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1. Introduction

1.0. The subject of this study is the differential, the fundamental concept of
the infinitesimal calculus, as it was understood and used by Leisniz and those
mathematicians who, in the late seventeenth century and the eighteenth, developed
the differential and integral calculus along the lines on which LriBniz had
introduced it. More precisely, this study is concerned with the influence of certain
conceptual and technical aspects of first-order and higher-order differentials on
the development of the infinitesimal calculus from LEIBNIZ' time until EULER’S.

This part of the history of the calculus belongs to the wider history of
analysis. This makes it necessary to discuss in this first chapter certain key
processes in the history of analysis, which form the context of the development
of the concepts of differential, higher-order differential and derivative; and my
study of this development may provide some new insights into these processes.

The first chapter will also serve as an indication of the relation which the
subjects treated in the subsequent chapters have to general questions in the
history of analysis.

1%
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1.1. There are three processes in the history of analysis in the seventeenth and
eighteenth centuries which are of crucial importance for the history of the concept
of the differential. The first is the introduction, in the 1680’s and 1690’s, of the
LrBN1ZIAN infinitesimal analysis within the body of the CARTESIAN analysis,
which at that time may be characterised as the study of curves by means of
algebraic techniques.!

The second process, occurring roughly in the first half of the eighteenth
century, was the separation of analysis from geometry. From being a tool for the
study of curves, analysis developed into a separate branch of mathematics, whose
subject matter was no longer the relations between geometrical quantities
connected with a curve, but relations between quantities in general as expressed
by formulas involving letters and numbers.

This change of interest from the curve to the formula induced a change in
fundamental concepts of analysis. While in the geometrical phase the fundamental
concept in the analytical study of curves was the variable geometrical quantity,
the separation of analysis from geometry made possible the emergence of the
concept of function of one variable, which eventually replaced the variable geo-
metrical quantity as the fundamental concept of analysis.

In this process of separation from geometry the differential underwent a
corresponding change; it was stripped of its geometric connotations and came
to be treated as a mere symbol, like the other symbols occurring in formulas.
However, throughout the first half of the eighteenth century the differential
kept its position as the fundamental concept of the LEIBNIZIAN infinitesimal
calculus.

The third process in which we are interested is the replacement of the
differential by the derivative as fundamental concept of infinitesimal analysis.
Usually this process is connected with the works of LAGRaNGE and Caucny, but I
shall argue that an important aspect of it is to be found in the works of EULER.

1.2. From consideration of the chronological order of the three processes
mentioned above, it is clear that the early LEIBNIZIAN infinitesimal calculus, as
it was practised by LeiBNIZ and by his followers in the 1680’s and 1690’s, was
part of an analysis primarily concerned with curves or with the relations between
variable geometrical quantities as embodied in the curve. Thus the LEIBNIZIAN
calculus cannot be understood without reference to its geometric interpretation.
I devote the second chapter of the present study to a detailed description of the
concepts of this calculus, and I indicate there how far these concepts were
influenced by their geometric context and how they consequently were changed
when analysis was separated from geometry. Thus it will become clear how far the
early LEIBN1ZIAN calculus differed from the mathematical theory and practice
which we now indicate by the term ““calculus”.

1 Compare the opening sentence of the Préface of L’'HbépiTaL 1696: ‘L’ Analyse
qu’on explique dans cet Ouvrage, suppose la commune, mais elle en est fort différente.
L’Analyse ordinaire ne traitte que des grandeurs finies: celle-ci penetre jusques dans
I'infini méme.” The “common’’ or “ordinary” analysis is the CARTESIAN analysis;
compare the ““communis calculus’’ in the title of LEiBNI1Z’ Elementa.
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Moreover, in Chapter 3 I discuss examples of the influence of the concepts
discussed in Chapter 2 both on the choice of problems and on the technique of
the calculus in its early stage.

1.3. As a preliminary to these chapters, I insert here some general remarks
on the geometric character of the seventeenth century analysis. This analysis
was a corpus of analytical tools (algebraic equations and operations, later the
differential and the rules of the calculus) for the study of geometric objects,
namely curved lines. The first textbook of the infinitesimal calculus had the
most significant title Analyse des infiniment petits pour Vintelligence des lignes
courbes.?

The fundamental object of inquiry, therefore, was the curve. A curve embodies
relations between several variable geometrical quantities® defined with respect
to a variable point on the curve. Such variable geometrical quantities—or vari-
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x: abscissa, ¥: ordinate, s: arclength, : radius, a: polar arc, o: subtangent, z: tangent,
—
v: normal, Q =0PR: area between curve and X-axis, xy: circumscribed rectangle

ables as I shall call them for short—are for instance (see the figure): ordinate,
abscissa, arclength, radius, polar arc, subtangent, normal, tangent, areas between
curve and axes, circumscribed rectangle, solids of revolution with respect to the
axes, distance to the X-axis (or the Y-axis) of the centre of gravity of the arc,
or of the centres of gravity of the areas between curve and axes.

The relations between these variables were expressed, if they could be, by
means of equations. This was not always possible; until just before the end of the
seventeenth century there were no formulas for transcendental relations, and
these were expressed by means of certain circumlocutions in prose, which basically
expressed a method of geometric construction for the curve representing the
transcendental relation in question.

2 L"HOpITAL 1696.

3 These variable geometrical quantities are, in terms of MENGER's classification of
the concepts designated by the term ‘“variable” (¢f. 1965, pp. xi—xii), of the type
which he calls ““consistent classes of quantities’” or ‘““‘fluents’’—with one important
restriction, however. MEXGER’s “‘fluents” presuppose the choice of a unit. They are
pairs, consisting of a ““thing”’ and a corresponding number, the number indicating
the value or the measure of the thing with respect to a unit (1955, p. 167). However,
the variable geometric quantities of seventeenth century mathematics (and also of
physics in that period) were not, or not necessarily, related to a unit and expressed as
numbers; compare § 1.5.
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1.4. CARTESIAN analysis introduced the use of equations to represent and
analyse the relations between the variables connected with the curve; usually the
relation between ordinate and abscissa was taken as fundamental.

It is important to notice the absence of the concept of function in this context
of algebraic relations between variables. Neither the equations nor the variables
are functions in the sense of a mapping x—vy(#), that is, a unidirectional relation
between an “‘independent” variable x and a “dependent’” variable y. A relation
between x and ¥ was considered as one entity, not a combination of two mutually
inverse mappings x—4 (¥) and y—x (). Thus the curve was not seen as a graph
of a function x—y(x), but as a figure embodying the relation between x and .

Variables are not functions, because the concept of variable does not imply
dependence on another, specially indicated ‘‘independent” variable.

I shall use the absence of the concept of function to explain several aspects
of the early differential calculus, such as, for instance, the lack of the concept of
derivative. A derivative [function] presupposes the prior concept of function and
hence could not play a fundamental role in the early calculus.

1.5. The variables of geometric analysis referred to geometric quantities,
which were not real numbers?®. For geometric quantity, or quantity in general,
as conceived by mathematicians up to the seventeenth century, lacks a multipli-
cative structure and a unit element. Quantities were conceived as having a
dimension. Geometric quantities could have the dimension of a line (e.g. ordinate,
arc length, subtangent), of an area (e.g. the area between curve and axis) or of a
solid (e.g. the solid of revolution). Outside geometry there are the quantities of
different dimensions such as velocity, corporeity (or mass), force, efc. Further-
more, the algebraic manipulation, especially with geometric quantities, led to
dimensions higher than that of the solid. Although these quantities of higher
dimension, like for instance powers like a* and 5° of line segments a and b were
felt to be not directly interpretable in space; they were accepted in analysis and
their dimension was determined by the number of factors with the dimension
of a line. .

Only quantities of the same dimension could be added. In certain cases the
multiplication of quantities was interpretable, as for instance in the case of two
line segments, the product of which would be an area. But multiplication was
never a closed operation; that is, the product of two quantities of equal dimension
could not have the same dimension. Hence within the set of quantities of the same
dimension there was no multiplicative structure and no unit element. A choice
of a privileged element in the set of quantities of the same dimension (as a base
for measuring, for instance, or as fundamental constant for certain curves or
actually as unit element) was therefore always arbitrary; the structure of quantity
itself did not offer such a privileged element.

1.6. These possibilities of multiplication and addition made possible the
algebraic treatment of quantities, although with certain restrictions. The special
nature of multiplication induced a law of dimensional homogeneity for the
equations occurring in this algebraic treatment: all the terms of an equation had
to be of the same dimension.

4 On the concept of quantity, compare ITARD 1943.
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It is well known that as early as 1637 DEscarTES had indicated how the
requirements of dimensional homogeneity could be circumvented and how a
multiplication of line segments—as the prototype of quantity in general—could
be defined so as to render the product also a line segment?® DESCARTES chose an
arbitrary line segment as unit segment 1 and defined the product of two line
segments & and & as the line segment c¢ satisfying the proportion

l:ia=b:c.

In particular he interpreted powers this way: if x is a line segment, #2 is the line
segment such that
1ix =515

This solution of the problem of dimension was useful in the theory of equations
in one unknown. These could now be interpreted as relations between line seg-
ments, and the roots would also be line segments, by which both irrational
solutions of equations and dimensions higher than the solid became interpretable.

But in the analytical study of curves, dimensional homogeneity of equations
continued to be a major requirement of neatness until well into the eighteenth
century$. This is not too surprising? because in that part of mathematics
dispensing with dimensional homogeneity had no direct advantages, apart from
rendering higher powers interpretable. The introduction of a unit requires an
arbitrary choice which infringes on the generality of the treatment, and also
dimensional homogeneity assures natural geometric interpretation of every step
in the algebraic analysis and thus it provides a useful check on complicated
calculations.

In a geometric analysis which keeps to dimensional homogeneity it is not
necessary to introduce a unit length, and therefore the geometric quantities such
as length, area, efc. are not scaled; they are not real numbers, representing a ratio

5 DESCARTES 1637, opening sections.

§ As an illustration of the persistence of the dimensional interpretation of formulas I
quote JoHANN BEerRroULLI's definition of a homogeneous differential equation: a
differential equation in which ‘‘nullae occurrunt quantitates constantes, quae
dimensionum numerum adimplent.” (BERNOULLI to LEIBN1Z, 19-V-1694; Math. Schr.
III, pp.138-139.) The definition presupposes homogeneity; absence of constant
quantities as factors to adjust the homogeneity means that all terms are, apart from
numerical factors, products of an equal number of variable factors. Even in the 1720’s
BerRNOULLI objected to a mathematician who overlooked dimensional homogeneity:
“Pardon, Monsieur, c’est 14 encore une facon de parler contre l'usage des Géométres;
car vous savez que chez eux multiplier un vectangle par une ligne, c’est faive un
parallelépipede, et non pas un autre rectangle ...” (Opera IV, p. 164.)

One of the reasons why the requirement of dimensional homogeneity was even-
tually left behind was the emergence of transcendental relations, especially the
exponential functions, Indeed, a* does not have a well defined dimension. Compare
L’HOPITAL'S reaction to BERNOULLI's treatment of exponential functions: ““... car que
peut signifier m” si m et n marquent des lignes? une ligne elevée & la puissance
designée par une autre ligne?” (L’HOPITAL to JoHANN BERNOULLI, 16-V-1693;
BerNoULLI Briefwechsel, p. 172.)

7 BOYER, in 1956 (especially, 84-85, pp. 140, 162), emphasizes that dimensional
homogeneity was abandoned only almost a century after DEscarTES, but he seems
to consider this as an unexplained delay in the development towards modern analytic
geometry.
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to a standard unit. Real numbers appeared in analysis only as integer or frac-
tional factors in the terms of equations, or as ratios of two quantities of the
same dimension.

1.7. In Chapter 2 I shall explore the implications of the fact that the early
LEIBNIZIAN infinitesimal calculus was a geometric calculus. Here I shall conclude
the general remarks on its geometric nature by indicating how the geometric
background of the early LEIBNIZIAN calculus explains why a concept of derivative
was absent in that calculus. First of all, the concept of derivative presupposes the
concept of function (because the derivative dy/d x is the derivative of a function
y(x)), and since the latter was virtually absent in the analysis of geometric
problems (see 1.4 above), so the former could not be there either. In the con-
figuration of the curve, the tangent and the connected variables (see the figure)

|

!

>

! y
/ X
———— e — ot—m—m———=

the derivative d y/d x, occurs only as the ratio of the ordinate y to the subtangent o.
This ratio has no obvious central position in the configuration and its choice as
fundamental concept would therefore be very arbitrary. Indeed it is not clear
why v/o rather than x/4 should be chosen. Put in other words, the choice of y/o
implies the arbitrary choice of considering y as a function of «, rather than x
as a function of y, or both x and y as functions of some other variable.

But there is still another reason why the derivative could not occur naturally
in the geometric context, and this reason is connected with the dimensional
interpretation of geometric quantities. If y/o is considered as the derivative of
the variable y, then derivation would correlate a ratio (the derivative) to a
variable that has the dimension of length. This implies that the operation cannot
be repeated in a natural way because it is not clear what sort of quantity it would
correlate with a ratio. The only way to introduce repeated derivatives would be
to interpret the ratio y/o in some way as a line segment, and then to plot a new
curve along the X-axis with ordinate y/o. The ratio of ordinate and subtangent
of this new curve would then be the derivative of the derivative. But the ratio
ylo is a real number, and therefore its interpretation as a line segment involves
the choice of a unit length. Since the unit is not given at the outset, this implies
an arbitrary choice; in a purely geometric context, higher-order derivatives are
not uniquely defined.

Thus the derivative could not occur in the geometric phase of the infinitesimal
calculus, and this may help us to understand why the early infinitesimal calculus
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was built upon the concept of the differential with all its concomitant problems
concerning the infinitely small. Also in differentiation, interpreted as correlating
a differential to a variable, the repetition of the operation involves an arbitrary
choice, namely the choice of the progression of the variables (cf. §2.16 sqgq.).
This aspect of the concept of the differential forms one of the main themes of my
study; it is especially important in Chapter 5.

1.8. Two separate causes for the absence of the derivative in the early period
of the calculus have been mentioned above: the absence of the concept of function
and the requirements of dimensional interpretation. Both features were changed
as analysis was separated from geometry. In the first half of the eighteenth
century, a shift of interest occurred from the curve and the geometric quantities
themselves to the formulas which expressed the relations among these quantities.
The analytical expressions involving numbers and letters, rather than the geo-
metric objects for which they stood, became the focus of interest. The concern
about the dimensional homogeneity of formulas faded. Homogeneity in this
sense survived only as a technical term for a special property of formulas. This
meant that tacitly it was supposed that a unit quantity was chosen, for otherwise
homogeneity would be an essential requirement for all formulas. Hence the letters
in the formulas represented scaled quantities, so that we may say that the practi-
tioners of analysis in this phase worked with real numbers based on a number-line
model; but there was little interest in what the letters in formulas signified.

1.9. This change of interest towards the formula made possible the emergence
of the concept of function of one variable. The term ““function” has its origin in
the geometrical phase of analysis. LEIBNIZ introduced it into mathematics and
used it for variable geometric quantities such as coordinates, tangents, radii of
curvature, efc. These were the “functiones” of a curve; they were not considered
as dependent on one specified independent variable®. Later JoHANN BERNOULLI
wrote about the powers of a variable “or any function in general”” of a variable®.
LEIBNIZ agreed® to this use of the term, which thus lost its initial geometric
connotations and became a concept connected with formulas rather than with
figures.

Indeed it is only natural that as analysis was separated from geometry, the
basic components of formulas should become fundamental concepts. The func-
tion, as defined by JoHANN BeErNoULLI and EULER, was such a basic component
part of formulas, namely an expression involving constant quantities (letters and
numbers) and only one variable quantity (letter).

8 As a mathematical term, the word function occurs for the first time in print in
LemsN1z 1692a, but LeiBniz had used it in much earlier manuscripts. In 76944 he
wrote: “Functionem voco portionem rectae, quae ductis ope sola puncti fixi et puncti
curvae cum curvedine sua dati rectis abscinditur.” (Math. Schv. V, p.306.) As
examples, he gave abscissa, ordinate, tangent, perpendicular, subtangent, sub-
perpendicular, parts of the axes cut off by the tangent and the perpendicular, radius
of curvature.

9 ““... (curva) cujus applicatae FP ad datam potestatem elevatae sen generaliter
earum quaecunque functiones...” (Appendix to a letter of Jomann BERNOULLI to
LeisnNiz, 5-VII-1698; LrisN1z Maih. Schy. 111, pp. 506-507.)

10 “Placet etiam, quod appellatione Functionum uteris more meo.” (LriBNiz to
JoranN BErNoOULLL, 19-VII-1698; LEe1BNIZ Math. Schy. III, p. 525.)
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Thus we have BErRNouLLI’s definition:

Here we call function of a variable quantity, a quantity composed in whatever
way of that variable quantity and of constants™.

and EULER’S:

A function of a variable quantity is an analytical expression composed in whatever
way of that variable quantity and of numbers or constant quantitiest2.

EULER, in fact, moved slightly away from analytical representability ; he allowed
implicit relations as functions® and in his 1755 he gave a very general formulation
of the concept of function:

If quantities depend on others in such a way that if the latter are changed, the
former undergo a change as well, then the former are called functions of the latter.
This terminology is a very general one and covers all ways in which one quantity
can be determined by othersi4.

Also, EULER extended the concept of function to expressions involving more
than one variable®. The emergence of functions of more than one variable marks
another decisive move away from the geometric paradigm of the curve with
connected geometric quantities, namely a move from problems (as about curves)
involving only one degree of freedom, to those with, in principle, any number
of degrees of freedom.

1.10. Thus the separation of analysis from geometry introduced the concept
of function and removed the dimensional interpretation of the objects of study;
the way was open for the introduction of the derivative. Still the differential
kept its position as fundamental concept of the infinitesimal calculus until long
after analysis had ceased to be geometric. And even when, through the works
of LAGRANGE, BorzaNo and CAUcHY?, the derivative had replaced the differential
as fundamental concept of the calculus, the differential withstood all attempts

11 “On appelle ici Fonction d’une grandeur variable, une quantité composée de
quelque maniére que ce soit de cette grandeur variable et de constantes.” (JOHANN
BERNOULLI 1718; Opera 11, p. 241.)

12 “Functio quantitatis varjabilis est expressio analytica quomodocunque com-
posita ex illa quantitate variabili et numeris seu quantitatibus constantibus.”” (EULER
1748, §4.)

18 ““ Quin etiam functiones algebraicae saepe numero ne quidem explicite exhiberi
possunt, cuiusmodi functio ipsius z et Z, si definiatur per huiusmodi aequationem

VAT YIVARS Y VAR VAR

Quanquam enim haec aequatio resolvi nequit, tamen constat Z aequari expressioni
cuipiam ex variabili z et constantibus compositae ac propterea fore Z functionem
quandam ipsius z.”” (EULER 1748, § 7.)

14 “ Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam ipsae
mutationes subeant, eae harum functiones appellari solent; quae denominatio latissime
patet atque omnes modos, quibus una quantitas per alias determinari potest, in se
complectitur.” (EULER 1765; Opera (1) X, p. 4.)

15 As for instance in EULER 1755, Chapter VII.

16 Compare BovER 1949 (pp.251, 268, 275). Unlike LAGRANGE, BorzaNo and
Caucuy saw that, for a sufficiently rigorous formulation of the calculus, the derivative
itself had to be defined in terms of the limit concept.
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to eliminate it completely from analysis. It still appears in mathematics, either
as the unrigorously introduced, but didactically helpful, infinitesimal in intro-
ductions to the calculus?, or redefined as element of the dual of a tangent space,
or, again, but now rigorously introduced, as infinitesimal in non-standard
analysis®8.

The question of why the derivative replaced the differential as the fundamental
concept of the infinitesimal calculus, needs further scrutiny. This replacement
is usually thought to have been caused by an embarrassment, increasingly felt
throughout the eighteenth century, over the logical inconsistencies of the infinitely
small, and hence the inadequacy of the differential as fundamental concept of
the calculus. The reasons why such a concern may bring the derivative to the
fore are evident even in certain studies of LEIBNIZ himself on the foundations
of the calculus. These studies, which were not published and therefore remained
without influence upon the development of the infinitesimal calculus, are dis-
cussed in Chapter 4.

However, there were more reasons for the emergence of the derivative. One
of them is the study of functions of more than one variable. The usual conceptions
and techniques of differentials break down when applied to such functions, and
the ensuing difficulties have to be solved by the systematic use of derivatives and
partial derivatives®.

Another reason for the emergence of the derivative is connected with the
higher-order differentials. I shall discuss this reasonin Chapter 5; suffice it here
to remark that, unlike the hardy first-order differentials, the higher-order
differentials were banished quite early. It is reasonable to suppose that the
technical and conceptual difficulties associated with higher-order differentials

1 ApostoL has collected in his chapter on the differential (71969, pp. 167—-189) six
articles from the Awmer. Math. Monthly, published between 1942 and 1952, on how
to introduce and use the differential in teaching practice. In the last article the editors
of the Monthly come to the conclusion that *‘ there is no commonly accepted definition
of the differential which fits all uses to which the notation is applied.” {p. 186.)

18 RoBiNsON 1966; compare Appendix 2.

¥ The usual concept of the differential was connected with the concept of the
variable as ranging over an ordered sequence of values; the differential was the
infinitesimal difference between two successive values of the variable (see § 2.4 and
§ 2.6). Variables which are functions of two independent variables cannot be conceived
as ranging over an ordered sequence in this sense, and hence the concept of the
differential as the infinitesimal difference between swuccessive values of the variable
breaks down. The differential 4V of a function V (¥, ¥) is therefore directly introduced
in terms of its relation with the ordinary differentials of » and y:

dV =Pdx+Qdy

(cf. EULER 1755, § 213 sqq). Here P and Q are the partial derivatives, which EULER
(ibid., § 231) indicated by brackets:

P-(2) o=(%)

For such expressions the usual technique for dealing with dx and dy (for insta ce
the cancelling of differentials in a. quotient) cannot be applied; the dx’s in (i—) and

av ax
in Pdx are not the same; (W)d’v +=dV.
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were so severe that these differentials had to be eliminated. I shall argue in the
fifth Chapter that this was indeed the case, and that the attempts, especially
those of EULER, to eliminate higher-order differentials formed one of the main
causes of the emergence of the derivative.

2. The LEIBNIZIAN Infinitesimal Calculus

2.0. This chapter provides an outline of the theory, the techniques and the
underlying concepts of the infinitesimal calculus practised by LEIBNIZ and his
early followers such as Jakor I and Jomann I BernouLLl and L’HOPITAL.

The presentation of such an outline presents methodological problems con-
nected with the idea of underlying concepts, for the concepts are not always
made explicit in the original writings (as for instance in the case of the
progression of the variables, discussed below). Still, even if not formulated explicitly,
particular concepts may strongly influence and direct the development of a
branch of science, and the historian cannot understand such a development
unless he makes these concepts explicit for himself. An outline of the LEIBNIZIAN
calculus presents therefore a twofold task: first, to write as if it were a modern
textbook version of the LEIBNIZIAN calculus as close as possible to what LEiBNIZ
and his followers thought and practised; secondly, to indicate how far the elements
of such a unified and explicit theory are abstracted from the actual practice in
which they appeared.

In the following I make a typographical distinction between these two aspects
of the outline. The paragraphs in italics contain abstracts of the underlying
theory; each of these paragraphs is followed by a discussion of the texts on which
the abstract is based and an assessment of the deviation between my presentation
of the theory and actual practice.

Two further preliminary remarks are necessary. The outline of the LEIBNIZIAN
calculus does not cover the genesis of this calculus in the 1670’s, which is described
most fully in HoFMaNN 1949. Rather, it describes the calculus after a certain
consolidation, in which inconsistencies, induced by influences of the calculus of
finite number sequences?® and by the theory of indivisibles, were removed.
Appendix 1 contains some remarks on the relations between the LEIBNIZIAN
calculus and indivisible techniques; the outline covers the consolidated LE1B-
NIZIAN calculus from about the year 1680.

The outline accepts infinitely small and infinitely large quantities as genuine
mathematical entities. To do otherwise would depart too far from the LEIBNIZIAN
calculus. By accepting these quantities, the outline accepts all the inconsistencies
which during the 18 century were increasingly felt as embarrassment and which
were removed in the 10" century by eliminating altogether the infinitesimal
quantities from the calculus. These inconsistencies and the resulting deficiency
of the foundations of the calculus have attracted more attention from historians
of mathematics than the question of how, on such insecure foundations, the

20 The calculus of number sequences had as effect that LEIBNIZ'S earliest studies
on the calculus (discussed by Hormann in his 1949) were less strictly geometrical
than his later work. For instance, in these earliest studies formulas often occur which
violate the requirement of dimensional homogeneity.
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calculus could develop in so prolific a manner as it did from LeiBNiZ's time to
CauchuY’s. 1 shall therefore accept the inconsistencies in the outline and discuss
them later only as far as they caused actual technical difficulties or induced
certain directions of development.

A preliminary explanation of why the calculus could develop on the insecure
foundation of the acceptance of infinitely small and infinitely large quantities is
provided by the recently developed non-standard analysis?, which shows that it
is possible to remove the inconsistencies without removing the infinitesimals
themselves. I discuss how non-standard analysis relates to the LEIBNIZIAN calculus
in Appendix 2.

2.1. The LEIBNIZIAN calculus has tis origins tn the theory of numbey sequences
and the difference sequences and sum sequences of such sequences. LEIBNIZ exploved
this theory in the 1670°s®2. He applied it to the study of curves by considering
sequences of ordinates, abscissas etc., and supposing the differences between the terms
of these sequences infinitely small (that is, negligible with respect to finite quantities,
but umequal to zero). Therefore, the fundamental concepls of the LEIBNIZIAN
infinitesimal calculus can best be understood as extrapolations to the actually infinite
of concepts of the calculus of finite sequences. I use the teym “ extrapolation’™ here to
preclude any idea of taking a limit. The differences of the terms of the sequences
were not considered each to approach zero®. They were supposed fixed, but in-
finitely small.

Compare LEIBNIZ’S assertion:

The consideration of differences and sums in number sequences had given me my
first insight, when I realized that differences correspond to tangents and sums to
quadratures 4,

Also:

. 1 1 1 1 1
For instance ?—{—@—{— 15 -}—34—-1“3/5—
efc. is a sequence which taken entirely to infinity, can be summed, and dx is
here 1. For in the case of numbers the differences are assignable. (...) But if »
or y were not discrete terms, but continual terms, that is, not numbers whose
differences are assignable intervals, but straight line abscissas increasing con-

¢ Y ith 1t
etc. or w1 With ¥ equa 02, 3 4,

21 ROBINSON 1966.

22 See HorMANN & WIELEITNER 1931 and HormanN 1949, pp. 6-13.

23 Thus the following assertion of Boursakr (1960, p.208) is misleading:
“(LE1BNIz) se tient trés prés du calcul des différences, dont son calcul différentiel se
déduit par un passage a la limite que bien entendu il serait fort en peine de justifier
rigoureusement.”” For the same reason the following remark by HoFMANN on LEIBNIZ'S
invention (1675) of the calculus must be modified: ‘‘Schliesslich erkannte er (i.e.
LEeIBNIZ) als gemeinsame Grundlage der zahlreichen und bis dahin nur umstdndlich
durch individuellen Ansidtze gewonnenen Einzelergebnisse, den Grenzprozess.” (1966,
p- 210.)

24 ““Mihi consideratio Differentiarum et Summarum in seriebus Numerorum
grimam lucem affuderat, cum animadverterem differentias tangentibus, et summas
puadraturis respondere.” (LEIBNIZ to WALLIS, 28-V-1697; Math. Schr. IV, p. 25.)
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tinually or by elements, that is, by inassignable intervals, so that the sequence of
terms constitutes the figure, ...28

The following quotation reveals LEIBNIZ's opinion about infinitely small
quantities:

And such an increment (namely the addition of an incomparably smaller line to a
finite line) cannot be exhibited by any construction. For I agree with Euclid
Book V Definition 5 that only those homogeneous quantities are comparable, of
which the one can become larger than the other if multiplied by a number, that
is, a finite number. I assert that entities, whose difference is not such a quantity,
are equal. (...) This is precisely what is meant by saying that the difference is
smaller than any given quantity %.

