineal figure C by a square, say d2.

Now if this is done, it is a relatively easy matter to obtain an explicit construc-
tion for x by computing FN - FE as above. UNot that anything of the kind is done
in Euclid; we are simply pointing out that it could have been done. The procedure
for constructing x involves nothing more than some straightforward applications of
"geometric arithmetic," which we leave for the reader's recreation.

As was mentioned earlier, VI.29 makes no use of Proposition II.1l4; instead it
uses the very general result of VI.25 in order to incorporate the given rectilineal
figure C into a larger parallelogram. This makes the problem of finding an explicit
construction for x a most unwieldy chore, for it, first of all, requires that we go
back to the proof of VI.25, which is badly botched in Fuclid, and work it out cor-
rectly.ls4 Since the proof of VI.25 ultimately depends on the triangulation of the
given figure C, (involving the repetition of a procedure n times depending on the
number of sides of the rectilineal fig. C), it is apparent that using this approach
to explicitly construct x would be horrendously complicated.

The point is, why start with a rectilineal figure at all? If one is interested
in solving a quadratic equation, then one is interested in magnitude (uéyeeog), not
shape (uop¢fi), and since we have a theorem (II.14) that tells us that every rectili-
near figure has the magnitude of a square figure, why not simply take d2(=C) as
given and be done with all the headaches. The answer to this is, of course, very
simple: Greek mathematicians were not interested in magnitude divorced from geome-
try, and, with the qualified exception of Book V, there is no theory of "pure magni-
tude" anywhere in the extant corpus of Greek mathematics.

The statement and proof of VI,29 are typical of what we find in Greek geometry,
insofar as they illustrate the manner in which a proposition is enunciated and demon-
strated via a chain of reasonings that relies on previously established general
principles, i.e., elements (oTotxeCa).lss In this all important respect, the Greek
method differs completely from the technique employed in solving a quadratic equation.

For whereas symbolic algebra uses a sequence of explicit operations and symbolic
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—btﬂbz—éac 5
x =

2a
the method typified by VI.29 produces only implicit constructions based on stoicheia.

manipulations to obtain an explicit result, i.e., a formula e.g.,

One can, of course, trace back through the maze of arguments and exhibit an explicit
construction in each specific case, but doing so does not reveal the actual modus

operandi of Greek geometry.

IAY

1. 1In the course of our analysis of the situation regarding the alleged solu-
tion by the Greeks of quadratic equations via Euclid II.11, II.14, VI.28, and VI.29,
we had occasion to consider a number of illusory, fanciful solutions in order to
illustrate the dangers inherent in the process of rendering carelessly Greek geome-
tric procedures into algebraic language. The specific culprit at the root of this

confusion is ''geometric arithmetic,"

which imputes to the Greek mode of procedure
regarding ratios, magnitudes, and their respective arithmetic relations, a degree

of flexibility, generality, and abstractness that it apparently never had. In this
section we will pursue our analysis of this interpretive line still further by show-
ing that if Pandora's box containing 'geometric arithmetic" is opened all the way
(and why shouldn't it?), the phantoms that emerge soon make a shambles out of any
sane attempt to understand Greek mathematics in its own terms.

The first item on our agenda involves the possibility of extending the results
of two-dimensional ''geometric algebra'" to the third dimension. As we remarked ear-
lier, there is scarcely any evidence that Greek geometers ever extended the results
of Book II or the "application of areas' to three dimensions (or the "application of
volumes'). However, lest the reader surmise that we are about to engage on an
imaginary and unwarranted leap into the wild blue yonder, we must hasten to point out
that, according to B. L. van der Waerden, not only did the Greeks extend ‘''geometric

"

algebra'" to three-space, but this was the very focus of the ancient Greek researches

into solid geometry. Let us begin by examining the argument in detail. As evidence

for the above claim, van der Waerden makes an oblique reference to an obscure passage
from the Epinomis (a sequel to Plato's Laws), which, he assures us, is 'counted as

one of Plato's works but not published until after his death. . ."186

The passage
in its full context reads as follows:
Hence there will be a need for several sciences. The
first and most important of them is likewise that which treats

of pure numbers--not numbers concreted in bodies, but the
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whole generation of the series of odd and even, and the
effects which it contributes to the nature of things. When
all this has been mastered, next in order comes what is called
by the very ludicrous name mensuration (yewpetp€a), but is
really a manifest assimilation to one another of numbers which
are naturally dissimilar, effected by reference to areas. Now
to a man who can comprehend this, it will be plain that this
is no mere feat of human skill, but a miracle of God's con-
trivance, Next, numbers raised to the third power and thus
presenting an analogy with three-dimensional things. Here
again he assimilates the dissimilar by a second science, which
those who hit on the discovery have named stereometry [the
gauging of solids], a device of God's contriving which breeds
amazement in those who fix their gaze on it and consider how
universal nature molds form and type by the constant revolu-
tion of potency and its converse about the double in the vari-
ous progressions. The first example of this ratio of the
double in the advancing number series is that of 1 to 2; double
of this is the ratio of their second powers [1:4], and double
of this again the advance to the solid and tangible, as we
proceed from 1 to 8 [1, 2, 22, 23]; the advance to a mean of
the double, that mean which is equidistant from lesser and
greater term [the arithmetical], or the other mean [the har-
monic] which exceeds the one term and is itself exceeded by
the other by the same fraction of the respective terms--these
ratios of 3:2 and 4:3 will be found as means between 6 and
12--why, in the potency of the mean between these terms [6,12],
with its double sense, we have a gift from the blessed choir
of the Muses to which mankind owes the boon of the play of
consonance and measure, with all they contribute to rhythm
and melody. (990C - 991B).187
To understand van der Waerden's interpretation of this passage, we must consult
the "arithmetical Books, VII-IX, of the Elements. In Definition VII.Zl188 of the
Elements, similar plane and solid numbers are defined as being those with propor-

tional sides. Thus the plane numbers ab and cd are similar if a:c = b:d, while the

same is true of the solid numbers abc and def, if a:d = b:e = c:f. Now Propositions
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VIII.18, and VIII.20 amount to asserting that two plane numbers are similar

if and only if a mean proportional (number) exists between them, while Propositions

v111.19"%) ana vrrr.21'%?

amount to asserting that two solid numbers are similar if
and only if two mean proportionals (numbers) lie between them,

Based on this, van der Waerden offers the following interpretation for what is
meant by mensuration (yeouetp{a) and stereometry (OTspeoueTpia).193 A well-known
and simple construction in plane geometry shows how, given any two lines (which may
or may not represent numbers), one can construct their geometric mean (cf, EE, VI.13).
By VIII.18 and 20, this mean will itself be a number if and only if the original
lines, representing numbers, were similar. What was for a long time not known, how-
ever, was how, given any two lines, to construct two other lines in continuous pro-
portion with the first two, i.e., how to insert two means between two given 1ines.194
According to Proclus, Hippocrates of Chios had shown that solving this problem would
yield a solution to the famous Delian problem of doubling a given cube, i.e., finding
the side of a cube double in volume to a given cube.195 Thus doubling the cube is
equivalent to inserting two mean proportionals between given lines, which, by VIII.19
and 21, will yield means which are numbers if and only if the given lines represent
similar solid numbers to begin with. Van der Waerden therefore, argues that:

. . . solid geometry is defined [in the Epinomis, and
hence by Plato] as "the new art, which teaches us how to make
similar in this sense two numbers which, as given, are not
similar,'" 1In particular therefore, solid geometry shows how
to transform any number into a cube, and hence how to con-
struct two cubes the ratijio of whose volumes is equal to that
of two arbitrary integers, For the Epinomis, this is evident-
ly the problem of solid geometry; no other definition of this
subject is given.

