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1. Introduction 

l.O. The subject of this study is the differential, the fundamental concept of 
the inf ini tes imal  calculus, as it  was unders tood and  used by  LEIBNIZ and  those 

mathemat ic ians  who, in the late seventeenth  cen tury  and  the eighteenth, developed 
the differential  and  integral  calculus along the lines on which LEIBNIZ had  
in t roduced it. More precisely, this s tudy  is concerned with the influence of certain 
conceptual  and technical  aspects of first-order and higher-order differentials on 
the development  of the inf ini tesimal  calculus from LEIBNIZ' t ime un t i l  EULER'S. 

This par t  of the his tory of the calculus belongs to tile wider his tory of 
analysis. This makes it  necessary to discuss in  this first chapter  certain key 
processes in the history of analysis, which form the context  of the development  
of the concepts of differential, higher-order differential and  der ivat ive;  and  m y  
s tudy  of this development  m a y  provide some new insights into these processes. 

The first chapter  will also serve as an indicat ion of the relat ion which the 
subjects  t rea ted  in the subsequent  chapters have to general quest ions in tile 
his tory of analysis. 

l *  
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1.1. There are three processes in the history of analysis in the seventeenth and 
eighteenth centuries which are of crucial importance for the history of the concept 
of the differential. The first is the introduction, in the 1680's and 1690's, of the 
LEIBNIZlAN infinitesimal analysis within the body of the CARTESIAN analysis, 
which at that  t ime may  be characterised as the s tudy of curves by  means of 
algebraic techniques. 1 

The second process, occurring roughly in the first half of the eighteenth 
century, was the separation of analysis from geometry. From being a tool for the 
study of curves, analysis developed into a separate branch of mathematics,  whose 
subject mat ter  was no longer the relations between geometrical quantities 
connected with a curve, but relations between quantities in general as expressed 
by formulas involving letters and numbers. 

This change of interest from the curve to the formula induced a change in 
fundamental concepts of analysis. While in the geometrical phase the fundamental 
concept in the analytical s tudy of curves was the variable geometrical quantity, 
the separation of analysis from geometry made possible the emergence of the 
concept of [unction o] one variable, which eventually replaced the variable geo- 
metrical quanti ty as the fundamental concept of analysis. 

In this process of separation from geometry the differential underwent a 
corresponding change; it was stripped of its geometric connotations and came 
to be treated as a mere symbol, like the other symbols occurring in formulas. 
However, throughout the first half of the eighteenth century the differential 
kept its position as the fundamental concept of the LEIBNIZlA~: infinitesimal 
calculus. 

The third process in which we are interested is the replacement of the 
differential by  the derivative as fundamental concept of infinitesimal analysis. 
Usually this process is connected with the works of LAGRANGE and CAUCHY, but I 
shall argue that  an important  aspect of it is to be found in the works of EULER. 

1.2. From consideration of the chronological order of the three processes 
mentioned above, it is clear that  the early LEIBNIZlAN infinitesimal calculus, as 
it was practised by  LEIBNIZ and by  his followers in the 1680's and 1690's, was 
part  of an analysis primarily concerned with curves or with the relations between 
variable geometrical quantities as embodied in the curve. Thus the LEIBNIZIAN 
calculus ca:mot be understood without reference to its geometric interpretation. 
I devote the second chapter of the present s tudy to a detailed description of the 
concepts of this calculus, and I indicate there how far these concepts were 
influenced by  their geometric context and how they consequently were changed 
when analysis was separated from geometry. Thus it will become clear how far the 
early LEIBNIZlA:: calculus differed from the mathematical  theory and practice 
which we now indicate by  the term "calculus". 

1 Compare the opening sentence of the Pvd/ace of L'H6PITAL 1696: "L'Analyse 
qu'on explique darts cet Ouvrage, suppose la commune, mais elle en est fort diff@rente. 
L'Analyse ordinaire ne traitte clue des grandeurs finies: celle-ci penetre jusques dans 
l'infini m~me." The "common" or "ordinary" analysis is the CARTESIAN analysis; 
compare the "communis calculus" in the title of LEIBNIZ' Elen2enta. 
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Moreover, in Chapter 3 I discuss examples of the influence of the concepts 
discussed in Chapter 2 both on the choice of problems and on the technique of 
the calculus in its early stage. 

1.3. As a preliminary to these chapters, I insert here some general remarks 
on the geometric character of the seventeenth century analysis. This analysis 
was a corpus of analytical tools (algebraic equations and operations, later the 
differential and the rules of the caJculus) for the study of geometric objects, 
namely curved lines. The first textbook of the infinitesimal calculus had the 
most significant title Analyse des in/iniment petits pour l'intelligence des lignes 
courbes. 2 

The fundamental object of inquiry, therefore, was the curve. A curve embodies 
relations between several variable geometrical quantities ~ defined with respect 
to a variable point on the curve. Such variable geometrical quantities--or vari- 

j / j j ~  

o 
Or- 

x: abscissa, y: ordinate, s: arclength, r: radius, a: polar arc, ~: subtangent, v: tangent, 
v: normal, Q =OPR: area between curve and X-axis, xy: circumscribed rectangle 

ables as I shall call them for short--are for instance (see the figure): ordinate, 
abscissa, arclength, radius, polar arc, subtangent, normal, tangent, areas between 
curve and axes, circumscribed rectangle, solids of revolution with respect to the 
axes, distance to tile X-axis (or the Y-axis) of the centre of gravity of tile arc, 
or of the centres of gravity of the areas between curve and axes. 

The relations between these variables were expressed, if they could be, by 
means of equations. This was not always possible; until just before the end of tile 
seventeenth century there were no formulas for transcendental relations, and 
these were expressed by means of certain circumlocutions in prose, which basically 
expressed a method of geometric construction for the curve representing the 
transcendental relation in question. 

2 L'H6PITAL 1696. 
These variable geometrical quantities are, in terms of MENGER'S classification of 

the concepts designated by the term "variable" (el. 1955, pp. xi-xii), of the type 
which he calls "consistent classes of quantities" or "fluents"--with one important 
restriction, however. I~]EN'G]ER'S "fluents" presuppose the choice of a unit. They are 
pairs, consisting of a "thing" and a corresponding number, the number indicating 
the value or the measure of the thing with respect to a unit (1955, p. 167). However, 
the variable geometric quantities of seventeenth century mathematics (and also of 
physics in that period) were not, or not necessarily, related to a unit and expressed as 
numbers; compare § 1.5. 
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1.4. CARTESIAN analysis introduced the use of equations to represent and 
analyse the relations between the variables connected with the curve; usually the 
relation between ordinate and abscissa was taken as fundamental. 

I t  is important  to notice the absence of the concept of ]unction in this context 
of algebraic relations between variables. Neither the equations nor the variables 
are functions in the sense of a mapping x-+y (x), that  is, a unidirectional relation 
between an "independent" variable x and a "dependent" variable y. A relation 
between x and y was considered as one entity, not a combination of two mutually 
inverse mappings x-+y (x) and y-+x(y). Thus the curve was not seen as a graph 
of a function x--->y (x), but as a figure embodying the relation between x and y. 

Variables are not functions, because the concept of variable does not imply 
dependence on another, specially indicated " independent"  variable. 

I shall use the absence of the concept of function to explain several aspects 
of tile early differential calculus, such as, for instance, the lack of the concept of 
derivative. A derivative [function] presupposes the prior concept of function and 
hence could not play a fundamental role in the early calculus. 

1.5. The variables of geometric analysis referred to geometric quantities, 
which were not real numbers 4. For geometric quantity, or quanti ty in general, 
as conceived by  mathematicians up to the seventeenth century, lacks a multipli- 
cative structure and a unit element. Quantities were conceived as having a 
dimension. Geometric quantities could have the dimension of a line (e.g. ordinate, 
arc length, subtangent), of an area (e.g. the area between curve and axis) or of a 
solid (e.g. the solid of revolution). Outside geometry there are the quantities of 
different dimensions such as velocity, corporeity (or mass), force, etc. Further- 
more, the algebraic manipulation, especially with geometric quantities, led to 
dimensions higher than that  of the solid. Although these quantities of higher 
dimension, like for instance powers like a 4 and b 5 of line segments a and b were 
felt to be not directly interpretable in space; they were accepted in analysis and 
theft dimension was determined by  the number of factors with the dimension 
of a line. 

Only quantities of the same dimension could be added. In certain cases the 
multiplication of quantities was interpretable, as for instance in the case of two 
line segments, the product of which would be all area. But multiplication was 
never a closed operation; that  is, the product of two quantities of equal dimension 
could not have the same dimension. Hence within the set of quantities of the same 
dimension there was no multiplicative structure and no unit element. A choice 
of a privileged element in the set of quantities of the same dimension (as a base 
for measuring, for instance, or as fundamental constant for certain curves or 
actually as unit element) was therefore always arbitrary;  the structure of quant i ty  
itself did not offer such a privileged element. 

1.6. These possibilities of multiplication and addition made possible tile 
algebraic t reatment  of quantities, although with certain restrictions. The special 
nature of multiplication induced a law of dimensional homogeneity for the 
equations occurring in this algebraic t reatment :  all the terms of an equation had 
to be of the same dimension. 

4 On the concept of quantity, compare ITARD 1953. 
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I t  is well known tha t  as early as t637 DESCARTES had indicated how the 
requirements of dimensional homogenei ty  could be c i rcumvented and how a 
multiplication of line segments - -as  the p ro to type  of quan t i ty  in gene ra l~cou ld  
be defined so as to render the product  also a line segment 5. DESCARTES chose an 
arbi t rary  line segment as unit  segment t and defined the product  of two line 
segments a and b as the line segment c satisfying the proport ion 

l : a = b : c .  

In  part icular  he interpreted powers this way :  if x is a line segment, x z is the line 
segment such tha t  

1 : x ~ - x : x  2. 

This solution of the problem of dimension was useful in the theory  of equations 
in one unknown. These could now be interpreted as relations between line seg- 
ments,  and the roots would also be line segments, by  which both  irrational 
solutions of equations and dimensions higher than  the solid became interpretable. 

But  in the analytical s tudy  of curves, dimensional homogenei ty  of equations 
continued to be a major  requirement of neatness until  well into the eighteenth 
century  6. This is not  too surprising~ because in tha t  par t  of mathemat ics  
dispensing with dimensional homogenei ty  had no direct advantages,  apar t  from 
rendering higher powers interpretable. The introduct ion of a unit  requires an 
arbi t rary  choice which infringes on the generali ty of the t reatment ,  and also 
dimensional homogenei ty  assures natural  geometric interpretat ion of every step 
in the algebraic analysis and thus it provides a useful check on complicated 
calculations. 

In  a geometric analysis which keeps to dimensional homogenei ty  it is not  
necessary to introduce a unit  length, and therefore the geometric quantit ies such 
as length, area, etc. are not  scaled; they are not  real numbers,  representing a ratio 

5 DESCARTES 1637, opening sections. 
6 As an illustration of the persistence of the dimensional interpretation of formulas I 

quote JOHANN BERNOULLI'S definition of a homogeneous differential equation: a 
differential equation in which "nnllae occurrunt quantitates constantes, qnae 
dimensionnm numerum adimplent." (BERNOULLI to LEIBNIZ, 19-V-t 694; Math. Schr. 
I I I ,  pp. 138-139.)The definition presupposes homogeneity; absence of constant 
quantities as factors to adjust the homogeneity means that  all terms are, apart from 
numerical factors, products of an equal number of variable factors. Even in the 1720's 
BERNOULLI objected to a mathematician who overlooked dimensional homogeneity: 
"Pardon,  Monsieur, c'est 15~ encore une fa~on de parler contre l'usage des G6om6tres; 
car vous savez que chez eux multiplier un rectangle par une ligne, c'est /aire un 
parallel@ipede, et non pas un autre rectangle . . ." (Opera IV, p. 164.) 

One of the reasons wily the requirement of dimensional homogeneity was even- 
tually left behind was the emergence of transcendental relations, especially the 
exponential functions, Indeed, a x does not have a well defined dimension. Compare 
L'H6PITAL'S reaction to BERNOULLI'S treatment of exponential functions : " . . .  car que 
peut signifier m '~ si m et n marquent des lignes ? une ligne elev6e k la puissance 
design6e par une antre liglle?" (L'H6PITAL tO JOHANN BERNOULLI, t6-V-t693; 
BERNOULLI Brie/weehsel, p. 172.) 

BOYER, in 1966 (especially, 84-85, pp, 140, 162), emphasizes tha t  dimensional 
homogeneity was abandoned only almost a century after DESCARTES, but he seems 
to consider this as an unexplained delay in the development towards modern analytic 
geometry. 



8 H.J .M.  Bos 

to a standard unit. Real numbers appeared in analysis only as integer or frac- 
tional factors in the terms of equations, or as ratios of two quantities of the 
same dimension. 

1.7. In Chapter 2 I shall explore the implications of tile fact that  the early 
LEIBNIZlAI'~ infinitesimal calculus was a geometric calculus. Here I shall conclude 
the general remarks on its geometric nature by  indicating how the geometric 
background of the early LEIBNIZIAN calculus explains why a concept of derivative 
was absent in that  calculus. First of all, the concept of derivative presupposes the 
concept of/unction (because the derivative d y/d x is the derivative of a function 
y(x)), and since the latter was virtually absent in the analysis of geometric 
problems (see 1.4 above), so the former could not be there either. In the con- 
figuration of the curve, the tangent and the connected variables (see the figure) 

" f  O n  [ ' 

the derivative d y/d x, occurs only as the ratio of the ordinate y to the snbtangent ~. 
This ratio has no obvious central position in the configuration and its choice as 
fundamental  concept would therefore be very arbitrary. Indeed it is not clear 
why y/~ rather than x/2 should be chosen. Put  in other words, the choice of y/~ 
implies the arbitrary choice of considering y as a function of x, rather than x 
as a function of y, or both x and y as functions of some other variable. 

But  there is still another reason why the derivative could not occur naturally 
in the geometric context, and this reason is connected with the dimensional 
interpretation of geometric quantities. If y/~ is considered as the derivative of 
tile variable y, then derivation would correlate a ratio (the derivative) to a 
variable that  has the dimension of length. This implies that  the operation cannot 
be repeated in a natural  way because it is not clear what sort of quanti ty it would 
correlate with a ratio. The only way to introduce repeated derivatives would be 
to interpret the ratio y]ci in some way as a line segment, and then to plot a new 
curve along the X-axis with ordinate y]~. The ratio of ordinate and subtangent 
of this new curve would then be the derivative of the derivative. But  the ratio 
y[~ is a real number, and therefore its interpretation as a line segment involves 
the choice of a unit length. Since the unit is not given at the outset, this implies 
an arbitrary choice; in a purely geometric context, higher-order derivatives are 
not uniquely defined. 

Thus the derivative could not occur in the geometric phase of the infinitesimal 
calculus, and this may  help us to understand why the early infinitesimal calculus 
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was built upon the concept of the differential with all its concomitant problems 
concerning the infinitely small. Also in differentiation, interpreted as correlating 
a differential to a variable, the repetition of the operation involves an arbitrary 
choice, namely the choice of the progression of the variables (c[. § 2.t6 sqq.). 
This aspect of the concept of the differential forms one of the main themes of my 
study; it is especially important  in Chapter 5. 

1.8. Two separate causes for the absence of the derivative in the early period 
of the calculus have been mentioned above: the absence of the concept of function 
and the requirements of dimensional interpretation. Both features were changed 
as analysis was separated from geometry. In tile first half of the eighteenth 
century, a shift of interest occurred from the curve and the geometric quantities 
themselves to the formulas which expressed the relations among these quantities. 
The analytical expressions involving numbers and letters, rather than the geo- 
metric objects for which they stood, became the focus of interest. The concern 
about the dimensional homogeneity of formulas faded. Homogeneity in this 
sense survived only as a technical term for a special property of formulas. This 
meant that  tacitly it was supposed that  a unit quanti ty was chosen, for otherwise 
homogeneity would be an essential requirement for all formulas. Hence the letters 
in the formulas represented scaled quantities, so that  we may say that  the practi- 
tioners of analysis in this phase worked with real numbers based on a number-line 
model; but there was little interest in what the letters in formulas signified. 

1.9. This change of interest towards the formula made possible the emergence 
of the concept of ]unction o~ one variable. The term " f u n c t i o n "  has its origin in 
the geometrical phase of analysis. LEIBNIZ introduced it into mathematics and 
used it for variable geometric quantities such as coordinates, tangents, radii of 
curvature, etc. These were the " func t iones"  of a curve; they were not considered 
as dependent on one specified independent variable s . Later JOHANN BERNOULLI 
wrote about the powers of a variable "or  any function in general" of a variable 9. 
LEIBNIZ agreed 1° to this use of the term, which thus lost its initial geometric 
connotations and became a concept connected with formulas rather than with 
figures. 

Indeed it is only natural  that  as analysis was separated from geometry, tile 
basic components of formulas should become fundamental concepts. The func- 
tion, as defined by JOHANN BERNOULLI and EULER, was such a basic component 
part  of formulas, namely an expression involving constant quantities (letters and 
numbers) and only one variable quant i ty  (letter). 

s As a mathematical term, the word function occurs for the first tinle in print in 
LEIBNIZ 1692a, but LEIBNIZ had used it in much earlier manuscripts. In 1694a he 
wrote: "Functionem voco portionem rectae, quae ductis ope sola puncti fixi et puncti 
curvae cum curvedine sua daft rectis abscinditur." (Math. Schr. V, p. 306.) As 
examples, he gave abscissa, ordinate, tangent, perpendicular, subtangent, sub- 
perpendicular, parts of the axes cut off by the tangent and the perpendicular, radius 
of curvature. 