For LeisNiz’s further arguments about the nature of the infinitely small see
Chapter 4.

2.2. The importance of theories of finite sequences for the problems about curves,
to which the LEIBNIZIAN calculus was primarily applied, les in the fact that it is
often useful to approximate the curve by a polygon. The ordinates and abscissas
corvesponding to the vertices of the polygon form finite sequences®. In accord with
the conception of the differential calculus as being an extrapolation of the calculus of
finite sequences to the actually infinite, the practitioners of the LEIBNIZIAN calculus
emphasized that the key to the calculus was to conceive the curve as an infinitangulay

polygon.

The concept of the curve as an infinitangular polygon played an important
role in the new infinitesimal methods developed in the 17 century. LEiBNIZ
stressed its importance for his calculus for instance as follows:

1 feel that this method and others in use up till now can all be deduced from a
general principle which I use in measuring curvilinear figures, that a curvilineay
figure must be consideved to be the same as a polygon with infinitely many sides.?

2 “Exempli gratia %~ -+ % -+ % -+ 5% -+ —315~ etc. seu jm, posito x esse
2 vel 3 vel 4 etc. est series quae tota in infinitum sumta summari potest, et dx quidem
hoc loco est 1. In numericis enim differentiae sunt assignabiles. (...) Quodsi x vel y
essent non termini discreti, sed continui, id est non numeri intervallo assignabili
differentes, sed lineae rectae abscissae, continue sive elementariter hoc est per in-
assignabilia intervalla crescentes, ita ut series terminorum figuram constituat;...”
(LeweNiz 1702b; Math. Schr. V, pp. 356-357.)

2 ““Nec ulla constructione tale augmentum exhiberi potest. Scilicet eas tantum
homogeneas quantitates comparabiles esse, cum Euclide lib. 5 defin. 5 censeo, quarum
una numero, sed finito multiplicata, alteram superare potest. Et quae tali quantitate
non differunt, aequalia esse statuo (...). Et hoc ipsum est, quod dicitur differentiam
esse data quavis minorem.” (LEIBNIZ 1695a; Math. Schr. V, p. 322.)

27 Such sequences occur especially in ARCHIMEDEAN style studies of geometrical
problems, in which the method to prove the results was the so-called method of
exhaustion, of which WaiTESIDE (1961, pp. 331-348) gives an authorative account.

28 “Sentio autem et hanc [methodum] et alias hactenus adhibitas omnes deduci
posse ex generali quodam meo dimentiendorum curvilineorum principio, quod figura
curvilinea censenda sit aequipolleve Polygono infinitovum laterwm.” (LEiBNiZ 1684b;
Math. Schr. V, p.126.) The method refered to is an infinitesimal method which
J. Cur. Srurwm had exposed in an article in the Acta Evud. of March 1684.
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2.3. It will prove vewarding to study in detail how theories of sequences, as applied
to curves and approximating polygons, can be extrapolated to the actually infinite.
In the case of the approximation of a curve by a polygon of a finite number of sides
(see the figure), the polygon induces sequences of ordinates {y}, of abscissas {x;}, of
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arc-lengths {s;}, of quadratures® {Q;}, and in general of all variables which may be
considered in the prodlem at hand. These sequences consist of a finite number of finite
terms. (If one branch of the curve extends to infinity, the number of terms may be
infinite, bul this does not affect my argument.)

The operators of forming sequences of differences or sums of a given sequence,
operators which I indicate by A and X, respectively, yield new finite sequences of

finite terms:
Max}={a;5}

with
DX =KX q X
and P
2yt ={2_1y}
etc.

In his early studies on difference schemes and sequences in general3?, LEIBNIZ
dealt with the relations indicated here and in the following paragraphs.

2.4. In the extrapolation from the finite array to the actually infinite the polygon
becomes a polygon whose sides arve infinitely small and whose angles ave infinitely
many. This infinitangular polygon is comsidered to coincide with the curve; its
infinitely small sides, if prolonged form tangent lines to the curve.

2 The term ‘‘quadrature’ is here used for the area between curve, ordinate and
axis, not for the process of calculating (or squaring) this area. Both meanings of the
term occur in seventeenth century mathematical texts.

30 See HOFMANN & WIELEITNER 1931 and HorFMaNN 1949, pp. 6-13.
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The sequences of ordinates abscissas etc. now consist of infinitely many tevms.
Successive terms of these sequences have infinitely small differences; anachronistically
speaking, one might say that the terms lie dense in the vange of the corresponding
variable. In the practice of the LEIBNIZIAN calculus, the variable is conceived as
taking only the values of the teyms of the sequence. Thus the conception of a variable
and the conception of a sequence of infinitely close values of that varviable, come to
cotncide.

The operators A and 2 of the finite array act on sequences. Thus, in the extra-
polation to the actually infinite, A and X ave transformed into operators d and |
(see the next section ), which act on the sequences of infinitely close values of variables.
But as these sequences ave indiscernible from the variables themselves, d and [ are
operators which act on variables.

The conception of the variable as ranging over an ordered sequence of
values—LEIBNIZ uses the terms “‘series” and “progressio”’—is clearly expressed
in the quotation given above in § 2.1. Another example is LEIBNIZ'S discussion
of the rule d(xv) =xdy -+ ydx; it shows that also the area xy of the circum-
scribed rectangle was considered as a variable ranging over a sequence of values:

d(xy) is the same as the difference between two adjacent xy, of which let one be
xy, the other (¥ 4+dx)(y +dy). Then d(xy) = (¥ +dx)(y +dy) —xy or x¥dy -+
ydx +dxdy, and this will be equal to xdy + ydx if the quantity dxdy is omitted,
which is infinitely small with respect to the remaining quantities, because dx
and dy are supposed infinitely small (namely if the term of the sequence represents
lines, increasing or decreasing continually by minima).?

See also the quotations given below in § 2.8 and § 2.9.

LEmBNIZ used the adjective “‘continuus” for a variable ranging over an
infinite sequence of values. He also used terminology of growth and motion,
speaking for instance about “increasing by minima’™ (“per minima crescentes”),
“continually increasing by inassignables” (“continue crescentes per inassign-
abilia”), “momentaneously increasing” (‘““momentanee crescentes”), in which
“minima’’ and “inassignables’ stand for the differentials as differences between
successive terms of the sequence. If these differences are all equal, LEIBNI1Z some-
times used the term “uniformly increasing’’ (““aequabiliter crescere’’).

2.5. Considering now how the finite difference sequences and sum sequences ave
affected by the extrapolation to the actually infinite, we see that a difference sequence
1s transformed into a sequence of an infinite number of infinitely small terms; these
terms ave called the differentials. A finite sum sequence is transformed into a sequence
of an infinite number of infinitely lavge terms, these terms are called the sums.

a1 gdxy idem est quod differentia duorum xy sibi propinquorum quorum unum
esto xy, alterum x+dx in y-+dy (that is: (v +dx)(y +dy)) fiet: dxy aequ
¥ +dxiny+dy—xyseu +xdy +ydx +dxdy et omissa quantitate dxdy, quae
infinite parva est respectu reliquorum, posito dx et dy esse infinite parvas (cum
scilicet per seriei terminum lineae continue per minima crescentes vel decrescentes
intelliguntur) prodibit ¥dy +yd».” (LeBN1z Elementa, p. 154.)
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Differentials and sums form sequences and are therefore variables of the same
sort as the sequences of the oydinary variables discussed in the preceding paragraph.
The differential is an infinitely small variable; the sum is an infinitely large
variable. Thus the operator A, by the extrapolation, transforms into an operator
differentiation, indicated by the symbol d, which assigns an infinstely small vaviable
to a finite variable, for instance dvy to y. Similarly, ihe operator X transforms, by
the extrapolation, into the operator summation, indicated by the symbol [, which
assigns an infinitely large variable to a finite variable, for instance [y to y.

The Latin terms are differentia or differentiale, and summa; the latter was
little used and was soon replaced by the term énfegrale; for the operator [ ac-
cordingly the terms summatio and integratio occur; see §2.10 and §2.11. The
operator 4 is called differentiatio.

It is important to stress the concept of the differential as a variable, and of
differentiation as an operator assigning variables to variables. On the concept
of variable, see §1.4. As I explained there, the concept of variable differs from
the concept of function in that it is not necessary to specify on which “inde-
pendent " variable a given variable depends. Differentials and sums have different
values according to where in the geometrical figure they occur; although infinitely
small, or infinitely large respectively, they have thus the same characteristics
which make ordinate, abscissa efc. variables; they are therefore rightly considered
as variables. The fact that a differential is sometimes supposed constant, is not
at variance with its status as variable. Constant variables occur in many situations,
as for instance the constant ordinate of a horizontal straight line, the constant
radius of curvature of the circle and the constant subtangent of the logarithmic
curve.

The common concern of historians with the difficulties connected with the
infinite smallness of differentials®? has distracted attention from the fact that in
the practice of the LEIBN1ZIAN calculus differentials as single entities hardly ever
occur. The differentials are ranged in sequences along the axes, the curve and
the domains of the other variables; they are variables®, themselves depending on
the other variables involved in the problem, and this dependence is studied in
terms of differential equations.

Moreover, to introduce higher-order differentials (see §2.8), first-order
differentials have to be conceived as variables ranging over an ordered sequence;
if only a single d x is considered, ¢4 x does not make sense. The following quota-
tion from LEIBNIZ illustrates this:

Further, ddx is the element of the element or the difference of the differences, for
the quantity dx itself is not always constant, but usually increases or decreases
continually 3¢

32 The attitude is evident, for instance, in BoyeEr 1949.

33 The only reference I have found in works on the history of mathematics to the
fact that differentials are variables and that the way in which they vary can be
chosen arbitrarily by choosing the progression of the variables, is in CoHEN 1883
(especially, p. 75). However, as COHEN’s prime objective is to ascertain the reality of
differentials in the sense of an Ervkenntniskvitik, the historical sections of his book are
of little further interest for present-day historians of mathematics.

3 “Porro ddx est elementum elementi sen differentia diffeventiarum, nam ipsa
quantitas dx non semper constans est, sed plerumque rursus (continue) crescit aut
decrescit.” (LeiBN1z 1710a; Math. Schyv. VII, p. 322-323.)

2 Arch. Hist. Exact Sci., Vol. 14
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2.6. The infinitely small diffevential and the infinitely large summa are con-
sideved actually as a difference or a sum, the differential dvy of a finite variable vy is
conceived as the difference between y' and vy, if V* is the ordinate wmext to y in the
infintte sequence of ordinates. The swm [y is conceived as the sum of all the terms
in the sequence of the ovdinates, from the ovdinate af the ovigin (or another fixed
ordinate) to the ordinate y.

Compare LEIBNIZ'S explanation:

Here dx means the element, that is, the (instantaneous) increment or decrement,
of the (continually) increasing quantity x. It is also called difference, namely the
difference between two proximate #'s which differ by an element (or by an in-
assignable), the one originating from the other, as the other increases or decreases
(momentaneously).3?

On the concept of sums, see the quotation in §2.9. On the relatively scarce
occurrence of infinitely large sums in the calculus, see Appendix 1. As one
example of its occurrence I quote some lines of JomaNN BERNOULLL, in which he
evaluates sums as quotients with infinitely small denominators:

Now because (if dz is supposed comstant) [z, [%z, [32, [%z, etc., are equal to

3 25

b9 z 2L e 36
1°2°dz’ 1-2-3-d?’ 1-2-3-4-d2®" 1-2-3-4-5-dz8" %%

2.7. In the finite arvay, the ratios Ax:Ay:As arve approximately equal to the
ratios oyt of subtangent, ovdinate and tangent (see the figure). In the extrapolation
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to the actually infinite the triangle becomes the differential triangle with sides dx, dy
and ds. The hypotenuse of the differential triangle is a side of the infinitangular
polygon, and thevefore, if prolonged, it forms a tangent line to the curve. Hence

dx:dy:ds=0:y:1,

this velation is fundamental for the application of differentials to problems about
tangents.

3 “Hic dx significat elementum, id est incrementum vel decrementum (momen-
taneum) ipsius quantitatis x (continue) crescentis. Vocatur et differentia, nempe inter
duas proximas x elementariter (seu inassignabiliter) differentes, dum una fit ex altera
(momentanee) crescente vel decrescente.” (Lemwniz 1710a; Math. Schr. VII, pp.
222-223.)

8 “quoniam nunc (posita dz constante) [z, [2z, f3z, [z etc. aequantur ipsis

zz %3 z* z8
1+2-dz’ 1-2-3-dz?’ 1+23+4-dz%’ 1+:2+3-4-5-dz*
BerNourLl to LeieNiz, 27-VII-1695; Math. Schy. 111, p. 199.)

3

etc. ... (JOHANN
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LEBNIZ became aware of the importance of the differential triangle while
studying work of Pascar¥. In his first publication on the calculus (1684a),
LriBNiz used the relation dx:4dy =¢:y to introduce the differential as a finite
line. I discuss this definition, which is rather anomalous in LLEIBNiZ'S work on
the calculus, in Chapter 4, where I also investigate the reasons why he adopted
it for his first publication.

Compare further LEIBNIZ’S explanation:

... to find a tangent is to draw a straight line which joins two points of the curve
which have an infinitely small distance, that is, the prolonged side of the in-
finitangular polygon which for us is the same as the curve.®®

2.8. The operators A and 2 of the finite arvay can be applied vepeatedly:

AA{y} ={aly}
with

2
ALY =081 Y — ;Y =Yige =2V T Y,

22{y;} ={Zjm1 21}
etc. Accordingly, d and [ can be applied vepeatedly, which application yields the
differentio-differentials, ov higher-ovder differentials, and the higher-ovder sums. In
the case of the variable v, for instance, d applied to the variable dvy yields the second-
ovder differential ddy, a variable infinitely small with vespect to dy. ddy can be
concetved as the difference between dy' and dy, if dy' is the differential adjacent to
dy in the infinite sequence of diffeventials. Further application of d yields the higher-
order differentials dddy (or d3y), d*y, &%y, etc. [, applied to the variable [y,
yields [[v, a variable infinitely large with vespect to [y, which can be conceived
as the swm of the terms in the sequence [y. Repeated application vyields [[[vy

(or [3y), [*y, etc.

Compare LEIBNIZ'S explanation, already quoted in part in § 2.5:

and

Further, ddx is the element of the element, or the difference of the differences, for
the quantity 4x itself is not always constant, but usually increases or decreases
continually. And in the same way one may proceed to dddx or d®x and so forth.®®

On the repeated sums see the quotation in § 2.6.

2.9. The operators A and 2 in the finite array arve, in a sense, veciprocal:

42{y} ={y¢+1}; ZA{y s} ={Yix1— M}

These properties are reflected in a veciprocity of d and [:

ify=y;, [dy=y.

37 See HormaNN 1949, pp. 28-29.

38 ‘... tangentewn invenire esse rectam ducere, quae duo curvae puncta distantiam
infinite parvam habentia jungat, seu latus productum polygoni infinitanguli, quod
nobis curvae aequivalet.” (LEIBNIZ 1684a; Math. Schv. V, p. 223.)

3 ““Porro ddx est elementum elementi seu differentia differentiavum, nam ipsa
quantitas dx non semper constans est, sed plerumque rursus (continue) crescit aut
decrescit. Et similiter procedi potest ad dddx seu d®x, et ita porro;...”" (LEIBNIZ
1710a; Math. Schr. VII, pp. 222-223.)

a%
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In the latter formula a constant should be added, but it is usually left out; [dy =1y
15 easily visualised as stating that the sum of the differentials in a segment equals
the length of the segment. dfy=1y lacks an obvious geometrical interpretation,
because [y is a sequence of infinitely large teyms. However, if instead of the finite
variable y an infinitely small vaviable, say yd x, is considered, then d [ydx=ydx
can be understood as stating that the differences between the teyms of the sequence of
areas [ydx are yd x.

Compare LEIBNIZ's assertion:

Foundation of the calculus: Differences and sums are reciprocal to each other,
that is, the sum of the differences of a sequence is the term of the sequences, and
the difference of the sums of a sequence is also the term of the sequence. The
former I denote thus: fdx = x; the latter thus: dfx = x.4°

Elsewhere, LEIBNIZ explained:

Reciprocal to the Element or differential is the swm, because if a quantity
decreases (continually) till it vanishes, then that quantity is the sum of all the
successive differences, so that dfydx is the same as ydx. But [ydx means the
area which is the aggregate of all rectangles, any of which has an (assignable)
length y and (elementary) width 4 x corresponding in the sequence to y. There are
also sums of sums and so forth, for instance fdx[ydx, which is the solid built up
of all areas such as [yd» multiplied by the elements dz which correspond in the
sequence. 4!

2.10. The reciprocity of the operators d and [ suggests the possibility of intro-
ducing [ as the inverse of d per definitionem. In fact, such a definition underlies the
calculus as developed in the early studies of the Bernoullis.

In the termimology introduced by the Bermoullis, integration, symbol [, is
the operator which assigns lo an infinitely small variable its integral, defined by the
property that the differential of the integral equals the original quantity. So defined,
the integral, like the sum, is a variable.

The contrast between integration and summation may be illustrated by the case
of the quadrature

Jydx=Q. (1)

In terms of summation, (1) asserts that the sum of the infinitely small vectangles vd x
equals Q. In terms of integration (1) asserts that () is a quantity whose differential
is yd x.

40 ' Fundamentum calculi: Differentiae et summae sibi reciprocae sunt, hoc est
summa differentiarum seriei est seriei terminus, et differentia summarum seriei est
ipse seriei terminus, quorum illud ita enuntio: [dx aequ. #; hoc ita: dfx aequ. #.”
(LeBNI1Z Elementa, p. 153.)

4 ““Contrarium ipsius Elementi vel differentiae est summa, quoniam quantitate
(continue) decrescente donec evanescat, quantitas ipsa semper est summa omnium
differentiarum sequentium, ut adeo dfyds idem sit quod ydx. At [ydx significat
aream quae est aggregatum ex omnibus rectangulis, quorum cujuslibet longitudo
(assignabilis) est y aliqua, et latitudo (elementaris) est d » ipsi y ordinatim respondens.
Dantur et summae swmmarum, et ita porro, ut si sit fdzfydx, significatur solidum
quod conflatur ex omnibus areis, qualis est Jydzx, ordinatim ductis in respondens
cuique elementum dz.”” (LEIBNIiZ 1710a; Math. Schr. VII, pp. 222-223.)
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Jakos and JoHANN BERNOULLI acquainted themselves with the LEIBNIZIAN
calculus between 1687 and 16904, Until 1690 the only articles by LEIBNIZ on
which they could base their studies were 16844, which concerns differentiation
only, and 1686. The latter article mentioned summation, used the symbol f,
and indicated the reciprocity of sums and differentials; the sums mentioned are
sums of differentials. It is not surprising, therefore, that the BERNoOULLIS devel-
oped a concept of integration as the reciprocal of differentiation. For example,
in JoHANN BERNOULLY's Integral Calculus, the integrals are introduced as follows:

We have seen above how the Differentials of quantities are to be found; we shall
now show how, conversely, the Infegrals of differentials can be found, that is
those quantities of which they are the differentials.*?

¢

LriBNiz, who saw use of the term “integral”” for the first time in JAKOB
BernoULLI 1690, tried later to persuade JoHANN BERNOULLI to adopt the termi-
nology of “sums”’:

I leave it to your deliberation if it would not be better in the future, for the sake
of uniformity and harmony, not only between ourselves but in the whole field
of study, to adopt the terminology of summation instead of your integrals. Then
for instance [ydx would signify the sum of all y multiplied by the corresponding
d z, or the sum of all such rectangles. I ask this primarily because in that way the
geometrical summations, or quadratures, correspond best with the arithmetical
sums or sums of sequences. {...) I do confess that I found this whole method by
considering the reciprocity of sums and differences, and that my considerations
proceeded from sequences of numbers to sequences of lines or ordinates.?*

This request served as occasion for JoHANN BERNOULLI to explain the origin
of the term integral:

Further, as regards the terminology of the sum of differentials I shall gladly use
in the future your terminology of summations instead of our integrals. I would
have done so already much earlier if the term integral were not so much ap-
preciated by certain geometers [a reference to French mathematicians, especially
I'HoPiTAL, who had studied BERNOULLY's Infegral Caloculus] who acknowledge me as
the inventor of the term. It would therefore be thought that I rather obscured
matters, if I indicated the same thing now with one term and now with another.
I confess that indeed the terminology does not aptly agree with the thing itself

42 Apparently, no manuscript record of these early BernoULLIAN studies has
survived. JAKOB BERNOULLI's diary, the Meditationes, does not contain material on
this crucial period; see HormMaNN 1956, p. 16.

4 “Vidimus in praecedentibus quomodo quantitatum Differentiales inveniendae
sunt: nunc vice versa quomodo differentialium Integrales, id est, eae quantitates
quarum sunt differentiales, inveniantur, monstrabimus.” (JoHANN BERNOULLI
Integral Calculus, p. 387.)

4 ““Unde Tibi deliberandum relinquo, annon, pro Integralibus vestris, praestet in
posterum uniformitatis et harmoniae gratia non inter nos tantum, sed in ipsa doctrina
adhiberi Summatorias expressiones, ita ut, exempli gratia, [yd# significet summam
omnium y in d# respondentes ductorum, seu summam omnium hujusmodi rectangu-
lorum: praesertim cum tali ratione summationes geometricae seu quadraturae optime
cum arithmeticis seu serierum summis conferantur. {(...) Ego certe in totam hanc
methodum me fateor, ex hac consideratione reciprocationis inter summas differentias-
que, incidisse, et a Seriebus numerorum ad linearum seu ordinatarum considerationes
processisse.” (LEIBNIZ to BERNoOULLI 28-11-1695; Math. Schy. 111, p. 168.)
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(the term suggested itself to me as I considered the differential as the infinitesimal
part of a whole or integral; 1 did not think further about it).4

The matter was left there, and gradually the terminology of integrals replaced
LEiBN1z’s original terminology of sums.

2.11. The caleulus built on the concept of integration and that built on the concept
of summation differ also in that summation leads naturally to infinitely large
quantities (see Appendix 1), whereas in a calculus based on the concept of integra-
tion, such quantities are less likely fo appear, since integration is applied only to
quantities which ave themselves differentials.

2.12. The differentials and swms, tntroduced by the operators d and [, arve
quantities, and thevefore they have a dimension. If these infinitesimal quantities ave
of the same dimension, they can be added; also products of such quantities can be
Jormed and the dimension of the product will be related to the dimensions of the
factors in the same way as in the case of finite quantities (see § 1.5).

In the finite array, the terms of the difference and sum sequences have the same
dimension as the terms of the original sequence (if v, are line segments, then so are
r;y and iy y;). Consequently, d and [ preserve the dimension. If y is a variable
line segment, then dy is an infinitely small variable line segment and [y is an
tnfinitely large variable line segment. If Q is a quadrature, dQ is an infinitely small
area, etc.4®

Compare JoHANN BERNOULLI’S explanation of the conservation of dimension
by differentiation:

The parts of a solid, although infinitely small, are always solids; those of a surface
are always surfaces, and the parts of a line are always lines, for it is not possible
that a kind of quantity can be changed by division into another kind of quantity.*

2.13. Differentials and sums form classes having distinct orders of infinity. Thus
for instance dvy is infinitely small with vespect to y; ddy is infinitely small with
vespect to dy, and in general A1y is infinitely small with vespect to d*y. Similarly
[y is infinitely large with vespect to [y, etc.

Al first-order differentials of finite variables have the same order of infinity
(that is, any two of them have a finite vatio, except al singularities). Consequently,
for every k, all k®-order diffeventials have the same order of infinity. This rule, by

4 ““Caeterum, quod nomenclationem differentialium summae attinet, lubentissime
pro integralibus nostris Tuas in posterum adhibeo summatorias expressiones; quod
diu ante fecissem, si nomen integralium non adeo invaluisset apud quosdam Geometras,
qui me hujus nominis authorem agnoscunt, ut satis obscurus visus fuissem, unam
eandemque rem, nunc hoc, nunc alio nomine designans. Fateor enim nomenclationem
istam (quae, considerando differentialem tanquam partem infinitesimam totius vel
integri, mihi non ulterius cogitanti, venit in mentem) rei ipsi non apte convenire.”
(Jouann BErRNOULLI to LuIBNiZ, 30-IV-1695; Math. Schr. 111, p. 172.)

46 The conservation of the dimension by the operator d marks the fundamental
difference between infinitely small elements and indivisibles; compare WALLNER 1903.

47 ‘T es parties d’'un corps, quoique infiniment petites, sont toujours corps; celles
d’une surface, sont toujours surfaces; et les parties d’une ligne sont toujours lignes:
n’étant pas possible qu'un genre de quantité puisse étre changé par la division en un
autre genre de quantité.” (JouANN BErRNoULLI Opera IV, p. 162.)
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no means obvious, velates to assumptions about the vegularity of the infinitangular
polygon which I shall discuss in § 2.18. Moreover, the order of infinity of k™-order
differentials is the same as that of k™ powers of first-order differentials (that is,
d*y bears a finite ratio, except at singularities, lo (dy)*). This rule (see §2.18)
resulis from assumptions about the regularity of the infinitangular polygon.

Simalarly, the sums and the vepeated sums form classes having distinct ovders of
infinity. Because of the above mentioned velations between the elements of classes of
different ovders of imfinity, the number of ovders of infinity is infinite, but de-
numerable, every infinitely small quantity has a finite vatio to (d x)* for some natural
number k and every infinitely large quantity has a finite vatio to [[y1* for some
natural number k (see § 2.15 below, and Appendix 2).

As an example of the terminology with which these orders of infinity were
indicated I quote some lines by JOHANN BERNOULLI:

Let a be a finite line, ad» an infinitely small of the first sort, dddy an infinitely
adx

dday
be called z; hence adx =zdddy; hence

small of the third sort. It is to be proved that is an infinitely large of the

ad
second sort. For that purpose, let addy
dx:dddy =z:a. Now d x is infinite-infinitely larger than ddd y; hence also 2, which
is the quotient resulting from the division, will be infinite-infinitely larger than a,
which is a finite line; it follows that z will be an infinitely large of the second sort.*

It is instructive to cite in this context a proof by LEIBNIZ that dd x is a quan-
tity infinitely small with respect to dx. The proof occurs as a refutation of
NIEUWENTIJT’Ss opinion?® that second-order differentials do not exist:

For whenever the terms do not increase uniformly, the increments necessarily
have differences themselves, and obviously these are the differences of the
differences. Further, the renowned author [that is, NIEUWENTIJT] concedes that
d x is a quantity. Now the third proportional of two quantities is again a quantity,
and the quantity ddx is of this kind with respect to the quantities » and dx,
which I prove thus: Let » be in geometrical progression and y in arithmetical
progression, then d x will be to the constant dy as x to a constant @, or dx = xdy:a.
Hence ddx =dxdy:a. Removing dy:a from this by the former equation, one has
xddx = dxd x, whence it is clear that ¥ is to dx as dx to dd».5°

48 ““Soit a une ligne finie, adx un infiniment petit du premier genre, dddy un
d
Tad-dx? est un infiniment grand

a
du second genre. Pour cette fin, soit % nommé z; donc adx =zdddy; donc

infiniment petit du troisiéme genre, il faut prouver que

dx:dddy =z:a. Or dx est infini-infiniment plus grand que dddy; donc aussi 2z, qui
est le quotient de la division, sera infini-infiniment plus grand que a, qui est une ligne
finie; et partant z sera un infiniment grand du second genre.” (JOHANN BERNOULLI
Opera IV, p. 166.)

4 Expressed in NIEUWENTIJT 1694.

80 ““Nam quotiens termini non crescunt uniformiter, necesse est incrementa eorum
rursus differentias habere, quae sunt utique differentiae differentiarum. Deinde
concedit Cl. Autor, dx esse quantitatem; jam duabus quantitatibus tertia proportio-
nalis utique est etiam quantitas; talis autem, respectu quantitatum x et dx, est
quantitas dd x, quod sic ostendo. Sint x progressionis Geometricae, et yarithmeticae,
erit d » ad constantem dy, ut y ad constantem a, seudxy =xdy:a; ergoddx =dxdy.a.
Unde tollendo dy:a per aequationem priorem fit xddx =dxdx, unde patet esse x
ad dx, ut dx ad ddx.” (LEBNIZ 1695a; Math. Schy. V, p. 325; compare ibid. II,
p. 288.)
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This passage has repeatedly bewildered historians of mathematics.® It is, how-
ever, a perfectly acceptable argument, if one bears in mind that LEiBNIZ does
not claim that 44 x is always the third proportional of x and 4 x but rather gives
an example in which such is the case. The example then proves the existence of
quantities infinitely small with respect to d x. The curve in question is, of course,
the logarithmic curve (x =05¢"%), which was usually defined as the curve in
which a geometric sequence of ordinates (or abscissas) corresponds to an arith-
metic sequence of abscissas (or ordinates). Hence LEIBNIZ takes 44 constant and
knows that the dx form a geometrical sequence.