This testimony he then couples with the following passages from Plato's Republic:

[Geometricians] speak, as you doubtless know, in terms
redolent of the workshop. As if they were engaged in action,
and had no other aim in view in all their reasoning, they talk
of squaring, applying, extending and the like, whereas, I pre-
sume, the real object of the whole science is knowledge,
(527a)%7

After plane geometry, I said, we proceeded at once to

solids in revolution, instead of taking solids in themselves;
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whereas after the second dimension the third, which is con-
cerned with cubes and dimensions of depth, ought to have fol-
lowed.
That is true, Socrates; but so little seems to have been
discovered as yet about these subjects. (528b)198
Van der Waerden's translation replaces 'concerned with cubes and dimensions of
depth" in the above passage by '"the enlarging of cubes and everything that has depth)'

which appears to be due to a misreading of the word &ngv, which literally means

"increase," but in this context the increase refers to dimension not size.

Putting these two sources together, van der Waerden concludes:

Confrontation of this definition [in the Epinois] with
the passage in Plato's Republic, in which the purpose of solid
geometry is defined as 'the enlargement of cubes and of all
things which have depth," shows that for Plato himself, the
enlargement of a cube in a given ratio is also the outstanding
problem of solid geometry, And now it also becomes clear [!]
why he can write that these things do "not appear to have been
investigated yet." Apparently the solution of Archytas had
not yet been obtained, at least not yet known in Athens,
around 375, when Plato was making his plans for The Republic.
Perhaps Plato got the news of this solution just before the
publication of The Republic, and was then led to the more op-
timistic tone noticeable at the end of the passage quoted
above200 [which, following his tramslation, reads: ". . .
nevertheless, in the face of all these obstacles [these stu-
dies] force their way by their inherent charm and it would not

surprise us if the truth about them were made apparent"].201
To this we can only say, along with the sentiment expressed in the final sentence
of van der Waerden's quotation, '"perhaps indeed." Surely this argument, based as it
is on the flimsiest of evidence, should be taken for what it is, namely an interest-
ing, bold, nay, wild conjecture that need not be taken very seriously, Certainly it
is not the sort of stuff upon which one would want to erect a broad, sweeping theory
about the character of Greek geometry! And yet this is precisely what van der Waer-
den goes on doing by spinning a wild fantasy based on his conviction that the problem
of duplicating the cube practically defined the scope of solid geometry for the

Greeks! Thus he continues:
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In the above passage, Plato mentioned as the most important
planimetric operations, to change an area into a square
(tetpoywvbreyv), the application and the addition of areas.
Now, all these operations come from geometric algebra; chang-
ing an arbitrary rectilinear area F into a square amounts to
solving the pure quadratic 5? = F; the application of an
‘area F to a line a, without excess or deficiency, reduces
to the solution of the linear equation ax = F; with excess
or with deficiency, it leads to the solution of an arbitrary
quadratic equation or to the solution of a system of 2 equa-

tions with 2 unknowns of the form
xt+ty=a
xy=F xy=F.

Finally, the "adding" of areas or of lines is after all

only the geometric equivalent of addition.202

But if we reexamine the passage of Plato, the conclusion that this is a state-

ment about which operations are most important in plane geometry, would seem to be

unwarranted on van der Waerden's part. In fact it appears to be no more than an off-

hand remark, the point of which has to do with the language geometers employ, not

the nature of geometry. However, van der Waerden uses this remark to conclude:

Thus we see, that what Plato calls plane geometry [!] is

mainly the geometric algebra of the Pythagoreans.203

And then he states:

It is not surprising therefore that he [Plato] looks upon
solid geometry as the generalization of geometric algebra to
space [!], i.e., as the geometric interpretation of the calcu-
lation with products of three factors each, The first new
problem that arises here, is the solution of the pure cubic

§? =V, i.e., the construction of a cube of given volume. It
is therefore entirely logical to consider this as the central
problem of solid geometry [!]. Obviously it is not the only
problem; there are also equations of the form x2(§_+ g) =V

"

and other similar ones. That is why Plato adds the words "and
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everything which has depth" to '"the enlargement of cubes,"
thus opening the way for other problems.

For us, the most important result of this clarification
is that we recognize more and more clearly the line of devel-
opment of geometric algebra from the Babylonians, by way of

the Pythagoreans, to the men of Plato's time.zo4

This sort of creatively manufactured evidence 'is history-writing in its worst
form."?‘o5 What we ought to 'recognize more and more clearly" is that to begin with,
there are grave problems involved in the interpretation of much of Greek mathematics
as being "algebraically" motivated. If Greek mathematics is algebraic it simply

makes no sense. If nothing else, this is the inescapable conclusion of the preceed-

ing pages. But if this be the case, then there is no longer any basis for accepting

the theory that Babylonian mathematics, which, according to the communis opinio doc-
torum, was algebraic, was transmitted to ancient Greece and constituted the rational
kernel of Greek mathematics.206 On this issue we can do no better than listen to

Szab6:

Danach sieht also Neugebauers historische Konstruktion folgen-
dermassen aus,

Die Griechen haben zunichst eine Theorie vorgefunden, die
"babylonische Algebra', die fiir sie des Ubernehmens gar nicht
war, nachdem diese ihnen in ihren Schwierigkeiten nicht behil-
flich sein konnte. Darum haben sie diese 'als solche' auch
nicht {ibernommen. Aber auf irgendeine ratselhafte Weise--
wieso dies mdglich war, erkldrt uns Neugebauer nicht--haben
die Griechen doch herausbekommen dass sie diese fiir sie, an
sich gar nicht interessante 'babylonische Algebra' nur ins
Geometrische i{ibersetzen sollen, und sogleich erhalten sie
darin ein niitzliches Mittel, um ihre Schwierigkeiten der
Inkommensurabilit#t zu iiberwinden, So entstand 'Fuklids geo-
metrische Algebra babylonischen Ursprungs'. Man wird wohl
nicht behaupten, dass diese Konstruktion 'einfach' oder 'ein-
leuchtend' ware.207
It is in the same work that Szabd points out the similarities between "Babylon-

ian algebra' and Diophantus's algebra, both of which operate with specific, rational

numbers, unlike the so-called ''geometrical algebra' of the Greeks.208 Finally, sum-

ming up his criticism of the Neugebauer-van der Waerden views, Szab8 states:
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"Warum haben die Griechen die babylonische Algebra nicht
als solche iibernommen, sondern geometrisch eingekeidet?"
fragt van der Waerden in seiner Schilderung von Neugebauers
Theorie. Ich glaube man konnte mit den selben Recht auch fra-
gen: Wie hdtten die Griechen die 'babylonische Algebra als
solche' (ohne Geometrisierung!) tibernehmen kdnnen? Was war
tiberhaupt jene 'Algebra' die sie mit der Geometrisierung 'vSl-
lig unterdriickt' (?) hatten?

Meiner Ansicht nach [and we fully concur] ist die ganze
historische Theorie von der Ubernahme der '"babylonischen Al-
gebra' bzw. von ihrer Geometrisierung durch die Pythagoreer
um kein Haar besser begriindet, als die Datierung dieser Uber-
nahme auf die Zeit 'nur um wenige Jahre' nach dem Fragment B
4 des Archytas.209

As for the Delian problem, there is, of course, ample evidence indicating that
it was in fact the subject of immense fascination for Greek geometers.zlo There is
no good reason to think, however, that the problem of doubling the cube had wide-
spread implications for the subject of solid geometry as a whole (the Epinomis pas-
sage is a bad reason, and the excerpts from the Republic no reason at all), and there
is even less reason to believe that "it arose from the translation of the Babylonian

cubic equation 3? = V into spacial geometric algebra."211

2. There is also absolutely no reason to have to turn to sources like these in
order to form an assessment of the character of Greek solid geometry--there are hun-
dreds of pages of Greek stereometrical arguments extant, running the gamut from
Archytas's solution to the Delian problem,212 through Books XI-XIII of the Elements,

down to Archimedes' works (e.g. On the Sphere and Cylinder).213 In Book XI, for

example, which undoubtedly contains some of the oldest material on the subject, we

find clear parallels to the two-dimensional techniques employed in Books I and VI,
(Compare, e.g., I.36 and XI.31,214 or VI.1 and XI.32).215 A further step is taken in
Book XII where the "method of exhaustion" is introduced for the first time in the
Elements,216 making it possible to extend many of the results of Book XI to solids

bounded by curvilinear surfaces, e.g., cones, cylinders, spheres, etc. (Compare

217 218 219

XT.33 with XIi.lZ and XII,18), Finally, in Book XIII, the Platonic solids
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are inscribed in a given sphere and the lengths of each of their sides compared,
using the scheme (for the case of the icosahedron and dodecahedron) established in

Book X for classifying incomensurable magnitudes.220

Certainly there is more than
enough source material available here to enable one to formulate a reasonably sound
overall conception of three-dimensional Greek geometry without having to rely on wild
speculation about obscure and problematic passages whose principal point, moreover,
has nothing to do with the specific character of Greek geometry at all!