9 ,,... (curva) cujus applicatae FP ad datam potestatem elevatae seu generaliter 
earum quaecunclue functiones . . ." (Appendix to a letter of JOHANN BERNOULLI to 
LEIBNIZ, 5-VII-1698; LEIBNIZ Math. Schr. III ,  pp. 506-507.) 

10 ,,Placet etiam, quod appellatione Functionum uteris more meo." (LEIBNtZ to 
JOHANN BERNOULLI, 19-Vti-1698; LEIBNIZ Math. Schr. III ,  p. 525.) 



10 H. J, M. Bos  

Thus we have  BERNOULLI'S def in i t ion:  

Here we call /unction of a variable quanti ty,  a quant i ty  composed in whatever 
way of tha t  variable quant i ty  and of constants n. 

and  EULER'S : 

A function of a variable quant i ty  is an analyt ical  expression composed in whatever 
way of tha t  variable quant i ty  and of numbers or constant quanti t ies 12. 

EULER, in fact ,  moved  s l ight ly  away  from ana ly t i ca l  r ep resen tab i l i ty ;  he al lowed 
impl ic i t  re la t ions  as funct ions  13 and in his 1755 he gave a ve ry  general  formula t ion  
of the  concept  of func t ion :  

If quantit ies depend on others in such a way tha t  if the la t ter  are changed, the 
former undergo a change as well, then the former are called functions of the latter. 
This terminology is a very general one and covers all ways in which one quant i ty  
can be determined by others 14. 

Also, EULER ex tended  the  concept  of funct ion to expressions involv ing  more 
than  one var iable  15. The emergence of funct ions  of more  than  one var iable  marks  
another  decisive move away  from the  geometr ic  pa rad igm of the  curve wi th  
connected  geometr ic  quant i t ies ,  name ly  a move  from problems  (as abou t  curves) 
involv ing  only  one degree of freedom, to those with,  in principle,  any  number  
of degrees of freedom. 

1.10. Thus the separa t ion  of analysis  from geomet ry  in t roduced  the  concept  
of funct ion and removed  the  d imensional  i n t e rp re t a t ion  of the  objects  of s t u d y ;  
the  w a y  was open for the  in t roduc t ion  of the  der ivat ive .  Sti l l  the  different ia l  
kep t  i ts  pos i t ion as fundamen ta l  concept  of the  inf in i tes imal  calculus unt i l  long 
af ter  analysis  had  ceased to  be geometric .  And  even when, th rough  the works  
of LAGRANGE, BOLZANO and  CAUCHY 16, the  der iva t ive  had  replaced the  different ia l  
as f undamen ta l  concept  of the  calculus, the  differentiM wi ths tood  all a t t e m p t s  

11 " O n  appelle ici Fonction d'une grandeur variable, une quantit6 compos6e de 
quelque mani6re que ce soft de cette grandeur variable et de constantes." (JOHANN 
BERNOULLI 1718; Opera II,  p. 24t.) 

x2 "Func t io  quant i ta t is  variabilis est expressio analyt ica quomodocunque com- 
posita ex illa quant i ta te  variabili  et numeris seu quant i ta t ibus  constantibus." (EULER 
1748, § 4.) 

X3 " Quirt et iam functiones algebraicae saepe numero ne quidem explicite exhiberi 
possunt, cuiusmodi functio ipsius z et Z, si definiatur per  huinsmodi aequationem 

Z ~ = aZZZ a - -bzaZ  2 + c z a Z  -- t .  

Quanquam enim haec aequatio resolvi nequit,  tamen constat  Z aequari expressioni 
cuipiam ex variabil i  z et constantibus compositae ac propterea fore Z functionem 
quandam ipsius z." (EULnR 17d8, § 7.) 

la " Quae antem quant i ta tes  hoc modo ab Miis pendent, u t  his mutat is  et iam ipsae 
mutationes subeant, eae harum functiones appellari solent; quae denominatio latissime 
pa ter  atque omnes modos, quibus una quanti tas  per  alias determinari  potest,  in se 
eomplecti tur ."  (EULER 1755; Opera (I) X, p. 4.) 

1~ As for instance ill EULER 1755, Chapter VII .  
16 Compare BOYER 1949 (pp. 251, 268, 275). Unlike LAGRANGE, BOLZANO and 

CAUCHY saw that ,  for a sufficiently rigorous formulation of the calculus, the derivative 
itself had to be defined ill terms of the limit concept. 
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to  e l imina te  i t  comple te ly  from analysis .  I t  st i l l  appears  in mathemat ics ,  e i ther  
as the  unr igorous ly  in t roduced ,  bu t  d idac t i ca l ly  helpful,  inf in i tes imal  in intro-  
duct ions  to the  calculus 17, or redef ined as e lement  of the  dua l  of a t angen t  space, 
or, again,  b u t  now r igorously  in t roduced,  as inf ini tes imal  in non - s t a nda rd  
analys is  18. 

The  quest ion of why  the  de r iva t ive  replaced  the  dif ferent ia l  as the  fundamen ta l  
concept  of the  inf in i tes imal  calculus, needs fur ther  scrut iny.  This  rep lacement  
is usua l ly  though t  to have  been caused b y  an embar rassment ,  increas ingly  felt  
t h roughou t  the  e ighteenth  century ,  over  the  logical  inconsistencies of the  inf in i te ly  
small ,  and  hence the  i nadequacy  of the  di f ferent ia l  as fundamen ta l  concept  of 
the  calculus. The reasons w h y  such a concern m a y  br ing  the  der iva t ive  to the  
fore are ev ident  even in cer ta in  s tudies  of LEIm,TIZ himself  on the  foundat ions  
of the  calculus. These studies,  which were not  publ i shed  and  therefore  r emained  
wi thou t  influence upon the deve lopment  of the  inf ini tes imal  calculus, are  dis- 
cussed in Chap te r  4. 

However ,  there  were more  reasons for the  emergence of the  der ivat ive .  One 
of t hem is the  s t u d y  of funct ions of more t han  one var iable .  The  usual  concept ions  
and  techniques of different ials  b reak  down when appl ied  to such functions,  and  
the  ensuing difficulties have  to be solved b y  the  sys t emat i c  use of der iva t ives  and 
pa r t i a l  der iva t ives  19. 

Ano the r  reason for the  emergence of the  de r iva t ive  is connected  wi th  the  
h igher-order  differentials.  I shall  discuss this  reason in Chapter  5 ; suffice i t  here 
to r e m a r k  tha t ,  unl ike the  h a r d y  f i rs t -order  differentials ,  the  h igher-order  
different ia ls  were ban ished  qui te  early.  I t  is reasonable  to  suppose  t h a t  the  
technica l  and  conceptua l  difficulties associa ted  wi th  h igher-order  different ials  

1T APOSTOL has collected in his chapter  on the differential (1969, pp. 167-t89) six 
articles from the diner. Math. Monthly, published between 1942 and 1952, on how 
to introduce and use the differential in teaching practice. In  the last article the editors 
of the Monthly come to the conclusion tha t  " the re  is no commonly accepted definition 
of the differential which fits all uses to which the notat ion is applied." (p. 186.) 

ls ROBINSON 1966; compare Appendix 2. 
19 The usual concept of the differential was connected with the concept of the 

variable as ranging over an ordered sequence of values; the differential was the 
infinitesimal difference between two successive values of the variable (see § 2.4 and 
§ 2.6). Variables which are functions of two independent variables cannot be conceived 
as ranging over an ordered sequence in this sense, and hence the concept of the 
differential as the infinitesimal difference between successive values of the variable 
breaks down. The differential dV of a function V (x, y) is therefore directly introduced 
in terms of its relation with the ordinary differentials of x and y :  

d V = P d x  +Qdy 

(c]. EUL~R 1755, § 213 sqq). Here P and Q are the part ia l  derivatives, which EULER 
(ibid., § 23t) indicated by  brackets:  

P = ~  dx /" Q= ~ -  " 

For  such expressions the usual technique for dealing with dx  and dy (for insta ce 

the cancelling of differentials in a quotient) cannot be applied; the dx's in d x -  and 

inPdxarenotthesame;(~ff f fx)dx4=dV. 
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were so severe that  these differentials had to be eliminated. I shall argue in the 
fifth Chapter that  this was indeed the case, and that  the attempts,  especially 
those of ]~ULER, to eliminate higher-order differentials formed one of the main 
causes of the emergence of the derivative. 

2. The LEIBNIZIAN Infinitesimal Calculus 

2.0. This chapter provides an outline of the theory, the techniques and the 
underlying concepts of the infinitesimal calculus practised by LEmNIZ and his 
early followers such as JAKOB I and JOHANN I BERNOULLI and L'H~)PITAL. 

The presentation of such an outline presents methodological problems con- 
nected with the idea of underlying concepts, for the concepts are not always 
made explicit in the original writings (as for instance in the case of the 
progression of the variables, discussed below). Still, even if not formulated explicitly, 
particular concepts may  strongly influence and direct the development of a 
branch of science, and the historian cannot understand such a development 
unless he makes these concepts explicit for himself. An outline of the LEIBNIZIAN 
calculus presents therefore a twofold task: first, to write as if it were a modern 
textbook version of the LEIBNIZIAN calculus as close as possible to what LEIBNIZ 
and his followers thought and practised; secondly, to indicate how far the elements 
of such a unified and explicit theory are abstracted from the actual practice in 
which they appeared. 

In the following I make a typographical distinction between these two aspects 
of the outline. The paragraphs in italics contain abstracts of the underlying 
theory; each of these paragraphs is followed by a discussion of the texts on which 
the abstract  is based and an assessment of the deviation between m y  presentation 
of the theory and actual practice. 

Two further preliminary remarks are necessary. The outline of the LEIBNIZIAN 
calculus does not cover the genesis of this calculus in the t 670's, which is described 
most fully in HOFMANN 1949. Rather, it describes the calculus after a certain 
consolidation, in which inconsistencies, induced by influences of the calculus of 
finite number sequences 2° and by the theory of indivisibles, were removed. 
Appendix I contains some remarks on the relations between the LEIBNIZlAN 
calculus and indivisible techniques; the outline covers the consolidated LEIB- 
NIZlAN calculus from about the year ~680. 

The outline accepts infinitely small and infinitely large quantities as genuine 
mathematical  entities. To do otherwise would depart too far from the LEIBNIZlAN 
calculus. By accepting these quantities, the outline accepts all the inconsistencies 
which during the i 8 th century were increasingly felt as embarrassment and which 
were removed in the t9 th century by eliminating altogether the infinitesimal 
quantities from the calculus. These inconsistencies and the resulting deficiency 
of the foundations of the calculus have at tracted more attention from historians 
of mathematics than the question of how, on such insecure foundations, the 

20 The calculus of number sequences had as effect that LEIBNIZ'S earliest studies 
on the calculus (discussed by HOFMANN in his 1949) were less strictly geometrical 
than his later work. For instance, in these earliest studies formulas often occur which 
violate the requirement of dimensional homogeneity. 
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calculus could develop in so prolific a manne r  as it did from LEIBNIZ'S t ime to 
CAUCHY'S. I shall therefore accept the inconsistencies in the out l ine and  discuss 

them later  only as far as they caused actual  technical  difficulties or induced 

certain directions of development.  
A pre l iminary explanat ion  of why the calculus could develop on the insecure 

foundat ion  of the acceptance of inf ini te ly small  and  inf ini te ly large quant i t ies  is 
provided by  the recently developed non-standard analysis 2~, which shows tha t  it 
is possible to remove the inconsistencies wi thout  removing the infinitesimals 
themselves. I discuss how non-standard analysis relates to the LEIBNIZlAN calculus 

in Appendix  2. 

2.1. The LEIBNIZlAN calculus has its origins in the theory o/number sequences 
and the di//erence sequences and sun, sequences o/ such sequences. LEIBI~IZ explored 
this theory in the 1670's ~2. He applied it to the study o/ curves by considering 
sequences o/ordinates, abscissas etc., and supposing the diHerences between the terms 
o/ these sequences infinitely small (that is, negligible with respect to/inite quantities, 
but unequal to zero). There/ore, the /undamental concepts o/ the LEIBNIZlAN 
infinitesimal calculus can best be understood as extrapolations to the actually infinite 
o/concepts o/the calculus o/finite sequences. I use the term "extrapolation" here to 
preclude any idea o/taking a limit. The diHerences o/the terms o~ the sequences 
were not considered each to approach zero 23. They were supposed fixed, but in- 
/initely small. 

Compare LEIBNIZ'S assert ion: 

The consideration of differences and sums in number sequences had given me my 
first insight, when I realized that  differences correspond to tangents and sums to 
quadratures 24. 

Also : 

t 1 1 1 t f "  dx 
For instance ~- + ~- + ~ ~ + ~ -  + -35- etc. or J z x -- 1 ' with x equal to 2, 3, 4, 

etc. is a sequence which taken entirely to infinity, can be summed, and d x is 
here 1. For in the case of numbers the differences are assignable. (...) But if x 
or y were not discrete terms, but  continual terms, that  is, not  numbers whose 
differences are assignable intervals, but  straight line abscissas increasing con- 

21 ROBINSON 1966. 
22 See HOFMANN & WIELEITNER 1931 and HOFMANN 1949, pp. 6--13. 
23 Thus the following assertion of BOURBAKI (1960, p. 208) is misleading: 

" (LEIBNIZ) se t ient  tr~s pros du calcul des diff6rences, dont son calcul diff6rentiel se 
d~duit par un passage h ta limite que bien entendu il serait fort en peine de justifier 
rigoureusement." For the same reason the following remark by HOFMANN Oil LEIBNIZ'S 
invention (1575) of the calculus must be modified: "Schliesslich erkannte er (i.e. 
L E I B N I Z )  als gemeinsame Grundlage der zahlreichen und bis dahin nur  umst~indlich 
durch individuellen Ans~itze gewonnenen Einzelergebnisse, den Grenzprozess." (1966, 
p. 2t0.) 

24 "Mihi consideratio Differentiarum et Summarum in seriebus Numerorum 
qrimam lucem affuderat, cure animadverterem differentias tangelltibus, et summas 
puadraturis respondere." (LEIBN'IZ to WALLIS, 28-V-1697; Math. Schr. IV, p. 25.) 
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t inually or by elements, that  .is, by inassignable intervals, so that  the sequence of 
terms constitutes the figure . . . .  25 

The following quota t ion  reveals LelBNIZ'S opinion about  inf ini te ly small 

quant i t ies :  

And such an increment (namely the addition o/ an incomparably smaller line to a 
/inite line) cannot be exhibited by any construction. For I agree with Euclid 
Book V Definition 5 that  only those homogeneous quantities are comparable, of 
which the one can become larger than the other if multiplied by a number, that  
is, a finite number. I assert that  entities, whose difference is not such a quantity,  
are equal. (...) This is precisely what is meant  by saying that  the difference is 
smaller than any given quant i ty  26. 

For  LEIBNIZ'S further  a rguments  about  the na tu re  of the inf ini te ly small  see 

Chapter  4. 

2.2. The importance o/theories o/ /inite sequences/or the problems about curves, 
to which the LEIBNIZlAX calculus was primarily  applied, lies in the /act  that it is 
o/ten use/ul to approximate the curve by a polygon. The ordinates and abscissas 
corresponding to the vertices o/ the po lygon /orm finite sequences 27. I n  accord with 
the conception o/ the differential calculus as being an extrapolation o/ the  calculus o/ 
/inite sequences to the actually in/inite, the practitioners o~ the LEIBNIZlA~¢ calculus 
emphasized that the key to the calculus was to conceive the curve as an in[initangular 
polygon. 

The concept of the curve as an inf in i tangular  polygon played an impor t an t  
role in the new infini tesimal  methods developed in the 17 th century.  LEIBNIZ 

stressed its importance for his calculus for instance as follows: 

I feel that  this method and others in use up till now can all be deduced from a 
general principle which I use in measuring curvilinear figures, that a curvilinear 
]igure must be considered to be the same as a polygon with infinitely many sides. 2s 

t t 1 t 1 1" dx  
25 "Exempli  gratia ~- + %- + t 5  + 24- + 3-5 etc. seu , l  xx - t ,  posito X esse 

2 vel 3 vel 4 etc. est series quae tota in infinitum sumta summari potest, et dx quidem 
hoc loco est t. In  numericis enim differentiae sunt assignabiles. (...) Quodsi , v e l y  
essent non termini discreti, sed continui, id est non humeri intervallo assignabili 
differentes, sed lineae rectae abscissae, continue sive elementariter hoe est per in- 
assignabilia illtervalla crescentes, ira ut  series terminorum figuram constituat;  . . ." 
(LEIBNIZ 1702b; Math. Schr. V, pp. 356-357.) 

2~ "~NTec ulla constructione tale augmentum exhiberi potest. Scilicet eas tan tum 
homogeneas quantitates comparabiles esse, cum Euclide lib. 5 de/in. 5 censeo, quarum 
una numero, sed finito multiplicata, alteram superare potest. Et  quae tall quanti tate  
non differunt, aequalia esse statuo (., .). Et  hoc ipsnm est, quod dicitur differentiam 
esse data quavis minorem." (LEIBNIZ 169aa; kgath. Schr. V, p. 322.} 

2v Such sequences occur especially in ARCI~IMEI)EAN style studies of geometrical 
problems, ill which the method to prove the results was the so-called method of 
exhaustion, of which WHITESmE (1961, pp. 33t--348) gives an authorative account. 