2.14. To avoid ambiguities, there are ceviain rules of notation. If no brackets are
used, the operators d, dd, d®, etc. have to be interpreted as acting on the one letter
vayiable following 5. If the operator is meant to act on a composite variable, brackets
wmust be added. Thus d x® means (dx)%, as d acts only on x; the differential of x? is

2 3
indicated as d (x?). Similarly d* x® means (d? x)®. Differential quotients like ij; ) Z—}f;— )
. d? ad Lo
ete. have to be interpreted as (7)3/—2,(—(1—3)%, etc. The operator [ is interpreted as

acting on all letters which follow it. Thus [ydx means [(yd x).

LE1BNIz used overbars rather than brackets, e.g. dxy for d(xy). He also used
the comma as separating symbol; thus d xy -+ a2 for d(xy +-a?). EULER gives
these rules of notation explicitly in 1755 (§ 144).

2.15. I turn now fo a difficulty which necessarily arises in any attempt to set up
an infinitesimal calculus which takes the differential as fundamental concept, namely
the indeterminacy of diffeventials.

The first differential d x of the varviable x is infinttely small with respect to x,
and 1t has the same dimenston as x. These are the only conditions it has to satisfy,
and they do not determine a unique d %, for if d x satisfies the conditions then clearly
so do 2d x and Ld x and in general all ad x for finite numbers a. That is, all quantities
that have the same dimension and the same ovder of infinity as d x might sevve as d x.

Moveover, there are elements not from this class which satisfy the conditions for
dx; for instance d x%a and Yadx, for finite positive a of the same dimension as x.
d x?|a is infinitely small with vespect to d x and ad x is infinitely large with vespect
to d x, so that theve is even not a privileged class of infinite smallness from which d x
has to be chosen,; there is no ‘“ first” class of infinite smallness adjacent to finiteness.
Thus first-order differentials involve a fundamental indeterminacy.

The early practitioners of the LEiBNIzIAN calculus seem not to have noticed
this indeterminacy of first-order differentials. Compare Appendix 2 (especially
§ 7.8), where I discuss a study of EULER’S which shows that he was aware of
this problem.

It is difficult to give reasons for, or to draw conclusions from the fact that
this problem was recognized late. One important aspect doubtless is that it does
not influence the computational techniques or the interpretation of first-order
differential equations. Geometric intuition convinces us that the finite ratios
dx:dy:ds are independent of the choice of dx in any class of infinitely small

51 Compare WEISSENBORN 1856, p. 99 and BoyER 1949, p. 211.
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quantities, so that, although the first-order differentials themselves are indeter-
minate, the relations between them are determined. Alsc the summation of
differentials is not affected by this indeterminacy; [dx=x applies for every
choice of the d«’s. Thus in the treatment of the most common problems of the
infinitesimal calculus, quadratures, tangent problems, inverse tangent problems,
rectifications, cubatures, efc., the indeterminacy of the fundamental concept did
not influence the technique of the analysis.

However, there is another kind of indeterminacy, which affects higher-order
differentials and which did profoundly influence the concepts and the techniques
of the early differential calculus. I discuss this indeterminacy in the following
paragraphs.

2.16. There ave many ways to approximate a curve by a polygon. To fix ideas,
I mention three possibilities:

a) polygons with equal sides,
b) polygons, the projection of whose sides on the X-axis ave all equal,
c) polygons, the projection of whose sides on the Y-axis ave all equal.

In these three cases the opevators A and X can be applied to the appropriate
sequences, but the results of this application may differ. In Case a, a;s is constant;
consequently a¥s=01if k=2; but in general pfx and sty will not be equal to zevo.
In Case b, n;x is constant (say equal to ax), hence abx=0if k=2, but sty and
aFs will in general not be equal to zero.

Moreover, in Case b, nx2{y,} is an approximation of the quadrature, in other
words, the sequence {Zi_ v} is approximately proportional to the sequence of
quadratures {Q;}. In Cases a and c this approximation does not apply. Therefore,
the justice of such an approximation depends on the choice of the polygon.

The form of the polygon defines the sequences of abscissas, ordinates, arc lengths,
etc. Conversely, if the sequence of values of one variable is given (and if it is agreed
that the vertices of the polygon ave on the curve), then the polygon is determined and
hence also the sequences of values of the other vaviables. Cases b and c, discussed
above, may thus be described as polygons induced by arithmetic sequences of abscissas
and ordinates, respectively.

The indeterminacy of the approximating polygon in the finite arvay, or the
freedom to impose an additional requirement (such as to form an arithmetic pro-
gression) on the sequence of values of one variable, is preserved in the extrapolation
to- the actually infinite. Thus the concept of infinttangular polygon implies an
indeterminacy; it allows the free choice of an additional supposition about the
sequence over which the values of one vaviable range. The most obvious way of making
such an additional supposition is to extend the concept of arithmetic sequence to
wnfinitesimals. Thus the supposition that the sequence of values of x is arithmetic
becomes, for infinitesimals, the supposition that d x is constant.

Corresponding to the three cases discussed above there ave the following possi-
bilities for additional suppositions about the infinitangular polygon:

a’) ds constant,
b') dx constant,
¢') dy constant.
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Taking over LEIBNIZIAN terminology, I shall refer to the imposing of an addi-
tional supposition about the infinitangular polygon as the choice or the specification
of the progression of the variables; for one may conceive this choice or specification
as concerning the way the variables proceed along their domains.

The freedom to choose the progression of the variables is described in the
following quotations from LEiBNIZ:

To take sums it is quite unnecessary that the dx or the dy be constant and the
ddx =0, but one assumes the progression of the » or y (whichever one wishes to
take as abscissa) as one likes it.52

... namely that the progression of the » can be assumed ad libitum ...5?

That many different progressions of the variables could be studied appears
from a letter of VARIGNON to LEIBNIZ, where he writes about a problem involving
variables x, y, s, and 2:

Apart from these 18 formulas (...) of which the last 12 are deduced from the first
six by supposing successively dx, dy, ds, dz constant, one can still deduce an
infinity of other formulas from these first six by supposing in the same way
. . . . dy ds?
anything else constant (...) for instance by successively supposing also ——, ——,
y™dx, y™ds efc. constant.5* yor

As appears from this quotation, the progression of the variables is specified
by indicating which first-order differential is supposed constant. Sometimes this
is described fully in prose: ““the arc length growing uniformly” for ds constant,
and “the x growing uniformly’’ % for 4 x constant.

2.17. The rules for the operators d and [ discussed so far do not depend on the
choice of the progression of the variables, bul as long as the progression is not specified,
the variables introduced by the operators d and [ are affected by the same indeter-
wanacy as the infinttangular polygon. For instance, in Case &', dds =0 (because d s
is constant), but in Case b', dd s is not equal to zero. The differentials and the relations
between them depend on the progression of the variables. Also the sums depend on
the progression of the variables. The relation of 2 {y;} to the quadrature, discussed in
conmection with Case b, transforms, by the extrapolation, into the assertion that,
under the supposition of a constant dx, [y is proportional to the quadrature Q,

52 “Es ist gantz nicht nothig ad summandum, dass die d x oder dy constantes und
die dd ¥ =0 seyen, sondern man assumiret die progression der » oder y (welches man
pro abscissa halten wil) wie man es gut findet.” (LEisNi1z to voN BODENHAUSEN,
Math. Schr. VII, p. 387.)

53 ... ut scilicet progressio ipsarum # assumi posset qualiscunque ...” (LEIBNIZ
1684 a; Math. Schr. V, p. 233.)

54 ““Qutre ces 18 formules (...) dont les 12 dernieres sont déduites des six premieres
en y supposant dx, dy, ds, dz successivement constantes, 'on peut encore en deduire
une infinité d’autres de ces six premieres en y supposant de méme toutte autre chose

2
de constante, (...) par example en y supposant aussi L4 R ast , y™d x, y"ds etc. suc-
cessivement constantes, ...”” (VARIGNON to LeisNiz, 4-XII-1710; LeisNiz Math. Schy.
1V, p. 173)

55 “arcu aequabiliter crescente’’; ‘‘x uniformiter crescentes.” (LEmsNIz Math.
Schy. V, pp. 285 and 233.)
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with dx as infinitely small proportionality factor: dx[y=Q. This relation does
not apply under any other supposition about the progression of the variables.

This point will be discussed further in relation with CAvALIERIAN theories in
Appendix 1. Suffice here the following quotation, in which LEiBN1z explains that
if dx is taken constant, one may treat the quadrature as [y (“sum of all y”),
as is done in the theory of indivisibles, but if one wishes to consider different
progressions of the variables, the quadrature has to be evaluated as [ydx:

And this indeed is also one of the advantages of my differential calculus, that one
does not say, as was formerly customary, the sum of all y, but the sum of all yd x,
or [ydx, for in this way I can make dx explicit and I can transform the given
quadrature into others in an infinity of ways, and thus find the one by means of
the other.5

2.18. The properties of the differentials and the suwms as outlined above imply
certasn conditions of vegularity of the infinitangular polygon. The requivement that
the second-order diffeventials be infinitely small with respect io the first-order differen-
tials tmplies that the first-ovder diffeventials must vary smoothly; two adjacent
differentials must be approximately equal. This vequivement does not follow im-
mediately from the extrapolation from the finite arvay. Indeed, in the finite arvay
one can imagine a polygon with sides of alternating lengths h and 2h, in which the
difference sequence n;s of the arc lengths would be {h, 2h, h, 2h, h, ...} and the
second-difference sequence {h, —h, h, —h, h, —h, ...}. Extrapolating this case to
the actually infinite makes the second-ovder diffevential dds of the same ovder of
infinity as the first-order diffevential ds.

Such anomalous progressions of the variables have to be excluded; they can be so
effectively by considering only progressions in which the first differential of one of
the variables is constant. This can be understood in hindsight from the fact that the
curves which were studied implied, except at singulavities, sufficiently often differen-
tiable relations between the variables. Hence if w is the variable with constant first
differential, the corresponding sequence of, say, y(y=f(u)), is formed by exira-
polation from a finite sequence like fla), f(a--h), f(a+-2h), fla+3h),.... The
property that dvy,ddy, d3y etc. are of successive different orders of infinity then
velates to the different ovders of h of

ay=f(a+h) —f(a) =0 (h),
aby=fla+2h) —2f(a+h)+[(a) =0 (#?),
2y =fla+3h) —3f(a+2h)+3f(a+h) —f(a) =0 ().

From these velations it can also be seen that, if the first diffevential of one of the
variables is supposed constant, the k™P-order differentials ave of the same ovder of
infinity as the k™-powers of the first-order differentials.

The argument above suggests that the vaviable with constant first differential
acquires the vole of independent variable. This aspect if discussed further in § 2.20.

% ““Und das ist eben auch eines der avantagen meines calculi differentialis, dass
man nicht sagt die summa aller y, wie sonst geschehen, sondern die summa aller ydx
oder [yd#, denn so kan ich das dx expliciren und die gegebene quadratur in andere
infinitis modis transformiren und also eine vermittelst der andern finden.” (LEIBNIZ
to voN BoDENHAUSEN; Math. Schv. VII, p. 387.)
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I have found very few traces of an awareness that the usual suppositions about
the progression of the variables imply regularity conditions not implicit in the
concept of infinitangular polygon. Most likely this lack of awareness was caused
by the fact that if the rules of the calculus are followed and if one specifies the
progression of the variables by specifying a constant differential, one hardly
ever encounters problems which throw up this question. Still, the question did
occur, namely in connection with the fact that zero has no fixed order of infinity.
As an example I quote JakoB BERNOULLI's discussion of the differential of
%257 He wrote

A& =(x+dx)?*—x2=2xdx+ (d )3,
and concluded from this that, for x=:0, d(4%) =2xdx, but that, for x=0,
d (%% = (d x)2. The last formula violates the regularity condition that first-order
differentials must all be of the same order of infinity; with respect to first-order
differentials, (d %) has to be discarded and 4 (#?) has to be evaluated as equal to
zero for x =0.

2.19. The curve embodies velations between the velevant variables. Like the finite
vaviables, the differentials bear rvelations to each other induced by the curve. The
equations which express these velations arve the differential equations.

The terms of the equations which express the velations between the finite variables
are analytic combinations (products, sums etc.} of these variables. Therefore these
terms are themselves variables and the operator d can be applied to them. The rules of
the calculus feach how the differentials of such analytic combinations relate to the
differentials of their component terms and factors. These rules are:

A(x+y)=dx+dy
d(zy)=xdy+ydx

d x _ xdy —2 vdx
¥ y
dx*=ax"dx (also for fractional a)
dlog x = adx (a depending on the kind of logarithm involved)

X
db* =ab’dx (with a =Inb)
dsin x=cos ¥ dx
adx
Vi_a
Because these rules are independent of the choice of the progression of the variables,
one can apply them without making any supposition about this progression.

In 1684a LeieNiz published the rules of differentiation for sums, products,
quotients, powers and roots.® It may be noticed that the applicability of the
LEIBNIZIAN algorithm to roots and complicated irrationalities constituted one of
its great advantages over the already known rules for tangents and extreme
values (FERMAT, SLUSE), which applied only to polynomial equations for algebraic
curves. The computation of such equations for given curves (for instance

d arcsin x = tc.

57 JaxoB BERNOULLI Opera II, p. 1088; see for further examples BovERr 1949,

Pp. 251.
58 LeiBNIiz 1684a; Math. Schy. V, p. 225.
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LeiBN1z's example: the locus of points whose distances to six given points add
up to a given constant) often required long and tedious calculations because the
roots had to be eliminated. Hence the title of 1684a: A new method for maxima
and minima, and also for tangents, which is not tmpeded by fractions or iryational
quantities, and a singular kind of calculus for these.®

The rules for differentiating non-algebraic compositions of variables {expo-
nentials, logarithms, trigonometric relations) were not given in this article of
LEeiBn1z’s. They involve certain difficulties connected with the concept of dimen-
sion; see note 6.

2.20. By applying the operator d to both sides of the equation of the curve and
then working out the results using the rules, the differential equation of the curve is
derived. Repeated application of d vyields the higher-order differential equations of
the curve. As the rules of the calculus ave independent of the choice of the progression
of the variables, the vesulling differential equations are valid with vespect fo every
such progression. However, the choice of a progression of the variables may transform
the second and higher-ovder differential equations into simpler omes, which then, of
course, ave valid only for the progression chosen.

This aspect of higher-order differential equations, which is velated to the indeter-
minacy of the infinitangulay polygon discussed above in § 2.16, may best be illustrated
by an example, for which I take the parabola ay = x2. Repeated application of d
on both sides of the equation vyields the first-order and higher-order differential
equations, valid for every progression of the variables:

ady=2xdx,
addy=2(dx)*+2xddx,
addy=06dxddx+2xd%x, @

adty=6(ddx)?+8dxdx+2xd*x
etc.
If the progression of the variables is specified by dy constant (d dy =0), these
equations are transformed into
ady=2xdx,
0=2(dx)2+2xddx,
0=06dxddx-+2xd%x,
0=6ddx)?*+8dxd®x+2xd*x,
etc.,
and if dx 1s supposed constant, (d d x =0), the equations ave tyansformed into

ady=2xdx,
addy=2(dx)?
y=2(d%) @)
addy =0,
adty =0,

etc.

5 ““Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas
nec irrationales guantitates moratur, et singulare pro illis calculi genus.” (LEIBNIZ
1684a; Math. Schr. V, p. 220.)
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The example shows that the general higher-order differential equations of a curve
may be considerably simplified by the choice of an appropriate progression of the
variables. Hence theve ave two kinds of differential equations in the calculus: those
which apply regardless of the progression of the variables, and those which apply
only for a specified progression.® In treating a differential equation, it must always
be clear to which kind it belongs, and if it belongs to the second kind, the progression
has to be specified. This is done by specifying which fivst-order differential is supposed
constant.

Higher-order differential equations of the same curve, but applying with respect
to different progressions of the variables will differ considerably. Conversely, the same
higher-ovder differential equation, if understood with vespect to different progressions
of the variables, will define diffevent curves. I shall treat this dependence of higher-
ovder differential equations on the progression of the variables in more detail in
Chapters 3 and 5.

In the techniques for the derivation of higher-order differential equations
from the data in a physical or geometric problem and in the techniques for the
solution of such equations the choice of appropriate progressions of the variables
plays a most important role. I shall discuss examples of this technical aspect of
the LEIBNIZIAN calculus in Chapter 3.

The choice of the progression of the variables is related to what would be the
choice of an independent variable if one wanted to consider the variables as
functions. This is illustrated by equations (3) and (4). Equations (3) in which 4y
is supposed constant, correspond to

a=2x4%,

0=2(x"2+42xx",
0=6x"%"+2xx"",
0=06(x")2+8x"x"" +2x%"",
etc.

in which «’, ' efc. are the derivatives of x as function of y (¥ =)/ay). Similarly,
equations (4), which presuppose 4% constant, correspond to

ay' =2x,

ay" =2,
ay"’ =0,
ay"" =0,
etc.

where y’, 9"’ efc. are the derivatives of y as function of x(y = #%/a),

The correspondence between the variable with constant first-order differential
and the “independent”’ variable occurring in functions may also be clarified by

80 BErNOULLI used the terms ““complete” and ‘‘incomplete’’ for the two kinds of
differential equations; see note 71.
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considering the formula which is at present still in use for the second derivative:

d*y
dx?’

For y =f(x), the derivative is defined by

The second derivative is usually introduced as the derivative of the derivative.

However, one can also introduce it as
Uxt+2h) —fx+h)] —[f(x+h) —[{#)]
h?

dty .
I =i

which is analogous to

aty _ dyl—dy
dx* —  dx*

For this definition of the second derivative it is essential that one take two
equal segments % along the X-axis. This becomes clear if we consider how the
second derivative could be defined directly as a limit of a quotient of finite
differences with respect to unequal segments %, and A, along the X-axis. The
numerator of such a quotient would be

[f (%4 By =+ hg) — f (2 -+ Pa)] — [f (% 4 P} — F ()]

But there is a problem of choice for the denominator, for which %2 or /43 or, as a
comprise, 7/, h, might be chosen. But for no choice of the denominator will the
double limit as A,—0, h,—0 exist, as can be checked easily in the example
f () == x. So we have to suppose %; = k,, which is equivalent to what in LEIBNIZIAN
terminology is rendered as supposing dx constant. Hence only if dx is taken
constant does d%y have a relation to the second derivative of y as function of x.8
Thus the variable whose first-order differential is supposed constant takes a role
equivalent of that of the independent variable.

1 This, incidentally, is the reason why the suggestive cancelling of the differentials
in the chain rule for derivatives,

does not occur in the chain rule for higher order derivatives. A similar cancelling of
d x® in the case of second derivatives would lead to

Py Ly dax Ay <ﬁi)2.

ar T dx? 42T dx? \ dt

but in order that this equation beinterpretable as a relation between second derivatives
az daz

7 ;2} and —[—Z—ZJ-;—, both d¢ and dx must be supposed constant, which can only apply in
the case that ¥ =a?+b. In general, the relation between the second derivatives of

y{t), ¥ (#) and x(¢) is given by
aty  d?y (dx)z ay dfx

darr T dxt \df dx de°’

in which indeed the last term vanishes if ¥ =at - b.
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2.21. In equations (2) (3) and (4) it appears that the first-order differential
equations ave not affected by the change of the progression of the variables. This is a
geneval vule, and its effect is that in the treatment of first-order differential equations
the progression of the variables need not be specified and can be left undetermined.
Hence tn that case no variable need be singled out and given a constant fiyst-ovder
differential, and so all variables have equal status in the calculus. Also the solution
of first-order differential equations is not affected by specification ov change of the
progression of the variables.

The rule applies to fiyst-ovder differential equations of any degree (i.e. the equa-
tion may involve powers and products of first-order differentials). It may be proved
as follows: Differential equations are homogeneous with respect to order of infinity
(see § 2.22). In the case of equations involving only first-order differentials this
means that they are homogeneous in these differentials. Hence multiplication of all
differentials by the same factor does not affect the equation. Now af every point of
the curve, the relation

dx:dy:ds=c:y:1

applies independently of the progression of the variables. Hence if dx, dy, ds and
dx*, dy*, ds* arve induced by two different progressions of the variables,

dx:dx*=dy:dy* =ds:ds¥*,

that is, in changing from one progression of the vaviables to another, the differentials
are all multiplied by the same factor, so that the velation between them, expressed by
the differential equation, vemains the same. ( The argument can be extended to cover
cases involving variables othey than x, y and s.)

The rule plays an important vole in arguments of JOHANN BERNOULLI and
EULER about the transformation of higher-ovder differential equations by different
choices of the progression of the variables, a matter 1 discuss in Chapters 3 and 5.

In general, the authors conscientiously specify the progression of the variables
in those cases where that is necessary. I have found few examples where the
specification is omitted. One such case shows how crucial the specification is for
understanding the calculations. It occurs in JoHANN BERNOULLI'S Infegral

Calculus:

Because s =adx:dy [this is the differential equation which BErRNOULLI discusses]
wehaveds =|da? +-dy? = addx:dy,andhencedy =uddx:de2 + dy? Inorderthat
the integrals can be taken on both sides, both sides are multiplied by dx, which
results in dxdy =adxddx: ]/d #*+dy*. Taking integrals, we arrive at x#dy =
al/dx*+dy? and after reducing the equation, we find dy=ad x:)fx2—a* as
before. [BerNOULLI had previously discussed this differential equation.]®?

These calculations are incomprehensible because BERNOULLI fails to indicate that
he takes dy constant.

62 ““ Quia s=adx:dy, erit ds =]/(dx2 +dy?) =addx:dy ideoque dy =addx:
V(d x? +dy?. Ut utrobique possit sumi integrale, multiplicetur utrumque per dx,
habebitur dxdy=adxddx: ]/(EF—{— dy®). Sumptis integralibus, erit xdy=
a]/(d #? 1 dy?), reductaque aequatione, erit dy —adx: ]/(xx —aa), ut ante.” (JoHANN
BerNovLLL Integral Calculus, p. 426.)
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2.22, The geometric interpretation of the quantities entering the analysis requives
the equations to be homogencous in dimension. In addition, there is a second kind of
homogeneity, which requives that all the terms of an equation should be of the same
order of infinity. A quantity which is infinitely small with respect to another quantity
can be neglected if compared with that guantity. Thus all terms in an equation except
those of the highest order of infinity, or the lowest order of infinite smallness, can be
discarded. For instance,

atdx=a

dx+ddy=dx
etc. The vesulting equations satisfy this second vequivement of homogeneity.

LeeNiz valued the two laws of homogeneity highly, as appears from his
17100, where he introduced a new notation for powers and extended the notation
for differentials in order to display the analogy between powers and differentials,
and, correspondingly, the analogy between the laws of dimensional homogeneity
and homogeneity of orders of infinity. He wrote p*x for x* (thus stressing the
fact that taking powers is, like taking differentials, an operafor), and he extended
4" x to the case in which # =0 by defining d° x = x. He then exhibited the analogy
between powers of sums and differentials of products, which is, in fact, “ LEIBNIZ’S
rule”:

Pt =1peapoy + o priapry + S8 pemanpey
ele—1){e—2) ,_
+ 123 P3Py + et

#(xy) =1&xdy + - dady + "(—igﬂ d~txdty

ele—~1)(e—2)

+ 1.2.3

de—3xd3y - etc.53,

He extended the analogy to sums of three terms and products of three factors.
After this he remarked:

And this analogy even goes so far that, in this way of notation (which may surprise
you), also p%{x + ¥ -+ 2) actually corresponds to d°(xyz), for

PP +yt2) =1=p"4pyp%
A(xyz)=xyzs=4axd’yd’z.

and

At the same time a transcendental law of homogeneity appears, which is not
equally obvious in the usual way of notation for differentials. For instance, if we
use this new kind of Chavacteristica, it appears that addx and dxdx are not only
algebraically homogeneous (as in both cases two quantities are multiplied), but
that they are also transcendentally homogeneous and comparable. For the former
can be written as d°ad?x, and the latter as d'xd'x, and in both cases the dif-
ferential exponents have the same sum, for 0 +2 =1 4 1. The transcendental law
of homogeneity presupposes the algebraical law 64

63 1. E1BN1z Math. Schy. V, pp. 379-380.
84 ““Eaque analogia eousque porrigitur, ut tali scribendi more (quod mireris) etiam
(¥ +y -+ 2) et d°(xy2) sibi respondeant et veritati, nam
Pty +2)=1=p4pyps

3 Arch. Hist. Exact Sci., Vol. 14
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2.23. Dimension and order of infinity of finite and infinitesimal quantities are
affected by multiplication and by the application of the operators d and [ as follows.

Multiplication changes the ovdey of infinity unless the factor is finite; it changes
the dimension unless the factor is a number or a ratio.

The operator d preserves the dimension and changes the ovder of infinity; for
any variable quantity A, dA is infinitely small with vespect fo A.

The operator [ preserves the dimension and changes the order of infinity, [A
is infinitely large with vespect to A.

Some examples may suffice for further clarification.:

ddy
P

s a finite vatio,

ay . . Coe

v [fx  is a line segment, infinitely large of second order,
abx is an infinitely small area,

% ddx 1is a line, infinitely small of third ovder etc.

2.24. It is appropriate to end this outline of the Leibnizian calculus by indicating
how its key concepts, differentiation and summation, contrast with the concepts of
derivation and integration as wused in present-day infinitesimal calculus of veal
Junctions. To be explicit: Derivation s the operator which assigns to a function f its
and Integration (which fterm I now wuse in a sense different from that in § 2.10
above, where I discussed Bernoulli's concept of iniegration) is the opevator which
assigns to a function | an integral [f()dt of f, which is again a function, deter-
mined (modulo a constant term) by the vequirvement that its derivative equals f, or,
alternatively, defined as [%f(¢)dt, using a divect definition of the definite integral by
means of limits of sums over refining partitions ( Riemann integral).

devivative [, which is again a function, defined by f'(x)=

Comparison of these two pairs of concepts veveals three important contrasts:

(I) Differentiation and summation apply to variables, irrespective of the depend-
ency of these on other *“independent” variables; derivation and integration
apply to functions of one specified variable.

(1I) Differentiation and summation depend on the progression of the variables in
the sense that the fivst-ovder and higher-ovder differentials and sums remain
undetermined until the progression of the variables is specified, although in

et
d’(xy2) =xyz=dxd%yd®z.

Eadem etiam opera apparet, quaenam sit Lex homogencorum transcendentalis, quam
vulgari modo scribendi differentias non aeque agnoscas. Exempli gratia, novo hoc
Characteristicae genere adhibito, apparebit add x et d ¥d » non tantum Algebraic (dum
utro-bique binae quantitates in se invicem ducuntur) sed etiam transcendentaliter
homogeneas esse et comparabiles inter se, quoniam illud scribi potest 4°ad 2x, hoc
d'zd'x, et utrobique exponentes differentiales conficiunt eandem summam, nam
0+2=1-+41. Caeterum lex homogeneorum transcendentalis vulgarem seu Alge-
braicam praesupponit.” (LEIBNIZ 1710b; Math. Schv. V, pp. 381-382; compare also
ibid. IV, p. 55.) The transcendental law of homogeneity is also mentioned in LeisNiz
1684a; Math. Schr. V, p. 224.
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some cases the relations between the differentials and sums ave independent of
the progression of the variables and ave therefore not affected by this indeter-
minacy.

(111 ) Differentiation and summation change the order of infinity and leave the di-
mension unchanged, derivation amd integration change the dimension and
leave the ovder of infinity (in this case, the finiteness) unchanged.