If it appears to the reader that van der Waerden has gone way out of his way to
advance this theory of his, it might then seem reasonable to ask why. The answer
seems to be clear enough. TFor, if Greek geometers were doing "algebra in disguise'
(whether Babylonian or not), there is no conceivable reason for them to have
restricted this "algebra" to two dimensions, particularly since, as we shall soon
see, almost everything that we find in two-dimensional ''geometric algebra" can be
extended quite effortlessly to dimension three! Of course, van der Waerden would
probably only take this as a confirmation of the argument he has made all along, but
this is hardly the case. None of the arguments we are about to present appears any-
where in the extant corpus of Greek mathematics, nor, we submit, is there anything
even remotely similar. Moreover, many of these three-dimensional techniques can be
employed to obtain simple (non-Greek) solutions to "algebraic'" problems that evi-
dently cost the Greeks a good deal of effort. We present these reasonings here as a

kind of reductio ad absurdum meant to display peremptorily all that is wrong method-

ologically and historically with the arguments of the ''geometrical algebraists."

In the last section, we showed that it was a simple matter to extend II.1 to
three dimensions, and that, in fact, using "application of areas' one could obtain
a geometric proof of the algebraic identity:

a(B+C+D . . .)=aB+ aC + aD + .

where B, C, D, etc. represent 'products."”

One can also obtain three-dimensional ver- a

sions of many other results in Book II, e.g.

11.4,221 which algebraically just says that

(a + b)2 = az + 2ab + b2. The corresponding : °

3-D result, (a + b)3 = a3 + 3azb + 3ab2 + b3

can be proven using the diagram of II.4, (cf. Pig. IV.1
Fig. IV.1l) appropriately adapted to one di-

mension higher (Fig. IV.2). Thus instead of passing lines through the square, we
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Fig. IV.2

pass three planes through the cube, dividing it into eight pieces. Adding them to-
gether gives the desired result! No comment.

Let us now go back and reconsider the problem of solving the general quadratic
equation. The reader will recall that we had to struggle a good deal to interpret
VI.28 and 29 as solutions to the pair of equations ax ¥ E»xz = C, and that once
this was accomplished the alleged correspondence between the Euclidean proof and the
algebraic technique of completing the square was, at best, superficial. 1In the
course of that analysis we offered some "alternative" solutions in order to give just
some idea of how far off the mark this whole interpretation really was.zz2 What we
would like to show now is that if we allow ourselves the freedom to do 'geometric
algebra' in three-dimensions, according to van der Waerden's injunctions, it is ab-
solutely child's play to produce a solution for the general quadratic, a solution
which the Greeks could not have missed, had they been doing "3-D geometrical algebra"
3 la van der Waerden!

Let us begin with the "usual" form for the quadratic, namely ax2 + bx = c.

When we encountered this equation earlier, we either had to ignore the fact that, in
two dimensions, it makes no sense or else (following Heath, et al.) we had to rewrite
it in the awkward form %—xz I rx = S, which, as we saw, took a good bit of fancy
stepping to unravel. But, if we allow ourselves the added "elbow-room" provided by

3-space, none of these difficulties arises at all, as there is a very natural inter-

: 2 . : .
pretation for ax” + bx = ¢ in this setting, namely, let a, b, and c represent one,
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two, and three dimensional magnitudes respectively. In the 'geometric arithmetic,"”
the paradigms one would employ for this purpose would be lines, rectangles, and red-
tangular solids (Fig., IV.3). To

solve ax2 + bx = ¢, apply I.45A

to obtain b = ap, ¢ = ars, Hence

ax2 + apx = ars thus a(x2 + px) =

ars, by the 3-D version of IIL.1, T 5
2 a I Kbt &

so x° + px = rs (Equals divided 2 —
by equals are equal), and rs = mz,

by II.14, .°, xz + px = mz. And

this is precisely the equation that
we already solved earlier by means Fig. IV.3
of IT.11! Again, no comment,

This same argument can be used, without resorting to the third dimension, if we
are willing to interpret the coefficients in the manner that Heath and the other geo-
metrical algebraists do. Thus if a = %— is a ratio of lines, b a line, and ¢ a
rectilineal figure (hence = dz, by II.14), the equation becomes %’Xz + bx = d2.
This is exactly the formulation given by Heath in connection with VI.29, only that
now we apply a touch of 'geometric arithmetic' instead of the "convoluted'" argument
in Euclid, We begin by applying I.45A to obtain bx = my and E? = z., Thus the
m(z +y),

equation becomes mz + my = dz. Now use II,1 to write mz + my
2
m(z + y) = d°,

and, dividing both sides by m,
2

z +y~= o and since y = %?3 we obtain
2 2

x g bx_d°

n m m

Now multiply both sides by n, and then reapply II.l:

2 2
alX 42X -nd
n m m
nx2 nbx nd2
._—+..—=_'
n m m
nb 2 nd2

Finally, let p = o and 1" = e by using I.45A and II.14 respectively. This
yields
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x2 + px = r2 which, as before, is solved using the

argument in II,11!

These arguments, we believe, conclusively ghow that the claim that propositions
like VI.28, 29 were motivated by the desire to obtain a solution to the general qua-
dratic equation is a historically empty claim. Evidently the Greek way of looking
at these things was significantly different from our own, because any attempt to
press the "analogy'" between their approach and the technique used in an algebraic
solution leads to a historical and mathematical dead end; moreover the willingness
to use just a few light assumptions drawn from 'geometric arithmetic" suffices to
produce relatively simple solutions to quadratics that allow one to bypass entirely
the proportion theory of Book VI. This too, then, is non-Greek. For surely those
"god-like men of o0ld" (Proclus's term for the Pythagoreans) would not have missed
these easy solutions if they were interested in solving general equations involving
the abstract notion of magnitude as number. In this regard, one should recall the
passages in Plutarch that speak in such reverent terms about Proposition VI,25 of
the Elements,z23 which, as we saw, was one of the two key ingredients in the proof
of VI,29. TIs it not strange, then, (if the Greeks were primarily interested in
solving equations, that is) that it is VI,25, and not VI,28, 29, that is so lauded
as a profound discovery? After all, the algebraic content in VI.25 is practically
nil,224 and yet it is esteemed as a result of transcendent metaphysical importance,
its discovery being attributed to Pythagoras himself, But, of course, who would pose
such a question seriously? It should be perfectly clear to the historically minded
reader why VI.25 and not VI,29, is alluded to in Plutarch, It is our view that this
is totally consistent with a balanced and sane view of Greek geometry, which points
to the obvious fact that, from a geometric standpoint, VI,25 bears all the markings
of a seminal result, whereas VI.29 is, comparatively speaking, onlyof incidental in-
terest,

Now it might be objected (and rightfully so) that the 3-dimensional solution
concocted above goes too far in the direction of pure magnitude, so that instead of
offering a quasi-general "Greek-style" solution it really only strips the problem
down to bare bones (lines, rectangles, and rectangular solids) thereby losing most of
its general geometric content, What we will now show is that it is not at all diffi-
cult to develop the necessary tools in order to conclude that there is no loss of
generality involved in taking b and c to be a rectangle and a rectangular solid

respectivelv as in our solution above to ax2 + bx = ¢, To do this, it suffices to
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develop the three-dimensional analogues for I,45A and II.14. The 3-D version of
1.45A reads:

To a given straight line to apply a rectangular solid

equal to a given rectilineal solid. (Notice that we have

taken the given angle in I.45A to be a right angle simply

because, for "geometric arithmetic," no other angle matters.)
’ g > §

Now a "rectilineal solid figure," i.e., a polyhedron, can be "triangulated,"
which here means decomposed into solid triangles, or pyramids (Fig. IV.4). According
to Archimedes, the volume
of the pyramid was first
discovered by Democritus
(ca. 460 B.C.), who learned

that the pyramid is one

third part of the prism,
having the same base and

24 (This

equal height,

h />
Al

result also appears as a ‘
Porism to Euclid XII.7.)
Thus each of the pyramids
that appears in the "tri- Fig. IV.4
angulation'" of the given
rectilineal solid can be computed as a product: V = %—Bh = %—abh, as B = %;— (cf.
Fig. IV.5). Using I.45A proper we can "apply" this 'rectangular solid" to the given
line p:

%—abh = pqr. Doing
this for each of the pyra-

mids we obtain: Rect. Fig. =

pqlrl + pqzr2 +...%p- .
+ . . .

(qlr1 + 4,7, ), by our / l N
3-D version of II.1. Now apply
I.45A to each of the rectangles
in parenthe:sz=s to obtain p- Fig. IV.5

+ =
(qs; +gs, + . . .) = pq (s +
s, + .. .). by IL.l proper. Adding the lines ¢ , +s, 26+ . . . = s yields the de-

2
sired 'rectangular solid" pgs.
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The 3-D version of II,1l4 reads:

To construct a cube equal to a given rectilineal solid. To
find this we simply apply our 3-D I.45A above to transform the given rectilineal
solid to a rectangular solid pqr. By II.1l4 proper, we can replace pq by §? thus
obtaining £§?~ Now we can apply one of several techniques available to insert two
mean proportionals between s and r. Thus,

s:x = x:y = y:r, By VI,16,

x2 = sy and Xy = sr.

Hence x3 = sxy and s'r = pqr. Thus we have rather easily found a cube equal to
the given rectilineal solid.

Using these ready devices, we can now see that there is very little added dif-
ficulty in solving the equation ax2 + bx = ¢, where a 1is a line, b an arbitrary
plane rectilineal figure, and c¢ an arbitrary rectilineal solid. For by using I.45A
and its three-dimensional analogue, there is no loss in generality in taking b and
c tobe arectangle and a rectangular solid as we did in our original solution. The
3-D version of II.14 gives, of course, an immediate solution to the equation 3? = cy
where ¢ is an arbitrary rectilineal solid!

And the moral is: that ain't what the Greeks were doing.

Conclusion
The tally is clear. The standard interpretation of the history of ancient Greek
mathematics is wrong on all counts, not 'just' historical, philosophical, and lin-
guistic, but also, significantly enough, mathematical. Greek geometry, in general,

and the problem of "application of areas,"

in particular, is not about solving equa-
tions, but rather about the study of the space in which we live and its properties,
including its metrical properties, by means of sui generis, Greek geometric procedures
which, for the Greek were not recudible to a simpler, arithmetic-algebraic modus
operandi, Greek mathematics is not camouflaged algebra. It is essentially Greek
geometry. The Greeks did not hide their algebraic line of reasoning behind the
clumsy shroud of geometrical expression. There is nothing mysterious and unGreek
lurking in hiding in the background of Greek geometry. In general, when a culture
cannot say something it remains silent. This is true of the Greeks too. '"Part of
being ignorant of something is being ignorant of your ignorance. If you know that

you are ignorant, your ignorance stricto sensu has disappeared, And the Greeks,

clearly, did not know that they did not know algebra. So they did not hide their
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ignorance behind a geometrical screen"zz6
There is not one trace of authentic algebraic equations in classical Greek

geometry., This includes, needless to say, Apollonius's Conics and Archimedes'

NEPI EAIKON, as well as Archimedes' other works with which, however, we could not
deal in this study. We chose instead to focus on the Elements for rather obvious
reasons, having to do with the central place it occupies in the history of Greek
mathematics in particular and that of Western mathematics in general, its encyclope-
die, all-inclusive elementary (fundamental) character that enabled it to become the
prototype of all postulatory-deductive treatises in the West up to Newton's Philoso-

phiae Naturalis Principia Mathematica and beyond, and because the author of the

Elements, Orotobxeudtn , was generally respectful of the tradition that he incorpor-
ated and systematized, This mathematical tradition is most certainly, essentially
geometric, not algebraic. And so, since there are substantive differences between
the geometric and the algebraic language and way of reasoning, introducing algebraic
symbols and manipulations into Greek mathematics, transcribing geometrical proposi-
tions by means of algebraic equations, reverting to algebraic notations and trans-
formations whenever the Greek way of doing things seems 'awkward" and "cumbersome"
to the modern mathematician amounts to an utterly ahistorical procedure in the
exegesis of Greek mathematics and should, therefore, be avoided like anathema.

The important differences between the language of geometry and that of algebra
should be- kept in mind.227 A specific language (in this case, Greek) is not an
indifferent, neutral, purely abstract, universal mantle that can drape and accomo-
date equally well any conceptual content." To a greater or lesser degree every

language offers its own reading of life."228

To comprehend Grecek mathematics, the
historian must insinuate himself into the otherness that is the Greek mathematical
universe of discourse., Any procedure that aims at understanding Greek mathematics
qua Greek phenomenon cannot adopt a hermeneutics that bodies forth the pliant, flex-
ible, supremely malleable and moldable, indefinite, apeiron-like, neutral slime of
the symbolic, algebraic world order. Thoughts, including mathematical thoughts, are
not born naked to be later clothed in any indefinite, impartial, neutral garb.
Though to understand is to translate, there are good and bad translatioms. It
is possible to argue that what historians of mathematics of the ilk criticized in
this essay have been doing in discussing ancient mathematical texts is not sympathe-
tic translation (interpretation), but rather transmutation (perhaps transubstantia-
tion), i.e., transposition of the original verbal, rhetorical text into a non-verbal

sign system, in this case the symbolic, algebraic system.229 Indeed, the vulgate
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of the typical modern manufacturer of historical studies in the domain of the history
of mathematics has been algebra. It has been a most unhappy choice.

All interpretation is translation, but there are faithful translations (inter-
pretations) and transmutations, which betray the original text by subjecting it to
the tensions and potentialities of a foreign, non-verbal language system, A single
example should suffice here. Proposition II.4 of the Elements (which we encountered

before) reads:

If a straight line be cut at random, the square on the

whole is equal to the squares on the segments and twice the

rectangle contained by the segments.zso

This has traditionally been transcribed (as we saw) by Heath, van der Waerden,

and others as (1) (a + b)2 = az + b2 + 2ab, and complete equivalence between the two

expressions was claimed. This is, strictly Speaking, not true. Once we have the
formulaic transcription, we also have indefinitely many other algebraic identities

obtainable from it by means of the standard rules of algebraic manipulation; for

example,
(a + b)2 - 2ab = az + b2
a+b= /az + b2 + 2ab
(a + b)? - v?

2 = a + 2b, etc., etc.

These trivial consequences of (1) are not at all obvious and immediate (one
could write some that would not even be obtainable) in the rhetorical, geometrical
Fuclidean enunciation. Add to this the fact that in Euclid, the proof of the claim
is given by means of the transformations performed on a geometrical diagram, which

in its completed form looks like the following figure,
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and it becomes easy to see that there is a world of difference between the algebraic
formulation, on the one hand, and Fuclid's rhetorical enunciation and its geometrical
proof, on the other hand. The former is supremely abstract and can undergo freely
the innumerable manipulations of algebraic transformations, while the latter is in-
herently more limited by its verbality, syntax, and the spatial constraints of the
Fuclidean diagram accompanying and being an integral part of the proof. Ordinary

" completely equivalent" to

language and two- or three-dimensional diagrams are not
their algebraic transmutations. Greek mathematical language and the modern algebraic
language are not equivalent.