2s ,, Sentio autem e t h a n e  [methodum] et alias hactenus adhibitas omnes deduci 
posse ex generali quodam meo dimentiendorum curvilineorum principio, quod/igura 
eurvilinea censenda sit aequipollere Polygono in/initorum laterum." (LEIBNIZ 168gb; 
Math. Scl~r. V, p. 126.) The method refered to is an infinitesimal method which 
J. CHR. SrURM had exposed in an article in the Acta Erud. of March t684. 
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2.3. I t  will prove rewarding to study in detail how theories o/sequences, as applied 
to curves and approximating polygons, can be extrapolated to the actually inlinite. 
In  the case o/the approximation o i a curve by a polygon o /a  finite number o/sides 
(see the figure), the polygon induces sequences ol ordinates {y~}, of abscissas {x~}, o[ 
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arc-lengths {s,}, o] quadratures 29 {Q~}, and in general o/all  variables which may be 
considered in the problem at hand. These sequences consist o /a  finite number o] finite 
terms. ( I /  one branch o/the curve extends to infinity, the number ol terms may be 
infinite, but this does not affect my argument.) 

The operators o[ [orming sequences ol differences or sums o / a  given sequence, 
operators which I indicate by A and X, respectively, yield new /inite sequences o/ 
finite terms: 

 {xD 
with 

and 
~x~ x ~ x i +  1 - x i ,  

X(y,}- ' - {1 : j=1  yj} ,  
etc. 

In  his ear ly  s tudies  on difference schemes and  sequences in ge ne ra P  °, LEIBNIZ 
deal t  wi th  the  re la t ions  ind ica ted  here and  in the  following paragraphs .  

2.4. In  the extrapolation ]rom the finite array to the actually infinite the polygon 
becomes a polygon whose sides are infinitely small and whose angles are infinitely 
many. This infinitangutar polygon is considered to coincide with the curve, its 
iniinitely small sides, i[ prolonged iorm tangent lines to the curve. 

29 The term <'quadrature" is here used for the area between curve, ordinate and 
axis, not  for the process of calculating (or squaring) this area. Both meanings of the 
term occur in seventeenth century mathemat ical  texts.  

a0 See HOFMANN & WIELEITNER 1931 and HOFMANN 1949, pp. 6--13. 
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The sequences of ordinates abscissas etc. now consist of infinitely many terms. 
Successive terms of these sequences have infinitely small differences," anachronistically 
speaking, one might say that the terms lie dense in the range of the corresponding 
variable. In  the practice of the LEIBNIZlAN calculus, the variable is conceived as 
taking only the values o/the terms of the sequence. Thus the conception of a variable 
and the conception of a sequence of infinitely close values o[ that variable, come to 
coincide. 

The operators ~ and X of the finite array act on sequences. Thus, in the extra- 
polation to the actually infinite, A and 2 are transformed into operators d and f 
(see the next section), which act on the sequences o/infinitely close values of variables. 
But as these sequences are indiscernible from the variables themselves, d and f are 
operators which act on variables. 

The conception of the variable as ranging over an ordered sequence of 
values--LEIBNIZ uses the terms "series" and "progressio "- - i s  clearly expressed 
in the quotation given above in § 2.1. Another example is LEIBNIZ'S discussion 
of the rule d ( x y ) = x d y + y d x ;  it shows that also the area x y  of the circum- 
scribed rectangle was considered as a variable ranging over a sequence of values: 

d (xy) is the same as the difference between two adjacent xy, of which let one be 
xy, the other (x +dx) (y +dy).  Then d(xy) = (x +dx) (y +dy) -- xy  or xdy + 
ydx  + dxdy,  and this will be equal to xdy  + y d x  if the quantity dxdy  is omitted, 
which is infinitely small with respect to the remaining quantities, because dx 
and dy are supposed infinitely small (namely if the term of the sequence represents 
lines, increasing or decreasing continually by minima). 31 

See also the quotations given below in § 2.8 and § 2.9. 

LEIBNIZ used the adjective "cont inuus" for a variable ranging over an 
infinite sequence of values. He also used terminology of growth and motion, 
speaking for instance about "increasing by minima" (" per minima crescentes"), 
"continually increasing by inassignables" ("continue crescentes per inassign- 
abilia"), "momentaneously increasing" ("momentanee crescentes"), in which 
"min ima"  and "inassignables" stand for the differentials as differences between 
successive terms of the sequence. If these differences are all equal, LEIBNIZ some- 
times used the term "uniformly increasing" (" aequabiliter crescere"). 

2.5. Considering now how the finite diHerence sequences and sum sequences are 
aHected by the extrapolation to the actually infinite, we see that a dif[erenee sequence 
is transformed into a sequence of an infinite number of infinitely small terms," these 
terms are called the differentials. A finite sum sequence is trans]ormed into a sequence 
of an infinite number of infinitely large terms," these terms are called the sums. 

31 " d x y  idem est quod differentia duorunl xy  sibi propinquorum quorum unum 
esto xy, alterum x + d x  in y + d y  (that is: ( x + d x ) ( y + d y ) )  fief: dxy  aequ. 
x + d x i n y + d y ~ x y s e u  + x d y + y d x + d x d y  et omissa quantitate dxdy, quae 
infinite parva est respectu reliquorum, posito dx et dy esse infinite parvas (cure 
scilicet per seriei terminum lineae continue per minima crescentes vel decrescentes 
intelliguntur) prodibit xdy  +ydx . "  (LEIBNIZ Elementa, p. 154.) 
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Differentials and sums lorm sequences and are therelore variables o I the same 
sort as the sequences o/the ordinary variables discussed in the preceding paragraph. 
The dillerentiaI is an inlinitely small variable," the sum is an inlinitely large 
variable. Thus the operator A, by the extrapolation, translorms into an operator 
differentiation, indicated by the symbol d, which assigns an inlinitely small variable 
to a linite variable, lor instance d y to y. Similarly, the operator X translorms, by 
the extrapolation, into the operator summation,  indicated by the symbol f ,  which 
assigns an inlinitely large variable to a linite variable,/or instance f y to y. 

The Lat in  terms are dillerentia or dillerentiale, and summa; the latter was 
little used and was soon replaced by  the term integrale; for the operator  f ac- 
cordingly the terms summatio and integratio occur; see § 2. t0 and § 2.1t. The 
operator  d is called dillerentiatio. 

I t  is impor tan t  to stress the concept of the differential as a variable, and of 
differentiation as an operator assigning variables to variables. On the concept  
of variable, see § t.4. As I explained there, the concept of variable differs from 
the concept of function in tha t  it is not  necessary to specify on which " inde-  
penden t "  variable a given variable depends. Differentials and sums have different 
values according to where in the geometrical figure they  occur;  al though infinitely 
small, or infinitely large respectively, they  have thus the same characteristics 
which make ordinate, abscissa etc. variables; they  are therefore r ightly considered 
as variables. The fact tha t  a differential is sometimes supposed constant ,  is not  
at  variance with its status as variable. Constant  variables occur in m a n y  situations, 
as for instance the constant  ordinate of a horizontal straight line, the constant  
radius of curvature  of the circle and the constant  subtangent  of the logarithmic 
C u r v e .  

The common concern of historians with the difficulties connected with the 
infinite smallness of differentials 32 has distracted at tent ion from the fact tha t  in 
the practice of the LEIBNIZlAN calculus differentials as single entities hardly  ever 
occur. The differentials are ranged in sequences along the axes, the curve and 
the domains of the other  variables; they  are variables 3~, themselves depending on 
tile other variables involved in the problem, and this dependence is studied in 
terms of differential equations. 

Moreover, to introduce higher-order differentials (see §2.8), first-order 
differentials have to be conceived as variables ranging over an ordered sequence; 
if only a single dx is considered, ddx  does not  make sense. The following quota-  
tion from LEIBNI2; illustrates this:  

Further, ddx is the element of the element or the dilleresce ol the dillerences, for 
the quanti ty d x itself is not always constant, but usually increases or decreases 
continually. 34 
32 The attitude is evident, for instance, in BoYER 1949. 
aa The only reference I have found in works on the history of mathematics to the 

fact that  differentials are variables and that  the way in which they vary can be 
chosen arbitrarily by choosing the progression of the variables, is in COHEN 1883 
(especially, p. 75). However, as COHEN'S prime objective is to ascertain the reality of 
differentials in the sense of an Erkenntniskritik, the historical sections of his book are 
of little further interest for present-day historians of mathematics. 

3~ "Porro ddx est elementum elementi seu diHerentia dil/erentiarum, ham ipsa 
quantitas dx non semper constans est, sed plerumque rursus (continue) crescit nut 
decrescit." (LEIBNIZ 1710a; Math. Schr. VII, p. 322-323.) 

2 Arch. Hist. Exact  Sci., Vol, 14 
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2.6. The infinitely small differential and the infinitely large summa are con- 
sidered actually as a difference or a sum; the differential d y o /a  finite variable y is 
conceived as the difference between yi and y, i / y i  is the ordinate next to y in the 
infinite sequence o/ordinates. The sum f y is conceived as the sum o/all the terms 
in the sequence o/the ordinates, /rom the ordinate at the origin (or another fixed 
ordinate) to the ordinate y. 

Compare LEIBNIZ'S explanat ion:  

Here dx means the element, that  is, the (instantaneous) increment or decrement, 
of the (continually) increasing quantity x. I t  is also called difference, namely the 
difference between two proximate x's which differ by an element (or by an in- 
assignable), the one originating from the other, as the other increases or decreases 
(momentaneously).8~ 

On the concept of sums, see the quota t ion in § 2.9. On the relatively scarce 
occurrence of infinitely large sums in the calculus, see Appendix t. As one 
example of its occurrence I quote some lines of JOHANN BERNOULLI, in which he 
evaluates sums as quotients with infinitely small denominators :  

Now because (if dz is supposed constant) fz, f~z, faz, fdz, etc., are equal to 
ZZ Z 8 Z 4 Z 5 

t . 2 " d z '  l ' 2 " 3 " d z  2 '  1 . 2 . 3 . 4 . d z  a , t . 2 . 3 . 4 . 5 . d z a ,  etc . . . .  a s  

2.7. In the finite array, the ratios A x:A y: A s are approximately equal to the 
ratios a: y: ~ o/subtangent, ordinate and tangent (see the figure). In the extrapolation 

t T / / / ( ~  Ax 

j ~  Y ..... 

to the actually infinite the triangle becomes the differential triangle with sides d x, d y 
and ds. The hypotenuse o[ the differential triangle is a side o[ the infinitangular 
polygon, and there[ore, i[ prolonged, it/orms a tangent line to the curve. Hence 

dx:dy:ds----~:y:T; 

this relation is ]undamental [or the application o/ differentials to problems about 
tangents. 

3~ ,, Hic d x significat elementum, id est incrementum vel decrementum (momen- 
taneum) ipsius quantitatis x (continue) crescentis. Vocatur et differentia, nempe inter 
duns proximas x elementariter (seu inassignabiliter) differentes, dum una fit ex altera 
(momentanee) crescente vel decrescente." (L~BNIZ 1710a; Math. Schr. vii ,  pp. 
222-223.) 

a~ "quoniam nunc (posita dz constante) fz, f2z, fsz, f4z etc. aequantur ipsis 
ZZ ~3 Z4 Z~ 

etc . . . .  " (JohANn I . 2 . d z  ' t - 2 - 3 . d z  2 ' 1 . 2 . 3 - 4 - d %  a ' t . 2 . 3 - 4 " 5 " d z  a 
BERNOULLI tO La~IBNIZ, 27-VII-1695; Math. Schr. I I I ,  p. 199.) 
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LEIBNIZ became aware of the impor tance  of the differential tr iangle while 

s tudying  work of PASCAL ~7. In  his first publ icat ion on the calculus (1684a), 
LEIBNIZ used the relat ion d x :dy  = a:y to introduce the differential as a finite 
line. I discuss this definition, which is ra ther  anomalous in LEIBNIZ'S work on 
the calculus, in Chapter  4, where I also invest igate  the reasons why he adopted 

it  for his first publicat ion.  

Compare further  LEIBNIZ'S explanat ion:  

... to find a tangent is to draw a straight line which joins two points of the curve 
which have an infinitely small distance, that  is, the prolonged side of the in- 
finitangular polygon which for us is the same as the curve, as 

2.8. The operators A and X of the finite array can be applied repeatedly: 

with 

and 

2 
&i Y ~- &i+IV. -- &iY =Y~+2 - -  2y~+l -7P Yi, 

xx  = (xf lxL1 yk} 

etc. Accordingly, d and f can be applied repeatedly, which application yields the 
differentio-differentials, or higher-order differentials, and the higher-order sums. In 
the case of the variable y, /or instance, d applied to the variable d y yields the second- 
order differential ddy, a variable infinitely small with respect to dy. ddy  can be 
conceived as the difference between d y I and d y, if d y I is the differential adjacent to 
d y in the infinite sequence o/differentials. Further application o/d yields the higher- 
order differentials dddy  (or d3y), d4y, dSy, etc. f ,  applied to the variable f y, 
yields f f y, a variable infinitely large with respect to f y, which can be conceived 
as the sum o/ the terms in the sequence f y. Repeated application yields f f l y  
(or f3y ) ,  f4y, etc. 

Compare LEIB~IZ'S explanat ion,  already quoted in par t  in § 2.5: 

Further, ddx is the element of the element, or the difference o/ the differences, for 
the quant i ty  dx itself is not always constant, but  usually increases or decreases 
continually. And in the same way one may proceed to dddx or dax and so forth, a° 

On the repeated sums see the quota t ion  in  § 2.6. 

2.9. The operators A and X in the finite array are, in a sense, reciprocal: 

=(y,÷l); =(y ,+ l -  yl}. 
These properties are reflected in a reciprocity of d and f :  

d f y = y ;  f d y = y .  
37 See HOFMANN 1949, pp. 28-29. 
as ,,... tangentem invenire esse reetam ducere, quae duo curvae puncta distantiam 

infinite parvam habentia jungat, seu latus productum polygoni infinitanguli, quod 
nobis curvae aequivalet." (LEIBI~IZ 1684a; Math. Schr. V, p. 223.) 

39 "Porto ddx est elementum elementi seu differentia differentiarurn, ham ipsa 
quantitas d x non semper constans est, sed plerumque rursus (continue) crescit aut 
decrescit. E t  similiter procedi potest ad dddx seu d3x, et ira porto; . . ."  (LEIBNIZ 
1710a; Math. Schr. VII, pp. 222-223.) 
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In the latter [ormula a constant should be added, but it is Usually le/t out," f d y = y 
is easily visuatised as stating that the sum o/the di/]erentials in a segment equals 
the length o/ the segment, d f y = y  lacks an obvious geometrical interpretation, 
because f y is a sequence o/in/initely large terms. However, i/ instead o/the ]inite 
variable y an in/initely small variable, say yd x, is considered, then d f yd x = yd x 
can be understood as stating that the diHerences between the terms o] the sequence o/ 
areas f y d x are y d x. 

C o m p a r e  LEIBNIZ'S asse r t ion :  

Foundation o/ the calculus: Differences and sums are reciprocal  to each other,  
t ha t  is, the  sum of the  differences of a sequence is the  t e rm of the  sequences, and 
the  difference of the sums of a sequence is also the  t e rm of the  sequence. The  
former  I denote  thus :  fdx  ~ , ;  the  la t te r  thus :  dfx  = x. 4° 

Elsewhere ,  LEIBNIZ e x p l a i n e d :  

Reciprocal  to the  E l emen t  or  differential  is the  sum, because if a quan t i t y  
decreases (continually) t i l l  i t  vanishes,  t hen  t h a t  q u a n t i t y  is the  sum of all the  
successive differences, so t h a t  dfydx is the  same as ydx.  B u t  f y d x  means the  
area which is the  aggregate  of all rectangles,  any of which has an (assignable) 
length  y and (elementary) wid th  d x corresponding in the  sequence to y. There  are 
also sums o/sums and so forth, for instance fdx fydx ,  which is the  solid bui l t  up 
of all areas such as f y d x  mult ip l ied  by  the  e lements  dz which correspond in the  
sequence. 41 

2.10. The reciprocity o/the operators d and f suggests the possibility o/intro- 
ducing f as the inverse o[d per de/initionem. In [act, such a definition underlies the 
calculus as developed in the early studies o/the Bernoullis. 

In the terminology introduced by the Bernoullis, i n t eg r a t i on ,  symbol f ,  is 
the operator which assigns to an in/initely small variable its in tegra l ,  de[ined by the 
property that the diJ[erential o/the integral equals the original quantity. So de/ined, 
the integral, like the sum, is a variable. 

The contrast between i n t e g r a t i o n  and s u m m a t i o n  may be illustrated by the case 
o] the quadrature 

fyd  =Q. (t) 

In terms o[ s u m m a t i o n ,  (1) asserts that the sum o/the i~]initely small rectangles yd x 
equals Q. In terms o/integration (1) asserts that Q is a quantity whose di[[erential 
is ydx.  

40 "Fundamentum calculi: Differentiae et  summae  sibi reciprocae sunt,  hoc est 
summa  di f ferent iarum seriei est seriei terminus,  et  different ia  summarurn  seriei est 
ipse seriei terminus,  quorum illud ira enunt io :  fdx  aequ. x; hoc i ta :  dfx aequ. x ."  
(LxlBNIZ Elementa, p. 1 53.) 