The third point needs some clavification as heve the anachronism, implicit in any
comparison of concepts which were used in different periods, becomes evident: deriva-
tion and integration do not occur in a specifically geometric context. Nevertheless, fo
constder the obvious geometric interpretation of these operators is lluminating. Let,
therefore, x and y=f(x) have the dimension of a Une; then y' =f (x)=

. hy —
lim fix+ })L 1(#)
number), and [%f()dt is an area. Hence devivation and inlegration change the

dimension. On the other and both [ (x) hand [%f(f)dt are finite, so that the operators
conserve the order of infinity.

The three contrasts illustrate the fundamental change which the infinitesimal
calculus underwent from the time of Leibniz till voughly the end of the ninetcenth
century. The change has been a gradual and most complex process which cannot be
understood unless the conceptual foundations of the caleulus in its beginning stage
are made explicit-—which may justify this outline and indeed the whole present
study.

, the limit of a vatio of lines, is dimensionless (a ratio or a

3. Aspects of Technique and Choice of Problems in the Leibnizian Calculus

3.0. In this chapter I discuss certain passages from the writings of the early
practitioners of the LEiBNI1ZIAN calculus, which show how the conceptual founda-
tions of the calculus, discussed in the previous Chapter, influenced choice of
problems and techniques of solution. I concentrate on examples relevant to the
indeterminacy of the progression of the variables and the laws of homogeneity,
because these are features which the calculus lost in its later development. Thus
discussion of these will contribute most to our understanding of the early stage
of the calculus. There are three groups of examples; the first two deal with
techniques connected with the choice of the progression of the variables, and the
third deals with the laws of homogeneity.

3.1.0. As I discussed in Chapter 2, higher-order differential equations, and in
general expressions involving higher-order differentials, depend on the progression
of the variables. The appropriate choice of the progression can considerably
simplify such expressions, and different choices lead to different formulas for the
same geometrical relations or entities. Most higher-order differential expressions
are interpretable only if the progression of the variables with respect to which
they are meant to apply is specified. As we shall see, the choice of the progression
can be made in different stages of the argument; sometimes it can even be
avoided entirely.

In this section I illustrate this aspect of the techniques of higher-order
differentials by various deductions of formulas for the radius of curvature at a
point of a given curve. These deductions and the resulting formulas differ
greatly among each other, and it will become clear that these differences are

3%
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related to the different ways in which the choice of the progression of the variables
is introduced in the deductions.

3.1.1. As I shall restrict myself to the technical aspects of the several deduc-
tions of formulas for the radius of curvature, I give here only a concise indication
of the relation between the relevant texts.

When JonaNN BeErNouLLI arrived in Paris in 1691, he possessed a formula
for the radius of curvature, the use of which impressed L’HOPITAL so much that
BerNOULLI was asked to become the Marquis's private teacher (¢f. JoHANN
BERNOULLI Briefwechsel p. 136). Probably the formula involved was the one which
appears in BERNOULLY'S Infegral Calculus, the deduction of which I shall discuss.
Jaxos BerNouLLy, independently of his brother, also possessed formulas for the
radius of curvature. He used these in deriving the results on diacaustic curves that
were published, without proofs, in Jaxos BErNoULLI 1693. In his 71693 (published in
May 1694) L’HOPITAL provided the proofs of JaAKoB BERNOULLI'S results as well
as deductions of formulas for the radius of curvature, one in a kind of polar
coordinates and one in rectangular coordinates, the latter derived in a way
slightly different from JoHANN BERNOULLI'S in the Iutegral Calculus. (This
derivation of 1’HOPITAL together with other formulas for the radius of curvature,
is found also in L"HOPITAL 1696, §§ 77-79.)

Meanwhile JaAkoB BernoULLI published, in his 1694, formulas for the radius
of curvature, in rectangular and a kind of polar coordinates, with an infinitesimal
geometric deduction of the former. I shall discuss these, as well as the proof for
the formulas in polar coordinates provided by the editor of JaAkoB BERNOULLI'S
Opera, G. CRAMER. LEIBNIZ discussed JakoB BErNoOULLI'S formulas in LEIBNIZ
16945 and gave other formulas, which I discuss, deduced by a method related
to his theory of envelopes.

The discussions on the radius of curvature in the above mentioned writings
were partly related to a controversy between JakoB BERNOULLI and LEIBNIZ
about the number of coinciding intersections of the curve and the osculating
circle. Also, they reveal a growing tension between the brothers BERNOULLI
However, this is not the place to discuss these aspects. Finally it may be remarked
that the authors did not use the term radius of curvature, but rather radius of
the osculating circle.

3.1.2. The {first example is JoHANN BERNOULLI'S deduction of a formula for
the radius of curvature in his Integral Calculus (Opera I11 437), dating from 1691.
The radiiOD and BD (see the figure) are perpendicular to the curve A B; they meet

0 dy
B
dx
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in the centre of curvature D. OB is the arc length differential, corresponding to
the differentials 4 x and dy. DB =y is the radius of the curvature. Because HB
is normal to the curve,

d
AH=x5+y->-.
GH is the differential of AH, and BERNOULLI evaluates this after choosing the
progression of the variables by taking dx constant (“posito ddx=0"):
a
HG —d(AH) =d(x—{—yd—z)

ay?+yddy

=dx+ dx

HG occurs in the proportion
BC:HG=BD:HD,

2 2 T8 1 A2
in which BC=-2"49" Bp_y and HD=y—BH—y— VX EdP
that » can be calculated, which yields
= (@x+dy)VaxtFdy?
r= dxddy :

a formula which is valid only under the supposition that 4 x is constant.

By substituting ds = |/dx*+d 2, which JoHaNN BERNOULLI does not do in
the passage discussed although he certainly has seen the possibility, one gets
ds®
Y= dxddy
which is one of the formulas given by JAKOB BERNOULLI; see below. As I have
pointed out in § 2.20, the choice of the progression of the variables by taking a
constant d x corresponds to the choice of x as independent variable in a treatment
of the problem in terms of functions. The formula, therefore, corresponds to the
well-known formula

for constant 4 x,

dy? s
ds 1o /[dy {“L dj;}
r=la] /2] = BE

3.1.3. In the example above, the choice of the progression of the variables is
made in the analytical part of the deduction, after certain relations between
first-order infinitesimals (GH, CB) are deduced from an inspection of the figure.
The next example shows that relations between higher-order differentials can be
directly deduced from a figure, in which case the choice of the progression of
the variables can be made in drawing the figure. The example is JAxoB BER-
NoULLI's deduction of a formula for the radius of curvature as it occurs in his
1694. In the figure, it is supposed that ds is constant, that is ab=bc. af is
perpendicular to ab, bf is perpendicular to b¢, so that f is the centre of curvature
and &f =~ the radius of curvature. Furthermore, 4% is prolonged to %, bk =bc,
whence a/ =bm, and the following similarities hold (approximatively):

Abmh~Ahoc,
Ahcb~Aabf.

dx?
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Hence
ko ko ke
be ~ ko  bo
_bm ab
=%h bf
— o ab
T ab bf
(here the constancy of ds is used), so that
ho — al
be  bf -
Now
bf =7,
al=dx,
bec=ds,

ho=hm-—nc=0bl—nc=ddy
(note that no signs are taken into consideration). Hence

dx ddy

7 ds

dxds
so that » = “ady for constant ds.

As the supposition of a constant ds corresponds to taking s as independent
variable (see above), the related formula in terms of functions is

-/

r=las |/ @t
JakoB BERNOULLI considers in this article also other progressions of the
variables; he deduces, by a similar infinitesimal geometric argument in which a!

is supposed equal to b# (i.e. d x constant), the formula

__ as® for d tant
Y= Txdiy or d x constan
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and analogously

r= for dy constant.

ds?
dyddx
In terms of functions, these correspond to

=[] /]

B [ ds J3 d%]
ol /)
In the same article JAKOB BERNOULLI gives, without deduction, formulas for
the radius of curvature in a kind of polar coordinates £ and # (differing from the
modern polar coordinates in that both have the dimension of a line; & is the arc

length of a fixed base circle from a fixed point 4 to the intersection of the radius »
with the circle; the base circle has radius a. (See the figure.)

and

These formulas are:
adnds
2dédy+nddé
andéds
nd& —aaddy
ads?
V= dtdst v dEdn —qdEddy
ads®
V= dEds® Y dEdpE FndnddE

in which formulas, as BERNOULLI points out, the differential of arc length ds has
to be evaluated as

¥ = for ds constant,

7= for ds constant,

for d£ constant,

for dy constant,

ds — Vnzd{-'z —}—azdn—é .
a
3.1.4. The editor of JakoB BERNOULLI'S Opera (1744), G. CRAMER has added
a note to the reprint of JAxoB BERNOULLI 1694 in the Opera, in which he
provided an infinitesimal geometrical proof for these formulas in polar coordinates
(Opera 579). The proof is remarkable because it does not make suppositions about
the progression of the variables in the figure, and thus CRAMER arrived at a for-
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mula for the radius of curvature which applies to all progressions, namely
. ads®
Y= TdEds T dEdy tndnddE —ndEddn
from which he derived the four formulas above by taking d ds =0, dd& =0 and
d dn =0 rtespectively. I shall not give here the rather complicated infinitesimal
geometrical deduction, but only its starting point, the indications of the various
differentials in the figure:

Ad=a, Aa=n,de=d§,

b/in lb=dn, em=d&+ddé,
a ne=dn+ddy,
. db=d3=]/;2dn2+r]2d§2/a,
be=ds+dds, af=v,
) de
N
d\\{m al= a
_ ndét-dydé+ndd§
A bn= 2 .

3.1.5. My last example is from LEIBNIZ’S article 1694, in which he commented
on the formulas for the radius of curvature in JAkoB BERNOULLI 1694. LEIBNIZ
remarked that these formulas are implicit in his own treatment of the evolute
(the locus of the centres of curvature of a curve) as envelope of the family of the
normals to the curve. In his 16924 and 16944 Le1BNIZ had discussed the calculus
of envelopes, or calculus differentialis reciprocus as he called it, which shows how
to find the envelope of a family

F(x,y,¢)=0 (1)

of straight lines by differentiating (1) with respect to the parameter ¢, and sub-
sequently eliminating ¢ from the resulting equation and (1).

This procedure can be applied to find the evolute of a curve as the envelope
of the normals to the curve. The equation of the normal in the point (x, y) of

the curve is (see the figure)
dx
y—g=(—2 5 (2)
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and this equation describes the family of normals if x and y () are considered as
parameters (analogous to ¢ in (1)). Thus one has to differentiate (2) supposing g
and f constant and x and y variable, which yields

dy=(f~2)d g —dx . )

Now from the equation of the curve, in combination with (2) and (3), the para-
meters ¥ and y can be eliminated to yield the equation of the evolute in f and g.
This procedure involves differentio-differentials, but LeiNiz indicated that

these can be removed by calculating the differential equation of the curve, which
yields an expression of g_x in terms of x and y; if this expression is inserted in

(3), no higher-order differentials will occur. The formulas for the radius of
curvature which result from this procedure of removing differentio-differentials
are independent of the progression of the variables; this property of the formulas
constitutes in LEIBNIz'S opinion an advantage over JAKOB BERNOULLI'S
formulas.8

In the actual deduction of the formulas LeIBNIZ did not explicitly use the
calculus differentialis reciprocus, so that I can illustrate the procedure directly by
his deduction of two formulas, namely

r:dy/d{%} and r=(——)dx/d[%},

or, as LEIBNIZ gives them in prose:

The radius of the osculating circle is to unity as the element of one of the co-
ordinates is to the element of the ratio of the elements of the other coordinate
and of the curve.%®

The radius of curvature CG (see figure) is perpendicular to the curve 4ACC’,
whence

vi(f —x)=ds:dy, or rﬂ =f—x.

ds ~
ds C
c dy
ax
y r
%
f \
g
G

8 “Sed et pro centris non minus ac radiis circulorum osculantium theoremata
generaliora formari possunt, quae certorum elementorum aequalitate non indigent.”
(LeBNIZ 1694b; Math. Schv. V, p. 309.)

66 “ . radius osculi est ad unitatem, ut elementum unius coordinatae est ad
elementum rationis elementorum alterius coordinatae et curvae.” (LEIBNIz 1694b;
Math. Schy. V, p. 309.)
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Lrisniz differentiated this equation, considering » and f as constants, which gives

1’d[%}=~—dx.

This procedure is the analogue of differentiating the equation of the family of
normals with respect to x and y, keeping g and f constant. It follows that

ay
1'=—dx/d[—d?],

—r
is derived.

This example is important for three reasons. First the formulas involve only

dy dx
B PatR pet and are
therefore independent of the progression of the variables, an aspect which, as we
have seen, LEIBNIZ valued highly. Secondly, this independence of the progression

and, by a similar argument,

first order differentials of the finite variable quantities #, y, s

of the variables is achieved by introducing the differential quotients % and —dd—?

as new variables. These two features, the endeavour to find formulas independent
of the progression of the variables and the resulting introduction of differential
quotients, will be discussed further in Chapter 5, where I shall show that they
underlay a program of EULER to eliminate all higher-order differentials from the
calculus.

Thirdly, the example shows how different the LEIBNIZIAN calculus is from
the calculus involving functions; indeed the formulas which LeisN1z deduced,
in contrast to the formulas of the BERNOULLIS, cannot be translated directly in
terms of functions and derivatives, just because the progression of the variables
is not, and need not, be specified.

3.2.0. In the following sections I discuss joHANN BERNOULLI'S deduction of
rules for transforming from one progression of the variables to another. BErRNO-
virr's deduction shows that such transformation rules involve the introduction
of differential quotients or differential coefficients; they are therefore important
in connection with the emergence of the concept of derivative.

I use the term differential quotient to denote a quotient of differentials, say,
dy|d x; and the term differential coefficient to denote a coefficient in an equality
between differentials, such as p in dy =4 dx. Obviously, differential quotients
and differential coefficients only differ in the way they are introduced in calcula-
tions. Their role in analysis is akin to the role of derivatives, but there is an
important difference: differential quotients or coefficients are not defined by
means of limits, and they need not be conceived as functions.

3.2.1. The formulas for the radius of curvature are expressions involving
higher-order differentials. Such expressions in general depend on the progression
of the variables. That is, given a variable ¥, whose definition involves higher-
order differentiation (such as the radius of curvature), then analytical expressions
A ; for this variable, calculated with respect to different progressions F; of the
variables, will in general differ among each other; and there will also be an
analytical expression 4 which represents the variable V with respect to every
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progression of the variables®?. The question which suggests itself in this situation
is how A, and A are related, and whether there are transformation rules by which
A, and A can be calculated from given 4,, B and P,

The same situation occurs in the case of higher-order differential equations.
In Chapter 5 I shall deal in somewhat greater detail with the problems connected
with the dependence of higher-order differential equations on the progression of
the variables. Suffice it here to remark that a higher-order differential equation
E, =0, valid with respect to a specified progression P, of the variables, defines a
curve or a relationship between certain finite variables (or, if no boundary
conditions are imposed, a set of curves or relationships). With respect to other
progressions P; of the variables, the same curve or relationship will be defined
by differential equations E;=0, and there will also be a differential equation
E =0 which defines the curve or relationship with respect to every progression
of the variables (I shall use the term ““general differential equation” for E =0).%
Again, the obvious question to ask in this situation is how the E; and E are
related, and whether there are transformation rules by which E; and E can be
derived from given E;, B and F,.

3.2.2. About the middie of the eighteenth century this problem had been
recognised and its solution had become one of the standard techniques of the
calculus.® I shall discuss the solution as given by JOHANN BERNOULLI in an

% To take the radius of curvature as example:

V=v,
Ay r= 2 jrpia tant
1= dxddy or P,: dx constant,
dxd
Ay v = dxdys for B,: ds constant,
Ay r=—%" for B dy constant
3l ¥ = dyddz or F,: dy constant,
ay ) .
4: r= for any progression of the variables.
2
ds

It should be stressed that the 4; and A are not uniquely determined, as is illustrated
by the two formulas which Lersniz gave for the radius of curvature independent of
the progression of the variables.

8 To take the third-order differential equation of the parabola ay = #? as example
(cf. §2.20):

E;:ad®y=0 for F,: d x constant,
E,: 0=6dxddx+2xd®x  for P,: dy constant,
E:ad®y =6dxddx +2dxd®x for any progression of the variables.

8 FuLer dealt with the technique in great detail in his 1755; §§ 252-262 and
272-278 of Chapter 8, concern the case of formulas or expressions in general, and
Chapter 9, §§298-306 (cf. § 5.11-§ 5.12) the case of differential equations. D’ALEM-
BERT, in his article Différentiel in the Encyclopédie, gave rules to transform a second
order differential equation in which dx is supposed constant into the pertaining
general differential equation, and he noted: “Cette regle est expliquée dans plusieurs
ouvrages, et surtout dans la seconde partie du calcul intégral de M. de Bougainville,
qui ne tardera pas a paroitre. En attendant on peut avoir recours aux oeuvres de Jean
Bernoulli, tom IV, pag. 77; ... (References are to BOUGAINVILLE 1754 and JomanN
BERNOULLI Opera.)
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‘“Anecdoton” dating probably from shortly after 1715 but published only in
1742.7 The title of the short note is

Problem. To render incomplete differential equations of arbitrary degree complete,
that is, to transform them into others, in which no differential has to be supposed
constant.™

Underlying BERNOULLI'S solution is a fact I explained in § 2.21: differential
equations that involve only first-order differentials of finite variables are in-
dependent of the progression of the variables. Thus if one can transform the given
differential equation into a differential equation involving first differentials only,
then one can drop the restriction to the specified progression of the variables. In
his note BERNOULLI worked this out for the case of differential equations valid
under the supposition of a constant d «.

First he introduced differential coefficients (or differential quotients, but
BerNouLLI did not use a separate term for them) z, ¢, v, efc. These are finite
variables, and their definition involves only first-order differentials, so that they
are independent of the progression of the variables. z is defined by

dy=zdx (4)
or
ay
A=y

Differentiation of (4) yields (because 4 x is constant)

ddy=dzdx,
and BERNOULLI introduced ¢ by
ddy=dzdx=td s> (5)
whence
,_dz
T dx

Again, differentiation of (5) yields

A3y =dtdx?,
and v is introduced by
By =dtdxs?=vds,

70 JoraNN BerRNoULLI Opera IV, pp. 77-79. The note opened with a reference to
TavLor 1715. Tavror discussed there the following problem: ‘' Aequationem fluxio-
nalem, in qui sunt fluentes tantum duae z et #, quarum z fluit uniformiter, ita trans-
mutare ut fluat » uniformiter.” This, of course, is the formulation in the terminology
of fluxions of the problem of transforming a differential equation applying for constant
dz into the corresponding differential equation applying for constant 4 x.

1 Pyoblema. Aequationes differentiales incompletas cujuscunque gradus reddere
completas, %oc est, eas transmutare in alias, in quibus nulla differentialis supponatur
constans.” (JoHANN BERNOULLI Opera IV, p. 77.) Thus the problem is, if expressed
by means of the notation introduced above, to derive £ from E; and P;,. BERNOULLI
used the adjective “‘complete’”’ for the general differential equation and conceived
the differential equations for specified progressions of the variables as ‘‘incomplete”,
presumably because they are derived from the ‘““complete” differential equation by
discarding those terms which, in the case of the specified progression of the variables,
are equal to zero.
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that is
dt
V= 'd7 .
Obviously, this process can be repeated till the highest-order differential involved
is reached.
If now, in the original differential equation, the following substitutions
are made:

dy—>dy, ddy—>dzdx, dy—>dtdx? dy—>dvds®

eic., then the resulting differential equation will involve only first-order differen-
tials of finite variables (namely of %, ¥, 2, ¢, v, efc.), and will therefore be inde-
pendent of the progression of the variables. From this resulting differential
equation, the differential coefficients have now to be eliminated, but this without
losing the independence of the progression of the variables. To do this BERNOULLI
applied the rules of the calculus without making a supposition about the progres-
sion of the variables

dxddy —dydd
dr=a (L) = A EIAEE

dx) dx? ’
dz dxddy —dyddx
e
_ dx*d*y —3dxddxddy +3ddx*dy —dxdydix
- dxt ’
at dx?d®y —3dxddxddy +3ddx*dy —dxdydiy
dv=d (5| =d( > )

1
dx®

li

(dx3dty —6dx?ddxdPy-15dxddx?ddy —15ddx3dy
—4d2dPxddy+10dxddxdBPxdy —dx2d xdy).

Substitution of these results yields a differential equation which is independent
of the progression of the variables (or, in BERNOULLI’'s terminology, ““complete”)
and which involves only the original variables » and y and their differentials.
The introduction of the differential coefficients z, ¢, v, efc. was necessary to
prove the transformation rules, which now can be stated directly: In order to
derive the general differential equation from the original differential equation
applying for constant 4 x, one has to perform the following substitutions:

dy-—>dy,
dxddy —dyddx
ddy—> =g
248y — d 24— 3
Py Adx?d®y —3dxddxddy +3ddx?*dy —dxdydix

dx? ’
dty—>(dx3dty —6dxtddxd®y+-15dxddx*ddy —15ddPdy—4d2d3xd dy
+10dxddxdBPxdy —dx2d*x dy)[d x5.
3.2.3. In a Scholium which folows these transformation rules BERNOULLI turned
to the problem of deriving the differential equation for any specified progression

of the variables from the differential equation applying for the progression with
constant 4 x, or, as he put it in not too rigorous terminology:
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This rule is of use in transforming constant differentials into other constant
differentials.”

To do this, BErRNoULLI indicated, one first derives the general differential equation
by the transformation rules and then one applies the property of the differentials
implied in the specification of the new progression of the variables to transform
the general differential equation into the required differential equation. The
procedure is explained by examples: If the new progression of the variables
requires 4y constant, all terms in the general differential equation involving
ddy, dy etc. are to be discarded. If the element of arc ds is supposed constant,
it follows that d}/ds®+dy?=0, whence dxddx-+dyddy=0, so that

ddy=— dxddydx
efc. can be found, which, if substituted in the general differential equation, yield
the differential equation applying for constant ds. Similarly BErRNOULLI discussed

the case in which v d x is supposed constant.

. From this, by repeated differentiation, formulas for d3y, d*y,

3.2.4. Two remarks on BERNOULLI'S treatment of the transformation rules
are appropriate. First, as in the case of LeiBNIZ's formula for the radius of

curvature, independence of the progression of the variables is gained by intro-
ducing the differential coefficients, or differential quotients z = %, t= %, ete.,
so that we see here an example of the fact that consideration of problems relevant
to the indeterminacy of higher-order differentials induces differential coefficients
or differential quotients to emerge.” In Chapters 4 and 5 I shall discuss examples
from studies of LEIBNIZ and EULER in which this process is also evident.

Secondly, as I indicated in § 2.21, the choice of progression of the variables
corresponds to the choice of an independent variable in a treatment of the
problem in terms of functions. However, in BERNoOULLY'S study, as indeed in
most of the writings on these transformation rules, the terminology of constant
differentials is used, that is, a concept of function of one specified variable is
not involved, the problem is conceived and treated entirely in terms of variables
and their progressions. How strong this conception was, is shown by the fact
that when CAUcHY, in 1823, presented the transformation rules discussed above
as rules describing the change of independent variable, he still used the termino-
logy of the constant differential:

It is by substitutions of this kind that one can operate a change of independent
variable (...) To return to the case in which x is the independent variable, it would
suffice to suppose the differential 4+ constant, and hence d?x =0, d®¥ =0, ...™*

72 “Hujus Regulae est usus in transformandis differentialibus constantibus in alias
constantes.” (JoHANN BERNOULLI Opera IV, p. 78.)

73 The fact is even more evident in EuLer 1755, which I discuss in Chapter 5.

7 “C’est par des substitutions de cette nature qu’on peut opérer un changement de
variable indépendente (...). Pour revenir au cas oll » est variable indépendente, il
suffirait de supposer la differentielle d» constante, et par suite d?x =0, d®*x =0, ...”
(Caucny 1823; Oeuvres (II) IV, p. 74.) Later, the assumption that the differential of
the independent wvariable is constant caused confusion. Compare for instance
HapAMARD 1935: ““ J’ai lu, comme tout le monde, 'histoire de la différentielle de la
variable independente qui doit &tre constante (et qui est d’ailleurs forcément variable
puisque infiniment petite).”” (p. 341.)
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3.3.0. In seventeenth-century analysis relations between variable quantities
were usually represented by equations, but this was by no means the only way.
In fact, as I mentioned in § 1.3, there were types of relations which could not
be represented by equations, such as the relation between the coordinates of
transcendental curves. Another way of representing relations between variable
quantities which was very common in the seventeenth century, was propor-
tionality. It was used especially in those cases in which representation by an
equation would involve dimensional difficulties.

For the representation of relations between infinitesimal variable quantities
both equations and proportionalities were used. The former, of course, were the
differential equations, and I shall refer to the latter as differential proportions.
In this section I shall discuss the role of the progression of the variables with
respect to differential proportions.

3.3.1. Differential proportions occur especially in the treatment of
physical, more precisely mechanical problems. Therefore I have to make some
preliminary remarks about the mathematical treatment of physical problems in
the seventeenth and early eighteenth centuries. This subject deserves more space
and attention than I can devote to it here; indeed the unfortunate habit of
historians of science of transferring the mathematical treatment of physical
problems directly into modern mathematical symbolism has obscured many
important aspects of seventeenth century physics. I am sure that an extended
study of the influence of the mathematical methods and styles on the develop-
ment of physics will show important new insights.

Mathematics is used in the treatment of physical problems to represent and
analyse the relations between physical quantities such as length, weight, time,
mass, velocity, force, momentum, efc. Representation of these relations by
equations involved, for the seventeenth-century mathematician, considerable
conceptual difficulties connected with the requirement of dimensional homo-
geneity. As I have indicated in § 1.5, quantities of different dimension could not
be added, and multiplication of quantities always involved a change of dimension.
These conceptual difficulties were solved later in the eighteenth and nineteenth
centuries by accepting in the formulas any combination of a restricted number of
basic dimensions (mass, length, time and a few others), and by allowing dimen-
sioned factors in equations to make dimensions on both side of the equality sign
equal. But in the seventeenth century such dimensioned factors were not ac-
ceptable, and thus direct comparison of quantities of different dimension by
means of equations was virtually impossible.

In view of these conceptual difficulties related to dimensional homogeneity
it is not surprising that two other ways of representing relations between physical
quantities were prominent in seventeenth century mathematical physics, namely
proportions and proportional representation by line segments. Proportions
apply to linear dependence between variable quantities, a relation which is
perhaps the oldest and certainly the most important relation between physical
quantities for which a special technical terminology was developed. Two inter-
dependent variable quantities, say X and Y, are said to be proportional, or to
vary proportionally, if for any two pairs of corresponding values X, Y and
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X', Y’, always

X: X' =YY"
The terminology (X is “as™ Y) as well as the interpretation avoids all dimen-
sional difficulties because it considers only ratios between quantities of the same
dimension. All physical laws which seventeenth-century natural philosophy
discovered and which concerned linear relations between different physical
quantities were represented in the terminology of proportions.

3.3.2, To represent non-linear relations between physical quantities the
seventeenth-century mathematician could use a method which can be called
proportional representation by line segments. This procedure involved the intro-
duction of variable line segments proportional to the original physical quantities.
Thus if a relation between the physical variable quantities & and % was studied,
one introduced variable line segments x and y, x proportional to &, y proportional
to 5, and the induced relation between x and y could be represented by a curve
drawn with respect to an X- and an Y-axis. This introduction of line segments
proportional to physical quantities is very clearly expressed in the following
passage from an article by LEIBNIz, in which he discussed a certain case of
retarded motion where a relation between velocity (v), time () and space traversed
(s) applied which we should express by an equation

ot —s=pv
(« and f constants), but which LE1BNiz indicated as follows:

There are straight lines proportional to the times elapsed, and if from each of

these the straight line is subtracted which is equal to the corresponding space

traversed by the moving point, then the remaining straight line will be propor-
tional to the acquired velocity.”

It is important to stress that both for proportions and for propor-
tional representation no unit lengths or unit quantities were introduced. Hence
the relations are not reduced to relations between real numbers (as in modern
mathematical physics), but essentially as relations between unscaled line seg-
ments. The mathematical physics of the seventeenth century was a truly geo-
metric physics.