There is an important distinction, then, between intra-language translation and
inter-language transmutation. The former is the acceptable historical hermeneutics,
the latter is ahistorical by definition. Algebraic symbols are monosemic, while or-
dinary language constructs are typically polysemic. The letters of Euclidean proofs
are not really symbols, they are rather proper names and thus both much richer and
more circumscribed than the dry, exact, abstract algebraic symbols used to transcribe
them and the proofs in which they are embodied. The Greek language is richer and,
therefore, more ambiguous, mysterious, equivocal, and much less precise than the sym-
bolism of algebra used to "translate' it.

It is fair to state that the mathematician's approach to the history of mathe-
matics has traditionally been synchronic, horizontal, while what is clearly needed
is a diachronic, vertical approach, whthout which it is not the history of mathema-
tics that is written but rather the mathematics of history. If by mathesis we mean
the analytical reasonings represented by the new way of doing mathematics begun in
the sixteenth and seventeenth centuries by (primarily) Viete, Descartes, and Fermat,

the way which one of us called the '"mos per symbola”,231 then, clearly, Lexis non est

mathesis.

It has been argued that most contemporary historians of mathematics are Platon-
ists in their approach.232 They look in the past of mathematics for the eternally
true, the unchanging, the constant. Also, culture was defined "topologically" as

nZ33 This definition

"a sequence of translations and transformations of constants.
is obviously an ex post facto construct of the interpreter of culture. Speaking of
constants is possible only after transformations were performed which, to the eye of
hermeneutics, have left invariants. It makes no sense to speak of constants in the
absence of change. And the historian is primarily interested in the event of change.

What is preserved is important, but it can be assessed only in light of what has

changed. To speak of constants, then, makes sense only because there are variables.
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And historical assessment involves taking stock primarily of variability., If nothing
changes there is no history.

Specifically, after algebra it is possible to find its rational kernel in geo-
metry, thereby identifying, as it were, a constant; doing so, however, amounts to
overlooking the very change that took place in the creation of algebra. This
approach, therefore, that might sit well with the structural anthropologist is self-
defeating (because blinding) for the historian. Victor Hugo is reported to have

said: 'Défense de déposer de la musique au long de cette poésie."z34

Mutatis
mutandis, one can say, ''Défense de déposer de 1'algébre au long de la géométrie
grecque''!

We feel that in the preceding pages we have really put forward a truism, a rudi-
mentary principle, but one whose crucial historiographic significance has tradition-
ally been overlooked by those who have been writing the history of ancient mathema-
tics. The damaging consequences of this oversight can hardly be overestimated. In
any case, the reader who has accompanied us thus far will surely agree with us that
the preceding constitutes an appropriate funeral for the variegated views embodied

1

in the old and respectable historiographic label of "geometric algebra.'" Fecimus

quod potuimus, faciant meliora potentes. And so, let us pray. a5 - IR B

I

AR 7 pw tan. kvpte ¢Aénoov. Requiescat in pace.
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5An early example is Paul Tannery's 1882 study (Mémoires Scientifiques, Vol. 1

(1912), pp. 254-280), entitled "De la solution géométrique des problemes du second
degré avant Euclide."

96The Exact Sciences in Antiquity, p. 143.

97H. G. Zeuthen, Geschichte der Mathematik im Altertum und Mittelalter

(Copenhagen: Andr. Fred Host & Son, 1896), p. 56.

9?@@, vol. 3, p. 5.

99Proclus, A Commentary on the First Book of Euclid's Elements, tr. Glenn R.
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100 ;
Walter Burkert, Lore and Science in Ancient Pythagoreanism, tr. Edwin L.

Minar, Jr. (Cambridge, Massachusetts: Harvard University Press, 1972), pp. 449-457,
passim.

101
Plutarch, Plutarch's Moralia in 15 volumes, vol. IX, tr. Edwin L. Minar,

F. H. Sandbach, and W. C. Helmhold (Cambridge, Mass./London: Harvard University
Press/William Heinemann Ltd., 1961), Table-Talk, VIII.2, 720A.

10222, vol. 1, p. 344.

lOBPlutarch, Zghlg:?glk, VITT.2, 720A and B. Cf. also Gregory Vlastos, B}atqig

Universe (Seattle: University of Washington Press, 1975), for a provocative dis-
cussion of the forces that influenced the composition of the Timaeus.

1OAPlutarch, Plutarch's Moralia, Vol. XIV, tr. Benedict Einarson and Phillip H.

DeLacy (Cambridge, Mass./London: Harvard University Press/William Heinemann Ltd.,

1967), A Pleasant Life TImpossible, 1094 B and C. A more extended version of the

story about Archimedes running from the bath is given by Vitruvius in De Architectura,
for which cf. Thomas, SGM, Vol. 2, pp. 36-39.

1OSHeath in EE, vol. 1, pp. 372-73.

106 i e
Heath uses the term transformation of areas to denote those specific geo-

' Our term is

metric operations which we have been calling "geometric arithmetic.’
meant to emphasize the role these operations supposedly play in the "geometric
algebra,” i.e., their content, rather than their geometric form. Cf. EE, vol. 1,

pp. 346-47.
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107The appropriate algebraic identities appear in Zeuthen (Die Lehre von den

Kegelschnitten im Altertum, p. 12) and Heath (EE, vol. 1, pp. 372-73).

loggﬁ., n. 12 above.

109gg, vo1. 1, p. 341.

1044, , p. 339,

111

Proposition I.31: 'Through a given point to draw a straight line parallel

to a given straight line" (ibid., p. 315).

2Proposition I1.29: "A straight line falling on parallel straight lines makes
the alternate angles equal to one another, the exterior angle equal to the interior
and opposite angle, and the interior angles on the same side equal to two right
angles'" (ibid., p. 311).

113Postulate 5: "That, if a straight line falling on two straight lines make

the interior angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which are the angles less than
the two right angles'" (ibid., p. 155). For a discussion of some of the history sur-
rounding Postulate 5 cf. ibid., pp. 202-220.

114Proposition I.15: "If two straight lines cut one another, they make the

vertical angles equal to one another" (ibid., p. 277).

Wop44., p. 340.

116Ibid., p. 345.

7 2 -
i Definition I.19: "Rectilineal figures [ZxAuatoa ev8iypaupal] are those which

are contained by straight lines ..." (ibid., p. 187).

1lgProclus, Commentary on Euclid, p. 335.
llgﬂﬁ, vol. 2, p. 253.
120 o " ; ’ ; : . "
Proposition VI.13: To two given straight lines to find amean proportional
(ibid., p. 216).
121 L " . ; ; g 0,8
Proposition VI.18: On a given straight line to describe a rectilineal

figure similar and similarly situated to a given rectilineal figure" (ibid., p. 229).
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122Proposition VI.19: "Similar triangles are to one another in the duplicate

ratio of the corresponding sides" (ibid., p. 232). Porism: "From this it is mani-
fest that, if three straight lines be proportional, then, as the first is to the
third, so is the figure described on the first to that which is similar and simi-
larly described on the second" (ibid., p. 233). As Heath points out (ibid., p. 234),
the porism is really out of place here and should follow VI.20 instead.

123Proposition VI.1l: "Triangles and parallelograms which are under the same

height are to one another as their bases" (ibid., p. 191).

124This should be an immediate inference from V.1l4: "If a first magnitude

have to a second the same ratio as a third has to a fourth, and the first be greater
than the third, the second will also be greater than the fourth; if equal, equal;

|l

and if less, less." Instead, the argument in the Elements uses VI.16, to consider

the proportion alternado (&voAXdE), thus:
* (AABC) : (OJBE) = (AKGH) : ([JEF)

in order to conclude that since the first equals the second, so must the third
equal the fourth. Yet no such proposition exists in Euclid. This is only one of
many difficulties with the received proof of VI.25. Cf. ibid., pp. 254-55, and the
following note , here.