41 " C o n t r a r i u m  ipsius E lemen t i  vel  different iae est summa, quoniam quan t i t a t e  
(continue) decrescente donec evanescat ,  quant i tas  ipsa semper  est s u m m a  o m n i u m  
di f ferent iarum sequent ium,  u t  adeo dfydx idem sit  quod ydx. At  f y d x  significat  
a ream quae est aggrega tum ex omnibus  rectangulis ,  quorum cujusl ibet  longi tudo 
(assignabilis) est y aliqua, et la t i tudo (elementaris) est d x ipsi y ordinat i ln  respondens. 
Dan tu r  et  summae summarum, et ira porto,  u t  si sit  fdzfydx,  signif icatur  sol idum 
quod eonflatur  ex omnibus  areis, qualis est  fydx,  ord ina t im ductis  in respondens 
cuique e l emen tum dz." (LEIBNIZ 1710a; Math. Schr. VII ,  pp. 222-223.) 
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JAKOB and  JOHANN BERNOULLI acquainted  themselves with the LEIBNIZIAN 

calculus between 1687 and  1690% Unt i l  t690 the only articles by  LEI~NIZ on 

which they  could base their  studies were 1684a, which concerns differentiat ion 
only, and  1686. The la t ter  article ment ioned  summat ion ,  used the symbol  f ,  
and  indicated the reciprocity of sums and  differentials;  the sums ment ioned  are 
sums of differentials. I t  is not  surprising, therefore, tha t  the BERNOULLIS devel- 
oped a concept of in tegrat ion as the reciprocal of differentiation. For  example, 
in JOttANN BERNOULLI'S Integral Calculus, the integrals are in t roduced as follows: 

We have seen above how the Di]/erentials of quantities are to be found; we shall 
now show how, conversely, the Integrals of differentials can be found, that  is 
those quantities of which they are the differentials. ~a 

LEIBNIZ, who saw use of the term " i n t e g r a l "  for the first t ime in JAKOB 
BERNOULLI 1690, t r ied later to persuade JOHANN BERNOULLI to adopt  the termi-  

nology of " s u m s "  : 

I leave it to your deliberation if it would not be better in the future, for the sake 
of uniformity and harmony, not only between ourselves but  in the whole field 
of study, to adopt -the terminology of summation instead of your integrals. Then 
for instance f y d x  would signify the sum of all y multiplied by the corresponding 
dx, or the sum of all such rectangles. I ask this primarily because in that  way the 
geometrical summations, or quadratures, correspond best with the arithmetical 
sums or sums of sequences. (...) I do confess that  I found this whole method by 
considering the reciprocity of sums and differences, and that  my considerations 
proceeded from sequences of numbers to sequences of lines or ordinates. 4a 

This request  served as occasion for JOHANN BERNOULLI to explain the origin 

of the term integral :  

Further, as regards the terminology of the sum of differentials I shall gladly use 
in the future your terminology of summations instead of our integrals, i would 
have done so already much earlier if the term integral were not so much ap- 
preciated by certain geometers [a reference to French mathematicians, especially 
I'I-I6PITAL, who had studied BERNOULLI'S Integral Calculus] who acknowledge me as 
the inventor of the term. I t  would therefore be thought that  I rather obscured 
matters, if I indicated the same thing now with one term and now with another. 
I confess that  indeed the terminology does not aptly agree with the thing itself 

42 Apparently, no manuscript record of these early BERNOULLIAN studies has 
survived. JAKOB BERNOULLI'S diary, the ]16reditationes, does not contain material on 
this crucial period; see HOFMANN 1956, p. 16. 

43 "Vidimus in praecedentibus quomodo quanfi ta tum Di//erentiales inveniendae 
sunt:  nunc vice versa quomodo differentialium Integrales, id est, eae quantitates 
quarum sunt  differentiales, inveniantur,  mOllstrabimus." (JOHANN BERNOULLI 
Integral Calculus, p. 387.) 

44 ,, Unde Tibi deliberandum relinquo, annon, pro Integralibus vestris, praestet in 
posterum uniformitatis et harmoniae gratia non inter nos tantum, sed in ipsa doctrina 
adhiberi Summatorias expressiones, ira ut, exempli gratia, f y d x  significet summam 
omnium y in dx respondentes ductorum, seu summam omniuln hujusmodi rectangu- 
lorum: praesel~im cure tall ratione summationes geometricae seu quadraturae optirne 
cure arithmeticis seu serierum summis conferantur. (...) Ego certe in totam hanc 
methodum me fateor, ex hac consideratione reciprocationis inter summas differentias- 
que, incidisse, e t a  Seriebus numerorum ad linearum seu ordinatarum considerationes 
proeessisse." (LEIBNIZ to BERNOULLI 28-11-1695; Math. Schr. III ,  p. t68.) 
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(the term suggested itself to me as I considered the differential as the infinitesimal 
part  of a whole or integral; I did not think further about it). 4~ 

The mat te r  was left there, and gradual ly  the te rminology of integrals replaced 
LEIBNIZ'S original terminology of sums. 

2.11. The calculus built on the concept of in tegra t ion  and that built on the concept 
o/ summat ion  differ also in that summat ion  leads naturally to infinitely large 
quantities (see Appendix 1), whereas in a calculus based on the concept of integra- 
tion, such quantities are less likely to appear, since in tegra t ion  is applied only to 
quantities which are themselves differentials. 

2.12. The differentials and sums, introduced by the operators d and f ,  are 
quantities, and therefore they have a dimension. I[ these infinitesimal quantities are 
of the same dimension, they can be added; also products o/such quantities can be 
formed and the dimension of the product will be related to the dimensions of the 
[actors in the same way as in the case of finite quantities (see § 1.6). 

In  the finite array, the terms of the difference and sum sequences have the same 
dimension as the terms of the original sequence (if Yi are line segments, then so are 
zx~y and i Xi=l Yi)" Consequently, d and f preserve the dimension. I f  y is a variable 
line segment, then d y is an infinitely small variable line segment and f y is an 
infinitely large variable line segment. I f  Q is a quadrature, dQ is an infinitely small 
area, etc. 46 

Compare JOHANN BERNOULLI'S explanat ion of the conservat ion of dimension 

by  different iat ion:  

The parts of a solid, although infinitely small, are always solids; those of a surface 
are always surfaces, and the parts of a line are always lines, for it  is not possible 
that  a kind of quant i ty  can be changed by division into another kind of quant i tyY 

2.13. Differentials and sums form classes having distinct orders of infinity. Thus 
/or instance dy  is infinitely small with respect to y; ddy  is infinitely small with 
respect to d y, and in general dk+l y is infinitely small with respect to dk y. Similarly 
fk+ly is infinitely large with respect to f~ y, etc. 

All first-order differentials of finite variables have the same order o/ infinity 
(that is, any two o[ them have a finite ratio, except at singularities). Consequently, 
]or every k, all kth-order differentials have the same order of infinity. This rule, by 

45 ,, Caeterum, quod nomenclationem differentialium summae attinet, lubentissime 
pro integralibus nostris Tuas in posterum adhibeo summatorias expressiones; quod 
diu ante fecissem, si nomen integralium non adeo invaluisset apud quosdam Geometras, 
clui me hujus nominis authorem agnoscunt, u t  saris obscurus visus fuissem, unam 
eandemclue rem, nunc hog nunc alto nomine designans. Fateor ellim n0menclationem 
istam (quae, considerando differentialem tanquam partem infinitesimam totius vel 
integri, mihi non ulterius cogitanti, venit  in mentem) rei ipsi non apte convenireY 
(JOHANN BERNOULLI to LEIBNIZ, 30-IV-t695; Math.  Sehr. III ,  p. ~ 72.) 

ks The conservation of the dimension by the operator d marks the fundamental 
difference between infinitely small elements and indivisibles; compare WALLNER 1903. 

47 "Les parties d 'un  corps, quoique infiniment petites, sont toujours corps; celles 
d 'une surface, sont toujours surfaces; et les parties d 'une ligne sont toujours lignes: 
n '6 tant  pas possible qu 'un genre de quantit8 puisse ~tre chang6 par la division en un 
autre genre de quantit6." (JOHANN BERNOULLI Opera IV, p. 162.) 
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no means obvious, relates to assumptions about the regularity o I the in/initangular 
polygon which I shall discuss in § 2.18. Moreover, the order o/ inf ini ty  o/kth-order 
differentials is the same as that o/ /~th powers o/ /irst-order differentials (that is, 
dky bears a [inite ratio, except at singularities, to (dy)k) .  This rule (see § 2.18) 
results [rom assumptions about the regularity o/the in/initangular polygon. 

Similarly, the sums and the repeated sums/orm classes having distinct orders o/ 
infinity. Because o] the above mentioned relations between the elements o/classes o/ 
different orders o/ in]inity, the number o] orders o/ in/inity is in/inite, but de- 
numerable," every infinitely small quanti~y has a finite ratio to (d x) ~ /or some natural 
number k and every in/initely large quantity has a [inite ratio to [f y]k /or some 
natural number k (see § 2.15 below, and Appendix 2). 

As an example  of the te rminology wi th  which these orders of inf ini ty  were 

indica ted  I quote  some lines by JOHANN BERNOULLI: 

Let a be a finite line, adx an infinitely small of the first sort, dddy all infinitely 
adx 

small of the third sort. I t  is to be proved that  ~ is an infinitely large of the 
adx 

second sort. For that  purpose, l e t ~  be called z; hence adx =zdddy;  hence 

d x:dddy = z:a. Now d x is infinite-infinitely larger than dddy; hence also z, which 
is the quotient resulting from the division, will be infinite-infinitely larger than a, 
which is a finite line; it follows that  z will be an infinitely large of the second sort. 48 

I t  is ins t ruc t ive  to cite in this contex t  a proof by  LEIBNIZ tha t  d d x  is a quan-  

t i t y  inf ini te ly small  wi th  respect  to d x. The proof occurs as a refuta t ion  of 

NIEOWENTIJT'S opinion 49 tha t  second-order differentials do not  exist :  

For whenever the terms do not increase uliiformly, the increments necessarily 
have differences themselves, and obviously these are the differences of the 
differences. Further, the rellOWlied author [that is, INIEUWENTIJT] concedes that  
d x is a quantity. Now the third proportional of two quantities is again a quantity, 
and the quant i ty  ddx is of this kind with respect to the qualitities x and dx, 
which I prove thus: Let  x be ill geometrical progression and y in arithmetical 
progression, then d x will be to the constant d y as x to a constant a, or d x = x dy:a. 
Hence ddx =dxdy:a .  Removing dy:a from this by the former equation, one has 
xddx = dxdx, whelice it is clear that  x is to dx as dx to ddx. ~° 

4s ,, Soit a une ligne finie, adx un ilifiniment petit  du premier genre, dddy un 
adx  

infinimelit peti t  du troisi6me genre, il faut prouver que ~ est uli infiliiment grand 
a d x  

du second genre. Pour cette fin, soit ~ IIomm6 z; dolic adx =zdddy;  donc 

dx:dddy =z:a. Or dx est infini-infinimellt plus grand que dddy; dolic aussi z, qui 
est le quotient de la division, sera infiliMnfiniment plus grand que a, qui est ulie ligne 
finie; et partant  z sera un infinimelit grand du second genre." (JohANN BERNOULLI 
Opera IV, p. t66.) 

~9 Expressed in NIEUWENTIJT 1694. 
50 "Nam quotielis termini lion crescunt uniformiter, IIecesse est ilicrementa eorum 

rursus differentias habere, quae sunt utique differentiae differentiarum. Deinde 
concedit C1. Autor, d x esse quant i ta tem;  jam dnabus quantitatibus tert ia proportio- 
nalis utique est etiam quantitas;  talis autem, respectu quali t i tatum x et d x, est 
qualititas ddx, quod sic ostelido. Silit ;: progressionis Geolnetricae, et yari thmeticae,  
erit d x ad colilstalitem d y, ut y ad colistantem a, seud x = x d y:a; ergo d d x = d x dy:a. 
Uiide tollendo dy:a per aequationem priorem fit xddx  =dxdx ,  unde pater esse x 
ad dx, ut dx ad ddx." (LEIBNIZ 1695a; Math. Schr. V, p. 325; compare ibid. II,  
p. 288.) 
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This passage has repeatedly bewildered historians of mathematics.  51 I t  is, how- 
ever, a perfectly acceptable argument, if one bears in mind that  LEIBNIZ does 
not claim that  ddx  is always the third proportional of x and dx  but rather gives 
an example in which such is the case. The example then proves the existence of 
quantities infinitely small with respect to d x. The curve in question is, of course, 
the logarithmic curve (x =beY/~), which was usually defined as the curve in 
which a geometric sequence of ordinates (or abscissas) corresponds to an arith- 
metic sequence of abscissas (or ordinates). Hence LEIBNIZ takes d y constant and 
knows that  the d x form a geometrical sequence. 

2.14. To avoid ambiguities, there are certain rules o/notation. I / n o  brackets are 
used, the operators d, dd, d 3, etc. have to be interpreted as acting on the one letter 
variable/ollowing it. I[ the operator is meant to act on a composite variable, brackets 
must be added. Thus dx  2 means (dx) 2, as d acts only o1¢ x; the diHerential o i x ~ is 

indicated as d ( x~). Similarly d2 x a means (d ~ x) S. Di[[erential quotients like d~y daY 
d x 2  ' d x 3  ' d2y day 

etc. have to be interpreted as (clz)~ ' (dx) a' etc. The operator f is interpreted as 

acting on all letters which/ollow it. Thus f yd  x means f (yd x). 

LEIBNIZ used overbars rather than brackets, e.g. d x y  for d(xy).  He also used 
the comma as separating symbol; thus d x y + a  ~ for d(xy+a=).  EULER gives 
these rules of notation explicitly in 1755 (§ t44). 

2.15. I turn now to a di[ficulty which necessarily arises in any attempt to set up 
an infinitesimal calculus which takes the di//erential as/undamental concept, namely 
the indeterminacy o/di//erentials. 

The first diHerential d x o[ the variable x is infinitely small with respect to x, 
and it has the same dimension as x. These are the only conditions it has to saris[y, 
and they do not determine a unique d x, [or i / d  x satis/ies the conditions then clearly 
so do 2 d x and ½ d x and in general all a d x/or finite numbers a. That is, all quantities 
that have the same dimension and the same order o/infinity as d x might serve as d x. 

Moreover, there are elements not/rom this class which satis/y the conditions/or 
d x,"/or instance d x2/a and Vadx, /or finite positive a o/the same dimension as x. 
d x2/a is infinitely small with respect to d x and Vad-x is infinitely large with respect 
to d x, so that there is even not a privileged class o/infinite smallness [rom which d x 
has to be chosen," there is no "first" class o/infinite smallness adjacent to finiteness. 
Thus first-order di//erentiats involve a /undamental indeterminacy. 

The early practitioners of the LEIBNIZlAN calculus seem not to have noticed 
this indeterminacy of first-order differentials. Compare Appendix 2 (especially 
§ 7.8), where I discuss a study of EULER'S which shows that  he was aware of 
this problem. 

I t  is difficult to give reasons for, or to draw conclusions from the fact that  
this problem was recognized late. One important  aspect doubtless is that  it does 
not influence the computational techniques or the interpretation of first-order 
differential equations. Geometric intuition convinces us that  the finite ratios 
d x : d y : d s  are independent of the choice of dx  in any class of infinitely small 

s, C o m p a r e  WEISSENBORN 1 8 6 6 ,  p. 99 a n d  BOYER 1 9 4 9 ,  p. 211. 
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quantities, so that, although the first-order differentials themselves are indeter- 
minate, the relations between them are determined. Also the summation of 
differentials is not affected by this indeterminacy; f d x = x  applies for every 
choice of the dx's. Thus in the treatment of the most common problems of the 
infinitesimal calculus, quadratures, tangent problems, inverse tangent problems, 
rectifications, cubatures, etc., the indeterminacy of the fundamental concept did 
not influence the technique of the analysis. 

However, there is another kind of indeterminacy, which affects higher-order 
differentials and which did profoundly influence the concepts and the techniques 
of the early differential calculus. I discuss this indeterminacy in the following 
paragraphs. 

2.16. There are many ways to approximate a curve by a polygon. T o / i x  ideas, 
I mention three possibilities: 

a) polygons with equal sides, 

b) polygons, the projection o[ whose sides on the X-axis are all equal, 

c) polygons, the projection o[ whose sides on the Y-axis are all equal. 

In these three cases the operators A and X can be applied to the appropriate 
sequences, but the results o/this application may di//er. In Case a, zxis is constant," 
consequently zx)s = 0  i/k--__ 2; but in general zx~x and zx)y will not be equal to zero. 
In Case b, zxix is constant (say equal to zxx)," hence zx~x = 0  i / k  >=2, but zx~y and 
zx)s wilt in general not be equal to zero. 

Moreover, in Case b, zx xX{yi}  is an approximation of the quadrature," in other 
words, the sequence {X}=lyj} is approximately proportional to the sequence o[ 
quadratures {Qi}. In Cases a and c this approximation does not apply. There/ore, 
the justice o/such an approximation depends on the choice o/the polygon. 

The [orm o/the polygon de/ines the sequences o/ abscissas, ordinates, arc lengths, 
etc. Conversely, i / the sequence o/values o/one variable is given (and i/ it is agreed 
that the vertices o/ the polygon are on the curve), then the polygon is determined and 
hence also the sequences o/ values o/ the other variables. Cases b and c, discussed 
above, may thus be described as polygons induced by arithmetic sequences o/abscissas 
and ordinates, respectively. 

The indeterminacy o[ the approximating polygon in the ]inite array, or the 
]reedom to impose an additional requirement (such as to /orm an arithmetic pro- 
gression) on the sequence o/values o/one variable, is preserved in the extrapolation 
to the actually in/inite. Thus the concept o~ in/initangular polygon implies an 
indeterminacy, it allows the /ree choice o/ an additional supposition about the 
sequence over which the values o/ one variable range. The most obvious way o/ making 
such an additional supposition is to extend the concept o/ arithmetic sequence to 
in/initesimals. Thus the supposition that the sequence o/ values o/ x is arithmetic 
becomes, /or in/initesimals, the su15position that d x is constant. 

Corresponding to the three cases discussed above there are the ]ollowing possi- 
bilities /or additional suppositions about the in/initangular polygon: 

a') ds constant, 

b') d x constant, 

c') d y constant. 
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Taking over LEIBNIZlAN terminology, I shall re]er to the imposing o[ an addi- 
tional supposition about the in[initangular polygon as the choice or the specification 
of the progression of the variables;  [or one may conceive this choice or speci/ication 
as concerning the way the variables proceed along their domains. 