Moreover, proportional representation, in the absence of fixed units, implied
a freedom of choice which the seventeenth-century mathematicians often aptly
used: if two physical quantities are proportional, one can take one variable line
segment to represent both. Thus, for instance, in the case of free fall, where
velocity is proportional to time, both velocity and time can be represented by
the same geometrical quantity. This is indeed what LgiBNIZ and Huvcens did
in their discussion on motion in resisting media (see § 3.3.4). Thus, in their geo-
metrical analysis, the law of fall was taken as v =¢; of course the final results
were formulated again in terms of proportionalities.

3.3.3. The branch of physics in which these geometric methods were applied
with most spectacular success was mechanics, especially the study of forces and

7 “Dantur rectae proportionales temporibus insumtis, a quarum unaquaque si
detrahatur recta aequalis respondenti spatio percurso a puncto mobili, residua recta
erit proportionalis velocitati acquisitae.” (LeiBNiz 1689a; Math. Schv. VI, p. 138.)
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of the resulting changes of motion. This study of change of motion involved
infinitesimals, and thus we find differential proportions in dynamics. Like
differential equations, differential proportions in general depend on the pro-
gression of the variables, that is, the same differential proportion may represent
different relations between the variables involved according to the different pro-
gressions of the variables with respect to which the proportion is supposed to
apply.

In contrast to the case of first-order differential equations, which are inde-
pendent of the progression of the variables, there are differential proportions
involving only first-order differentials which do depend on the progression of the
variables. An example is

dy~y
which means (see the figure) that for every corresponding y, dy and y*, d%y:
ay:a*y=y:y*.
d*y
dy y*
] y

Obviously this interpretation is inconclusive unless the relation between 4y and
d*y is indicated; choosing different progressions of the variables affects the left-
hand side but not the right-hand side. For instance if dx is supposed constant,
dy~y implies y =ce*; if v d xissupposed constant, dy ~y implies y = %; and
if dy is supposed constant, the interpretation is not clear, because dy ~y would
imply y=c¢, and 4y =0, so that y does not take part in a progression of the
variables.

The cases in which differential proportions do not depend on the progres-
sion of the variables are those in which the proportions are directly reducible
to differential equations which are independent of the progression. That is, the

differential proportion
A~B

is independent of the progression of the variables if A and B are of the same order
of infinity and both involve only first-order differentials. In that case the propor-

tion is equivalent to
A=c¢B

which is a differential equation of the type described in § 2.21.

3.3.4. I turn now to a discussion between LEiBNIZ and HUvYGENS which
illustrates the difficulties connected with the requirement that the progression

4 Arch, Hist. Exact Sci., Vol. 14
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of the variables in the case of differential proportions be specified. In his
16894, LE1BNIZ published some results on motion in resisting media. He distin-
guished between two kinds of resistance, absolute and relative, the distinction
being concerned with the dependence of the resistance on the velocity. LEmBNI1Z
considered resistance to be the action of the medium which diminishes the
“force” of the body. He took the diminution of the body’s velocity to be propor-
tional to the diminution of its “force”.

His definitions of the two kinds of resistance were:

Absolute resistance is the resistance which absorbs equal amounts of the forces of
the moving body, whether it moves with a small or with a large velocity, if only
it moves, and this resistance depends on the glutinosity of the medium (...).
Relative vesistance is caused by the density of the medium, and it is greater in pro-
portion as the velocity of the moving body is greater (...).7

Later on in the article he made it explicit that in the case of relative resistance,
the motion is retarded in proportion to the velocity. Diminution of force, or of
velocity, is a differential, so these definitions imply differential proportions,
namely

absolute resistance: dv constant,

(7)

relative resistance: dv ~v.

Both proportions (and therefore both LE1BNIZ’S definitions) are meaning-
less, unless the progression of the variables be specified. In this case, that means
unless it be stated whether the diminutions are taken over equal intervals of
time (d¢ constant) or over equal intervals of some other variable. As appears
from LeIBNiz’s article he considered the diminution over equal intervals of space
(ds constant), which is understandable because he considered the resistance as
a property of the medium. Indeed he specified that in the case of absolute
resistance:

The elements of the velocity which the body loses are as the elements of the space
traversed.”, (8)

and in the case of relative resistance:

The diminutions of the velocity are in the composite ratio of the actual velocity
and the increments of the space traversed.® (8)

(8) corresponds to
absolute resistance: dv ~ds 9)

and
relative resistance: dv~uvds. {9)

% Absoluta vesistentia est, quae tantundem virium mobilis absorbet, sive id parva
sive magna velocitate moveatur, dummodo moveatur, et pendet a medii glutino-
sitate (...)

Resistentia vespectiva oritur ex medii densitate, et major est pro majori mobilis veloci-
tate (...).” (LeiBNiz 1689a; Math. Schv. VI, p. 136.)

77 ¢ elementa velocitatum amissarum sunt ut elementa spatiorum percur-
sorum, ...”" (LEIBNI1Z 1689a; Math. Schv. VI, p. 137.)

% “Diminutiones velocitatum sunt in ratione composita velocitatum praesentium
et incrementorum spatii.” (LEIBNIZ 1689a; Math. Schr. VI, p. 140.)
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The formulas (9) are differential proportions between terms of the same
order of infinity and involving only first-order differentials; they are therefore
independent of the progression of the variables. But it is clear that the translation
of (6) into (9) applies only if d's is taken constant, so that the specification of the
progression of the variables plays a crucial role in translating the prose descrip-
tion of this kind of retarded motion into effective mathematical symbolism: only
if ds is considered constant can the absolute resistance be called independent of
the velocity and the relative resistance proportional to the velocity.

3.3.5. However, in his article LEIBNIZ was not explicit about the need to
specify the progression of the variables, and he was forced to elaborate on this
point in a very revealing correspondence with HUvGENs on this matter. Writing
to HuvGENS on 6-I1-1691, LEIBNIZ compared his own results with HuvceNns’ and
NeEwTON’s studies on motion in resisting media, and he found that the results on
what he called relative resistance, or resistance proportional to the velocity,
coincided with the results which HuvGENs and NEwToN had derived for resistance
proportional to the square of the velocity. He concluded that this discrepancy in
the formulation of the starting points was caused by the fact that Huveexs and
NEwTON had considered change of velocity in equal intervals of time, whereas he
himself had considered change of velocity in equal intervals of space; and indeed,
if we consider the formula for relative resistance (9) which is independent of the
progression of the variables dv~ovds,
and if we suppose d¢ constant, then (because ds~v )

dv~vds~uv2dt.

Thus if d¢ is considered constant, one can say that the relative resistance is propor-
tional to the square of the velocity.

LeieNiz objected to HuvGeNs that he and NEwrtoN should have made
this clear:

To put it exactly, one is only allowed to say that the resistances are proportional
to the velocity, or to the square of the velocity, if one also indicates the time or
the medium, as I have done.”™

He came back to this question in his addition 1691 to his article on motion in
resisting media, where he wrote:

About relative resistance I find that our arguments are based on the same founda-
tion, although at first sight this may not seem to be the case. For they [i.e.
Huyeens and NewToN] suppose the resistances in the duplicate proportion of
the velocities, while I, speaking in absolute terms, have stated that the resistances
(which I measure by the decrements of the velocity caused by the density of the
medium) are in the composite ratio of the velocities and the elements of the space
which are to be traversed with the corresponding velocities. But if then the
elements of the time are taken equal (in which case the elements of the space to
be traversed are proportional to the velocities) the resistances are indeed in the
duplicate ratio of the velocities.

™ ““A parler exactement on ne doit pas dire que les resistences sont en raison de
velocité ny en raison des quarrés des vélocités, si ce n'est qu’on adjoute le temps ou le
milieu, comme j’ay fait.” (HuvGENs Oeuvres X, p. 12.)

80 *“Circa respectivam (that is, resistentiam) video nos iisdem fundamentis in-
aedificasse, etsi prima fronte aliud videri possit. Ipsi (that is, HUvGENS and NEwTON)

4%
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HuvGens eventually agreed that LEIBNIZ's results corresponded to his own
and NEwTON’S, but he still objected to calling the resistance in that case propor-
tional to the velocity; he maintained that the constancy of the intervals had
nothing to do with the question, resistance was a force in the same way as gravity
is a force, and considering the diminutions of velocity in certain elements of
time or space as the resistance was taking the effect for the cause (letter of
HuvGens to LEiBN1Z 23-11-1691, HUYGENS’ Oenvres, X 19).

The discussion is important because it centered on the special role of the
variable #ime in the study of force in terms of acceleration, which was made
prominent by NEWTON in the Principia. The algorithm of differentials made this
role explicit: acceleration is the derivative of velocity with respect to time; hence
if one wants to introduce differentials, one has to assume the progression of the
variables with d¢ constant. In other words, if one applies this NEwTONIAN concept
of force, one can only compare forces by comparing the changes of motion they
produce in equal (infinitesimal) intervals of time.

3.3.6. Not only is the constant differential crucial in the interpretation of
differential proportions, it also plays an important role in the technique of
treating and eventually solving these proportions. In the tansformation of
the proportions (7), above, into (9), the constant ds is used to make the
order of infinity on both sides of the proportion equal. In order to transform
(9) further into differential equations the introduction of dimensioned factors
would have been necessary, which, as I indicated above, would involve conceptual
difficulties for the mathematician of the seventeenth century. However, in the
case of differential proportions between geometric quantities these diffi-
culties were not felt; the factor of proportionality would have an acceptably
interpretable geometric dimension. Indeed, if the proportionality factor has to
be of dimension m and order of infinity #, and if d¢ is the constant differential of a
variable line segment £, the required factor will be a™~*(4#)", in which a4 is a
line segment.

An example of the use of the constant differential and of dimensioned factors
to reduce geometric differential proportions to differential equations is
provided by a series of problems which Le1BNIZ proposed in his 16925 in connec-
tion with the catenary. As LeiBniz and others had noted, the catenary satisfies
the differential proportion

ddx~(dy)® (ds constant).

This property provided LeisNiz the occasion to put the question which curves
have the properties
ddx~(dy)® (ds constant)

enim statuunt resistentias in duplicata ratione velocitatum, ego vero absolute loquendo
resistentias (quas decrementis velocitatis a medii densitate ortis existimo) esse dixi in
ratione composita velocitatum et elementorum spatii, quae scilicet velocitatibus
respondentibus decurri inchoantur; unde jam elementis temporis sumtis aequalibus
(quo casu elementa spatii decurrenda velocitatibus proportionalia sunt) utique
resistentiae erunt in duplicata ratione velocitatum, ...” (LEiBN1z 1691; Math. Schy.
VI, p. 144)
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and
ddxr~ dy (ds constant).

Leieniz, in fact, described these differential proportions entirely in prose,
and the passage is a good example of this style:

Also I can solve without difficulty the following problem: to find the line with
the property that if its arc increases uniformly, the elements of the elements of
the abscissas are proportional to the cubes of the increments or elements of the
ordinates; it is very true that this occurs in the case of the catenary or funicular.
But because this is already noted by the Bernoullis I shall add here that if, in-
stead of the cubes of the elements of the ordinates, the squares are taken, the
required line will be logarithmic. And I find that if the elements themselves of
the ordinates are proportional to the elements of the elements, or the second
differentials of the abscissas, the required line is the circle.®

Now Jakos BERNOULLI, commenting on these differential proportions
in his 1693, transformed them into differential equations by adjusting, in the
way I indicated above, appropriate powers of an arbitrary line segment  and of
the constant ds. The result was

adsddx=(dvy)® (ds constant),
addx={(dy)> (ds constant),
addx= dsdy (ds constant).

It is of interest to note that if these differential equations are transformed
into the corresponding derivative equations, the constant ds is used in a similar
way: both sides of the equation are divided by the appropriate power of ds in
order to make them finite. Thus the corresponding derivative equations are

dzx dy\3 c .
aog = (71%) (division by 45%),
2 2
alr (%) (division by ds?),
2
T2 =97 (division by ds¥.

4. LEIBNIZ’S Studies on the Foundations of the Infinitesimal Calculus

4.0. The present chapter is devoted to certain aspects of LEIBNIZ'S studies on
the foundations of the infinitesimal calculus. The importance of these studies lies
primarily in the fact that they show how deeply LEriBniz understood the
questions about the nature and the existence of differentials and higher-order

8 “Caeterum a me quoque non difficulter solvitur illud problema: Invenire
lineam cujus arcu aequabiliter crescente elementa elementorum, quae habent abscis-
sae, sint proportionalia cubis incrementorum vel elementorum, quae habent ordinatae,
quod in catenaria seu funiculari succedere verissimum est. Sed quoniam id jam a
Beynoulliis est notatum, adjiciam, si pro cubis elementorum ordinatarum adhibeantur
quadrata, quaesitam lineam fore logarithmicam; si vero ipsa simplicia ordinatarum
elementa sint proportionalia elementis elementorum seu differentiis secundis abscis-
sarum, inveni lineam quaesitam esse circulum ipsum.” (LEIBN1Z 1692b; Math. Schr.
V, p. 285.)

, P .
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differentials and how successful he was in his attempts to solve the problem of
the foundations of the calculus. Moreover, in examining these studies, we can
achieve an explanation of the occurrence of an alternative definition of the
differential in some of LEIBN1Z’S earlier articles on the calculus. Also, the studies
show how an interest in fundamental questions concerning the differential leads
naturally to the introduction of the concept of function and the differential
quotient, and thus to a concept which comes close to that of the derivative.

One preliminary remark has to be made, however; these studies of LEIBNIZ
did not exert any influence on the actual development of the calculus in the
eighteenth century. The prime source I discuss is a manuscript first published in
1846. LrIBN1Z's studies share this lack of direct influence with the other more
publicly conducted discussions on the foundations of the calculus, such as
NIEUWENTIJT'S critique®?, the controversy in the French Royal Academy8? and
the most famous of the debates on foundation of infinitesimal mathematics,
those started by BERKELEY®. It seems that none of these had significant influence
on the actual practice and the results of infinitesimal analysis in the first half of
the eighteenth century.

4.1. Most of the early practitioners of the LEIBNIZIAN calculus (although not
LeisNiz himself) accepted the existence of infinitesimal quantities and justified
the rules of the calculus by appealing to this existence. The usual criticism of the
calculus denied, or at any rate questioned the existence of infinitesimal quantities.
LeisNiz himself had a much deeper understanding of the nature of the problem.
He was aware that in fact there are two separate questions: one, whether
infinitesimal quantities actually exist; the other, whether analysis by means of
differentials, following the rules of the calculus, leads to correct solutions of
problems.®

On the first, metaphysical, question LEIBNIZ did not commit himself defini-
tively; indeed he doubted the possibility of proving the existence of infinitesimal
quantities. His answer to the second question, the justification of the calculus,
had therefore to be independent of the first; he could not invoke the existence of
infinitesimals in answer to objections to the validity of the calculus. Instead, he
had to treat the infinitesimals as *“ fictions”’ which need not correspond to actually

82 Cf. NIEUWENTIJT 1694 and 1696, LEIBNIZ 16950 and 1695b, and HERMANN 1700,
83 Compare note 89.
84 See BovER 1949, pp. 224-229.

85 “Interim an status ille transitionis momentaneae, ab inaequalitate ad aequali-
tatem, a motu ad quietem, a convergentia ad parallelismum, vel similis in sensu
rigoroso ac metaphysico sustineri queat, seu an extensiones infinitae aliae aliis majores
aut infinite parvae aliae aliis minores, sint reales; fateor posse in dubium vocari: et
qui haec discutere velit, delabi in controversias Metaphysicas de compositione continui,
a quibus res Geometricas dependere non est necesse. (...) Si omnino ultimum aliquod
vel saltem rigorose infinitum quis intelligat, potest hoc facere, etsi controversiam de
realitate extensorum aut generatim continuorum infinitorum aut infinite parvorum
non decidat, imo etsi talia impossibilia putet; suffecerit enim in calculo utiliter
adhiberi, uti imaginarias radices magno fructu adhibent Algebristae.” (LEIBNI1Z Cum
prodiisset, p. 43.)
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existing quantities, but which nevertheless can be used in the analysis of
problems. 8

LrieN1z attempted, with considerable success, to justify the calculus. How-
ever, in the writings that were published in his lifetime, he always wrote rather
elusively about the question, so that his remarks caused more confusion than
clarification; and even after the publication, in the nineteenth and twentieth
centuries, of manuscripts which contain fuller accounts of these attempts, much
of the confusion about LEIBNIZ’'S opinion on these questions has remained.®

4.2. LursNiz considered two different approaches to the foundations of the
calculus; one connected with the classical methods of proof by ““exhaustion”, the
other in connection with a law of continuity. In the first approach he conceived
the calculus as an abbreviated language for proofs by exhaustion. Considered in
that way, equality between two expressions involving differentials meant that,
if instead of the differentials the corresponding finite differences were substituted,
the difference between the values of these expressions could be made arbitrarily
small (with respect to the values themselves) by choosing the differences small
enough. Thus the discarding of higher-order differentials with respect to first-
order differentials could be justified.

This approach forms the background of LEiBNIz'S remark (in a letter to
Pinson®, which was published in 1701), that the differential may be supposed
to stand to the variable in the proportion of a grain of sand to the earth:

8 “Ego philosophice loquendo non magis statuo magnitudines infinite parvas
quam infinite magnas, seu non magis infinitesimas quam infinituplas. Utrasque enim
per modum loquendi compendiosum pro mentis fictionibus habeo, ad calculum aptis,
quales etiam sunt radices imaginariae in Algebra. Interim demonstravi, magnum has
expressiones usum habere ad compendium cogitandi adeoque ad inventionem, ...”
(LeeN1z to DES Bosses, 17-111-1706; Phil. Schy. 11, p. 305.)

8 The most important manuscript in this respect is LEiBN1z Cum prodiisset (1701
or somewhat later) which was published by GERHARDT in 1846; ScrorTz (1932) for
the first time stressed its significance for LeiBNi1z’s ideas on the foundations of the
calculus; she also showed that LeiBNiz Quad. Avith. Civc. (1676) contains valuable
information on this matter. It seems that Scrortz 1932 has not aroused the interest
which it deserves. Bover (1959, pp. 210-213) has not recognised any consistency in
LeisN1z’s ideas on the foundations of the calculus; he has therefore presented the
many quotations of LEiBNIz on this subject in a random way—which of course
strongly suggests the absence of any inner structure in LEIBNIZz's thought.

8 Compare also the following lines on the rule dxy =xdy +ydx: ... restat
xdy +ydxy+dxdy. Sed hic dxdy rejiciendum, ut ipsis ¥dy + yd » incomparabiliter
minus, et fitd, ¥y = xdy + yd », ita ut semper manifestum sit, re in ipsis assignabilibus
peracta, errorem, qui inde metui queat, esse dato minorem, si quis calculum ad
Archimedis stylum traducere velit.” (LeiBNiz to WarLis, 30-I111-1699; Math. Schy.
IV, p. 63.)

8 The letter (LriNiz to Pinson, 29-VIII-1701; Math. Schr. IV, pp. 95/96—part
of it was published as LeiBNiz 1701; Math. Schy. V, p. 350) was an important piece
of evidence in the controversy on the infinitesimal calculus which raged in the Académie
des Sciences about 1701 and in which the main contestants were VARIGNON and
RorrEe. The letter was a reaction to certain remarks of le pére GouyEe (1701) on the
differential calculus. VArRIGNON opened a correspondence with LEIBNIZ on this matter
(VarigNON to LEIBNIZ, 28-XI-1701; Maih. Schyr. VI, pp. 89/90), and received a fuller
account of LEIBNIZ'S views on infinitesimals (LEIBNIZ to VARIGNON, 2-11-1702; Math.
Schy. IV, pp. 91-95) which was published in the Jowurnal des Savans (LriBN1z 17024).
See further RAVIER 1937, p. 77 (ur. 161).



56 H. J. M. Bos

For instead of the infinite or the infinitely small, one takes quantities as large, or
as small, as necessary in order that the error be smaller than the given error, so
that one differs from Archimedes’ style only in the expressions, which are more
direct in our method and conform more to the art of invention.%

Understandably, this remark caused great confusion in the French mathe-
matical circle, in which L’HOPITAL and VAricNoN had always defended the
LeisniziaN calculus by an appeal to the actual existence of infinitesimals. Now
the opponents of the calculus used the letter to PiNsoN to attack VAriGNON with
LEIBNIZ'S own words: the differentials were finite. VARIGNON asked for clarifica-
tion, which resulted in LEIBN1Z 17024, in which LEIBNIZ wrote:

And to this effect I have given once some lemmas on incomparables in the Leipzig
Acta, which one may understand as one wishes, either as rigorous infinites, or as
quantities only, of which the one does not count with respect to the other. But
at the same time one has to consider that these ordinary incomparables themselves
are by no means fixed or determined; they can be taken as small as one wishes
in our geometrical arguments. Thus they are effectively the same as rigorous,
infinitely small quantities, for if an opponent would deny our assertion, it follows
from our calculus that the error will be less than any error which he will be able
to assign, for it is in our power to take the incomparably small small enough for
that, as one can always take a quantity as small as one wishes.®

4.3. The chief source for LE1BNIZ’s second approach to the justification of the
use of “fictitious” infinitesimals in the calculus is a manuscript?®, dating from
after 1701 and published by C. I. GERHARDT in 1846. It is a draft for an article in
which the rules of the calculus, as published in LEIBN1Z 16844, were to be proven.
LE1BNiz based his proofs on a law of continuity, which he formulated as:

If any continuous transition is proposed terminating in a certain limit, then it is
possible to form a general reasoning, which covers also the final limit.%

9 Car au lien de Vinfini ou de l'infiniment petit, on prend des quantités aussi
grandes et aussi petites qu’il faut pour que P'erreur soit moindre que I'erreur donnée,
de sorte qu'on ne différe du stile d’Archiméde que dans les expressions, qui sont plus
directes dans notre méthode et plus conformes i l'art d’inventer.” (LEiBNI1z 1701;
Math. Schr. V, p. 350.)

9 ““Et c’est pour cet effect que j’ay donné un jour des lemmes des incomparables
dans les Actes de Leipzic, qu’on peut entendre comme on veut, soit des infinis & la
rigueur, soit des grandeurs seulement, qui n’entrent point en ligne de compte les unes
au prix des autres. Mais il faut considerer en méme temps, que ces incomparables
communs mémes n’estant nullement fixes ou detrminés, et pouvant estre pris aussi
petits qu'on veut dans nos raisonnemens Geometriques, font l'effect des infiniment
petits rigoureux, puis qu'un adversair voulant contredire a nostre enontiation, il
s’ensuit par nostre calcul que l'erreur sera moindre qu'aucune erreur qu’il pourra
assigner, estant en nostre pouvoir de prendre cet incomparablement petit, assez petit
pour cela, d’autant qu’on peut tousjours prendre une grandeur aussi petite qu’on
veut.” (LE1BNI1Z 1702a; Math. Schy. IV, p. 92.)

92 T r1eN1z Cum prodiisset. 'The manuscript contains an allusion to Gouve 1701,
whence it must be dated after or in 1701. As it deals with the problems which were
discussed in 1701-1702, it is probable that it originated in or not much later than
1701. I discuss here the part of the manuscript which, in the edition of 1846, begins
at page 40.

9 “Proposito quocunque transitu continuo in aliquem terminum desinente, liceat
ratiocinationem communem instituere, qua ultimus terminus comprehendatur.”
(LemBN1Z Cutn prodiisset, p. 40.)
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The law, not too clear in its formulation®, was explained by some examples: in
the case of intersecting lines, for instance, arguments involving the intersection
could be extended (by introducing an “‘imaginary” point of intersection and
considering the angle between the lines “infinitely small”’) to the case of
parallelism; also arguments about ellipses could be extended to parabolas by
introducing a focus infinitely distant from the other, fixed, focus.

Thus such extensions of ‘ratiocinationes” to limiting cases (*terminus”)
involve the use of terms or symbols which become meaningless in the limiting
case, while the argument they describe remains applicable, and in such cases the
terms and symbols can be kept as ““fictions”. According to LEIBNIZ, the use of
infinitesimals belongs to this kind of argument.%

4.4, LEIBN1Z’S proofs of the rules of the calculus based on this law of continuity,
as given in the manuscript, can be summarised as follows®:

Let (see the figure) dx and dy denote finite corresponding differences, and

X dx

let d x be a fixed finite line segment. For fixed x and y, define dy by the propor-
tionality
dy:dx=dy:dx. (1)

dy is finite, dependent on 4 x and defined by (1) for 4 x #=0. LE1BNIZ argued that
dy can also be given an interpretation in the case dx =0, namely as defined by

dy:dx=y:0,

in which ¢ is the subtangent; that is, he took the tangent as the limiting position
of the secant. It is important to stress that for this he did not invoke the law of
continuity; as will be seen, he used the law later, presupposing that the limiting
position of the secant is the tangent.

9 For other formulations of Le1sN1z’s law of continuity see Math. Schr. IV, p. 93
and Phil. Schy. I11, p. 52.

% LrisNiz thought that ARCHIMEDES must have used infinitesimal arguments of
this kind in finding his theorems; he mentioned that such arguments were occasionally
practised by DEscarTES, who considered the cycloid as an infinitangular polygon,
and also “Hugenius ipse in opere de Pendulo, cum soleret sua confirmare rigorosis
demonstrationibus, nonnunquam tamen vitandae nimiae prolixitatis causa infinite
parve adhibuit, ...” (LEIBNIZ Cum prodiisset, pp. 42~43.)

% I have slightly changed LEeiBNiz's notation; for LeiBN1z’s (d) I use d, so that
(d4) %, (d)d », (Add) x become dx, ddx, ddx, respectively. For LEIBNIZ'S ,(d)» 1 write
d* . Instead of LEIBNIZ’S separating commas I use brackets.
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Now if dx == 0, the ratio dy:d x can be substituted for dy:d x in the formula
expressing the relation between the finite differences dx and dy. Once this
supposition is made, the argument implicit in the formulas can be extended, as
indeed the law of continuity asserts, to the limiting case dx =0, because in that
case dy:dx is still interpretable and meaningful as a ratio of finite quantities.
But then one may resubstitute dy:dx for dy:d« both in the cases dx =0 and
4 x =0, interpreting, in the latter case, the dx and 4y as “fictions”. To prove the
rules of the calculus, it has now to be shown that these rules of manipulating the
fictitious dy and d x in the case d ¥ =0, are indeed interpretable as corresponding
to correct manipulations with the finite dx and dy.

Such proofs LEIBNiZ gave in his manuscript for the rules covering addition,
subtraction, division and powers in general. The procedure appears most clearly
in his proof for the differentiation rule of a product, d(xv) =x dv+v dx, which I
quote here in full:

Multiplication Letay=xv, then ady=xdv4vdx

Proof: ay+ady=(x4dx) (v-4{dv)

=xv+xdv+ovdx +dxdv,

and by discarding ¢y and xv, which are equal, this becomes

ady =xdv+vdx +dxdv

or ady  xdv
Taw T Tax tUtde

and by transferring the matter, so far as possible, to lines which never vanish, this
becomes
ady  xdv
dr ~ dn +v4dv,
so dv is left as the only term which can vanish, and in the case of vanishing
differences, because then dv = 0, this becomes

ady =xdv4ovdx

as was asserted.

(...) Whence also, because dy:dx is always =dy:d», one may assume this in

the case of vanishing dy, d#, and put

ady =xdv+vdx%

9 Multiplicatio. Sit ay = xv, fiet ady =xdv +vd ». Demonstratio: ay 4-ady =
(x+dx)(v+dv)=2v+xdv+vdxtdxdv, et abjiciendo utrinque aequalia ay et
xv fiet

ady =xdv-+vdx +dxdv,
seu

ady xdv
dy ~— dx totdo

et transferendo rem ad rectas nunquam evanescentes qua licet, fiet
ady xdv
ax = dx +v4-dv
ut sola quae evanescere possit, supersit dv, et in casu differentiarum evanescentium,
quia dv =0, fiet

ady =xdv +vdx
ut asserebatur, (...). Unde etiam quia dy:dx semper =dy:d %, licebit hoc fingere in
casu dy, d x evanescentium, et facere (...)

ady=xdvtvdx."