1251f ABC is replaced by the rectilineal figure T, then I.45A can be applied

to obtain BE as before. When, after constructing GH, it becomes necessary to con-
struct T' on GH similar to T, we must use VI.18 in its full generality. This re-
quires that the rough spots in the proof of VI.18 be smoothed out, for which see
Heath's recommendations in EE, vol. 2, pp. 230-32. The rest of the proof then goes
through smoothly by placing the Porism to VI.19 after VI.20 and by utilizing V.14
rather than V.16 as found in Euclid.

126
Ibid., p. 258.

127Although VI.28 is utilized (at least implicitly) in several places through-

out Book X (X.17, 18, 33-35, 39-41, 54, 55, 57, 58, 76-78, 91-96), all of these
instances require only the case where the '"defect" is a square, and this case can
be proven with little difficulty using only the techniques of Book II (cf. Simson's
solution in EE, vol. 1, pp. 383-84). Moreover, VI.28 is the only result of the

three (VI. 27-29) utilized in Book X, as there is never any need for an "application
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with excess" (VI.29). Thus, although we acknowledge the great importance in Book
X of "application of areas" in general, we cannot agree with Heath that these three

propositions in particular "constitute the foundation of Book X of the Elements."

12858, vol. 2, p. 258.
129y554., p. 265.
130

Cf., n. 121 above

131 5 03 . ¢ o
Proposition VI.21: '"Figures which are similar to the same rectilineal fig-

ure are also similar to one another" (EE, vol. 2, p. 239).

132Proposition VI.26: "If from a parallelogram there be taken away a paral-

lelogram similar and similarly situated to the whole and having a common angle with

it, it is about the same diameter with the whole" (ibid., p. 255).

3Proposition I.36: '"Parallelograms which are on equal bases and in the same
parallels are equal to one another" (EE, vol. 1, p. 331).

134Proposition I.43: "In any parallelogram the complements of the parallelo-

grams about the diameter are equal to omne another" (ibid., p. 340).

135Proposition VI.24: "In any parallelogram the parallelograms about the dia-

meter are similar both to the whole and to one another" (EE, vol. II, 251).

136g, vol. 1, p. 349.

137Proposition I.41: "If a parallelogram have the same base with a triangle

and be in the same parallels, the parallelogram is double of the triangle" (ibid.,
p. 338).
138Proposition I.4: "If two triangles have the two sides equal to two sides
respectively, and have the angles contained by the equal straight lines equal, they
will also have the base equal to the base, the triangle will be equal to the tri-
angle, and the remaining angles will be equal to the remaining angles respectively,

namely those which the equal sides subtend" (ibid., p. 247).

139"If we listen to those who like to record antiquities, we shall find them

attributing this theorem [I.47] to Pythagoras and saying that he sacrificed an ox
on its discovery. For my part, though I marvel at those who first noted the truth
of this theorem, I admire more the author of the Elements, not only for the very

lucid proof by which he made it fast [XateSfioato], but also because in the sixth
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book he laid hold of a theorem even more general than this and secured it by ir-
refutable scientific arguments. For in that book he proves generally that in right-
angled triangles the figure on the side that subtends the right angle is equal to
the similar and similarly drawn figures on the sides that contain the right angle"
(Proclus, Commentary on Euclid, pp. 337-338).

14

qgg. Thomas, SGM, Vol. 1, p. 181.

141EE, vol. 1, p. 382.

12 yd, . p. 385.

143The fact is that throughout Book II and in most applications of Book II

(e.g., in Book X) one finds this emphasis on rectangle formation rather than on the
formed rectangles themselves. This suggests, of course, that there was an
operational significance that the Greeks associated with this particular geometric
construction. But while this seems indeed to be the case, it does not follow that
this operation was the cornerstone of a "geometric algebra," unless one takes the
word "algebra" to mean any system whatsoever that manipulates mathematical entities
with sufficient facility so as to make it possible somehow to detect general ab-
stract relationships. For more on this point cf. n. 12 above.

14695' n. 134 above.

14?92., for example, van der Waerden, SA, pp. 120-21.

14622, vol. 1, p. 402,

147Proposition 1.46: "On a given straight line to describe a square" (ibid.,
p. 347).

14814 54d,, pe 409.

491444., p. 410.

15

%LE, vol. 2, p. 216.

151The precise statement in Aristotle reads as follows: '"Since what is clear

or logically more evident emerges from what in itself is confused but more ob-
servable by us, we must reconsider our results from this point of view. For it is
not enough for a definitive formula to express as most now do the mere fact; it
must include and exhibit the ground also. At present definitions are given in a

form analogous to the conclusion of a syllogism; e.g., What is squaring? The
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construction of an equilateral rectangle equal to a given oblong rectangle. Such
a definition is in form equivalent to a conclusion [i.e., it has nothing in it
corresponding to a middle term (Smith)]. One that tells us that squaring is the
discovery of a line which is a mean proportional between the two unequal sides of

the given rectangle discloses the ground of what is defined" (The Works of Aristotle,

ed. W. D. Ross, Vol. III., De Anima, tr. J. A. Smith (Oxford: Clarendon Press,
1931; 1963 Reprint) II.2 413a 11-19). This testimony of Aristotle adds weight to
our contention that this result was primarily significant for Greek proportion
theory and has nothing whatsoever to do with solving a pure quadratic equation.
Heiberg and Heath both apparently agree that II.14 was probably proven by means of
proportion theory prior to Euclid's time (cf. EE, vol. 1, p. 410). It does not
seem unreasonable to conjecture that the proof of IT.14 given in the Elements is
Euclid's own, and that he meant it to be an elegant capstone to Book II while, at
the same time, demonstrating the power of the results that he had obtained up to
then. The three ingredients of "application of areas'" (I.45), "gnomon-
relationships" (II.5), and the "Pythagorean theorem" (I.47), all of which blend
together so beautifully here, make this a fitting climax to Book II that would 'have,
no doubt, greatly appealed to Euclid's aesthetic sensibilities, as well as to those
of his contemporaries.

152The claim of II.6A, by which we mean the generalized II.6, can best be

understood by referring to an appropriate diagram. Thus, compare Figs. III.7 and
ITI.10. Using Fig. III.7 one translates II1.6 as AM + EH = ED, while the analogous
reading for II.6A from Fig. III.10 yields AO + FB = FO. We will not attempt, for
obvious reasons, to render the statement of IT.6A in the language of Greek geometry.

15392' n. 133 above.

15?92. n. 134 above.

155One will find the details and other related constructions in B. L. van der

Waerden, '"Defence of a 'Shocking' Point of View," pp. 207-209.

lSéEE’ vol. 2, p. 260.

157The discovery of diorismi is attributed by Proclus (probably drawing on

Eudemus) to one Leon, the pubil of Neoclides, about whom we know next to nothing
(cf. Thomas, SGM, vol. 1, pp. 150-51).

15§§§, vol. 2, p. 257,
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159These four results are then used to prove several more in Book X, e.g.,

X.35, X.39-41, X.54-59, X.91-92, etc. (cf. EE, vol. 3, pp. 1-259).

16992. Thomas, SGM, vol. 2, pp. 304-323.

16%22. EE, vol. 1. pp. 387-88. Simson also derives a simple solution for the
equation corresponding to the application with square 'defect,” i.e., ax - x2 = b2
(cf., ibid., p. 384).

162

This is not the case, however, with van der Waerden's work (cf. for ex-
ample, SA, pp. 118-126, 138-41, 265-66).

1635E, vol. 1, p. 343.
164 - . T . . .