The freedom to choose the progression of the variables is described in the 
following quotat ions  from LEIBNIZ: 

To take sums it is quite unnecessary that the dx or the dy be constant and the 
ddx-~ O, but  one assumes the progression of the x or y (whichever one wishes to 
take as abscissa) as one likes it. 52 

... namely that  the progression of the x can be assumed ad l ibitum ...5s 

T h a t  m a n y  different progressions of the variables could be s tudied appears 
from a let ter  of VARIGNON to LEIBNIZ, where he writes about  a problem involving 
variables x, y, s, and  z: 

Apart from these 18 formulas (...) of which the last t2 are deduced from the first 
six by supposing successively dx, dy, ds, dz constant, one Call still deduce an 
infinity of other formulas from these first six by supposing in the same way 

anything else constant (...) for instance by successively supposing also dy ds 2 
yndx,  ymds etc. constant. ~4 Y Y 

As appears from this quotat ion,  the progression of the variables is specified 

by  indicat ing which first-order differential  is supposed constant .  Sometimes this 
is described fully in prose: " t h e  arc length growing un i fo rmly"  for ds constant ,  
and  " the  x growing un i fo rmly"  55 for d x constant .  

2.17. The rules ]or the operators d and f discussed so/ar do not depend on the 
choice o] the progression o/the variables, but as long as the progression is not speci[ied, 
the variables introduced by the operators d and f are aHected by the same indeter- 
minacy as the in[initangular polygon. For instance, in Case a', dds = 0 (because ds 
is constant), but in Case b', dds is not equal to zero. The diHerentials and the relations 
between them depend on the progression o/ the variables. Also the sums depend on 
the progression o[ the variables. The relation o] X {Yi) to the quadrature, discussed in 
connection with Case b, trans]orms, by the extrapolation, into the assertion that, 
under the supposition o[ a constant d x, f y is proportional to the quadrature Q, 

~ "Es  ist gantz nicht n6thig ad summandum, dass die dx oder dy constantes und 
die ddx = 0 seyen, sondern man assumiret die progression der x oder y (welches man 
pro abscissa halten wil) wie man es gut finder." (LEIBNIZ to VON BODENHAUSEN, 
Math. Schr. vii ,  p. 387.) 

~ s  ,,... ut scilicet progressio ipsarum x assumi posset qualiscunque . . ." (LEIBNIZ 
168~a; Math. Schr. V, p. 233.) 

54 ,, Outre ces 18 formules (...) dont les 12 dernieres sont d@duites des six premieres 
el1 y supposant dx, dy, ds, dz successivement constantes, l 'on peut encore en deduire 
une in~init6 d autres de ces six premieres ell y supposant de m~me toutte autre chose 

de constante, (...) par example en y supposant aussi dy , ds 2 , ymdx, ymds etc. suc- 
Y Y 

cessivement constantes . . . .  " (VARIGNON to LEIBNIZ, 4-XII-1710; LEIBNIZ Math. Sche. 
IV, p. 173.) 

~5 "arcu aequabiliter crescente"; "x  uniformiter crescentes." (LEIBNIZ Math. 
Schr. V, pp. 285 and 233.) 
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with dx  as in/initely small proportionality /actor: d x f  y =Q. This relation does 
not  apply under any other supposition about the progression o/the variables. 

This point  will be discussed further  in relat ion with CAVALIERIAN theories in 
Appendix  t.  Suffice here the following quotat ion,  in which LEIBNIZ explains tha t  
if dx  is t aken  constant ,  one m a y  t reat  the quadra ture  as f y  ( " sum of all y") ,  
as is done in  the theory of indivisibles, bu t  if one wishes to consider different 
progressions of the variables, the quadra ture  has to be evaluated as f y d x :  

And this indeed is also one of the advantages of my differential calculus, that  one 
does not  say, as was formerly customary, the sum of all y, but  the sum of all ydx, 
or fydx ,  for ill this way I can make dx explicit and I cart transform the given 
quadrature into others in an infinity of ways, and thus find the one by means of 
tile other, s6 

2.18. The properties o/ the diHerentials and the sums as outlined above imply 
certain conditions o/regularity o/the in/initangular polygon. The requirement that 
the second-order di//erentials be in/initely small with respect to the ]irst-order di//eren- 
tints implies that the /irst-order differentials must vary smoothly; two adiacent 
differentials must be approximately equal. This requirement does not /ollow im- 
mediately ]rom the extrapolation ]rom the/inite array. Indeed, in the/inite array 
one can imagine a polygon with sides o/ alternating lengths h and 2h, in which the 
di//erence sequence zxis o~ the arc lengths would be {h, 2h, h, 2h, h . . . .  } and the 
second-difference sequence {h, -- h, h, --  h, h, -- h . . . .  }. Extrapolating this case to 
the actually in/inite makes the second-order differential dds o/ the same order o/ 
in/inity as the/irst-order di//erential ds. 

Such anomalous progressions o/the variables have to be excluded; they can be so 
e//ectively by considering only progressions in which the/irst di/ferential o/one o/ 
the variables is constant. This can be understood in hindsight/rom the/act that the 
curves which were studied implied, except at singularities, sufficiently o/ten di//eren- 
tiable relations between the variables. Hence i / u  is the variable with constant/irst 
di//erentiat, the corresponding sequence o/, say, y ( y  = / ( u ) ) ,  is [ormed by extra- 
polation /rom a /inite sequence like / (a), / (a + h), / (a + 2h), / (a + 3 h) . . . . .  The 
property that dy, ddy,  d3y etc. are o/ successive di//erent orders o/ infinity then 
relates to the different orders o /h  o/ 

y = I (a + h) - -  1 (a) = 0 (h), 
A 2y = / (a + 2h) --  21(a + h) + l (a) = 0  (h~), 

zx3y = / ( a  + 3 h) --  3/(a + 2h) + 3 / (a  + h) - - / ( a )  = 0  (h3). 

From these relations it can also be seen that, i/ the/irst  di//erential o/ one o/ the 
variables is supposed constant, the kth-order differentials are o/ the same order o/ 
in]inity as the kth-powers o/the/irst-order di//erentials. 

The argument above suggests that the variable with constant ]irst differential 
acquires the role o/independent variable. This aspect i/discussed/urther in § 2.20. 

56 ,, Und das ist eben auch eines der avantagen meines calculi differentialis, dass 
man nicht sagt die summa aller y, wie sonst geschehen, sondern die summa aller y d x  
oder fydx ,  denn so kan ich das dx expliciren und die gegebene quadratur in andere 
infinitis modis transformiren und also eine vermittelst der andern finden." (LEIBNIZ 
to VON :BODENHAUSEN; Math. Schr. VII, p. 387.) 
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I have found very few traces of an awareness that  the usual suppositions about 
the progression of the variables imply regularity conditions not implicit in the 
concept of infinitangnlar polygon. Most likely this lack of awareness was caused 
by  the fact that  if the rules of the calculus are followed and if one specifies the 
progression of the variables by  specifying a constant differential, one hardly 
ever encounters problems which throw up this question. Still, the question did 
occur, namely in connection with the fact that  zero has no fixed order of infinity. 
As an example I quote JAKOB BERNOULLI'S discussion of the differential of 
x~. 57 He wrote 

d (x ~) = (x + d x) ~ - -  x ~ = 2 x d  x + (d x) 2, 

and concluded from this that,  for x4=O,d(x~)=2xdx ,  but that, for x = 0 ,  
d(x 2) = (dx) 2. The last formula violates the regularity condition that  first-order 
differentials must all be of the same order of infinity; with respect to first-order 
differentials, (dx) ~ has to be discarded and d (x ~) has to be evaluated as equal to 
zero for x - - 0 .  

2.19. The curve embodies relations between the relevant variables. Like the/inite 
variables, the di//erentials bear relations to each other induced by the curve. The 
equations which express these relations are the di//erential equations. 

The terms o/the equations which express the relations between the [inite variables 
are analytic combinations (products, sums etc.) of these variables. There/ore these 
terms are themselves variables and the operator d can be applied to them. The rules of 
the calculus teach how the di//erentials o/ such analytic combinations relate to the 
diJ[erentials o/their component terms and/actors. These rules are: 

d ( x +  y) = d x + d y  

d(xy)  = x d y +  y d x  
xdy  - - ydx  

d - -  - -  .y y2  

dx  ~ = a x ~ - l d x  (also/or/ractional a) 
adx 

d log x -- x (a depending on the kind o/logarithm involved) 

db*=ab*dx  (with a - - lnb )  

d sin x = cos x d x 
dx 

d arcsin x --  etc. 
e l  - x 2 

Because these rules are independent o/the choice o/the progression o/the variables, 
one can apply them without making any supposition about this progression. 

In 168ga LEIBXlZ published the rules of differentiation for sums, products, 
quotients, powers and roots. 5s I t  may  be noticed that  the applicability of the 
LEIBNIZlAN algorithm to roots and complicated irrationalities constituted one of 
its great advantages over the already known rules for tangents and extreme 
values (FERMAT, SLOSE), which applied only to polynomial equations for algebraic 
curves. The computation of such equations for given curves (for instance 

57 JAKOB BERNOULLI Opera II, p. 1088; see for further examples BOYER 1969, 
p. 251. 

5s LEIBNIZ 1684a; Math. Schr. V, p. 225. 
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LEIBNIZ'S example: the locus of points whose distances to six given points add 
up to a given constant) often required long and tedious calculations because the 
roots had to be eliminated. Hence the title of 168~a: A new method ]or maxima 
and minima, and also/or tangents, which is not impeded by [ractions or irrational 
quantities, and a singular kind oi calculus [or these. 59 

The rules for differentiating non-algebraic compositions of variables (expo- 
nentials, logarithms, trigonometric relations) were not given in this article of 
LEIBI~IZ'S. They involve certain difficulties connected with the concept of dimen- 
sion; see note 6. 

2.20. By applying the operator d to both sides o/the equation of the curve and 
then working out the results using the rules, the differential equation o/the curve is 
derived. Repeated application o[d  yields the higher-order differential equations o] 
the curve. As the rules o] the calculus are independent o[ the choice o/the progression 
o/ the variables, the resulting differential equations are valid with respect to every 
such progression. However, the choice o/a  progression o[ the variables may transform 
the second and higher-order differential equations into simpler ones, which then, o/ 
course, are valid only ]or the progression chosen. 

This asiSect o/higher-order di//erential equations, which is related to the indeter- 
minacy o/the in/initangular polygon discussed above in 37 2.16, may best be illustrated 
by an example, /or which I take the parabola a y = x ~. Repeated application o/ d 
on both sides o] the equation yields the ]irst-order and higher-order differential 
equations, valid [or every progression o[ the variables: 

a d y = 2 x d x ,  

a d d y  ---- 2(dx)~ + 2 x d d x ,  
ad3y = 6 d x d d x  + 2 xd3x, (2) 

a d 4 y = 6 ( d d x ) 2  + S d x d S x  + 2 xd~x 
etc. 

I[ the progression o] the variables is speci[ied by d y constant (ddy  = 0), these 
equations are trans[ormed into 

a d y = 2 x d x ,  

O=2(dx)~ + 2 x d d x ,  

0 = 6 d x d d x + 2  xdax, (3) 

O=6(ddx)2  + S d x d 3 x  + 2 x # x ,  
etc., 

and i / d  x is supposed constant, (d d x = 0), the equations are trans[ormed into 

a d y = 2 x d x ,  

a d d y  = 2 ( d x )  ~, 
a d a y = 0, (4) 

a d4y = 0 ,  
etc. 

59 ,, Nova methoclus pro Inaxirnis et minimis, itemque tangentibus, quae nec fractas 
nec irrationales quantitates moratur, et singulare pro illis calculi genus." (LEIBI'~IZ 
168~a; Math. Schr. V, p. 220.) 
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The example shows that the general higher-order diHerential equations o] a curve 
may be considerably simplified by the choice o] an appropriate progression o[ the 
variables. Hence there are two kinds o/di[[erential equations in the calculus: those 
which apply regardless o[ the progression of the variables, and those which apply 
only ]or a specified progression, s° In  treating a diHerential equation, it must always 
be clear to which kind it belongs, and i] it belongs to the second kind, the progression 
has to be specified. This is done by speci[ying which first-order di[]erential is supposed 
constant. 

Higher-order diHerential equations o] the same curve, but applying with respect 
to di]]erent progressions o] the variables will di[]er considerably. Conversely, the same 
higher-order diHerential equation, i] understood with respect to di/[erent progressions 
of the variables, will define different curves. I shall treat this dependence o.t higher- 
order diHerential equations on the progression o] the variables in more detail in 
Chapters 8 and 5. 

In the techniques for the derivation of higher-order differential equations 
from the data in a physical or geometric problem and in the techniques for the 
solution of such equations the choice of appropriate progressions of the variables 
plays a most important  role. I shall discuss examples of this technical aspect of 
the LEIBNIZlAN calculus in Chapter 3. 

The choice of the progression of the variables is related to what would be the 
choice of an independent variable if one wanted to consider the variables as 
functions. This is illustrated by equations (3) and (4). Equations (3) in which d y 
is supposed constant, correspond to 

a = 2 x x ' ,  

O = 2 ( x ' ) 2 +  2 x x  '', 

O = 6 x '  x" + 2xx ' " ,  

O--__6(x")~ + 8 x '  x '" + 2xx '" ' ,  
etc. 

in which x', x" etc. are the derivatives of x as function of y (x = Fay). Similarly, 
equations (4), which presuppose d x constant, correspond to 

ay' = 2 x ,  

ay"  =2,  

ay ' "  = 0 ,  

a y'" '  = 0 ,  
etc. 

where y', y"  etc. are the derivatives of y as function of x (y = x~/a), 

The correspondence between the variable with constant first-order differential 
and the " independent"  variable occurring in functions may  also be clarified by  

60 BERNOULLI used the terms "' complete" and "incomplete '" for the two kinds of 
differential equations; see note 71. 
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considering the formula  which is at present  st i l l  in use for the  second de r iva t ive :  

d2y  
d X 2  " 

For  y = / ( x ) ,  the  der iva t ive  is def ined b y  

d y  l ( x + h )  - l ( x )  
- -  l im 

d x  h--.o h 

The second de r iva t ive  is usua l ly  in t roduced  as the  de r iva t ive  of the  der iva t ive .  
However ,  one can also in t roduce  i t  as 

d2Y - -  l im 
d x2 h-+O 

which is analogous to 

~(x+2h) - l (x+h)3 - ~ ( x + h )  -l(x)3 
h 2 

d2y  d y  I --  d y  

d x2 - -  d x2 

F o r  this  def ini t ion of the  second de r iva t ive  i t  is essent ial  t h a t  one t ake  two 
equal  segments  h along the  X-axis .  This  becomes clear if we consider  how the  
second der iva t ive  could be defined d i rec t ly  as a l imi t  of a quo t ien t  of f ini te  
differences wi th  respect  to unequal  segments  h 1 and  h 2 along the  X-axis .  The  
n u m e r a t o r  of such a quo t ien t  would be 

[ / (x + h~ + h2) - -  ! (x + hl)J - -  [ / (x + h~) - -  ! (x) l. 

Bu t  there  is a p rob lem of choice for the  denomina tor ,  for which h~ or h~ or, as a 
comprise,  h l h  2 might  be chosen. Bu t  for no choice of the  denomina to r  will the  
double  l imi t  as h i - + 0 ,  h2-+0 exist ,  as can be checked easi ly in the  example  
] (x) ---- x. So we have  to  suppose h 1 : h 2, which is equiva lent  to w h a t  in LEIBNIZlAN 
t e rmino logy  is rendered  as suppos ing  d x constant .  Hence o n l y  if d x is t aken  
cons tan t  does # y  have  a re la t ion  to  the  second de r iva t ive  of y as funct ion of x. el 
Thus  the  var iable  whose f i rs t -order  d i f ferent ia l  is supposed cons tan t  t akes  a role 
equ iva len t  of t ha t  of the  independen t  var iable .  

61 This, incidentally, is the reason why the suggestive cancelling of the differentials 
in the chain rule for derivatives, 

d y  d y  . d x  

d t  d x  d t  ' 

does not  occur in the chain rule for higher order derivatives. A similar calxcelling of 
d x  2 in the case of second derivatives would lead to 

d~y  __ d2y  d x  2 __ d2y  [ d x l  2 " 

d t  2 d x  ~ d t  2 d x  2 \ d r /  ' 

but  ill order tha t  this equation be interpretable as a relation between second derivatives 
d2Y and d2y  dt 2 ~ - ,  both d t  and d x  must be supposed constant,  which can onty apply  in 

the case tha t  x = a t  + b .  In general, the relation between the second derivatives of 
y (t), y (x) and x (t) is given by  

d2y  d~y  . [ d x l  2 d y  d 2 x  

d t  ~ =  d x  2 \ d t  ] + d x  d t  2 ' 

in which indeed the last term vanishes if x = a t  + b. 
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2.21. In  equations (2) (3) and (4) it appears that the first-order di/[erential 
equations are not a/[ected by the change of the progression o/the variables. This is a 
general rule, and its e/[ect is that in the treatment o/[irst-order di[[erential equations 
the progression o[ the variables need not be speci[ied and can be le/t undetermined. 
Hence in that case no variable need be singled out and given a constant [irst-order 
di[[erential, and so all variables have equal status in the calculus. Also the solution 
o] first-order di[Jerential equations is not aJ[ected by specification or change o/the 
progression o[ the variables. 

The rule applies to ]irst-order di/jerential equations of any degree (i.e. the equa- 
tion may involve powers and products o[ first-order di[[erentials). It  may be proved 
as [otlows: Di//erential equations are homogeneous with respect to order o[ infinity 
(see § 2.22). In  the case o/ equations involving only first-order di][erentials this 
means that they are homogeneous in these diJ[erentials. Hence multiplication o/al l  
diJ[erentials by the same [actor does not a[[ect the equation. Now at every point o/ 
the curve, the relation 

d x : d y : d s = a : y : z  

applies independently o/the progression o/the variables. Hence i / d x ,  d y, ds and 
d x*, d y*, ds* are induced by two di][erent progressions o[ the variables, 

dx :dx*  = d y : d y *  =ds:ds* ,  

that is, in changing [rom one progression o] the variables to another, the di[[erentials 
are all multiplied by the same [actor, so that the relation between them, expressed by 
the di[/erential equation, remains the same. (The argument can be extended to cover 
cases involving variables other than x, y and s.) 