(LE1BNI1Z Cum prodiisset, pp. 46—47; the few words omitted contain an obvious error
in calculation and are not important for the argument.)
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4.5. I wish to draw attention to two aspects of this approach to the justifica-
tion of the calculus which are relevant to the general theme of my study. First,
the dy, introduced by LEiBNiz, is equal, in the case in which dx=0, to the
differential as defined by CaucHy: if we call y =f(x), then (1) asserts

fldx:.f._(x+ﬁx)_f_(’¢)~.éx, 2)

—(ly:Ax— Ax

and LEIBNIZ's argument that for 4x =0 the secant becomes a tangent corre-
sponds to taking the limit in (2):
dylssmo=f(x)-dx

Second, LEIBNIZ'S attempts show that an endeavor to secure the foundations
of the calculus naturally leads to the introduction of the concept of function. The
choice of a constant d x, and the introduction of the ratios dy:dx, dv:dx to be
replaced by dy:dx, dv:dw, is equivalent to the choice of x as independent
variable, as functions of which the other variables are considered. As will appear
later in this chapter, this choice is also equivalent to what in the context of
infinitesimal differentials is the choice of dx as constant differential. This intro-
duction of the concept of function in a primarily geometric situation of a curve
with respect to axes involves, as I have stated before (§ 1.4 and §1.7), a certain
arbitrariness; indeed LEIBNIZ might as well have started by choosing a constant
dy and by considering the ratios dx:dy, dv:dy etc. Also, in order to substitute

the d x and d v for the differencesd x and d y, one has to consider the quotients % ,
and, in the limit case, the expression %dro. This shows that the endeavor to
justify the calculus leads naturally to the concepts of differential quotients and

hence to derivatives.

4.6. Turning now to the last part of LeiBNIZ'S study which contains an
attempt to prove in the same way that the second-order differential of xv is
xddv+vddx+2dxdv, I shall show how important it is that this approach
implies an introduction of the function concept. Indeed this part of the study is
a failure precisely because LEiBNIZ did not realise that he had to choose one of
the variables as the independent variable, that is, that he had to introduce the
concept of function. Although the text is often rather confused, I think that the
essence of it can be rendered as follows.

LeisnNiz considered a figure of which the essential parts are indicated in the
figure® in which x and y are fixed and dx, ddx, dy and d dy are finite. B and C

dy+ddy

dy

X dx T dx + ddx
A B C

% The figure is adapted to my rendering of the argument.
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are supposed to move simultaneously toward 4 until they coincide with 4 at the
same moment. LEIBNIZ did not assume that 4 B = BC throughout this movement,
that is, he did not suppose the sequence of the x-values to be arithmetical. He

also did not stipulate the requirement of smoothness for the infinitangular

polygon, which I discussed in § 2.18 and which requires that %ﬁ tends to

zero, so that 4 d x becomes infinitely small with respect to d x.

Leieniz introduced two basic finite constant lines dx and dtx, which he
allowed to be unequal, as can be inferred from the figure he gives. He then intro-
duced dy and dv as defined by

dy:dx=dy:dx,

dv:dx=dv:dx, 6)

and furthermore a d+y defined by
dty:dtx=dy+ddy):(dx+ddx).

Although eventually he did not use this d+y in his arguments, he seemed to
assume that in the limit d ¥ and d+y are equal, which, however, is the case only if
dx=d+x.

Next LeIBN1Z calculated from

ay=xv,

a(y+dy)=(x+dx)(-dv)
and
a(ly+2dy+ddy)=(x-+2dx+ddx)(v+2dv}+ddv),

the difference equation
addy=xddvtvddx+2dxdvi-2dvddx+2dxddv-+ddxddv (4)

in which he divided each term by ad dx in order to introduce quotients of
differences:

ddy xddv v 2dxdv 2dv 2dxddv ddv
ddx — addx 7—{— addx + a + addx a ° (5)

To proceed similarly to the case of the first-order differential equation, LEIBNIZ
now had to introduce finite variables, interpretable in the case dx =0, and
quotients of which could replace the quotients of differences in (5). To do this he
introduced d d x defined by

ddx:dx=dx:dtx, (6)
and similarly d dy and d dv. He assumed
ady _ ddy
ddx ~— ddx
and 7)
ddv  ddv
ddx — ddx’
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This step remained entirely unjustified®, and even if LEIBNIZ could argue it, it
appears that he was not aware that the substitutions (7) would not solve the
problem, because the ddx, ddy and ddv as defined by (6) (which involves
inhomogeneous ra’rios) are #nof finite variables but infinitely small variables, so

that j dz d ddv_ are still uninterpretable in the case dx =

To deal with de 0

———~—— LE1BNiz defined a finite variable dd x by
addx ==

ddx:dx=addx:(dx)> 8

ddx is indeed finite, but the assumption is interpretable in the case in which
dx =0 implies the condition of neatness for the infinitangular polygon that
I mentioned above, namely that d 4x becomes infinitely small with respect
to dx. (Note the role of a in (8) to ensure homogeneity of dimension and order
of infinity.)
Now
dxdv (dx)2dv

addx ~ addxdx

Substitution of (7) and (9) in (5) yielded

ddy  xddv 2dv 2dv 2ddvdx ddv
ddx ~ addx + + ddx e T addx a

which, as LEIBNIZ assumed wrongly, was still interpretable in the case in which
d x =0, in which case therefore

ddy xddv v 2dv

ddx ~ addx " a T ddx’

whence, by the same argument as used with respect to the first order differential
equation, the differentials could be kept, in the case in which d x =0, as “ fictions ”,
so that

ddy _ xddv v 2dxdv

ddx T addx a addx ’

with which result the manuscript ends.

4.7. I have summarised this failing attempt to prove a rule for higher-order
differentials, because the reason why it failed is most illuminating. As I have
indicated, the approach that Leisniz followed implies the concept of the
variables as functions of one specified variable, in this case x. Taking d » constant
corresponds to taking the sequence of x-values as arithmetic. But apparently
LreiBN1z wanted to conserve the freedom of choice of the progression of the

9% Here CHILD (1920, p. 157), in his translation of the manuscript, inserts a note
stating that, because of this error, ““there is not much benefit in considering the
remainder of this passage’’—a judgement with which I disagree.
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variables and therefore allowed 4 dx =0 and introduced both a dx and a d+x.
Thus the failure of his attempt is caused by an implied contradiction between
considering the variables as functions of one specified variable and still trying
to leave the progression of the variables unspecified.

4.8. Once it is assumed that the differential of one variable is constant,
LeiBN1Z's approach can be followed successfully. To show this I shall prove in
LeiBNiz's way that, for ay =xv, the second-order differential equation is
addy=xddv+2dxdv, under the supposition that d dx=0. To prove this,
dy and dv can be introduced as above, and I define ddy and ddv by

ddy:dx=dxddy: @),

10
ddv:dx=dxddv:{dx)? (10)

Note the use of d x to conserve homogeneity of dimension and order of infinity.
dx is chosen for that purpose rather than an arbitrary constant @, because in
that way (10) is in agreement with (3):

I
e
®

Now I may divide by (4 x)? each term of the difference equation (4) (from which
the terms with 4 d x are now left out):

addy xddv 2dxdv 2dxddv

dx® — dax® + dx? dx® °

and I may substitute the corresponding ratios of dy, dv, d», ddy, and ddv:

addy xddv +- 2dv 2dxddv
dx)? = (@#)? * dx (dx)*?

This formula remains interpretable in the case in which d x =0 (the last term then
vanishes), so that, following LEIBNIz’S argument, I may use the differentials as
“fictions” also in the case in which dx =0:

addy  xddv 2dv
dx? —  da? dx

or
addy=xddvt+2dxdo,

which is indeed the second-order differential equation of ay =xv under the
supposition that 4« is constant.

4.9. LrieNiz’s fundamental idea, to choose a finite fixed d » and to define a
finite dy by means of this dx, must have occurred to him much earlier than
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1701. Indeed it appears in his very first publication on the calculus, LEIBNIZ
16844, and in his discussion with NIEUWENTIJT on the nature of differentials
in 1695.

In his 76844 Le1BNiz introduced differentials and stated (without proofs) the
rules of differentiation. The definition of differential which he gave did not allude
to infinitesimals; he assumed a fixed finite line segment called dx'%, and he
defined 4y as the fourth proportional to subtangent, ordinate and dx (see the
figure):

dy:dx=vy:0. (11)

dx

- — —— g-——

The finite line segment dvy, so defined, he called a differentia. Obviously, this dy
is the same as

c_iyldxzo
(see (5)).

Lemsniz did not give reasons for choosing this definition for the differential,
but it seems most likely that he chose it to avoid controversies on infinitesimals.
That it was a conscious choice may be inferred from a manuscript which GER-
HARDT identified as an alternative draft for the first publication of the rules of
the calculus, in which the differentials are introduced as infinitesimalslo,

In LeieNiz 1684a the relations of the differentiae as defined by (11) with

infinitesimals is mentioned, almost casually, after the enunciation of the rules
of the calculus:

The proof of all these things is easy for someone who is well acquainted with these
matters, if he keeps in mind one point which has not yet been sufficiently exposed,
namely that the dx, dy, dv, dw,dz can be considered as proportional to the
differences, or the momentaneous decreases or increases, of the corresponding
%y v, w2 (...)

... to find a tangent is to draw a straight line joining two points of the curve which
have an infinitely small distance to each other; or the produced side of the
infinitangular polygon which for us is equivalent to the curve. This infinitely

100 ¥ x18N1Z here used the notation dx,dy; as in his later studies which I
discussed, he used above (d) #, (d)y (¢f. note 96).
101 L.e1BN1z Elementa; on the dating compare GERHARDT 1859, p. 72.
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small distance, however, can always be expressed by a given differential, such as

dv, or by a relation to it, that is, by a given tangent.102

In fact, in later articles (with one exception in his answer to NIEUWENTIJT’S
objections) LrisNiz did not use definition (11) but treated the differentials
directly as infinitesimals. Thus the choice of (11) as definition in LeisNiz 16844
was an anomalous and rather unfortunate one (indeed, the term differentia in
relation with this definition is a misnomer). It must have further obstructed the
understanding of the article, which for other reasons was already very obscure0s,

4.10. LEiBN1Z returned to definition (11) in his answer to the critique of
NIEUWENTIJT on the calculus. NIEUWENTIJT (1694) could accept the existence
of first-order differentials (he thought this was a consequence of the infinite
divisibility of quantity) but he denied the existence of higher-order differentials.
In his answer (1685 a) LE1BNIZ avoided the ontological argument in NIEUWENTIJT'S
objection; differentials, he said, were infinitely small, and true quantities in
their own sense:

Therefore I accept not only infinitely small lines, such as d ¥, dy, as true quantities

in their own sort, but also their squares or rectangles, such as dxdx, dydy, dxdy.

And I accept cubes and other higher powers and products as well, prlmarlly
because I have found these useful for reasoning and invention.104

But, feeling that this would not satisfy his opponent, LEIBNIZ returned to the
question in a later addition (1695d) to the article, in which he showed that,
although the first-order and higher-order differentials are infinitely small, one
can indicate finite variables which vary proportionally to them.

Here he used definition (11), and his argument is important because again it
shows how this definition implies the function concept and the supposition that
the differential of x is constant. In order to represent his argument, I indicate
the constant 4« and the dy defined by (11) as d» and d vy, respectively, now using
the dx and dy exclusively to indicate the infinitesimal differentials. LEIBNIZ
explained that, given a curve AB (see the figure'®), one can plot the dy (he

102 “Demonstratio omnium facilis erit in his rebus versato et hoc unum hactenus

non satis expensum consideranti, ipsas dx, dy, dv, dw, dz, ut ipsarum x, y, v, w, 2
(cujusque in sua serie) differentiis sive incrementis vel decrementis momentaneis
proportionales haberi posse. (...)
.. tangentem invewnire esse rectam ducere, quae duo curvae puncta distantiam infinite
parvam habentia, jungat, seu latus productum polygoni infinitanguli, quod nobis
curvae aequivalet. Distantia autem illa infinite parva semper per aliquam differen-
tialem notam, ut dv, vel per relationem ad ipsam exprimi potest, hoc est per notam
quandam tangentem.” (LEiBNiz 1684a; Math. Schr. V, p. 223.)

103 Precisely in the definition of the differential, the text in LriBNIiz 1684a was
affected by severe typographical errors. It may be noticed that in the version
published in Math. Schy. (V, p.220) GERHARDT has, without indication, corrected
these errors. It is important to recall here that LEiBNIZ 16840 and 1686 formed the
source from which the BErNoULLIs learned the calculus in the years 1687-1690; cf.
§ 2.10 and ENESTROM 1908.

104 “‘Ttaque non tantum lineas infinite parvas, ut dx, dy, pro quantitatibus veris
in suo genere assumo, sed et earum quadrata vel rectangula dxdx, dydy,dxdy,
idemque de cubis aliisque altioribus sentio, praesertim cum eas ad ratiocinandum
inveniendumgque utiles reperiam.” (LEIBNIZ 1696a; Math. Schr. V, p. 322.)

105 The figure, as well as the explanation by means of (12), is mine; LEIBNIZ'S
explanation in 76955 is entirely in prose and not accompanied by a figure.
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D

1

referred here to his 1684a) as ordinates along the X-axis, thus obtaining a new
curve CD whose ordinates vary proportionally with the differentials dy. That is,
if dx, dy and d*x, d*y are the infinitesimal differentials corresponding to P
and Q, respectively, then

PP Q0" =dy:d*y=dy:d*y. (12)

LE1BNIZ’s remark in 16844, quoted above, that the differentia as defined by (11)
can be considered as proportional to the momentary increments, or infinitesimal
differentials, obviously also concerned the proportionality (12).

Applying the same procedure to the curve CD yields a curve EF, whose ordi-
nates are proportional to the differentials of CD, and therefore to the second-
order differentials of AB:

PP":QQ0" =ddy:d*d*y.

Obviously, the procedure can be repeated again, by which LEIBN1Z has shown
that finite line-variables can be given proportional to differentials of any order.
However, what LErBN1Z did not indicate is that this argument is valid only if one
supposes d ¥ =d* %, that is, if one supposes the progression of the variables such
that 4 » remains constant.108

Indeed
Y 4. P*
dy:d*y=--dx:=5dx
dy d*y
T dx " d¥x’
so that

dy:d*y=dy:d*y

106 TaxoB HERMANN, who in 1700 repeated LEIBNIZ'S arguments contra NIEU-
WENTIJT, also failed to mention this condition.

5 Arch, Hist. Exact Sci., Vol. 14
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only if
dx=d*x.

4.11. Thus the answer to NIEUWENTIJT shows clearly the implications of the
definition of differentials by (11): such a definition implies the arbitrary choice
of one variable as independent variable whose differential must then implicitly
be supposed constant. This needlessly restricts the generality of the differential
calculus, as it imposes the choice of a special progression of the variables. For
instance, the deduction of differential equations or expressions from the inspection
of figures, as in the case of theradius of curvature, which I discussed as an example
of this approach in §3.1.3, would have been severely hindered if this definition
had made a significant impact on the early calculus.

On the other hand, it is also evident from the LEIBNIZIAN studies discussed
in this chapter, that a concern about the foundations of the calculus does lead to
an introduction of differential quotients or even derivatives, and hence to a
predominance of the concept of function. And indeed, as the subsequent history
of the foundations of the calculus shows, it was in this direction that the solution
lay.

Thus the early stage of the calculus was not favorable to studies of the
foundations, such studies would have hindered, rather than invigorated, the
practice of the calculus in that period. This may explain why LEiBN1z hardly
published anything about his studies in this direction, and also, in general, why
such studies could become influential only much later, when the concept of
function had established itself firmly in analysis.

5. Euler’s Program to Eliminate Higher-Order Differentials from Analysis

5.0. In this chapter I discuss EULER’s treatment of differentials and higher-
order differentials. After penetrating studies of the questions relating to the
indeterminacy of higher-order differentials, EULER came to the conclusion that,
precisely because of their indeterminacy, such differentials should be banished
from analysis. He also indicated methods by which this could be achieved, and 1
shall show that in these methods the differential coefficient (see § 3.2.0) and the
concept of function of one variable play crucial roles. Thus the indeterminacy of
higher-order differentials was one of the main causes of the emergence of the
derivative as fundamental concept of the calculus.

5.1. EULER was well aware of the problems about the inconsistencies of the
infinitely small, and in the Institutiones Calculi Differentialis (1755) he devoted
large parts of the preface and of Chapter II to a discussion of these problems.
The aim of his arguments is to establish that, although the concept of the
infinitely small cannot be rigorously upheld, still the computational practice with
differentials leads to correct results. His arguments have been amply discussed
by historians of mathematics'?¥, so that I can confine myself to a very concise
summary. EULER claimed that infinitely small quantities are equal to zero, but
that two quantities, both equal to zero, can have a determined ratio. This ratio
of zeros was the real subject-matter of the differential calculus, which was

107 E.g. BOoYER 1949, pp. 243-245.
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a method of determining the ratio of evanescent increments, which any functions
take when an evanescent increment is given to the variable quantity of which
they are functions.10®

EULER also considered this ratio of zeros as a limit; discussing the ratio 4 (x)2: 4 x,
for A x =, he said:

But it is clear that the smaller the increment @ is taken, the nearer one approaches
to this ratio (2x:1). Hence it is correct and even very appropriate to consider
these increments first as finite and also to represent them in figures, if these are
necessary to illustrate the matter, as finites; next one has to imagine these incre-
ments to become smaller and smaller, and so their ratio will be found to approach
more and more to a certain limit, which it can reach only when the increments
vanish fully into nothing. This limit, which is as it were the ultimate ratio of the
increments, is the true object of the differential calculus.1%®

The practice of calculations with differentials had to be interpreted as dealing
in fact with these ratios:

Although the rules, as they are usually presented, seem to concern evanescent
increments, which have to be defined; still conclusions are never drawn from a
consideration of the increments separately, but always of their ratio. (...) But in
order to comprise and represent these reasonings in calculations more easily, the
evanescent increments are denoted by certain symbols, although they are nothing;
and since these symbols are used, there is no reason why certain names should not
be given to them.11®

Thus the argument justified the use of differentials, and EULER proceeded to
introduce the differential calculus on that basis. After having treated, in the
first two chapters, the theory of finite difference sequences, he defined the
differential calculus as the calculus of infinitesimal differences:

The analysis of infinites, with which I am dealing now, will be nothing else than
a special case of the method of differences expounded in the first chapter, which
occurs, when the differences, which previously were supposed finite, are taken
infinitely small.111

108 ¢ . methodus determinandi rationem incrementorum evanescentium, quae
functiones quaecunque accipiunt, dum quantitati variabili, cuius sunt functiones,
incrementum evanescens tribuitur.” (EULER 1755 praef.; Opera (I) X, p. 5.)

109 “Interim tamen perspicitur, quo minus illud incrementum o accipiatur, eo
propius ad hanc rationem accedi; unde non solum licet, sed etiam naturae rei convenit
haec incrementa primum ut finita considerare atque etiam in figuris, si quibus opus
est ad rem illustrandam, finite repraesentare; deinde vero haec incrementa cogitatione
continuo minora fieri concipiantur sicque eorum ratio continuo magis ad certum
quendam limitem appropinquare reperietur, quem autem tum demum attingant, cum
plane in nihilum abierint. Hic autem limes, qui quasi rationem ultimum incremen-
torum illorum constituit, verum est obiectum Calculi differentialis.” (EULEr 1755,
praef.; Opera (I) X, p. 7.)

0 ““ Quamvis enim praecepta, uti vulgo tradi solent, ad ista incrementa evanes-
centia definienda videantur accommodata, nunquam tamen ex iis absolute spectatis,
sed potius semper ex eorum ratione conclusiones deducuntur. (...) Quo autem facilins
hae rationes colligi atque in calculo repraesentari possint, haec ipsa incrementa
evanescentia, etiamsi sint nulla, tamen certis signis denotari solent; quibus adhibitis
nihil obstat, quominus iis certa nomina imponantur.” (EULER 1755, praef.; Opera (I)
X, p.5.)

L ““Erit ergo analysis infinitorum, quam hic tractare coepimus, nil aliud nisi casus
particularis methodi differentiarum in capite primo expositae, qui oritur, dum differen-
tiae, quae ante finitae erant assumtae, statuantur infinite parvae.” (EUuLEr 1755,
§114.)

5#
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which is rather at variance with his remarks quoted above, a contradiction which
shows that his arguments about the infinitely small did not really influence his
presentation of the calculus.

5.2. This introduction of the calculus as concerning infinitesimal difference
sequences is very much akin to LEIBNIZ’s conception of the calculus as discussed
in Chapter 2. However, one significant difference, reflecting the transition from a
geometric analysis to an analysis of functions and formulas, should be indicated
here: no longer are the infinitesimal sequences induced by an infinitangular
polygon standing for a curve, but by a function which, if the dependent variable
ranges through an infinitesimal sequence x, x-dx, x+2dx, x+3 dx, ..., yields
the sequence f(x), f(x+dx), f(x+2dx), f(x+3dx), ....

Differentiation is, for EULER, an operator which correlates to a function, or
in general to a quantity, its differential:

In the differential calculus the rules are taught by which the first differential of

any given quantity can be found. The second differentials are found by differentia-

tion of the first, the third differentials by the same operation from the second
and in the same way the successive differentials from the. preceding; thus the
differential calculus comprises the method for finding all differentials of whatever
order. {...) Differentiation indicates the operation by which differentials are
found.112
Integration is the inverse operation, but EULER also indicated the relation of
integration with summation.

Differentiation raises the order of infinite smallness; integration does the
converse, by which the reigns of the infinitely large are opened up. On the orders
of infinity, EULER expressed views like those which I discussed in §2.13, but
also he pointed toward extensions of these ideas; on this see Appendix 2.

5.3. I now turn to EULER’s treatment of higher-order differentiation and to
the role of the differential coefficient in it. In 17656 Chapter IV (§ 124), EuLERr
introduced higher-order differentiation under the supposition of a constant dx,
or d dx==0. This is in keeping with his view of the differential calculus as an
extrapolation of the calculus of finite differences, for in the latter he had studied
sequences f(a), f(a+w), f(a+2w), ... . Setting now w =d x infinitely small, he
arrived at the case where d« is constant. Consequently in Chapters V and VI of
1755 the differentiation of algebraic and transcendental functions is treated under
the supposition of a constant d«.

However, already in Chapter IV EULER commented on the restriction implied
in this supposition. He discussed the dependence of higher-order differentials on
the progression of the variables in three most important sections. I quote these
sections here because they contain a very clear exposition of the problems con-
cerning the indeterminacy of higher-order differentials. In particular, the following
points may be noticed: the progression of the variables is arbitrary; first-order
differentials do not depend on the progression but higher-order differentials do:

4z “In calculo differentiali praecepta traduntur, quorum ope cuiusvis quantitatis
propositae differentiale primum inveniri potest; et quoniam differentialia secunda ex
differentiatione primorum, tertia per eandem operationem ex secundis et ita porro
sequentia ex praecedentibus reperiuntur, calculus differentialis continet methodum
ommnia cuiusque ordinis differentialia inveniendi. (...) Differentiatio autem denotat
operationem, qua differentialia inveniuntur.” (EULER 1755, § 138.)
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higher-order differentials of functions can be expressed in terms of differential
coefficients and the first-order differential of the independent variable; the
progression of the variables can be specified by specifying the variable with
constant first-order differential.

128. We noted already in the first chapter that second and successive differentials
cannot be constituted unless the successive values of » are assumed to proceed
according to a certain law. As this law is arbitrary, we suppose these values in an
arithmetical progression, for such a progression is the easiest and also the most
suitable. For the same reason nothing can be stated with certainty about the
second differentials, unless the first differentials, with which the variable quantity
x is supposed to increase continually, proceed according to a given law. We there-
fore suppose that the first differentials of ¥, namely d#, d%, d4%, efc., are all equal
to each other, whence the second differentials are

dix=ds' —dx=0, ddsl=ds1 —ds'=0 etc.

Thus the second and higher order differentials depend on the order which the
differentials of the variable quantity » have among each other, and this order is
arbitrary. As this circumstance does not affect first order differentials, there is an
immense difference, with respect to the way they are found, between first and
higher differentials.

129. But if the successive values of x, 21, #1L, #HI 41V are supposed not to proceed
as an arithmetical progression, but following any other law, then their first dif-
ferentials dx, d#%, d#' etc. will not be equal to each other and hence the ddx
will not be =0. For this reason the second differentials of any functions of x
acquire another form, for if the first differential of such a function y is =pdx,
then, to find its second differential, it will not be sufficient to multiply the
differential of p with d x, but also one has to consider the differential of 4, which
is dd». Now the second differential arises if pd x is subtracted from its succeeding
value, which arises if x 4-dx is substituted for », and dx 4 ddx for d». Suppose
therefore that the succeeding value of p is p +-gd x; then the succeeding value of
pdx will be

=(p+qdx){dx+ddx) =pdx+pddxs+gdx?-+qgdxddx;
from which pdx is subtracted, so that the second differential is
ddy =pddx+qdx*+qgdxddx =pddx +qds?
because ¢d ¥dd » vanishes with respect to pddx.

130. Although equality is the simplest and the most useful relation which can be
supposed between all the increments of ¥, still it happens often that not the in-
crements of the variable quantity #, of which y is a function, are supposed equal,
but those of some other quantity of which x itself is a function. Often also the first
differentials of such another quantity are supposed equal although the relation
of this quantity to x is unknown. In the former case the second and higher
differentials of # depend on the relation of x to the quantity which is supposed to
increase uniformly, and from this quantity they should be defined in the same
way as we have indicated to define the second differential of y from the differen-
tials of ». In the latter case the second and higher differentials of # have to be
considered as unknowns and they have to be denoted by the symbols ddx, d3x,
dtzx, etc 118

118 ¢“128. In capite primo iam notavimus differentias secundas atque sequentes
constitui non posse, nisi valores successivi ipsius x certa quadam lege progredi
assumantur; quae lex cum sit arbitraria, his valoribus progressionem arithmeticam
tanquam facillimam simulque aptissimam tribuimus. Ob eandem ergo rationem de
differentialibus secundis nihil certi statui poterit, nisi differentialia prima, quibus
quantitas variabilis # continuo crescere concipitur, secundum datam legem progredian-
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5.4, The meaning of higher-order differentials depends on the progression of
the variables with respect to which they are considered. Hence the meaning of
formulas in which higher-order differentials occur depends in the same way on
the progression of the variables, and to the implications of this fact EULER
devoted a large part of the eighth and ninth chapters of 1755.

In §§251-261 of Chapter VIII EurLkr introduced the indeterminacy of

373
formulas involving higher-order differentials with the examples d 4 x and % .
. . 33 . .
If d x is considered constant, dd x =0 and jTia;; = %. But if 4(x?) is supposed
a x? 3q3 . . .
constant, d dx =— *;— and dxx 7 d’; =-—3 2% And in general, if 4 (x") is supposed
tant, ddx=— "1 da? and 20 — (20 —1) 22
constant, d dx =— x? and e =— (21 — 1) 4%
TFor the case of formulas involving two interdependent variables x and v,
yddx +xddy

EULER considered the formula , which he showed to be dependent

dxdy
on the progression of the variables by considering the special case of the relation

tur; ponimus itaque differentialia prima ipsius #, nempe dx, dx', d#'! etc., omnia
inter se aequalia, unde fiunt differentialia secunda

ddx=ds'—dx=0, dds'=ds"1 —dzl=0 etc.

Quoniam ergo differentialia secunda et ulteriora ab ordine, quem differentialia
quantitatis variabilis x inter se tenent, pendent hicque ordo sit arbitrarius, quae
conditio differentialia prima non afficit, hinc ingens discrimen inter differentialia
prima ac sequentia ratione inventionis intercedit.

129. Quodsi autem successivi ipsius x valores #, 4%, #1L, 111, 41V etc. non secundum
arithmeticam progressionem statuantur, sed alia quacunque lege progredi ponantur,
tum eorum quoque differentialia prima dx, d#!, d#!! etc. non erunt inter se aequalia
neque propterea erit ddx =0. Hanc ob rem differentialia secunda quarumvis func-
tionum ipsius #» aliam formam induent; si enim huiusmodi functionis y differentiale
primum fuerit =pd», ad eius differentiale secundum inveniendum non sufficit dif-
ferentiale ipsius p per dx multiplicasse, sed insuper ratio differentialis ipsius dx,
quod est ddx, haberi debet. Quoniam enim differentiale secundum oritur, si pdx a
valore eius sequente, qui oritur, dum » 4+dx loco » et dx+-ddx locodx ponitur,
subtrahatur, ponamus valorem ipsius p sequentem esse =p 4-gd x eritque ipsius pd»
valor sequens

=(p+qgdx)(@x+ddx)y=pdx+pddx +-qdx* +-qdxddx;
a quo subtrahatur pd ¥ eritque differentiale secundum
ddy=pddx +qdr*+qdxddx =pddx 4 qd?
quia gdxdd x prae pddx evanescit.