The "soft evidence" is discussed in section I above.
165

Proposition II.1: "If there be two straight lines, and one of them be cut
into any number of segments whatever, the rectangle contained by the two straight
lines is equal to the rectangles contained by the uncut straight line and each of
the segments" (EE, vol. 1, p. 375). According to Heath (ibid., p. 376), this propo-
sition is "... the geometrical equivalent of the algebraical formula
a(b+c+d+...) =ab+ac+ad+ ..., and it is obvious that with such an
approach an analogous relation holds for rectangular solids. This is, to judge
from the written record, a rather innocent step that the '"geometrical algebraist'
would take without qualms. Thus one obtains the identity a(B+ C+ D+ ...) =
aB + aC + aD + ..., where the capital letters represent rectangles. Here is the
simple and convincing proof: Apply I.45A to write B = pb, C = pc, D = pd, etc.,
whence a(B+ C+ D+ ...) = a(pb+ pc+pd+ ...). By ITL.1, pb + pc + pd + ...
pb +c+d+ ...), so a(ppb+pc+pd+ ...)= apb+c+d+...) =

apb + apc + apd + ... from the obvious geometric fact involved, namely, that if
one side of a rectangular solid is cut into any number of pieces, the smaller
solids so obtained will, added together, equal the original. And, since

apb + apc + apd + ... = aB + aC + aD + ..., it follows that, a(B+ C+ D+ ...)

aB + aC + aD + ..., q.e.d.; another bright victory for the cause of "geometrical
algebra."

166Van der Waerden ("Defence of a 'Shocking' Point of View,'" p. 206), fol-

lowing the lead of E. Neuenschwander, thinks that the term "parallelogram’ was not

introduced in Greek geometry until the time fo Eudoxus (early 4th century B:C:)s
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Thus "when the Pythagoreans invented their application of areas with defect or ex-~
cess, the defect or excess was probably required to be just a square, not a paral-
lelogram similar to a given one.'" Now leaving aside the imposing evidence against

"

the claim that "application of areas' way a Pythagorean discovery, there seems to
be some peculiar reasoning involved here. For as we have seen, van der Waerden
(cf. SA, pp. 121-123), Heath, et al. interpret VI.28, 29 as quadratic equations
essentially be stripping them of their geometric content. The given rectilineal
figure C plays no role other than to represent a given two-dimensional magnitude,
while the given parallelogram D is taken (by Heath) to be a rectangle. By doing
this, these practitioners of '"geometric algebra' severely restrict the actual,
given situation in VI.28, 29 in order to produce 'nice'" equations: and now van der
Waerden asks us to believe that the original "Pythagorean'" invention was not even
this! Rather, as he says, ''the defect or excess was probably required to be just

a square ..." But on what grounds? Even, if we grant that the term "parallelogram"
was of post-Pythagorean vintage, why does that rule out having an "excess" or
"defect" similar to a given rectangle? It would seem that the passage form Plato's
Meno (86E-87B) where the defect seems to be only a rectangle and not a square,

"ancient method," whether Pythagorean or not,

would lead one to assume that this
was certainly known in greater generality than van der Waerden's remark is meant

to imply. His interpretation paints a rather pretty picture: II.5 and IL.6 are
indeed just what is needed in order to solve the problems in "application of areas"
with square "excess' and "defect," but there seems to be no good evidence to sup-
port van der Waerden's view other than the desire to obtain a pretty picture.

167Proposition VI.12: "To three given straight lines to fina a fourth propor-

tional" (EE, vol. 2, p. 215).

168This, of course, says nothing earth-shaking algebraically, however, geo-

metrically it is an altogether different matter. Interpreted geometrically %?
is "division'" a la Heath, whereas % x 1is found by solving for the fourth propor-

tional, using VI.12. To show that they are the same involves the following obser-

bx bx

vation: Since Rect. (b,x) = Rect. (c, 7;), . bic= <% by VI.16. On the

other hand, b:c =-E x:x by definition of %-x. It follows from V.11 (Ratios

which are the same with the same ratio are also the same with one another" (EE,

vol. 2, p. 158)) that b= I B x : x. Finally, by V.14, we conclude that
bx _ b ¢ ¢

== =g

c c
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169 2

x~, where the latter term involves
finding the fourth proportional y in b:c = y:xz. This is "easy' to show, for

o |o

This requires knowing that (% X)X =

by using VI.12 one can find z such that b:c = z:y. Since VI.1l says that Rect.
(z,x): Rect. (x,x) = z:x, it follows in the "geometric arithmetic” that b:ic =
z-x:xz. Now z = % x, by definition, while z-.-x = % X2 for the same reasomn.

Thus, hocus-pocus-preparatus, 2z.x = (% X)X = % x2 as required.

170Quoted in EE, vol. 2, p. 133.

17¥g§. no 167 above.

17%9{. n. 123 above.

173In V.18 ("If magnitudes be proportional separando, they will also be propor-

tional componendo" (EE, vol. II, p. 169)), Fuclid assumes in the course of the proof
that if three magnitudes be given, at least two of which are of the same species,
then there exists a fourth proportional. However, this is never proven anywhere in
the Elements, and its assumption here was, therefore, undoubtedly a slip on his
part. The proof we have given can be extended without much difficulty to the case
where one magnitude is an arbitrary rectilineal figure and not just a square (cf.
EE, vol. 2, pp. 170-174). The inference we made by using VI.1 occurs explicitly

in Book X as a lemma to X.22 (cf. EE, vol. 3, pp. 50-51).

174This effortless interplay between ratio and magnitude that Heath and others

think constitutes Greek "geometric arithmetic" (cf. EE, vol. 2, p. 187) leads, as
we shall show, to gross distortions when applied consistently.

1
75Van der Waerden argues, on rather frail evidence, contra this, namely, that

transformation of volumes was indeed an important ingredient in Greek mathematics
(SA, pp. 138-141). We shall have more to say about this matter shortly.

176The only evidence that Theaetetus ever extended the study of incommensurable

magnitudes to the case of the so-called cubic irrationals is the phrase: "And
similarly in the case of solids" at the end of a well-known passage (147D-148B)

from Plato's Theaetetus (cf. Thomas, SGM, vol. 1, pp. 380-83). Yet van der Waerden,
with characteristic boldness, writes that 'he [Theaetetus] was able to extend the
entire theory without difficulty ('like a stream of oil that flows without a sound')
to the sides of commensurable cubes" (SA, p. 168). We are not familiar with the

euphonious phrase that van der Waerden employs here, but "without a sound" aptly
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describes what the ancient sources have to say on this matter. A more lengthy
modern, and rather speculative discussion of this issue can be found in W. R. Knorr,
The Evolution of the Euclidean Elements (Dordrecht-Holland/Boston-U.S.A.: Reidel,
1975), pp. 87,93,302.

177Thomas, SGM, vol. 1, p. 211.

17?@@, vol. 2, p. 263,

179

Greek practice would allow for the "multiplication' of both sides by a
numerical ratio, however.

180This argument is adapted from Heath's, given in EE, vol. 2, pp. 266-67.

181Heath's remark in EE, vol. 1, p. 410.

182Proposition II.4: "If a straight line be cut at random, the square on the

whole is equal to the squares on the segments and twice the rectangle contained by
the segments'" (ibid., p. 379). The algebraic rendering is, of course,
(a + b)2 = a2 + b2 + 2ab.