The rule plays an important role in arguments o[ JOHANN BERNOULLI and 
EULER about the trans[ormation o/ higher-order diJ/erential equations by di[[erent 
choices o] the progression o/the variables, a matter I discuss in Chapters 3 and 6. 

In  general ,  the  au thors  conscient iously  specify the  progression of the  var iables  
in those cases where t ha t  is necessary.  I have  found few examples  where the  
specif icat ion is omi t ted .  One such case shows how crucial  the  specif icat ion is for 
unde r s t and ing  the  calculat ions.  I t  occurs in JOHANN BERNOULLI'S Integral 
Calculus: 

Because s = adx:dy  [this is the differential equation which BERNOULLI discusses] 
wehave ds = ~ 2  = add x : d y, andhence d y  ---- add x : yd~x 2 + d y 2. In order tha t  
the integrals can be taken on both sides, both sides are mult ipl ied by  d x, which 
results in d x d y = a d x d d x : y d x 2 + d y 2 .  Taking integrals, we arrive at  x d y ~  
aydx2+dy2, and after reducing the equation, we find d y = a d x : y ~ - - a 2  as 
before. ~BERNOULLI had previously discussed this differential equation.~ 62 

These calcula t ions  are incomprehens ib le  because BERNOULLI fails to indica te  t h a t  
he t akes  d y cons tant .  

63,,Quia s = a d x : d y ,  erit  ds=y(dx '~+dy2)=addx:dy  ideoque d y = a d d x :  
V(dx2+dy2). Ut utrobique possit  sumi integrale, lnultiplicetur utrumque per dx, 
habebi tur  dxdy=adxddx:V(dx2+dy2) .  Sumptis integralibus, erit  x d y =  
aV(dx~ + d y2), reductaque aequatione, erit  d y = ad x: V ~  aa), ut ante." (JOHANN 
BERNOULLI Integral Calculus, p. 426.) 
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2.22. The geometric interpretation o/ the quantities entering the analysis requires 
the equations to be homogeneous in dimension. In addition, there is a second kind o[ 
homogeneity, which requires that all the terms oi an equation should be o/the same 
order o] in[inity. A quantity which is in]initdy small with respect to another quantity 
can be neglected i/ compared with that quantity. Thus all terms in an equation except 
those o/ the highest order o/ in/inity, or the lowest order o/ infinite smallness, can be 
discarded. For instance, 

a + d x  =a  

d x + d d y = d x  

etc. The resulting equations satis/y this second requirement o/homogeneity. 

LEIBNIZ va lued  the  two laws of homogene i ty  highly,  as appears  from his 
1710b, where he in t roduced  a new n o t a t i o n  for powers and  ex tended  the  no ta t ion  
for different ia ls  in order  to d i sp l ay  the  ana logy  be tween  powers  and  differentials ,  
and,  correspondingly,  the  ana logy  be tween the  laws of d imensional  homogene i ty  
and  homogene i ty  of orders  of inf ini ty.  He  wrote  p~x for x ~ (thus stressing the  
fact  t h a t  t ak ing  powers  is, l ike t ak ing  differentials ,  an operator), and  he ex tended  
d ~ x to the  case in which n ---- 0 b y  defining d o x = x. H e  then  exh ib i t ed  the  ana logy  
be tween  powers  of sums and  different ials  of products ,  which is, in fact,  "LEIBI~IZ'S 
ru l e "  : 

! e x 0 e e - 1  x 1 e ( e - t )  
p e ( • + y ) =  p p y + y p  P Y +  1.2 Pe-~xP2Y 

e (e - 1)  (e 
+ 4 . 2 . 3 - - 2 ) P e - s z P S Y +  etc. 

d ' ( z y ) = t d e x d ° y +  ~ d e - l x d l y + ~ d e - ~ x d a y  

+ e(e --11).2.3(e --2) de_3xday + etc3a. 

He ex tended  the  ana logy  to sums of three  te rms  and  produc ts  of three  factors.  
Af te r  this  he r emarked :  

And this analogy even goes so far that ,  in this way of notat ion (which may  surprise 
you), also po (x + y  + z) actual ly corresponds to d o (xya), for 

p°(x + y + a) = I -~p° xp°yp°z 
and 

d o (xyz) = xyz  = d o xd°yd°z. 

At the same t ime a t ranscendental  law of homogeneity appears, which is not  
equally obvious in the usual way of notat ion for differentials. For  instance, if we 
use this new kind of Characteristica, i t  appears tha t  addx and dxdx  are not  only 
algebraically homogeneous (as in both cases two quanti t ies are multiplied), but  
tha t  they  are also t ranscendental ly homogeneous and comparable. For  the former 
can be writ ten as d°ad~x, and the la t ter  as d~xdlx, and in both cases the dif- 
ferential exponents have the same sum, for 0 + 2 = 1 + 4. The transcendental  law 
of homogeneity presupposes the algebraical law. 64 

~s LEIBNIZ Math. Schr. V, pp. 379-380. 
~4 ,, Eaque analogia eousque porrigitur,  ut  tal i  scribendi more (quod mireris) et iam 

p°(x + y  + z )  et d°(xyz) sibi respondeant  et veritati ,  nam 

p°(x + y + z) = t =p° xp°yp°z 
3 Arch. Hist. Exact Sei., Vol. 14 
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2.23. Dimension and order o/ infinity o/finite and infinitesimal quantities are 
a//ected by multiplication and by the application o/ the operators d and f as/ollows: 

Multiplication changes the order o/ inf ini ty  unless the/actor is finite; it changes 
the dimension unless the/actor is a number or a ratio. 

The operator d preserves the dimension and changes the order o/ infinity; /or 
any variable quantity A, dA is infinitely small with respect to A. 

The operator f preserves the dimension and changes the order o/ infinity; f A 
is infinitely large with respect to A. 

Some examples may su//ice /or /urther clarification: 

ddy is a finite ratio, a dx ~ 

tidy s f f x  is a line segment, infinitely large o/second order, 

a b x is an infinitely small area, 
ds 

- -  ddx  is a line, infinitely small o/ third order etc. a 

2.24. I t  is appropriate to end this outline o/ the Leibnizian calculus by indicating 
how its key concepts, different iat ion and summat ion ,  contrast with the concepts o/ 
der ivat ion  and in tegra t ion  as used in present-day infinitesimal calculus o/ real 
/unctions. To be explicit: Derivat ion is the operator which assigns to a/unction / its 

derivative /', which is again a/unction, defined by /' ( x ) =  lira /(x  + h)-- /(x)  . 
h...+O h ' 

and In tegra t ion  (which term I now use in a sense different /rom that in § 2.10 
above, where I discussed Bernoulti's concept o/ integration) is the operator which 
assigns to a/unction / an integral f / ( t)dt  o / / ,  which is again a/unction, deter- 
mined (modulo a constant term) by the requirement that its derivative equals/, or, 
alternatively, defined as f ~ / (t) dt, using a direct definition o/ the definite integral by 
means o/ limits o /sums over refining partitions (Riemann integral). 

Comparison o/these two pairs o/concepts reveals three important contrasts: 

( I )  Different ia t ion and summat ion  apply to variables, irrespective o/the depend- 
ency o/ these on other "independent" variables; der iva t ion  and in tegra t ion  

apply to funct ions o /one  specified variable. 

( I I )  Different ia t ion and summat ion  depend on the progression o/the variables in 
the sense that the first-order and higher-order di//erentials and sums remain 
undetermined until the progression o/ the variables is specified, although in 

et 
d o (xyz) = xyz  ~ d o xd°yd°z. 

Eadem etiam opera apparet, quaenam sit Lex homogeneorum transcendentalis, quam 
vulgari modo scribendi differentias non aeque agnoscas. Exempli gratia, novo hoc 
Characteristicae genere adhibito, apparebit add x et d x d x non tan tum Algebraic (dum 
utro-bique binae quantitates in se invicem ducuntur) sed etiam transcendentaliter 
homogeneas esse et comparabiles inter se, quoniam illud scribi potest d o ad 2 x, hoc 
dlxdlx, et utrobique exponentes differentiales conficiunt eandem summam, ham 
o + 2  = 1 + 1. Caeterum lex homogeneorum transcendentalis vulgarem seu Alge- 
braicam praesupponit." (LEIB~ClZ 1710b; Math. Schr. V, pp. 381-382; compare also 
ibid. IV, p. 55.) The transcendental law of homogeneity is also mentioned in LEIBNIZ 
1684a; Math. Schr. V, p. 224. 
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some cases the rdations between the diHerentiats and sums are independent o/ 
the progression o/ the variables and are there[ore not a[[ected by this indeter- 
minacy. 

( I I I )  Differentiation and summation change the order o/inf ini ty and leave the di- 
mension unchanged," derivation and integration change the dimension and 
leave the order o/ inf ini ty  (in this case, the finiteness) unchanged. 

The third point needs some clarification as here the anachronism, implicit in any 
comparison o[ concepts which were used in diHerent periods, becomes evident: deriva- 
tion and integration do not occur in a specifically geometric context. Nevertheless, to 
consider the obvious geometric interpretation o/these operators is illuminating. Let, 
there[ore, x and y=--/(x) have the dimension o/ a line," then y' = / ' ( x ) =  

lim [(x +h) - - f (x )  the limit o/ a ratio o/ lines, is dimensionless (a ratio or a 
h.--~ O h ' 

number), and f~ / ( t )d t  is an area. Hence derivation and integration change the 
dimension. On the other and both fl (x) hand f~ / (t) dt are finite, so that the operators 
conserve the order o[ infinity. 

The three contrasts illustrate the /undamental change which the in[initesimal 
calculus underwent [rom the time o/Leibniz till roughly the end o/ the nineteenth 
century. The change has been a gradual and most complex process which cannot be 
understood unless the conceptual/oundations o/the calculus in its beginning stage 
are made explicit--which may justi/y this outline and indeed the whole present 
study. 

3. Aspects of Technique and Choice of Problems in the Leibnizian Calculus 
3.0. h this chapter I discuss certain passages from the writings of the early 

practitioners of the LEIBNIZlA• calculus, which show how the conceptual founda- 
tions of the calculus, discussed in the previous Chapter, influenced choice of 
problems and techniques of solution. I concentrate on examples relevant to the 
indeterminacy of the progression of the variables and the laws of homogeneity, 
because these are features which the calculus lost in its later development. Thus 
discussion of these will contribute most to our understanding of the early stage 
of the calculus. There are three groups of examples; the first two deal with 
techniques connected with the choice of the progression of the variables, and the 
third deals with the laws of homogeneity. 

3.1.0. As I discussed in Chapter 2, higher-order differential equations, and in 
general expressions involving higher-order differentials, depend on the progression 
of the variables. The appropriate choice of the progression can considerably 
simplify such expressions, and different choices lead to different formulas for the 
same geometrical relations or entities. Most higher-order differential expressions 
are interpretable only if the progression of the variables with respect to which 
they are meant to apply is specified. As we shall see, the choice of the progression 
can be made in different stages of the argument; sometimes it can even be 
avoided entirely. 

In this section I illustrate this aspect of the techniques of higher-order 
differentials by various deductions of formulas for the radius of curvature at a 
point of a given curve. These deductions and the resulting formulas differ 
greatly among each other, and it will become clear that  these differences are 

3* 
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related to the different ways in which the choice of the progression of the variables 
is introduced in the deductions. 

3.1.1. As I shall restrict myself to the technical aspects of the several deduc- 
tions of formulas for the radius of curvature, I give here only a concise indication 
of the relation between the relevant texts. 

When JOHANN BERNOULLI arrived in Paris in 169t, he possessed a formula 
for the radius of curvature, the use of which impressed L'HSPITAL SO much that  
BERNOULLI was asked to become the Marquis's private teacher (c[. JOHANN 
BERNOULLI Brie[wechsel p. 136). Probably the formula involved was the one which 
appears in BERNOULLI'S Integral Calculus, the deduction of which I shall discuss. 
JAKOB BERNOULLI, independently of his brother, also possessed formulas for the 
radius of curvature. He used these in deriving the results on diacaustic curves that  
were published, without proofs, in JAKOB BERNOULLI 1693. In his 1693 (published in 
May t694) L'H61"ITAL provided the proofs of JAKOB BERNOULLI'S results as well 
as deductions of formulas for the radius of curvature, one in a kind of polar 
coordinates and one in rectangular coordinates, the latter derived in a way 
slightly different from JOHANN BERNOULLI'S in the Integral Calculus. (This 
derivation of L'H6PITAL together with other formulas for the radius of curvature, 
is found also in L'H6PITAL 1696, §§ 77-79.) 

Meanwhile JAKOB BERNOULLI published, in his 1694, formulas for the radius 
of curvature, in rectangular and a kind of polar coordinates, with an infinitesimal 
geometric deduction of the former. I shall discuss these, as well as the proof for 
the formulas in polar coordinates provided by the editor of JAKOB BERNOULLI'S 
Opera, G. CRAMER. LEIBNIZ discussed JAKOB BERNOULLI'S formulas in LEIBNIZ 
1694b and gave other formulas, which I discuss, deduced by a method related 
to his theory of envelopes. 

The discussions on the radius of curvature in the above mentioned writings 
were partly related to a controversy between JAKOB BERNOULLI and LEIBNIZ 
about the number of coinciding intersections of the curve and the osculating 
circle. Also, they reveal a growing tension between the brothers BERNOULLI. 
However, this is not the place to discuss these aspects. Finally it may be remarked 
that  the authors did not use the term radius of curvature, but  rather radius of 
the osculating circle. 

3.1.2. The first example is JOHANN BERNOULLI'S deduction of a formula for 
the radius of curvature in his Integral Calculus (Opera I I I  437), dating from t691. 
The radii OD and BD (see the figure) are perpendicular to the curve A B; they meet 

D 
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in the centre of curvature D. 013 is the arc length differential, corresponding to 
the differentials d x and d y. D B  = r is the radius of the curvature. Because H B  
is normal to the curve, 

d y  
A H = x + y  d , "  

GH is the differential of AH,  and BERNOULLI evaluates this after choosing the 
progression of the variables by taking d x constant ("posito d d x  = 0 " ) :  

H G = d ( A H ) = d ( x  + y ~ )  

dy 2 + y d d y  
= d x +  d ,  

HG occurs in the proportion 

BC:HG = B D : H D ,  
d . 2 @ d y2 y ] / ~ 2  

in which B C =  dx  , B D = r  and H D = r - - B H = r  dx so 

that r can be calculated, which yields 

r = - (d ,2 + dy2)V-d~ + dy 2 
dxddy  

a formula which is valid only under the supposition that  d x is constant. 

By substituting ds = V d x 2 +  dy  ~, which JOHANN BERNOULLI does not do in 
the passage discussed although he certainly has seen the possibility, one gets 

ds  3 
for constant d x, r -  d x d d y  

which is one of the formulas given by JAKOB BERNOULLI; see below. As I have 
pointed out in § 2.20, the choice of the progression of the variables by taking a 
constant d x corresponds to the choice of x as independent variable in a treatment 
of the problem in terms of functions. The formula, therefore, corresponds to the 
well-known formula 

d y 2 l~ 
[dsla/'fd2y] [1+ e.J 

r - -  t ~ 7 * ] / t 7 ~ l  - [ d=y ] 
L77] 

3.1.3. In the example above, the choice of the progression of the variables is 
made in the analytical part of the deduction, after certain relations between 
first-order infinitesimals (GH, CB) are deduced from art inspection of the figure. 
The next  example shows that  relations between higher-order differentials can be 
directly deduced from a figure, in which case the choice of the progression of 
the variables can be made in drawing the figure. The example is JAI~OB BER- 
NOULLfS deduction of a formula for the radius of curvature as it occurs in his 
169g. In the figure, it is supposed that  ds is constant, that  is a b = b c ,  a /  is 
perpendicular to a b, b / i s  perpendicular to b c, so that  / is the centre of curvature 
and b / =  r the radius of curvature. Furthermore, a b is prolonged to h, b h = b c, 
whence al = bin, and the following similarities hold (approximatively) : 

Abmh~-~Ahoc,  

Ahcb~-~Aab/.  
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Hence 

n 

ho ho hc 
bc - -  hc  be  

b m  ab  

- -  b h  b /  

a l  ab  

ab  b] 

(here the constancy of ds is used), so that 

ho  a l  

b6 - -  b f  " 
Now 

b ] =~, ,  

al = d x ,  

bc = ds, 

h o = h m - - n c = b l - - n c = d d y  

(note that  no signs are taken into consideration). Hence 

d x  d d y  

r d s  

d x d s  
so that  r - -  d d ~ '  for constant ds. 

As the supposition of a constant ds corresponds to taking s as independent 
variable (see above), the related formula in terms of functions is 

[a.]/[a~y] 
r=[ds l/tas~]" 

JAKOB BERNOULLI considers in this article also other progressions of the 
variables; he deduces, by a similar infinitesimal geometric argument in which al 
is supposed equal to bn (i.e. d x constant), the formula 

d s  a 
for d x constant r -  d x d d y  
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and analogously 
d s  3 

for dy  constant. r -  d y d d x  

In terms of functions, these correspond to 

[ds]3/ld y] 
r = L d x ] / [ d x ~ j  

and 

r = [  dy  l / [ d Y  2]" 

In the same article JAKOB BERNOULLI gives, without deduction, formulas for 
the radius of curvature in a kind of polar coordinates ~ and B (differing from the 
modern polar coordinates in that  both have the dimension of a line; ~ is the arc 
length of a fixed base circle from a fixed point A to the intersection of the radius 
with the circle; the base circle has radius a. (See the figure.) 