130. Quanquam autem ratio aequalitatis est simplicissima atque aptissima, quae
continuo ipsius # incrementis tribuatur, tamen frequenter evenire solet, ut non eius
quantitatis variabilis #, cuius y est functio, incrementa aequalia assumantur, sed alius
cuiuspiam quantitatis, cuius ipsa # sit functio quaedam. Quin etiam saepe eiusmodi
alius quantitatis differentialia prima statuuntur aequalia, cuius nequidem relatio ad »
constet. Priori casu pendebunt differentialia secunda et sequentia ipsius » a ratione,
quam # tenet ad illam quantitatem, quae aequabiliter crescere ponitur, ex eaque pari
modo definiri debent, quo hic differentialia secunda ipsius y ex differentialibus ipsius
definire docuimus. Posteriori autem casu differentialia secunda et sequentia ipsius »
tanquam incognita spectari eorumque loco signa ddx, d®x, d*x, etc. usurpari debe-
bunt.” (EULER 1755, §§ 128-130.)
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v = %2 between x and y. In that case, if d x is constant,

yddx +xddy xddy x - 2dx2

dxdy T dady T dx-2xdx T :
but if 4y is constant,
—2
2. 2
yddx+xddy  yadx 22 P 4
dxdy T dxdy T dx-2xdx 2

EvuLER concluded from this that an expression involving higher-order differentials
of interdependent variables will in general be dependent on the progression of the
variables. Only if the higher-order differentials cancel each other, when the
relation between the variables is substituted, is the formula independent of the
l dyddx —dxddy in
ax® ’
which he substituted y=22% y=1", and y =~—]/ 1 —x? respectively, showing
that in each of these cases the result is a finite expression in » only and therefore
dyddx —dxddy
dx®
is independent of the progression of the variables for any relation between x
and y, EULER introduced the differential coefficients $ and ¢, defined by
dy=pdx and dp =g dx. As these definitions involve only first-order differen-
tials, the differential coefficients 4 and ¢ are independent of the progression of
the variables. Now

progression of the variables. As an example he presente

independent of the progression of the variables. To prove that

ddy=pddx-qdx?

whence
dyddx —dxddy  pdxddx —dx(pddx+qds®)
dx® - dx’ =%
dyddy —dxdd . .
so that %u does not depend on the progression of the variables. !4

5.5. After these examples of the consequences of the indeterminacy of higher-
order differentials, EULER introduced a most important argument, the conclusion
of which is that higher-order differentials should be banished from analysis,
because, in every case, either they can be eliminated from the expression in
which they occur, or they are inherently vague. If a particular first-order
differential is assumed constant, higher-order differentials can be eliminated by
expressing them in terms of first order differentials. In expressions which are
independent of the progression of the variables the higher-order differentials can
be eliminated because they cancel each other. In the remaining case, namely if
no progression of the variables is specified and formulas are considered which
do depend on the progression, the higher-order differentials are meaningless and
vague and therefore not acceptable in analysis. Therefore

14 SpeISER (1945 XXXVIII) has remarked that EULER’s studies on dependence
and independence of the progression of the variables may be considered as containing
a beginning of a theory of differential invariants. Indeed, the choice of a progression
of the variables is equivalent to a choice of an independent variable, and hence
independence of the progression of the variables corresponds to invariance with respect
to parametric representation. However, EULER’S studies show no concern about
invariance with respect to systems of transformations of the mathematical object (for
instance the curve) itself.
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It follows from this that second and higher order differentials in reality never
occur in the calculus and that, because of the vagueness of their meaning, they
have no further use in Analysis. (...)

It was necessary, however, that we expounded the method of treating them, because
they are used often, but only fictitiously, in the calculus. But we shall soon indicate
a method by which second and higher differentials can always be eliminated.!1s

5.6. EULER then went on to show how higher-order differentials can actually
be eliminated from formulas.

The methods which he used for this elimination, and which I shall summarise
below, are very important in the history of the fundamental concepts of analysis,
because they involve the systematic use of differential coefficients. By the intro-
duction of differential coefficients, EULER reduced higher-order differentials to
first-order differentials, thus gaining independence of the progression of the
variables.

Now the use of the differential coefficients 9, g, 7, efc., of a relation between x
and y, defined by dy=p dx,dp=qdx, dg=rdx, eic., implies the choice of an
independent variable (in this case x) of which v, 9, g, 7, efc. are considered to be
functions. Thus differential coefficients are computationally and conceptually
very close to derivatives—only the use of limits in their definition is lacking.

The emergence and the systematic use of differential coefficients must there-
fore be considered as a most important stage in the process of the emergence of
the derivative as fundamental concept of the calculus.

EuLeRr’s use of differential coefficients was directly connected with his con-
viction that the indeterminacy of higher-order differentials is so undesirable a
feature that higher-order differentials have to be banished entirely from analysis.
Thus we may say that one of the main causes for the emergence of the derivative
was the indeterminacy of higher-order differentials.

5.7. The methods of eliminating higher-order differentials which EULER
presented in 1755 (§§ 264—270) may be summarised as follows: If an expression
involves only the variable x and its differentials, and if ¢ is the variable whose
differential df is constant, differential coefficients #, g, 7 efc. can be introduced
as follows:

dx=pdt dp=qdt dg=rdt etc.

The differentials can then be expressed as
dx=pdt ddx=qdl? dx=rdf? etc.

substitution of which yields a formula in which the only infinitesimal is a power
of di. Furthermore, as
dx
P 2

u5 “Ex his igitur sequitur differentialia secunda et altiorum ordinum revera
nunquam in calculum ingredi atque ob vagam significationem prorsus ad Analysin
esse inepta. (...) Quoniam tamen saepissime apparenter tantum in calculo usurpantur,
necesse fuit, ut methodus eas tractandi exponeretur. Modum autem mox ostendemus,
cuius ope differentialia secunda et altiora semper exterminari queant.” (EULER 1745,
§ 263.)

di=
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and ¢, ¢, 7, efc. can be considered as functions of x, one has

s
P
so that the expression can be reduced to a form in which the only infinitesimal is
a power of d x and in which ¢ does not occur explicitly.

For expressions involving two interdependent variables x and y, the case of
a constant dx is treated by introducing the differential coefficients as

d%:%dxz ax= dx® etc.,

dy=pdx, dp=qgdx, dg=rdx, etc,
by which the first and higher-order differentials of y can be eliminated:
dy=pdx, ddy=qdx® dPx=rdx? etc.

The case dy constant is treated analogously. If in general d¢ is constant and x
and y depend on ¢ one may proceed by

dx=1pdi, dp =qdt, dqg=rdt, etc.
ddx=qd?, dPx=rdp, etc.
dy=Pdi, dP =0Qdt, dQ=Rdt. etc.
ddy=0Qdt, d®y=Rdf etc.

In the cases where the constant differential is expressed in %, ¥, dx and dy,
the elimination of the higher-order differentials may be performed using the
differential coefficients of the relation between x and y:

dy=pdx, dp=qdx, dg=vrdx.

EULER presented this procedure in the cases of the progressions of the variables
with y dx constant and with Vd %% --d y? constant. Asan example I indicate his
treatment of the case ¥ d x constant. One has then

yddx+dxdy=0,
whence

ddx—— 220 _

P
Y
from which formulas for d3x, d*x, efc. can be obtained by further differentiation.
Further
2
ddy=dpdx)=qdx®+pddx= (q—!;)—)dxz,

from which formulas for @3y, d*y, efc. can be derived. By means of these relations,
any proposed expression involving higher-order differentials, under the supposi-
tion y d x constant, can be reduced to an expression that involves a power of d %
as the only infinitesimal, and hence is independent of the progression of the
variables. EULER closed his exposition of the techniques of elimination of higher-
order differentials with a series of examples.

5.8. Obviously, elimination of higher-order differentials profoundly affects the
treatment of higher-order differential equations. In fact, such equations are
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transformed into equations between differential coefficients and thus acquire the
form in which differential equations are treated today (despite their name),
namely equations between derivatives.

It is of interest, therefore, to summarise in this place EULER’S arguments on
the transformation of differential equations into equations between differential
coefficients, which he inserted in the beginning of the second volume, on the
integration of higher-order differential equations, of his Iustitutiones Calculi
Integralis (1768).

EuLER introduced differential coefficients in his definition of a second-order
differential equation:

Given two variables » and y, if dy =pdx and dp =gdx, any equation defining a

relation between #, y, p and g is called a second order differential equation of the

two variables » and y.116
As advantages of this use of differential coefficients, EULER mentioned that the
progression of the variables need not be indicated and that only finite quantities
(for also the first-order differentials are absent in the definition) occur in the
differential equation.

After having shown how an equation between differentials, for a given pro-
gression of the variables, can be reduced to an equation between differential
coefficients, and vice versa, EULER stated as further advantage that in this way
the occurrence of a multitude of differential equations for one and the same
relation between x and y is avoided. For in the customary way of treating
differential equations the same relation between x and y gives rise to many dif-
ferent forms of the relevant differential equation, according to the choice of the
progression of the variables.

In addition, the differential equations valid with respect to the various
progressions of the variables are usually much more complicated than the
corresponding equation between differential coefficients, a feature which EULER
illustrated by several examples.

5.9. The occurrence of many differential equations (according to the choice
of the progression of the variables), for one and the same relation between the
variables x and y, suggests the reverse question, namely whether one equation
between higher-order differentials may imply different relations between x and y
(different solutions) if it is considered as valid with respect to different progres-
sions of the variables. This question of the dependence of the solution of a differen-
tial equation on the progression of the variables is treated by EULER in the
ninth chapter of 1754. Indeed, although EULER had indicated the way that higher-
order differentials could be eliminated from analysis he still treated two further
aspects of these differentials, namely, transformation rules for formulas with
respect to different progressions of the variables and criteria that differential equa-
tions be independent of the progression of the variables.

5.10. On the transformation rules I shall be brief, because EULER’s treatment
of these differs from BERNoULLI's (discussed in §§ 3.2.2-3.2.4) only in being more
118 “‘ Positis binis variabilibus # et y si vocetur dy =pdx et dp =qgdx, aequatio

quaecunque relationem inter quantitates x,y,p et ¢ definiens vocatur aequatio
differentialis secundi gradus inter binas variabiles x et y.”” (EULER 1768 (vol.IL,) § 706.)
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elaborate. The differential coefficients $, ¢, 7 efc. can be expressed in terms of
higher-order differentials, independently of the progression of the variables,
as follows:

=4
dx’
dxddy —dyddx
7= dx® o (1)
dx?ddy —3dxddxddy +3dyddx®* —dxdyddx
- d %5 ’

etc.

Transformation of a formula applying with respect to a progression P; of the
variables into a formula representing the same mathematical entity with respect
to a progression P,, can be performed as follows. First the higher-order differen-
tials are eliminated by introducing the differential coefficients in the way discussed
above. Then substitution of (1) is effected, resulting in a formula involving higher-
order differentials but independent of the progression of the variables. From this
formula, by substituting the relation between the differentials which characterises
the progression P,, the required formula is derived.

EULER explained this process by means of examples at great length, arriving
finally at a list of transformation rules for the most common progressions of the
variables, namely dx constant, dy constant, y dx constant and ]/d %2 —I—Zy'z
constant. Formulas applying for any of these four progressions can be trans-
formed directly by means of these rules into a form independent of the choice
of progression.

5.11. EULER used these transformation rules in the ninth chapter of 1755 to
explore further the dependence of the solutions of higher-order differential
equations on the progression of the variables. He explained the technique of
reducing higher-order differential equations with specified progression of the
variables to equations between the finite variables and the differential coefficients.
After that he put the question: what can be said about the solution of a higher-
order differential equation if the progression of the variables is not specified ? In
answer to this question he showed how the transformation rules can be used to
ascertain whether a given higher-order differential equation, without indication
of the progression of the variables, implies a determined relation between x and y;
that is, whether there is a relation between x and y which satisfies the differential
equation for all possible progressions of the variables. One way to ascertain this
is to suppose different progressions of the variables and to see if the corresponding
equations between differential coefficients imply the same relations between x
and v (§ 301).

Another method, safer and easy, is to choose a progression of the variables, for
instance dx constant, and to apply the transformation rules to deduce from the
given differential equation with dx constant, the corresponding general (i.e.
progression-independent) differential equation. The comparison of the two forms
of the equation can reveal a condition for y(x) under which the two forms
coincide; a v(x) satisfying these conditions may then be a progression-independ-
ent solution of the differential equation (§ 302).
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5.12. This EULER illustrated in the subsequent sections. He first considered
the general second-order differential equation

Pd?x+Qd*y+ Rdx?>4-Sdxdy+ Tdy?=0. (2)
Under the supposition 4 x constant, (2) becomes
Qd?*y+ Rdx*4-Sdxdy+ Tdy*=0,
and, applying the transformation rule

d%}md%}—%dzx

for transformation to the progression-independent case (see § 3.2.2), EULER found

QL pxQay Rdx*+ Sdxdy+ Tdy*=o. B)

Comparison of (2) and (3) shows that the function vy (x) satisfies (2) independently
of the progression of the variables only if
d
P=—Q g
or
Pdx-4-Qdy=0
(§ 303). But if Pdx+Qdy=0 (and P and ¢ are not equal to zero, a condition
which EuLer did not mention), then, by differentiation,
Pd2x+Qd?y+dPdx+4dQdy =0,
which, compared with (2), yields
Rdx*4-Sdxdy+ Tdy*=dPdx+dQdy,

_r

g

a finite equation, giving the condition for y(x) in terms of a relation between x
and y. It needs then still to be checked whether a y (x) that satisfies this condition
also satisfies the differential equation (2), but if so, this is a method for calculating
the progression-independent solution of (2) without integration (§ 304).

EULER gave two examples of this procedure, one in which it leads to a solution
and one in which it does not. The first example was

BA2x 22y diy —y2dat -+ a?dy?+ada?=0. (4)
In this case, Pdx +Qdy ==0 means

from which, using dy = d %, the differentials can be eliminated, resulting in

x»¥dx+xy*dy =0.
Differentiating this relation, one gets
Bd2x+xy?d2y+3x2dat+2xydady 22 dy? =0.
Comparison with (4) yields
adiy—yidx—3%x2dx—2xydy=0.
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Useof dy =— % d %, transforms this into

aA?*dx—yrdx —x2dx =0
or
y2+x2=a2,

which EULER indicated as a solution of (4) applying regardless of the progression
of the variables (§ 305).

The other example was
Y22y —x2d?y +ydx®—xdy?+adxdy=0.

The criterion is now
y2dx—x2dy =0,

and the finite relation between x and y derived as in § 305 is
-y taxy=2xy24 242y,

which, however, appears not to be compatible with y2dx —x*dy =0, unless,
EvuLER said, dx and dy are both zero (that is, x constant and v constant), but
that solution applies to every differential equation.

5.13. These researches of EULER imply as it were the counterpart of his remark
quoted above, namely that one of the disadvantages of higher-order differential
equations is that one and the same relation between x and y gives rise to many
different differential equations, according to the progression of the variables
chosen. Here, conversely, EULER showed that one and the same equation among
differentials may imply many different solutions, and that only in special cases
there occur solutions valid for all progressions.

The more reason, then, EULER must have had after these explorations to
pursue his program of eliminating higher-order differentials, and the concomitant
indeterminacy, by introducing differential coefficients.

Appendix 1. Leibniz’s Opinion of Cavalierian Indivisibles,
Infinitely Large Quantities

6.0 This Appendix deals with certain statements of LEIBNIZ concerning
CavAaLIERI'S method of indivisibles and the difference between this method and
his own differential calculus.

The relation of the LEIBNIZIAN calculus to the theories of CAVALIERI is of
importance especially for the formative years of the LEIBNIZIAN calculus. This
episode is described in detail in HoFMANN 1949, and my present study is devoted
to the LEIBNIZIAN calculus in a later stage (see § 2.0). I shall therefore confine
myself to a few remarks concerning the relevant quotations of LEIBNIZ.

The importance of the quotations lies in the fact that LEIBNI1Z expressed his
opinions in terms of progressions of the variables and the free or restricted choice
of these progressions. My study of this concept may therefore provide some new
insight in the question of the relation of the LEIBN1ZIAN calculus to the methods
of CAVALIERL
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Moreover, the quotations are relevant to the question of the role of the
infinitely large in the LEiBNI1zZIAN calculus. Compared with the infinitely small,
the infinitely large hardly ever occurs in the calculus. This feature might at first
sight seem at variance with LEIBNIZ’S concept of the operators of differentiation
and summation as being reciprocal (cf. §2.9}; for just as differentiation introduces
infinitely small differentials, so summation could introduce infinitely large sums.
The reason why the infinitely large occurs but rarely is that LEIBNIZ consistently
evaluated quadratures as (finite) sums of area-differentials, and not as (infinitely
large) sums of ordinates. He consciously chose for the former approach, having
become aware that the disadvantages of the latter are apparent in the Cava-
LIERIAN method of indivisibles.

6.1. The evaluation of quadratures as aggregates or sums of finite line-
variables is implied in CAVALIERI'S method of indivisibles (¢f. WALLNER 1903
and BOYER 1941). The area between the curve OC and the axis OA4 was conceived
as the aggregate of all ordinates ac extending from the axis OA4 under a fixed
angle towards the curve. CAVALIERI used the term “omnes lineae” (“all lines”’)
for this aggregate.

C!

This concept of the quadrature offers the possibility of finding relations
between the quadratures of curves from relations between their ordinates. For
instance, if, throughout AC, the ordinates of OC and OC’ are in a fixed proportion,

ac:ac’ =p:q, then the quadratures are in the same proportion, 0CA:0C'A =p:q.
The concept that a figure is built up from its indivisibles can also be applied to
space-figures, in which case the indivisible “ ordinates’ are parallel plane sections
of the figure.

CavaLIERT'S method admits a far-reaching translation into mathematical
symbols. The aggregate of the ordinates y of a curve can be denoted by omn - y,
and with help of this symbolism various relations between quadratures can be
represented analytically, and a calculus of these quadratures can be elaborated.

6.2. LeiBN1z, following CAVALIERI and FABRI, used such a symbolism in his
studies of October and November 1675 (LEIBN1Z Analysis Tetragonistica), which
may be considered to contain the invention of the differential and integral
calculus (cf. HOFMANN 1949, 118-130).

One important step in the process of this invention was LEIBNIZ’S decision to
replace the symbol omn - /, which he considered to denote the sum of all lines /,
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by [ 217, Thus, in these first studies, [/ denoted a quadrature, not an infinitely
long line. However, already soon afterwards LEIBN1z became aware of the
need to introduce the differentials along the axis in the symbol for the
quadrature and to denote the quadrature by [ vy d .

6.3. LeiBN1z has repeatedly stressed the importance of the fact that in his
calculus quadratures are evaluated as sums of area-differentials rather than as
sums or aggregates of lines. He emphasised that this aspect constitutes the
fundamental difference between his calculus and CAVALIERI'S method of indivis-
ibles. He asserted that CAVALIERI evaluated quadratures as [ y, the sum of the
ordinates. If dx is supposed constant, there is, according to LEIBNIZ, only a
formal difference between CAVALIERI'S [y and his own [ y dx; but if dx is no
longer supposed constant, but arbitrary progressions of the variables are to be
allowed, then the treatment of the quadratures as f y breaks down, whilst the
use of [ y d x is still acceptable; this because [ y d x is independent of the progres-
sion of the variables. It is indeed essential that LEisNiZ should allow arbitrary
progressions of the variables in the study of quadratures, for otherwise trans-
formations of the variables cannot be applied. For instance in the case of the
transformation [#dx= [y ds (#: normal to the curve, s: arclength), it is im-
possible to suppose both 4x and 4s constant, so that at least one of the integrals
cannot be directly translated into CAVALIERIAN terminology and symbolism.

LemsNiz has appreciated this fact and hence, in his opinion, the evaluation
of the quadrature as [ y dx constitutes a great advantage of his calculus over
CAVALIERI'S.

6.4. The views of LEIBNIZ summarised in the preceding section are expressed,
for instance, in the following quotations:

Before I finish, I add one warning, namely that one should not lightheartedly omit

the dx in differential equations like the one discussed above a = [ dx:]ﬂ —xx
because in the case in which the x are supposed to increase uniformly, the d ¥ may be
omitted. For this is the point where many have erred, and thus have closed for
themselves the road to higher results, because they have not left to the indivisibles
like the d x their universality (namely that the progression of the x can be assumed
ad libitum) although from this alone innumerable transfigurations and equi-
valences of figures arise. 11

... I denote the area of a figure in my calculus thus: [ yd# or the sum of all the
rectangles formed by the product of each y and its corresponding dx. Whereby,

u? ““Utile erit scribi [ pro omn. ut [ pro omn-J, id est summa ipsorum 2.”
(LeieNiz Analysis Tetragonistica (29 oct. 1675)). [ is the long script s, standing for
“summa”’.

118 ““ Antequam finiam, illud adhuc admoneo, ne quis in aequationibus differentia-

libus, qualis paulo ante erat a = [dx: ]/1 —xx, ipsam dx temere negligat, quia in
casu illo, quo ipsae # uniformiter crescentes assumuntur, negligi potest: nam in hoc
ipso peccarunt plerique et sibi viam ad ulteriora praeclusere, quod indivisibilibus
istiusmodi, velut 4, universalitatem suam (ut scilicet progressio ipsarum x assumi
posset qualiscunque) non reliquerunt, cum tamen ex hoc uno innumerabiles figurarum
transfigurationes et aequipotentiae oriantur.” (LeiBniz 1686; Math. Schv. V, p. 233.)
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if the dx are supposed equal to each other, one has Cavalieri’s method of indi-
visibles.11?

And this indeed is also one of the advantages of my differential calculus, that one
does not say, as was formerly customary, the sum of all y, but the sum of all
ydx, or [ ydx, for in this way I can make dx explicit and I can transform the
given quadrature into others in an infinity of ways, and thus find the one by
means of the other.120

But this [i.e. CavAaLIERI'S] method of indivisibles contained only the beginnings
of the art (...). For whenever the space elements between parallel ordinates
(straight lines or plane surfaces) are not equal to each other, then, in order to find
the content of the figure, it is not allowed to add up the ordinates to one whole;
but the infinitely small space elements between the ordinates have to be meas-
ured. (...) Indeed, this measurement of the infinitely small was beyond the power
of the Cavalierian method.1t

6.5. That quadratures did not introduce infinitely large quantities in the
LeiBNI1ZIAN calculus, does not imply that these quantities were entirely absent.
In fact, free manipulation with differentials in the formulas led sometimes to
expressions which have to be interpreted as infinitely large quantities. Thus, for
instance, LEIBNIZ asserted:

Surely we conceive in our analysis a straight line with infinite length, such as
aa:dx

And JoEANN BERNOULLI wrote, in a passage already quoted above (§ 2.13), about
. d Cespr s »
the quantity d—‘;% as “infinitely large of the second sort”.

The infinitely large especially occurred in the studies which LE1BNi1z and
JoranN BERNOULLI, in letters exchanged in 1695, devoted to the analogy between
powers and differentials in connection with LEIBNIZ’S rule for the differentiation
of a product. In these studies'?, on which I shall not digress here because they
fall outside the scope of this appendix, positive integer powers of a line were
compared with higher-order differentials of a wvariable, and, because of the
reciprocity in both cases, negative integer powers with higher order sums. Here
the reciprocity of the operators differentiation and summation made the infinitely
large quantities, the sums, enter the investigations naturally.

us ““  aream figurae calculo meo ita designo [ ydx, seu summam ex rectangulis
cujusque y ducti in respondens sibi dx, ubi si d¥ ponantur se aequales, habetur
Methodus indivisibilium Cavalerii.” (LE1BN1z Elementa, p. 150.)

120 “Und das ist eben auch eines der avantagen meines calculi differentialis, dass
man nicht sagt die summa aller y, wie sonst geschehen, sondern die summa aller ydx
oder [ yd#, denn so kan ich das d expliciren und die gegebene quadratur in andere
infinitis modis transformiren und also eine vermittelst der andern finden.” (LEiBNIZ
to vON BopDENHAUSEN; Math. Schr. VII, p. 387.)

121 ““Sed haec Indivisibilium Methodus tantum initia quaedam ipsius artis
continebat (...). Nam quoties ordinatim ductae inter se parallelae, nempe rectae lineae
vel planae superficies (...) intercipiunt inaequalia quaedam elementa, non licet ipsas
ordinatim applicatas in unum addere, ut contentum figurae prodeat, sed ipsa inter-
cepta Elementa infinite parva sunt mensuranda; (...). Ea vero infinite parvorum
aestimatio Cavalerianae methodi vires excedebat, ...” (LEiBNI1Z Scientiarum grvadus

. 597.
P 122 )“Certe in nostra Amalysi concipimus rectam infinitam modificatam, ut
aa:dx,...” (LEiBN1zZ to GRANDI 6-1X-1713; Maihk. Schr. IV, p. 218.)

128 The most important relevant texts are to be found in LriBNiz Math. Schr. 111,

pp. 175, 180181, 199-200; compare also § 2.22.
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As an example of the occurrence of the infinitely large in these studies I quote
a characteristic formula:

[ndz=nz—dn [ z4+dn [22—d®n [3z etcl2

Appendix 2. The LEIBNIZIAN Calculus and Non-standard Analysis

7.0. In this Appendix I deal with the relation between the LEIBNIZIAN
infinitesimal calculus and non-standard analysis. Non-standard analysis is an
approach to analysis due to A. RoBINSON (1966). Its relevance to the LEIBNIZIAN
infinitesimal calculus is stressed by Rosinson himself and by others.

7.1. In non-standard analysis, certain concepts and formal tools of mathe-
matical logic are used to provide a rigorous theory of infinitely small and infinitely
large numbers. It is shown that the differential and integral calculus can be
developed by means of these infinitely small and infinitely large numbers. That
is, it is shown that it is possible to define the fundamental concepts of analysis
(continuity, differentiation, integration, efc.) in terms of infinitesimals rather
than in terms of limits.

Not only does non-standard analysis provide a new approach to the differen-
tial and integral calculus but also its methods yield interesting reformulations,
more elegant proofs and new results in, for instance, differential geometry, topo-
logy, calculus of variations, in the theories of functions of a complex variable, of
normed linear spaces, and of topological groups.

The infinitely small and infinitely large numbers are introduced in non-
standard analysis by a method of mathematical logic which proves the existence
of extensions of models of certain mathematical theories; these extensions are
the so-called ““non-standard” models of the theories. Applied to the field R of
real numbers, considered as a model of the theory of real numbers, the method
vields extensions R* of R, such that statements about real numbers, if re-inter-
preted according to the rules for the extension of theories, are valid for elements
of R*. It is found, in particular, that the extension can be performed in such a
way that R* becomes a totally ordered field, which is non-ARCHIMEDEAN and
which contains R as a proper subfield. This implies that R* contains elements 7,
unequal to zero, with the property that, for every real number 4 >0,

—a<<i<a.

These elements ¢ are called ¢nfinstesimals, or infinitely small numbers; their
reciprocals are called infinitely large numbers. An element a of R¥, which is
not infinitely large, has a unique standard part, defined as the real number g,
the difference of which from 4 is zero or an infinitesimal. Further, to every given
function f, R—R, is assigned a unique extension /¥, R*¥ - R*, which preserves
certain properties of f.

The field R* provides the framework for the development of the differential
and integral calculus by means of infinitely small and infinitely large numbers.