183 . . ; ; ; : ’ B o
This is a convenient point at which to mention Euclid's Data, as it is re-

garded by some as being of '"great importance for the history of algebra" (van der
Waerden, SA, p. 198) and a "textbook on solving equations' (Freudenthal, "What

is Algebra and What has it been in History?'" p. 194). In truth, there are rela-
tively few propositions in the Data that are amenable to algebraic transcriptionm,
and most that are, e.g., Propositions 10-21, are rather trivial. There are four

propositions (58, 59, 84, and 85) that transcribed lead to quadratics similar to

those derived from VI,28 and 29. Proposition 86 is rendered by van der Waerden

as the system:

Xy F
2

y ax2 + C

which he proceeds to solve by "introducing a new unknown z'" (cf. SA, pp. 198-199).
After obtaining an algebraic solution he writes: "All this is of course formulated
in geometrical language; instead of y, z and y-z, Euclid writes AA, AE and EA,
etc. But I have made no other changes in his reasoning'" (ibid., p. 199). If we
turn to the original (Data, ed. R. Simson, pp. 442-43), however, we find that van
der Waerden has arbitrarily restricted it to the case where the "given parallelo-

gram in a given angle" is a rectangle. Obviously, this makes it easier to get the
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equation xy = F, yet even more

A
serious is the damage this does
to the proof. For Euclid's central

argument involves dropping a

perpendicular AE to BC, and uti-

lizing triangle ABE in conjunc-

tion with BF (where SQ (BF) =

Rect. (BC,CD)) which also never

appears in van der Waerden's argument. Thus, far from having "made no other changes
[other than notation] in his [Euclid's] reasoning,'" van der Waerden's version over-
looks the main point of the proof. We shall not take up here the important ques-—
tion as to whether dramatic changes in language can be undertaken matter-of-factly
without thereby necessarily creating changes in reasoning. On this issue see

S. Unguru, "On the need" and "History of Ancient Mathematics: Some Reflections on
the State of the Art."

1869§. the proof of VI.25 in section III, no. &4 above, together with nn. 122,

124, and 125.

185 ; ; . . .
Proclus gives an extensive discussion on the nature of elements, explaining

that they serve the same function as do letters of the alphabet in the formation of
language, and indeed the same word, OTOUXELQ, means letters in Greek. Cf., Proclus,

Commentary on Euclid, pp. 59-61.

18§§§, p. 139. In truth, there is very little consensus of opinion on that

issue, but, according to Wilbur Knorr, (The Evolution of the Euclidean Elements,

p. 93), the balance of opinion favors the view, pace van der Waerden, that the
author was Plato's disciple, Philip of Opus.

l87The Collected Dialogues of Plato Including the Letters, ed. Edith Hamilton

and Huntington Cairns (New York: Pantheon Books, 3rd Printing, 1964), Epinomis,
tr. A. E. Taylor, pp. 1531-32. Several writers have concocted speculative theories
to explain this passage including Taylor himself (cf. A. E. Taylor, Plato/The Man
and His Work, 5th ed. (London: Methuen and Co. Ltd., 1948), pp. 503-516, and the
1926 essay ""Forms and Numbers: A study in Platonic Metaphysics" in A. E. Taylor,

Philosophical Studies (Freeport, New York: Books for Libraries Press, a 1968 re-

print of the 1934 edition), pp. 91-150.

188@@, vol. 2, p. 278.



60 Does the Quadratic Equation have Greek Roots?

89 . . :
! Proposition VIII.18: '"Between two similar plane numbers there is one mean

proportional number; and the plane number has to the plane number the ratio dupli-
cate of that which the corresponding side has to the corresponding side" (ibid.,
p. 371).

190Proposition VIII.20: "If one mean proportional number falls between two

numbers, the numbers will be similar plane numbers" (ibid., p. 375).

191Proposition VIII.19: '"Between two similar solid numbers there fall two

mean proportional numbers; and the solid number has to the similar solid number the
ratio triplicate of that which the corresponding side has to the corresponding side"
(ibid., p. 373).

lgzProposition VIII.21: "If two mean propositional numbers fall between two

numbers, the numbers are similar solid numbers' (ibid., p. 377).

193¢e. sa, p. 140.

194Thus given two lines a and b, one must find two other lines x and y such

that: a:x = x:y = y:b.

183, vol. 1, pp. 252-53.

19§§é, p. 140.

197The Dialogues of Plato, tr. B. Jowett, 4 vols. (Oxford: Clarendon Press,

1969 reprint of the 4th ed. of 1953) Vol. II, p. 391.

198114d., p. 392.

19?§é’ p. 138. W. H. D. Rouse (Great Dialogues of Plato, tr. Rouse (New York:

New American Library, 1956), p. 327, n. 1) writes: "&ngv, increase. We should

say 'dimension.' 'Third increase' or 'cubic increase' meant to the Greeks the change
of plane squares into solid cubes; 'forms having depth' refers to solids other than
cubes."

20054, p. 140.

0i4d., pa 198

8021414, pp. 140-EL.

2031454., p. 141.

204
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205Van der Waerden's phrase ("Defense of a 'Shocking' Point of View," p. 200).

0
z 6Neugebauer, the originator of this theory and van der Waerden, its ap-

propriator, are representative instances both of the view that Babylonian mathe-
matics was algebraic in character and that Babylonian algebra was taken over by the
Greeks (it is not at all clear why since it could not assist the Greeks in their
"problems'" with incommensurability), geometricized, and transformed into 'geo-
metrical algebra."

20792. cit., pp. 12-13.

20814 44., p. 19.

2097p14., p. 20.

210For a survey of Greek activity devoted to the problem, cf. T. L. Heath,

A History of Greek Mathematics, 2 vols. (Oxford: Clarendon Press, 1921), vol. 1,

pp. 244-270; this work will hereinafter be refered to as HGM.

2lg,, . 161.

21222., SGM, vol. 1, pp. 284-289.

213££., E. J. Dijksterhuis, Archimedes in Acta Historica Scientiarum

Naturalium et Medicinalium, vol. 12(1956), On the Sphere and Cylinder, pp. 141-221.
214

Proposition I.36: "parallelograms which are on equal bases and in the same
parallels are equal to one another" (EE, vol. 1, p. 331). Proposition XI.31:
"parallelepipedal solids which are on equal bases and of the same height are equal
to one another" (EE, vol. 3, p. 337).

215Proposition VI.1l: "Triangles and parallelograms which are under the same

height are to one another as their bases" (EE, vol. 2, p. 191). Proposition XI.32:
"Parallelepipedal solids which are of the same height are to one another as their
bases" (EE, vol. 3, p. 341).

216
The key tool that is utilized in the "exhaustion'" arguments that appear in

the Elements is Proposition X.1 which is proved by means of Definition V.4
("Magnitudes are said to have a ratio to ome another which are capable, when multi-
plied, of exceeding one another" (EE, vol. 2, p. 114)) which, in turn, is equivalent
to the so called "Axiom of Archimedes" (cf. HGM, vol. 1, pp. 326-329).

2
17Proposition XI.33: "Similar parallelepipedal solids are to one another in
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the triplicate ratio of their corresponding sides" (EE, vol. 3, p. 342).

218 P " : .
Proposition XII.12: '"Similar cones and cylinders are to one another in the

triplicate ratio of the diameters in their bases" (ibid., p. 410).

219Proposition XIT.18: '"Spheres are to one another in the triplicate ratio

of their respective diameters'" (ibid., p. 434).

220Ibid., pp. 467-507.
22¥g§., n. 182.
222

Cf. section III, no. 6-8.

223Cf., section III, no. 2.

224The notion of similarity between geometric figures has no real counterpart

in "geometric algebra" because algebra is concerned solely with content (i.e., size)
and not with form (i.e., shape). For this reason, there is no "equation" derivable

from VI.25, and, hence, there can be no question but that it was a.purely geometric

result.
22556M, vol. 1, pp. 228-231.
226"On the Need," p. 107, n. 122.
2

27Ibid., pp. 75-77, passim.

28Steiner, After Babel, p. 473.

ZZQWe¢are using here Pierce's and Roman Jakobson's triadic theory of signs and

meaning, which discerns between rewording, translation proper, and transmutation.
Cf. After Babel, pp. 260-61.

ZBQEE, vol. 1, p. 379.

231

"On the Need," p. 111, n. 138.

232"History of Ancient Mathematics," Isis, vol. 70 (1979), p. 555.

233Affer Babel, p. 426.

234 s 2 o g - :
Quoted in René Berthelot, "Défense de la poésie chantée," La Revue Musicale,

vol. 186 (1938), p. 90.
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