These formulas are: 

ad~lds 
r = 2d~d~? + ~ d d ~  for ds  constant, 

a~ld~ds 
r =- ~ld~ ~ _ aadd~  for ds  constant, 

a 6 / s  3 

r = d~ds 2 +c1~d~72 _,lcl~eddr 1 for d£ constant, 

~ d s  B 

r = d~ds 2 + d~do 2 + ~d~?dd~ for dr/constartt, 

in which formulas, as BERNOULLI points out, the differential of arc length ds  has 
to be evaluated as 

ds  = V~2d~2 + a 2 d ~  
c~ 

3.1.4. The editor of JAKOB BERNOULLI'S Opera (t744), G. CRAMER has added 
a note to the reprint of JAKOB BERNOULLI 1696 in the Opera, ill which he 
provided an infinitesimal geometrical proof for these formulas in polar coordinates 
(Opera 579). The proof is remarkable because it does not make suppositions about 
the progression of the variables in the figure, and thus CRAMER arrived at a for- 



40 H. J .M.  Bos 

mula for the radius of curvature which applies to all progressions, namely 
a d s  8 

r =  d ~ d s 2 + d ~ d ~ + ~ d ~ d d ~ _ ~ ? d ~ d d ~  , 

from which he derived the four formulas above by taking d ds = 0 ,  dd~ = 0  and 
d d~----0 respectively. I shall not give here the rather complicated infinitesimal 
geometrical deduction, but only its starting point, the indications of the various 
differentials in the figure: 

c 

b n 

e f 

A 

A d = a ,  Aa =~?, de=d~, 

lb=d~, e m = d ~ + d d &  

nc =d~? + d d~, 

bc = d s + d d s ,  a /=r ,  

a 

bn= ~d~+d~?d~+~dd~ 
a 

3.1.5. My last example is from LEIBNIZ'S article 1694 b, in which he commented 
on the formulas for the radius of curvature in JAKOB BEI~NOULLI 169~. LEIBNIZ 
remarked that  these formulas are implicit in his own treatment of the evolute 
(the locus of the centres of curvature of a curve) as envelope of the family of the 
normals to the curve. In his 1692a and 1694a LEIBNIZ had discussed the calculus 
of envelopes, or calculus di]]erentialis reciprocus as he called it, which shows how 
to find the envelope of a family 

F(x, y, c) = o  (t) 

of straight lines by differentiating (t) with respect to the parameter c, and sub- 
sequently eliminating c from the resulting equation and (1). 

This procedure can be applied to find the evolute of a curve as the envelope 
of the normals to the curve. The equation of the normal in the point (x, y) of 
the curve is (see the figure) 

y - g = ( / - x )  d .  dy (2) 
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and this equat ion describes the family of normals if x and y (x) are considered as 
parameters  (analogous to c in (t)). Thus one has to differentiate (2) supposing g 
and f constant  and x and y variable, which yields 

dx dx 
d y  = ( f - -  x ) d ~ y y  - -  d x  d y  " (3) 

Now from the equation of the curve, in combinat ion with (2) and (3), the para- 
meters x and y can be eliminated to yield the equation of the evolnte in ] and g. 

This procedure involves differentio-differentials, bu t  LEIBVlZ indicated tha t  
these can be removed by  calculating the differential equat ion of the curve, which 

dx 
yields an expression of ~ -  in terms of x and y;  if this expression is inserted in 

(3), no higher-order differentials will occur. The formulas for the radius of 
curvature  which result from this procedure of removing differentio-differentials 
are independent  of the progression of the variables; this proper ty  of the formulas 
consti tutes in LEIBNIZ'S opinion an advantage  over JAKOB BERNOULLI'S 
formulas2 5 

In  the actual  deduction of the formulas LEIBNIZ did not  explicitly use the 
calculus di[Jerentialis reciprocus, so tha t  I can illustrate the procedure directly by  
his deduct ion of two formulas, namely  

r :dy /d[~ss  J and r : ( - - ) d x / d [ ~ s ] ,  

or, as LEIBNIZ gives them in prose: 

The radius of the osculating circle is to unity as the element of one of the co- 
ordinates is to the element of the ratio of the elements of the other coordinate 
and of the curve36 

The radius of curvature  CG (see figure) is perpendicular to the curve A CC', 
whence 

r:(l--x)=ds:dy,  or r~s =]- -x .  

f 

f----~g 
G 

6s ,, Sed et pro centris non minus ac radiis circulorum osculantium theoremata 
generaliora formari possullt, quae certorum elementorum aequalitate non indigent." 
(LEIBNIZ 1694b; Math. Schr. V, p. 309.) 

s e  ,,... radius osculi est ad unitatem, ut elementum unius coordinatae est ad 
elementum rationis elementorum alterius coordinatae et curvae." (LEIBNIZ 1694b; 
Math. Schr. V, p. 309.) 
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LEIBNIZ differentiated this equation, considering r and ] as constants, which gives 

r d [ ~ s ]  = - - d x .  

This procedure is the analogue of differentiating the equation of the family of 
normals with respect to x and y, keeping g and [ constant. I t  follows that 

r = - - d x / d [ ~ s ] ,  

and, by a similar argument, 

is derived. 

r = d y  d ~ -  

This example is important for three reasons. First the formulas involve only 
dy dx 

first order differentials of the finite variable quantities x, y, s, ds ' ds ' and are 

therefore independent of the progression of the variables, an aspect which, as we 
have seen, LEIBNIZ valued highly. Secondly, this independence of the progression 

dy dx 
of the variables is achieved by introducing the differential quotients d~s and d~- 

as new variables. These two features, the endeavour to find formulas independent 
of the progression of the variables and the resulting introduction of differential 
quotients, will be discussed further in Chapter 5, where I shall show that  they 
underlay a program of EULER to eliminate all higher-order differentials from the 
calculus. 

Thirdly, the example shows how different the LEIBNIZlAN calculus is from 
the calculus involving functions; indeed the formulas which LEIBNIZ deduced, 
in contrast to the formulas of the BERNOULLIS, cannot be translated directly in 
terms of functions and derivatives, just because the progression of the variables 
is not, and need not, be specified. 

3.2.0. In the following sections I discuss JOHANN BERXOULLI'S deduction of 
rules for transforming from one progression of the variables to another. BERNO- 
ULLI'S deduction shows that  such transformation rules involve the introduction 
of differential quotients or differential coefficients; they are therefore important 
in connection with the emergence of the concept of derivative. 

I use the term differential quotient to denote a quotient of differentials, say, 
dy/dx;  and the term differential coefficient to denote a coefficient in an equality 
between differentials, such as p in d y = p  d x. Obviously, differential quotients 
and differential coefficients only differ in the way they are introduced in calcula- 
tions. Their role in analysis is akin to the role of derivatives, but  there is an 
important difference: differential quotients or coefficients are not defined by 
means of limits, and they need not be conceived as functions. 

3.2.1. The formulas for the radius of curvature are expressions involving 
higher-order differentials. Such expressions in general depend on the progression 
of the variables. That  is, given a variable V, whose definition involves higher- 
order differentiation (such as the radius of curvature), then analytical expressions 
A i for this variable, calculated with respect to different progressions Pi of the 
variables, will in general differ among each other; and there will also be an 
analytical expression A which represents the variable V with respect to every 
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progression of the  var iables  67. The  quest ion which suggests  itself in th is  s i tua t ion  
is how A i and  A are re la ted,  and  whe ther  there  are t r ans fo rma t ion  rules b y  which 

A i and  A can be ca lcu la ted  f rom given A 1, Px and  Pc. 
The  same s i tua t ion  occurs in the  case of h igher-order  d i f ferent ia l  equat ions.  

In  Chapter  5 I shall  deal  in somewha t  g rea te r  de ta i l  wi th  the  problems  connected  
wi th  the  dependence  of h igher-order  dif ferent ia l  equat ions  on the  progression of 
the  var iables .  Suffice i t  here to  r e m a r k  t h a t  a h igher-order  d i f ferent ia l  equa t ion  
E 1 = 0, va l id  wi th  respect  to a specified progression P1 of the  variables ,  defines a 
curve or a re la t ionship  be tween cer ta in  f ini te  var iables  (or, if no b o u n d a r y  
condi t ions  are imposed,  a set of curves  or relat ionships) .  W i t h  respect  to o ther  
progressions P i  of the  var iables ,  the  same curve or re la t ionship  will be def ined 
b y  different ia l  equat ions  E i = 0 ,  and  there  will also be a different ia l  equa t ion  
E = 0 which defines the  curve or re la t ionship  wi th  respect  to every  progression 
of the  var iables  (I shall  use the  t e rm "general different ia l  e q u a t i o n "  for E = 0)38 
Again,  the  obvious  quest ion to ask  in this  s i tua t ion  is how the  E i and  E are  
related,  and  whe ther  there  are t r ans fo rma t ion  rules b y  which E i and  E can be 

der ived  f rom given E 1, P1 and  Pc. 

3.2.2. A b o u t  the  middle  of the  e ighteenth  cen tu ry  this  p rob lem h a d  been 
recognised and  i t s  solut ion had  become one of the  s t a n d a r d  techniques  of the  
calculus. 69 I shall  discuss the  solut ion as g iven b y  JOHANN BERNOULLI in an 

07 To take the radius of curvature as example:  

V = r ,  
ds 8 

AI: r - -  d x d d y  for P~: dx constant, 

dxds  
A2: r - -  ddy for P2: ds constant, 

ds a 
XB: r = d y d d x  for PB: dy constant, 

dy 
A : r - -  for any progression of the variables. a[a*/ 

\ d s ]  

I t  should be stressed tha t  the A i and A are not  uniquely determined, as is illustrated 
by  the two formulas which LEIBNIZ gave for the radius of curvature independent of 
the progression of the variables. 

e, To take the  third-order differential equation of the parabola  ay = .2 as example 
(a.  § 2.20) : 

El: aday = 0  for PI: d* constant, 
E2: 0 = 6 d . d d .  + 2 . d 8 .  for P2: dy constant, 
E :  aday = 6 d . d d .  + 2 d x d a .  for aay  progression of the variables. 

89 EULER dealt  with the technique in great  detai l  in his 1788; §§ 252-262 and 
272-278 of Chapter 8, concern the case of formulas or expressions ill general, and 
Chapter 9. §§ 298-306 (c]. § 5.11-§ 5.12) the case of differential equations. I)'ALEM- 
BERT, in his article Di/]drentiel in the Encyclopddie, gave rules to transform a second 
order differential equation in which d .  is supposed constant  into the pertaining 
general differential equation, and he noted:  "Cet te  regle est expliqu6e darts plusieurs 
ouvrages, et  surtout  darts la seeonde partie du caleul intdgral de M. de Bougainville, 
qui ne tardera  pas g paroitre.  En a t tendant  on peut  avoir recours aux oeuvres de Jean 
Bernoulli, tom IV,  pag. 77; .. " (References are to BOUGAINVILLE 176g and JOHANN 
BERNOULLI Opera.) 
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" A n e c d o t o n "  dating probably  from short ly  after t715 but  published only in 
1742. 70 The title of the short  note is 

Problem. To render incomplete differential equations of arbitrary degree complete, 
that  is, to transform them into others, in which no differential has to be supposed 
constant. 7~ 

Underlying BERNOULLI'S solution is a fact  I explained in § 2.2t : differential 
equations tha t  involve only first-order differentials of finite variables are in- 
dependent  of the progression of the variables. Thus if one can t ransform the given 
differential equat ion into a differential equation involving first differentials only, 
then one can drop the restriction to the specified progression of the variables. In  
his note  BERNOULLI worked this out  for the case of differential equations valid 
under  the supposition of a constant  d x. 

First  he introduced differential coefficients (or differential quotients, but  
BERNOULLI did not  use a separate term for them) z, t, v, etc. These are finite 
variables, and their definition involves only first-order differentials, so tha t  they  
are independent  of the progression of the variables, z is defined by  

d y  = z d x  (4) 
or 

dy  
z - -  d x "  

Differentiation of (4) yields (because d x is constant)  

d d y = d z d x ,  

and BERNOULLI introduced t by  

d d y = d z d x = t d x  ~, (5) 
whence 

dz 
t---- 

d x "  

Again, differentiation of (5) yields 

# y  = d t d x  2, 

and v is in t roduced by  
# y = d t  d x 2 = v  d x 3, 

T0 JOHANN BERNOULLI opera IV, pp. 77-79. The note opened with a reference to 
TAYLOR 1715. TAYLOR discussed there the following problem: "Aequationem fluxio- 
nalem, in qua sunt fluentes tantum dune z et x, quarum z fluit uniformiter, ita trans- 
mutate ut fluat x uniformiter." This, of course, is the formulation in the terminology 
of fluxions of the problem of transforming a differential equation applying for constant 
dz into the corresponding differential equation applying for constant dx. 

71 ,, Problema. Aequationes differentiales incompletas cujuseunque gradus reddere 
completas, hoe est, eas transmutare in alias, in quibus nulla differentialis supponatur 
constans." (JOHANN BERNOULLI Opera IV, p. 77.) Thus the problem is, if expressed 
by means of the notation introduced above, to derive E from E I and Pv BERNOULLI 
used the adjective "complete"  for the general differential equation and conceived 
the differential equations for specified progressions of the variables as "incomplete ", 
presumably because they are derived from the "comple te"  differential equation by 
discarding those terms which, in the case of the specified progression of the variables, 
are equal to zero. 
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that  is 
dt 

v - -  dx"  

Obviously, this process can be repeated till the highest-order differential involved 
is reached. 

If now, in the original differential equation, the following substitutions 
are made: 

dy_+dy, ddy-->dzdx, day-+dtdx ~, # y _ + d v d x  a 

etc., then the resulting differential equation will involve only first-order differen- 
tials of finite variables (namely of x, y, z, t, v, etc.), and will therefore be inde- 
pendent of the progression of the variables. From this resulting differential 
equation, the differential coefficients have now to be eliminated, but  this without 
losing the independence of the progression of the variables. To do this BERNOULLI 
applied the rules of the calculus without making a supposition about the progres- 
sion of the variables 

(dy)  dxddy- -dyddx  
d z = d  tiT- = dx 2 ' 

dz)  = d { d . d d y - - d y d d x l  
dt = d 7 7  \- ~ -) 

dx=day -- 3 dxddxddy -+- 3 ddx2dy -- dxdyclax 
= d x 4  

dv=d(ff~t,) d( dx=day-3duddxddy+3ddx2dy-dxdydax  
= d x 4 ! 

1 
- -  d ,  e (dxa#y - - 6 d x = d d x d a y +  t5 d x d d x 2 d d y  -- t5  ddxady  

- - 4 d x Z d a x d d y +  t O d x d d x d a x d y - - d x Z # x d y ) .  

Substitution of these results yields a differential equation which is independent 
of the progression of the variables (or, in BEmVOULLI'S terminology, "complete") 
and which involves only the original variables x and y and their differentials. 

The introduction of the differential coefficients z, t, v, etc. was necessary to 
prove the transformation rules, which now can be stated directly: In order to 
derive the general differential equation from the original differential equation 
applying for constant d x, one has to perform the following substitutions: 

d y--->d y, 

ddy-+ dxddy--dyddx 
d x  

day_+ dx2day --3dxddxddy + 3ddx2dy --dxdydax 
dx2 

d*y-+(dxad4y- -6dx2ddxday+ t S d x d d x 2 d d y - - t 5  ddxady- -4dx2daxd  dy 

+ tOdxddxdaxdy - -dx=d4xdy ) /dx  a. 

3.2.3. In a Scholium which follows these transformation rules BERNOULLI turned 
to the problem of deriving the differential equation for any specified progression 
of the variables from the differential equation applying for the progression with 
constant d x, or, as he put  it in not too rigorous terminology: 
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This rule is of use in transforming constant differentials into other constant 
differentials. ~ 

To do this, BERNOULLI indicated, one first derives the general differential equation 
by  the transformation rules and then one applies the property of the differentials 
implied in the specification of the new progression of the variables to transform 
the general differential equation into the required differential equation. The 
procedure is explained by  examples: If  the new progression of the variables 
requires d y constant, all terms in the general differential equation involving 
d d y ,  d 3 y etc. are to be discarded. If the element of arc d s is supposed constant, 

it follows tha t  d V d - x ~ - + d - y ~ = O ,  whence d x d d x + d y d d y = O ,  so that  
d x d d x  

d d y = dy . From this, by  repeated differentiation, formulas for d a y ,  # y ,  

etc. can be found, which, if substituted in the general differential equation, yield 
the differential equation applying for constant d s .  Similarly BERNOULLI discussed 
the case in which y d x is supposed constant. 

3.2.4. Two remarks on BERNOULLI'S t reatment  of the transformation rules 
are appropriate. First, as in the case of LEIBNIZ'S formula for the radius of 
curvature, independence of the progression of the variables is gained by  intro- 

d y  d z  
ducing the differential coefficients, or differential quotients z ~ ~ - ,  t ~ d ~ '  etc., 

so that  we see here an example of the fact tha t  consideration of problems relevant 
to the indeterminacy of higher-order differentials induces differential coefficients 
or differential quotients to emerge. ~a In Chapters 4 and 5 I shall discuss examples 
from studies of LEIB~IZ and EULER in which this process is also evident. 