124 BERNOULLI to LEIBNIZ, 27-V1I-1695; Math. Schy. 111, p. 199.

6a Arch. Hist. Exact Sci., Vol. 14
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To give one example, the derivative of a real function f can be defined as
, Of f*(x +dx) —f*(x
R

in which d x is an arbitrary infinitesimal 12

7.2. Obviously, the use of infinitesimals in non-standard analysis is reminiscent
of the LEIBNIZIAN infinitesimal calculus, and non-standard analysis might thus
be considered by present-day mathematicians as a posthumous rehabilitation of
LeieNiz’s use of infinitely small quantities. This view is strongly advocated by
Rosinson. He says that his book shows “that LEIBNIZ’S ideas can be fully vindi-
cated and that they lead to a novel and fruitful approach to classical Analysis
and to many other branches of mathematics’ (1966, p. 2). The inconsistencies of
LEiBNiz’s infinitesimals are removed in non-standard analysis, and RoBiNsoN
states that “ LEIBN1Z’S theory of infinitely small and infinitely large numbers {...)
in spite of its inconsistencies (...) may be regarded as a genuine precursor of the
theory in the present book” (1966, p. 269). The creation of non-standard analysis
makes it necessary, according to RoBINSON, to supplement and redraw the
historical picture of the development of analysis (1966, pp. 260-261). This is so
because history is usually written in the light of later developments, and non-
standard analysis has to be considered as a fundamental change in these later
developments, because ‘“the theory of certain types of non-archimedean fields
can indeed make a positive contribution to classical Analysis™ (1966, p. 261).

7.3. It is indeed an interesting feature that, contrary to what was thought
for a very long time, the LEIBNIZIAN use of infinitesimals can be incorporated
{after some reinterpretations and readjustments) in a theory which is acceptable
by present-day standards of mathematical rigor. Thus it is understandable that
for mathematicians who believe that these present-day standards are final, non-
standard analysis answers positively the question whether, after all, LEiBNIZ
was right.

However, I do not think that being “right” in this sense is an important
aspect of the appraisal of mathematical theories of the past. The founders,
practitioners and critics of such theories judged with contemporary standards of
acceptability, and these standards usually differed considerably from those of
present-day mathematics.

Hence I disagree with RoBINSON’s opinion about the influence which the
occurrence of non-standard analysis should have on the historical picture of the
LEIBNIZIAN calculus, or of analysis in general. I do not think that the appraisal
of a mathematical theory, such as LeiBNiz’s calculus, should be influenced by
the fact that two and three quarter centuries later the theory is “vindicated” in
the sense that it is shown that the theory can be incorporated in a theory which
is acceptable by present-day mathematical standards.

If the LEIBNIZIAN calculus needs a rehabilitation because of too severe treat-
ment by historians in the past half century, as ROBINSON suggests (1966, p. 260),
I feel that the legitimate grounds for such a rehabilitation are to be found in the

126 The existence of non-standard models for the real numbers has been known
since the 1930’s (see RoBiNsoN 1966, 48 & 88 for precise references), but RosinsoN
was the first to use these non-standard models for the study of analysis in terms of
infinitesimals.
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LeiBN1zIAN theory itself. I believe that, in order to prove its value as a mathe-
matical theory, LEIBNI1Z'S calculus does not need an adjustment to twentieth
century requirements of acceptability through a reformulation in terms of non-
standard analysis.

7.4. Apart from this general argument on the relevance of non-standard
analysis for an appraisal of the LEIBNIZIAN infinitesimal calculus, I do not think
that the two theories are so closely similar that historical insight in the latter
can be much furthered by considering it as an early form of non-standard analysis.
To substantiate this view, I mention some aspects in which non-standard analysis
and LEeIBNIZIAN infinitesimal analysis differ essentially.

Non-standard analysis provides a proof that there exists (in the usual modern
mathematical sense of that term) a field R* with the properties indicated in
§ 7.1, that is, that there exists a field including the real numbers and also
infinitesimals. As RoBiNsoN indicates, LriBN1z and his followers were not able
to give such a proof. Moreover, the many arguments in the later seventeenth
and eighteenth century about the existence of infinitesimals, or about the ac-
ceptability of their use, did not in any way come close to the methods of the
existence proof in non-standard analysis. ROBINSON quotes LEIBNIZ'S argument
““that what succeeds for the finite numbers succeeds also for the infinite numbers
and vice versa” (1966, p.260; cf., p.262), but I cannot agree with him that this
is “remarkably close to our transfer of statements from R to R* and in the
opposite direction”, and in the context of this passage RopINsoN himself shows
that LeIBNIZ did not, and could not have provided such a proof. Thus the most
essential part of non-standard analysis, namely the proof of the existence of the
entities it deals with, was entirely absent in the LEIBNIZIAN infinitesimal analysis,
and this constitutes, in my view, so fundamental a difference between the theories
that the LEIBNIZIAN analysis cannot be called an early form, or a precursor, of
non-standard analysis.

7.5. Another aspect in which the two theories differ concerns the conception
of the set of infinitesimals. LEIBNIz and most of his followers (though not EULER;
see below) conceived the set of infinitesimals to be made up of infinitesimals of
successive positive integer “order of infinite smallness”. Thus if d ¥ was a first-
order differential, then all other first-order differentials stood in finite ratio to
d %, in general all n™ order differentials stood in finite ratio to 44", and the set of
infinitesimals consisted only of these classes of differentials.

However, in the set of infinitesimals in R* of non-standard analysis, there
is not a privileged subset of first-order differentials or infinitesimals. (In the
definition of the derivative mentioned in § 7.1 any infinitesimal can be chosen
for dx.) For a fixed infinitesimal % one might consider, as analogous to the
LeiBNI1ZIAN classes of infinitesimals of successive orders of infinite smallness,
classes I, of infinitesimals, i€ R*, of which °(¢/4") exists and is unequal to zero.
But it is immediately clear that the union of these I, does not form the whole set
of infinitesimals in R* (4% is not included in any I,).126

126 RosinsoN defines (1966, pp. 79/80) higher-order differentials %y for a function

y =f(x) with respect to an arbitrarily chosen positive infinitesimal dx; if we call
dx =h, then the d”y so defined are elements of I
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Hence the two theories differ in a most important aspect, namely in the
conception of the structure of the set of infinitesimals.

7.6. A third difference between the two theories lies in the fact that
LeieN1zIaN infinitesimal analysis deals with geometrical quantities, variables
and differentials, while non-standard analysis, as well as modern real analysis
in general, deals with real numbers, functions and (notwithstanding its ac-
ceptance of differentials) derivatives. The problems connected with higher-order
differentiation of variable quantities (see §§ 2.16-2.21) therefore do not occur in
non-standard analysis. RoBiNsON does define higher-order differentials (1966,
pp- 79/80), but these are differentials of a function f and they are defined by
means of a constant differential 4 x.

7.7. For the reasons expounded above, I do not feel that the creation of non-
standard analysis in itself requires that the history of analysis be re-appraised.
But non-standard analysis certainly could suggest interesting historical questions
about the early stages of analysis. As an example, I mention the question of the
structure of the set of infinitesimals. As I indicated in § 7.5, non-standard
analysis shows that if one requires the infinitesimals to be subject to the same
operations as the real numbers, then the structure which Le1BN1z thought the
set of infinitesimals to have is insufficient. Therefore one may ask whether this
problem did occur to mathematicians working with LEIBNIZ'S conception of
infinitesimals as divided into classes of successive orders of infinite smallness.

As I have indicated in § 2.15, I have found no trace of an awareness of this
problem in LEIBN1Z's writings. EULER, however, was aware of it, and his attitude
to the problem was that he let himself without hesitation be guided outside the
LeieNiziaN orders of infinite smallness by the rules of the operations. His attitude
is most clearly shown in his article 1778, and I shall end this appendix with a
summary of this piece.

7.8. In the first part of the article (§§1-22) EULER explored the different
possible “degrees” (“gradus’) of infinity or infinite smallness. Two infinitesimal
quantities are of the same degree if their ratio is finite. EULER considered an
infinitely large quantity » and remarked that x, 42, 43, efc. are of different degrees.
He showed that, because y = x1/19%0 jg also infinitely large, the degree of x is not
the lowest degree and that between the successive degrees of x, %2, %3, efc. there
are arbitrarily many intermediate degrees. The degrees of 2% a positive, he called
degrees of the first class.

Then EULER showed that there are degrees of infinity lower than all first
class degrees. For this he considered log x and he asserted that log x is infinitely
small with respect to #'/* for every . Hence the degree of log %, and of (log x)*
for positive a in general, is not of the first class, so that a wealth of new degrees
is introduced by the logarithm, even interspersed between those of the first class,
because x”log x is infinitely large with respect to %% but infinitely small with
respect to x*+®" for every #.

A consideration of exponentials then led in a similar way to a class of degrees
of infinity higher than all degrees of the first class.
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These considerations of different classes of degrees of infinity were shown to
apply, mulatis mutandis, to infinitely small quantities, ‘‘because these may be
considered as reciprocals of infinitely large quantities 1%

A remarkable aspect of EULER’s arguments is the use of L’HOPITAL’S rule in
the proofs of his assertions. Thus for instance the assertion that log x is infinitely

small with respect to " for every #, was proved as follows:
Call
xlin
log» =7
1
logx =P
and
1
21n =4,
so that
v="L.
q
Now for x = oo, we have p == 0 and ¢ =0. Hence L’HOPITAL’S rule is applicable and
ap
Y= d—q— .
Now
—adx
= g A
and
—dx
dg= nxm+1
so that
- nxlin
Y= (log )
But we had
yln
v=5—),
log»
or
x2in
e _*
U= Tlogm®
Hence

o 2 . x2n n xlin o xlin
V== ((10g x)z)/( (log x)z) )

(in fact EULER found v =# %%, which must be an error in calculation), so that v
is infinitely large, which proves the assertion.

The use of L'HOPITAL’s rule in these proofs is very revealing, because it shows
both EULER’S style and the difficulty caused by the absence of a clear definition
of infinitesimals. Indeed, application of the rule implies the concept of the in-
finitely large x as a function tending to infinity (and 1/x tending to zero). Thus it
is acceptable only in a theory which conceives infinitesimals as functions tending
to zero or infinity, so that the orders of infinity correspond to the orders of

127 ¥ .. quippe quae spectari possunt ut reciproca infinite magnorum.” (EULER
1778, § 14.)

6b Arch, Hist. Exact Sci., Vol.14
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approaching zero or infinity. However, nowhere did EULER indicate that he
conceived the infinitesimals in this way; he took x as an actual infinitely large
quantity, and he applied L’HGPITAL’S rule purely as a formal rule.

In the second part of the article EULER considered functions like y =¢x* and
y =cx*(log (1/x))™, for infinitely small values of x. He found, by formally ap-

plying differentiation and integration rules, that % and [y dx are infinitely

small and infinitely large, respectively, with respect to y. Applying the rules for
discarding infinitesimals, he was able to compute the integral in some cases where
this could not be done directly if x is supposed finite. He interpreted his results
as assertions about the area under the relevant curve infinitely near the origin.

Acknowledgements. This work is dedicated to my wife GeEziNa, in thankfulness for
her encouragement and actual help, but even more for her insistence that there are
other, more important, sides to life than scholarly research.

Much of the research for the present study was done in the period November 1967
to August 1971, during which I was employed by the Netherlands Organization for
the Advancement of Pure Research (Z.W.0.). I wish to thank this organization for
the generous way in which it has enabled me to pursue my studies.

The study constitutes my doctoral thesis (University of Utrecht, September 1973).
To my promotorves, Professor Dr. H. FREUDENTHAL (Utrecht) and Dr. J. R. RaveTz
(Leeds) I am especially indebted for their encouragement throughout the period of
research, for the penetrating criticisms on previous drafts of the manuscript and for
stimulating discussions on the subject of my study (and on many other topics).

At various stages of my work I have benefitted from the advice of mathematicians,
historians of mathematics and others; I want to express here my gratitude to Dr.
D. vax Daven (Utrecht), Mr. L. S. FiLius (Culemborg), Dr. I. GRATTAN-GUINNESS
(Barnet), the late Mr. M. HENRY (Leeds), the late Professor Dr. J. E. HoFMANN
(Ichenhausen), Mrs. Dr. E. A. M. HorNix (Utrecht), Professor Dr. A.F. Monna
(Utrecht), Professor Dr. A. Rosinson (New Haven), Professor Dr. C. J. Scrisa
(Berlin) and Professor Dr. C. TRUESDELL (Baltimore).

I am grateful also to Mrs. H. Mogss (Leeds) and Mrs. TH. BREUGHEL (Utrecht) for
their valuable help in typing large parts of the manuscript.

Bibliography

References in the main text to sources listed in this bibliography are given by a
combination of the name of the author or editor and the year of publication or an
abbreviation of the title (thus for instance HormannN 1966, LuiBN1Z Elementa, etc.).
The year of publication or the abbreviation used are indicated at the beginning of
each item of the bibliography.

Abbreviations used for seventeenth and eighteenth century sources:

Acta Evud. Acta Evuditorum, Leipzig, from 1682.

Mém. Trév. Mémoires pouy sevviv a I'histoive des sciences et des arts ..., Trévoux
and Paris, since 1701. (Known as Journal de Trévoux or Mémoires de Trévoux.)

Misc. Bevol. Miscellanea Bevolinensa ad Incvementum Scienbiarum, ex scviptis
Societatis Regiae Scientiavum exhibitis, I, Berlin, 1710.

AvrostorL, T. M.
1969. Selected papers on the calculus (ed. T. M. AposTtoL and others). (Math. Assoc.
of America) 1969.

BERNOULLI, JAKOB I
1690. “* Analysis problematis antehac propositi, de inventione lineae descensus a
corpore gravi percurrendae uniformiter, sic ut temporibus aequalibus aequales
altitudines emetiatur: et alterius cujusdam problematis propositio.”” Acta Erud.
May 1690, pp- 217-219. Opera, pp. 421-426.



Differentials and Derivatives in Leibniz’s Calculus 87

1693. ““Curvae diacausticae, earum relatio ad evolutas, aliaque nova his affinia.
Item: natura osculorum uberius explicata. Celeritates navium definitae. Regulae
pro resistentiis, quas figurae in fluido motae patiuntur etc.”” Acta Eyud. June 1693,
PP. 244-256. Opera, pp. 549-573. )
1694. “* Curvatura laminae elasticac. Ejus identitas cum curvatura Lintei a pondere
inclusi fluidi expansi. Radii circulorum osculantium in terminis simplicissimis ex-
hibiti, una cum mnovis quibusdam theorematis huc pertinentibus.” Acta Evud.,
June 1694, pp. 262-276. Opera, pp. 576-600.
Opera. Opera (2 vols.), Geneva, 1744.

BERNOULLI, JOHANN I
1718. **Remarque sur ce qu’on a donné jusqu’ici de solutions des problemes sur
les isoperimetres.” Mémoives de I' Académie Rovyale des Sciences de Paris, (1718),
PP- 100~138. Opera 11, pp. 235-269.
Integral Caloulus. Lectiones wmathematicae de wmethodo integralium, aliisque; con-
seviptae in usum Ill. Mavchionis Hopitalii, cum auctor Parisiis agevet anwnis 1691
et 1692, in. Opeya 111, pp. 385-558.
Opera. Opera ommia, tam antea spavsim edita, quam hactenus inedita. (4 vols., ed.
G. CraMER), Lausanne and Geneva, 1742. Reprint Hildesheim, 1968.
Briefwechsel. Der Briefwechsel von Johann Bevnoulli: (Vol. I, ed. O. Seiess), Basel,
1955.

BougaiNviLiE, L. A. DE
17564. Traité du calcul intégral, pour sevviv de suite & I’ Analyse des Infiniment Petits
de M. le Marquis de I Hopital, Paris, 1754.

Boursaxki, N.
1960. Eléments d’histoive des mathématiques, Paris, 1960.

Boveg, C. B.
1941. *‘Cavalieri, limits and discarded infinitesimals”. Scripta Math. 8 (1941),
PP 79-91.
1949. The history of the calculus and its conceptual development, New York, 1949.
(Edition cited: New York, 1959.) (Formerly published under the title The concepts
of the caloulus, New York, 1939.)
1956. History of Analytic Geometry, New York, 1956.

CaucHy, A. L.
1823. Résumé des lecons donmnées a U'Ecole Royale Polytechwnique suv le calcul in-
finitésimal, Paris, 1823. Euvves (II) IV, pp. 5-261.
Euvres. BEuvres complétes (12 + 14 vols.), Paris, 1882-1938.

CuiLp, J. M.
1920. The early mathematical manuscripts of Leibniz, translated from the Latin fexts,
published by Carl Immanuel Gevhavdt with cvitical and histovical notes by J. M.
Child, London, 1920.

CoHEN, H.
1883. Das Prinzip dev Infinitesimal-Methode und seine Geschichte. Ein Kapitel zur
Grundlegung dev Evkenntniskyitik, Berlin, 1883.

D’ArLeEmBERT, J. L.
Difféventiel. Article ““ Différentiel”, in vol. IV (1754) of the Encyclopédie ou diction-
naive raisonné des sciences, des arts et des métiers, Paris, 1751-1772.

D=escARTES, R.
1637. Geometrie (second appendix of the Discours de la Methode), Leiden, 1637.

EnxgsTROM, C.
1908. “Uber die erste Aufnahme der Leibnizschen Differentialrechnung”’, Biblio-
theca Mathematica, (11I), IX (1908/1909), pp. 309-320.

EurEr, L.
1748. Imtroductio in Awnalysin Infinitorum (2 vols.), Lausanne, 1748. Opera (1)
VIII-IX (1922, 1945).
1756, Institutiones Caleuli Diffeventialis cum eius wusu in Awnalysi finitorum ac
doctrina sevierum, St. Petersburg, 1755. Opera (I) X (1913).



88 H. J. M. Bos

1768. Institutionum calculi integvalis volumen primum (... secundum ..., ... tey-
tiwum ...) (3 vols.), St. Peterburg, 1768-1770. Opera (I) XI-XIII (1913-1914).
1778. “De infinities infinitis gradibus tam infinite magnorum quam infinite
parvorum.” Acta Academiae Scientiarum Petroplitanae (II) 1 (1778) 1780. pp.
102-118; Opera (I} XV, pp. 298-313.
Opera. Opera Ommia (3 ser., many vols.,, ed. Societas Scientiarum Naturalium
Helvetica), Leipzig, efc., 1911~
GERHARDT, C. I.
1855. Die Geschichte dev hoheven Analysis, evste Ableilung, Die Entdeckung der
hoheven Analysis, Halle, 1855. (Cf. Lr1BNiz Elemenia.)
1875. ' Zum zweihundertjdhrigen Jubilium der Entdeckung des Algorithmus der
hoheren Analysis durch Leibniz.”” Mown.-ber. Kon. Preuss. Akad. Wiss. Berlin 1875
(28 Oct). pp. 588-608.
Gouve
1701. **Nouvelle méthode pour déterminer aisément les rayons de la développée
dans toute sorte de courbe algébraique” (summary of an article by Jaxos BERr-
NOULLI in Acta Erud. Nov. 1700), Mém. Tvév. May-June 1701, pp. 422-430.
HADAMARD, J.
1935. ““La notion de différentielle dans l'enseignement.” Math. Gazette, 19 (1935),
pp. 341-342. (orig. 1923).
HermANN, ]J.
1700. Respomnsio ad Clarissimi Viri Bernh Nieuwentiji Considevationes secundas
civca calculi differentialis principia editas, Basel, 1700.
Hormanx, J. E.
1949. Die Entwicklungsgeschichte dev Leibnizschen Mathematik wihvend des Aufent-
haltes in Pavis (1672-1676), Miinchen, 1949.
1956. Ueber Jakob Bernoullis Beitrige zuv Infinitesimal mathematik, Geneva, 1956.
1966. “Vom o&ffentlichen Bekanntwerden der Leibnizschen Infinitesimalmathe-
matik.” Osterveich. Akad. Wiss. Math.-Natur. Kil. S.-B., (II) 175 (1966), pp.
208-254.
HorMmanN, J. E. & WIELEITNER, H.
1931. “Die Differenzenrechnung bei Leibniz (mit Zusdtzen von D. Mahnke).”
S.-B. Preuss. Akad. Wiss. Phys. Math. Kl. 26 (Berlin 1931), pp. 562-600.
v'Horpitar, G. F. Marquis de
1693. “Methode facile pour déterminer les points des caustiques par réfraction
avec une maniére nouvelle de trouver les développées.” Mewmoives de mathématique
et de physique, tivez des vegistres de 1' Académie Royale des Sciences, August 1693,
Pp. 129-133. (Publ. 1694.)
1696. Analyse des infiniment petits, pour Uintelligence des lignes courbes, Paris, 1696.
Huvaens, C.
GEuvres. Euvres complétes de Chistiaan Huygens, publides par la Société Hollandaise
des Sciences (22 vols.), The Hague, 1888-1950.
Itarp, J.
1953. ¢ Quelques remarques historiques sur I'axiomatique du concept de grandeur.”
Revue Sci. 91 (1953), pp. 3—14.
Lemsniz, G. W.
1684a. ““Nova methodus pro maximis et minimis, itemque tangentibus, quae nec
fractas, nec irrationales quantitates moratur, et singulare pro illis calculi genus.”
Acta Erud., Oct. 1684, pp. 467-473. Math. Schy. V, pp. 220-226.
1684b. ““Additio (...) de dimensionibus curvilineorum.” Acta Erud., Dec. 1684,
Pp. 585-587. Math. Schv. V, pp. 126-127.
1686. “De geometria recondita et analysi indivisibilium atque infinitorum (...)
Acta Evud., June 1686, pp. 292-300. Math. Schr. V, pp. 226-233.
1689a. ‘“Schediasma de resistentia medii, et motu projectorum in medio re-
sistente.” Acta Evud., Jan., 1689, pp. 38—47. Math. Schy. VI, pp. 135-143.
1689b. “Tentamen de motuum coelestium causis.”” Acta Erud., Febr., 1689,
Pp. 82-96. Math. Schr. VI, pp. 144—-161.

i



Differentials and Derivatives in Leibniz’'s Calculus 89

1691. “* Additio ad schediasma de medii resistentia (...).”” Acta Evud., April, 1691,
pp- 177-178. Math. Schr. VI, pp. 143-144.

1692a. ““ De linea ex lineis infinitis ordinatim ductis inter se concurrentibus formata,
easque omnes tangente, ac de novo in ea re analysis infinitorum usu.” 4cta Evud.,
April, 1692, pp. 168-171. Math. Schr. V, pp. 266-269.

1692b. ““ Generalia de natura linearum, anguloque contactus et osculi, provolu-
tionibus, aliisque cognatis, et eorum usibus nonnulis.”” Acta Eyud., Sept., 1692,
PP. 440-446. Math. Schy. V, pp. 279-285.

1694a. “Nova calculi differentialis applicatio et usus, ad multiplicem linearum
constructionem, ex data tangentium conditione.” Acta Erud., July, 1694, pp.
311-316. Math. Scky. V, pp. 301-306.

1694b. ““Constructio propria problematis de curva isochrona paracentrica. Ubi et
generaliora quaedam de natura et calculo differentiali osculorum, (...)."”" Acta Evud.,
Aug., 1694, pp. 364"8-375b. Math. Schr. V, pp. 309-318.

1695a. ““Responsio ad nonnullas difficultates a dn. Bernardo Nieuwentijt circa
methodum differentialem seu infinitesimalem motas.”” Acta Evud., July, 1695,
pp- 310-316. Math. Schr. V, pp. 320-326.

1695b. “* Addenda ad (...) schediasma proximo mensi julio (...) insertum.” Acta
Erud., Aug., 1695, pp. 369-372. Math. Schr. V, pp. 327-328.

1701. “Mémoire de Mr. Leibnitz touchant son sentiment sur le calcul différentiel.”
Mém. Trév., Nov., 1701, pp. 270-272. Math. Schr. V, p. 350; also IV, pp. 95-96.
1702a. “* Extrait d'une lettre de M. Leibnitz & M. Varignon, contenant 'explication
de ce qu’on a rapporté de luy, dans les Mémoires de Trevoux des mois de Novembre
et Décembre derniers.” Journal des Savans, 20 March, 1702, pp. 183-186. Math.
Schy. IV, pp. 91-95.

1702b. “ Specimen novum analyseos quadraturarum pro scientia infiniti, circa
summas et quadraturas.”” Acta Erud., May, 1702, pp. 210-219. Math. Schr. V,
PPp. 350-361.

1710a. ““Monitum de characteribus algebraicis.” Misc. Berol., 1710, pp. 155-160.
Math. Schr. VII, pp. 218-223.

1710b. “ Symbolismus memorabilis calculi algebraici et infinitesimalis, in compara-
tione potentiarum et differentiarum; et de lege homogeneorum transcendentali.”
Misc. Berol., 1710, pp. 160-165. Math. Schr. V, pp. 377-382.

Analysis Tetragownistica. mss ‘‘ Analysis Tetragonistica ex centrobaricis.” (25, 26,
29 Oct. and 1 Nov. 1675) in LEIBNIZ Briefwechsel, pp. 147-167.

Quad. Avith. Circ. russ ““De quadratura arithmetica circuli, ellipseos et hyperbolae
cuius corollarium est Trigonometria sine tabulis.” (1676) (Sections relevant to the
foundations of the infinitesimal calculus are published in Scrorrz 1932; a Pracfatio
and a Compendium of the mss are published in LE1BNIZ Math. Schy. V, pp. 93-113.)
Hist. et Ovig. 1846. Histovia et Ovigo calouli diffeventialis a G. G. Leibnilzio conscripta
(ed. C. I. GEREARDT), Hannover, 1846.

Elementa. mss “Elementa calculi novi pro differentiis et summis, tangentibus et
quadraturis, raximis et minimis, dimensionibus linearum, superficierum, soli-
dorum, aliisque communem calculum transcendentibus.” in GERBARDT 1845,
Beilage VI, pp. 149-155. (Also in LE1BNIZ Hist. et Orig. 1846, pp. 32~38.)
Scientiarum gradus. mss ‘‘ Scientiarum diversos gradus nostra imbecillitas facit,...”’;
GERHARDT 1875, pp. 595-599.

Cum Prodiisset ... mss ““Cum prodiisset atque increbuisset Analysis mea infini-
tesimalis ...” in LE1BNiZ Hist. ef Ovig. 1846, pp. 39-50.

Math. Schr. Mathematische Schriften (7 vols., ed. C. I. GERHARDT), Berlin and Halle,
1849-1863. Reprint Hildesheim, 1961-1962.

Phil. Schr. Philosophische Schviften (7 vols., ed. C. 1. GErRuaRDT), Berlin, 1875—
1890. Reprint Hildesheim, 1965.

Briefwechsel. Der Briefwechsel von Gottfried Wilhelm Leibuniz mit Mathematikern (ed.
C. I. GEREARDT, vol. I only), Berlin, 1899.

MEeNGER, K.
1955. Calculus, a modevn approach, Boston, efc., 1955.



90 + H. J.M.Bos

NIEUWENTIJT, B.
1694. Comsidevationes civca analyseos ad quantitates infinité pavvas applicatae
principia, et calculi diffeventialis usum in vesolvendis problematibus geometvicis,
Amsterdam, 1694. .
1696. Considerationes secundae civea calculi diffeventialis principia; et vesponsio ad
virum nobilissimum G. G. Letbnitium, Amsterdam, 1696.

RaviEr, E.
1937. Bibliographie des ceuvves de Leibniz, Paris, 1937. Reprint Hildesheim, 1966.

RosINsoN, A.
1966. Non-standard Analysis, Amsterdam, 1966.

Scuortz, L.
1932. Die exakte Grundlegung dev Infinitesimalvechnung bei Leibniz. (Diss. Marburg,
1932; partially published Marburg 1934.)

SPEISER, A.
1945. *“ Ubersicht iiber den Band 10 der ersten Serie, Institutiones Calculi Differen-
tialis.” in EULER, Opera (I) IX (1945), pp. XXXII-L.

TAYLOR, B.
1715. Methodus Incvementorum divecia et imvevsa, London, 1715.

‘WaLLNER, C. R.
1903. *“Die Wandlungen des Indivisibelnbegriffs von Cavalieri bis Wallis.”” Biblio-
theca Mathematica, (3) 4 (1903), pp. 28-47.

‘WEISSENBORN, H.
1856. Die Prinzipien dev hoheven Analysis in ihver Entwicklung von Leibniz bis auf
Lagrange, Halle, 1856.

Waitesing, D. T.
1961. *‘Patterns of mathematical thought in the later seventeenth century.”
Avch. Hist. Ex. Sci., 1 (1960/62), pp. 179-388.

Mathematical Institute
The University of Utrecht
Budapestlaan 6
Utrecht
The Netherlands

(Received March 20, 1973)