Secondly, as I indicated in § 2.21, the choice of progression of the variables 
corresponds to the choice of an independent variable in a t reatment  of the 
problem in terms of functions. However, in BER~OULLI'S study, as indeed in 
most of the writings on these transformation rules, the terminology of constant 
differentials is used, tha t  is, a concept of function of one specified variable is 
not involved, the problem is conceived and treated entirely in terms of variables 
and their progressions. How strong this conception was, is shown by  the fact 
that  when CAoctt¥, in t 823, presented the transformation rules discussed above 
as rules describing the change of independent variable, he still used the termino- 
logy of the constant differential: 

I t  is by substitutions of this kind that one can operate a change o/ independent  
variable ( . . . )  To return to the case in which z is the independent variable, it would 
suffice to suppose the differential d x constant, and hence d~x = O, dax = 0 . . . .  ~ 

~2 ,, Hujus Regulae est usus in transformandis differentiMibus constantibus in alias 
constantes." (JOHANN BEI~NOULLI Opera IV, p. 78.) 

~a The fact is even more evident in EULER 1755, which I discuss in Chapter 5. 
~4 ,, C'est par des substitutions de cette nature qu'on peut op6rer un changement de 

variable inddpendente ( . . . ) .  Pour revenir au cas off x est variable ind6pendente, il 
suffirait de supposer la differentielle d x constante, et par suite d 2 x ~ O, d3 x = 0 . . . .  " 
(CAtlCHY 1823; Oeuvres (II) IV, p. 74.) Later, the assumption that the differential of 
the independent variable is constant caused confusion. Compare for instance 
HADAMARD 1935: " J'ai lu, comme tout le monde, l'histoire de la diff@rentielle de la 
variable independente qui dolt &tre constante (et qui est d'ailleurs forc@ment variable 
puisque infiniment petite)." (p. 341.) 
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3.3.0. In seventeenth-century analysis relations between variable quantities 
were usually represented by equations, but this was by no means the only way. 
In fact, as I mentioned in § t.3, there were types of relations which could not 
be represented by equations, such as the relation between the coordinates of 
transcendental curves. Another way of representing relations between variable 
quantities which was very common in the seventeenth century, was propor- 
tionality. I t  was used especially in those cases in which representation by an 
equation would involve dimensional difficulties. 

For the representation of relations between infinitesimal variable quantities 
both equations and proportionalities were used. The former, of course, were the 
differential equations, and I shall refer to the latter as differential proportions. 
In this section I shall discuss the role of the progression of the variables with 
respect to differential proportions. 

3.3.1. Differential proportions occur especially in the treatment of 
physical, more precisely mechanical problems. Therefore I have to make some 
preliminary remarks about the mathematical treatment of physical problems in 
the seventeenth and early eighteenth centuries. This subject deserves more space 
and attention than I can devote to it here; indeed the unfortunate habit of 
historians of science of transferring the mathematical treatment of physical 
problems directly into modern mathematical symbolism has obscured many 
important aspects of seventeenth century physics. I am sure that  an extended 
study of the influence of the mathematical methods and styles on the develop- 
ment of physics will show important new insights. 

Mathematics is used in the treatment of physical problems to represent and 
analyse the relations between physical quantities such as length, weight, time, 
mass, velocity, force, momentum, etc. Representation of these relations by 
equations involved, for the seventeenth-century mathematician, considerable 
conceptual difficulties connected with the requirement of dimensional homo- 
geneity. As I have indicated in § 1.5, quantities of different dimension could not 
be added, and multiplication of quantities always involved a change of dimension. 
These conceptual difficulties were solved later in the eighteenth and nineteenth 
centuries by accepting in the formulas any combination of a restricted number of 
basic dimensions (mass, length, time and a few others), and by allowing dimen- 
sioned factors in equations to make dimensions on both side of the equality sign 
equal. But in the seventeenth century such dimensioned factors were not ac- 
ceptable, and thus direct comparison of quantities of different dimension by 
means of equations was virtually impossible. 

In view of these conceptual difficulties related to dimensional homogeneity 
it is not surprising that two other ways of representing relations between physical 
quantities were prominent in seventeenth century mathematical physics, namely 
proportions and proportional representation by line segments. Proportions 
apply to linear dependence between variable quantities, a relation which is 
perhaps the oldest and certainly the most important relation between physical 
quantities for which a special technical terminology was developed. Two inter- 
dependent variable quantities, say X and Y, are said to be proportional, or to 
vary proportionally, if for any two pairs of corresponding values X,  Y and 
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X',  Y' ,  always 
X : X '  ~ Y:  Y'.  

The terminology (X is " a s "  Y) as well as the interpretation avoids all dimen- 
sional difficulties because it considers only ratios between quantities of the same 
dimension. All physical laws which seventeenth-century natural philosophy 
discovered and which concerned linear relations between different physical 
quantities were represented in the terminology of proportions. 

3.3.2. To represent non-linear relations between physical quantities the 
seventeenth-century mathematician could use a method which can be called 
proportional representation by line segments. This procedure involved the intro- 
duction of variable line segments proportional to the original physical quantities. 
Thus if a relation between the physical variable quantities ~ and ~ was studied, 
one introduced variable line segments x and y, x proportional to ~, y proportional 
to ,/, and the induced relation between x and y could be represented by a curve 
drawn with respect to an X- and an Y-axis. This introduction of line segments 
proportional to physical quantities is very clearly expressed in the following 
passage from all article by LEIBNIZ, in which he discussed a certain case of 
retarded motion where a relation between velocity (v), time (t) and space traversed 
(s) applied which we should express by  an equation 

(¢¢ and fl constants), but  which LEIB~IZ indicated as follows: 

There are straight lines proportional to the times elapsed, and if from each of 
these the straight line is subtracted which is equal to the corresponding space 
traversed by the moving point, then the remaining straight line will be propor- 
tional to the acquired velocity? 5 

It  is important to stress that  both for proportions and for propor- 
tional representation no unit lengths or unit quantities were introduced. Hence 
the relations are not reduced to relations between real numbers (as in modern 
mathematical physics), but  essentially as relations between unscaled line seg- 
ments. The mathematical physics of the seventeenth century was a truly geo- 
metric physics. 

Moreover, proportional representation, in the absence of fixed units, implied 
a freedom of choice which the seventeenth-century mathematicians often aptly 
used: if two physical quantities are proportional, one can take one variable line 
segment to represent both. Thus, for instance, in the case of free fall, where 
velocity is proportional to time, both velocity and time can be represented by 
the same geometrical quantity. This is indeed what LEIBNIZ and HUYGENS did 
in their discussion on motion in resisting media (see § 3.3-4). Thus, in their geo- 
metrical analysis, the law of fall was taken as v = t ;  of course the final results 
were formulated again in terms of proportionalities. 

3.3,3. The branch of physics in which these geometric methods were applied 
with most spectacular success was mechanics, especially the study of forces and 

v5 "Dantur rectae proportionales temporibus insumtis, a quarum unaquaque si 
detrahatur recta aequalis respolldenti spatio percurso a puncto inobili, residua recta 
erit proportionalis velocitati acquisitae." (L~IBNIZ 1689a; Math. Schr. VI, p. t38.) 
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of the resulting changes of motion. This study of change of motion involved 
infinitesimals, and thus we find differential proportions in dynamics. Like 
differential equations, differential proportions in general depend on the pro- 
gression of the variables, that  is, the same differential proportion may represent 
different relations between the variables involved according to the different pro- 
gressions of the variables with respect to which the proportion is supposed to 
apply. 

In contrast to the case of first-order differential equations, which are inde- 
pendent of the progression of the variables, there are differential proportions 
involving only first-order differentials which do depend on the progression of the 
variables. An example is 

dy~.~y 

which means (see the figure) that  for every corresponding y, dy and y*, d'y: 

dy:d*y=y:y*. 

.•d*y ~ y  dy Y* 

Obviously this interpretation is inconclusive unless the relation between d y and 
d*y is indicated; choosing different progressions of the variables affects the left- 
hand side but not the right-hand side. For instance if d x is supposed constant, 

t 
dy~-~y implies y =ce'; if y dxis supposed constant, dy ,~y  implies y = ~-; and 

if dy is supposed constant, the interpretation is not clear, because dy~-~y would 
imply y =c ,  and d y = O, so that  y does not take part in a progression of the 
variables. 

The cases in which differential proportions do not depend on the progres- 
sion of the variables are those in which the proportions are directly reducible 
to differential equations which are independent of the progression. That  is, the 
differential proportion 

A ~ B  

is independent of the progression of the variables if A and B are of the same order 
of infinity and both involve only first-order differentials. In that  case the propor- 
tion is equivalent to 

A =cB 

which is a differential equation of the type described in § 2.2t. 

3.3.4. I turn now to a discussion between LEIBNIZ and HUYGENS which 
illustrates the difficulties connected with the requirement that  the progression 

4 Arch. Hist. Exact Sci., Vol. 14 
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of the variables in the case of differential proport ions be specified. In  his 
1689a,  LEIBNIZ published some results on motion in resisting media. He distin- 
guished between two kinds of resistance, absolute and relative, the distinction 
being concerned with the dependence of the resistance on the velocity. LEIBNIZ 
considered resistance to be the action of the medium which diminishes the 
" f o r c e "  of the body. He took the diminution of the body 's  velocity to be propor- 
t ional to the diminution of its " fo rce" .  

His definitions of the two kinds of resistance were: 

Absolute resistance is the resistance which absorbs equal amounts of the forces of 
the moving body, whether it moves with a small or with a large velocity, if only 
it moves, and this resistance depends on the glutinosity of the medium (...). 
Relative resistance is caused by the density of the medium, and it is greater in pro- 
portion as the velocity of the moving body is greater (...)38 

Later  on in the article he made it explicit tha t  in the case of relative resistance, 
the motion is retarded in proport ion to the velocity. Diminut ion of force, or of 
velocity, is a differential, so these definitions imply differential proportions, 
namely  

absolute resistance: dv  constant ,  (z) 
relative resistance: dv  ,-~v. 

Both  proport ions (and therefore bo th  LEIBNIZ'S definitions) are meaning- 
less, unless the progression of the variables be specified. In  this case, tha t  means 
unless it be s tated whether  the diminutions are taken over equM intervals of 
t ime (dt  constant) or over equal intervals of some o t h e r  variable. As appears 
f rom LEIBNIZ'S article he considered the diminut ion over equal intervals of space 
(ds constant),  which is understandable  because he considered the resistance as 
a proper ty  of the medium. Indeed he specified tha t  in the case of absolute 
resistance: 

The elements of the velocity which the body loses are as the elements of the space 
traversed27, (8) 

and in the case of relative resistance: 

The diminutions of the velocity are in the composite ratio of the actual velocity 
and the increments of the space traversed. 7s 

(8) corresponds to 
absolute resistance: d v , - ~ d s  

and 
relative resistance: d v , ~  v d s. 

(8) 

(9) 

(9) 
78 "Absoluta resistentia est, quae tantundem virium mobilis absorber, sive id parva 

sive magna veloeitate moveatur, dummodo moveatur, et pendet a medii glutino- 
sitate (...) 
Resistentia respectiva oritur ex medii densitate, et major est pro majori mobilis veloci- 
tare (...)." (LEIB~IZ 1689a; Math.  Schr. VI, p. 136.) 

7~ , , . . .  elementa velocitatum amissarum sunt ut elementa spatiorum percur- 
sorum . . . .  " (LEIBNIZ 1689a; Math.  Sehr. ¥I ,  p. 137.) 

78 ,, Diminutiones velocitatum sunt in ratione composita veloeitatum praesentium 
et incrementorum spatii." (LEIBNIZ 1689a; Math. Schr. VI, p. 140.) 
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The formulas (9) are differential proport ions between terms of the same 
order of infinity and involving only first-order differentials; they  are therefore 
independent  of the progression of the variables. But  it is clear tha t  the translat ion 
of (6) into (9) applies only if ds is taken constant ,  so tha t  the specification of the 
progression of the variables plays a crucial role in t ranslat ing the prose descrip- 
t ion of this kind of retarded mot ion into effective mathemat ica l  symbolism: only 
if ds is considered constant  can the absolute resistance be called independent  of 
the velocity and the relative resistance proport ional  to the velocity. 

3.3.5. However,  in his article LEIBNIZ was not  explicit about  the need to 
specify the progression of the variables, and he was forced to elaborate on this 
point  in a very  revealing correspondence with HUYGENS on this matter .  Wri t ing 
to HUYGENS on 6-11-t69t, LEIBNIZ compared his own results with HUYGENS' and 
NEWTON'S studies on mot ion in resisting media, and he found tha t  the results on 
what  he called relative resistance, or resistance proport ional  to the velocity, 
coincided with the results which HUYGENS and NEWTON had derived for resistance 
proport ional  to the square of the velocity. He concluded tha t  this discrepancy in 
the formulat ion of the start ing points was caused by  the fact t ha t  HUYGENS and 
NEWTON had  considered change of velocity in equal intervals of time, whereas he 
himself had considered change of velocity in equal intervals of space; and indeed, 
if we consider the formula for relative resistance (9) which is independent  of the 
progression of the variables 

d v ~ v d s ,  

and if we suppose dt constant,  then (because ds ~ v  dt) 

dv,,~v ds~,~v2 dt. 

Thus if dt is considered constant ,  one can say tha t  the relative resistance is propor- 
t ional to the square of the velocity. 

LEIBNIZ objected to HOYGENS tha t  he and NEWTON should have made 
this clear: 

To put it exactly, one is only allowed to say that  the resistances are proportional 
to the velocity, or to the square of tile velocity, if one also indicates the time or 
tile medium, as I have done? 9 

He came back to this question in his addit ion 1691 to his article on motion in 
resisting media, where he wrote:  

About relative resistance I find that  our arguments are based on the same founda- 
tion, although at first sight this may not seem to be the case. For they [i.e. 
I-IUYGENS and NEWTON] suppose the resistances in the duplicate proportion of 
the velocities, while I, speaking in absolute terms, have stated that  the resistances 
(which I measure by the decrements of the velocity caused by the density of the 
medium) are in the composite ratio of tile velocities and tile elements of the space 
which are to be traversed with the corresponding velocities. But if then the 
elements of the time are taken equal (in which case tile elements of tile space to 
be traversed are proportional to the velocities) the resistances are indeed in the 
duplicate ratio of tile velocities, s° 

~9 " A  parler exactement on ne doit pas dire que les resistences sont en raison de 
velocit6 ny en raison des quarr6s des v61ocit6s, s ice n'est qu'on adjoute le temps ou le 
milieu, comme j 'ay  fair." (HUYGENS Oeuvres X, p. t2.) 

so "Circa respectivam (that is, resistentiam) video nos iisdem fundamentis in- 
aedificasse, etsi prima fronte aliud videri possit. Ipsi (that is, HUYGENS and NEWTON) 
4* 
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HUYGENS eventually agreed that LEIBNIZ'S results corresponded to his own 
and NEWTON'S, but  he still objected to calling the resistance in that  case propor- 
tional to the velocity; he maintained that  the constancy of the intervals had 
nothing to do with the question, resistance was a force in the same way as gravity 
is a force, and considering the diminutions of velocity in certain elements of 
time or space as the resistance was taking the effect for the cause (letter of 
HUYGENS to LEIBNIZ 23-11-1691, HUYGENS' Oeuvres, X t9). 

The discussion is important because it centered on the special role of the 
variable time in the study of force in terms of acceleration, which was made 
prominent by NEWTON in the Principia. The algorithm of differentials made this 
role explicit: acceleration is the derivative of velocity with respect to time; hence 
if one wants to introduce differentials, one has to assume the progression of the 
variables with dt constant. In other words, if one applies this NEWTONIAN concept 
of force, one can only compare forces by comparing the changes of motion they 
produce in equal (infinitesimal) intervals of time. 

3.3.6. Not only is the constant differential crucial in the interpretation of 
differential proportions, it also plays an important role in the technique of 
treating and eventually solving these proportions. In the tansformation of 
the proportions (7), above, into (9), the constant ds is used to make the 
order of infinity on both sides of the proportion equal. In order to transform 
(9) further into differential equations the introduction of dimensioned factors 
would have been necessary, which, as I indicated above, would involve conceptual 
difficulties for the mathematician of the seventeenth century. However, in the 
case of differential proportions between geometric quantities these diffi- 
culties were not felt; the factor of proportionality would have an acceptably 
interpretable geometric dimension. Indeed, if the proportionality factor has to 
be of dimension m and order of infinity n, and if dt is the constant differential of a 
variable line segment t, the required factor will be a'~-'(dt) ~, in which a is a 
line segment. 

An example of the use of the constant differential and of dimensioned factors 
to reduce geometric differential proportions to differential equations is 
provided by a series of problems which LEIBNIZ proposed in his 169gb in connec- 
tion with the catenary. As LEIBNIZ and others had noted, the catenary satisfies 
the differential proportion 

d d x ~ ( d y )  3 (ds constant). 

This property provided LEIBNIZ the occasion to put  the question which curves 
have the properties 

ddx~, , (dy)  2 (ds constant) 

enim statuunt resistentias in duplicata ratione velocitatum, ego vero absolute loquendo 
resistentias (quas decrementis velocitatis a medii densitate ortis existimo) esse dixi in 
ratione composita velocitatum et elementorum spatii, quae scilicet velocitatibus 
respondentibus decurri inchoantur; unde jam elementis temporis sumtis aequalibus 
(quo casu elementa spatii decurrenda velocitatibus proportionalia sunt) utique 
resistentiae erunt in duplicata ratione velocitatum . . . .  " (LEIBNIZ 1691; Math. Schv. 
VI, p. 144.) 
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and 
d d x ~  dy  (ds constant).  

LEIB•IZ, in fact, described these differential proport ions entirely in prose, 
and the passage is a good example of this style:  

Also I can solve without difficulty the following problem: to find the !ine with 
the property that  if its arc increases uniformly, the elements of the elements of 
the abscissas are proportional to the cubes of the increments or elements of the 
ordinates; it is very true that  this occurs in the case of the catenary or funicular. 
But because this is already noted by the ]3ernoullis I shall add here that  if, in- 
stead of the cubes of the elements of the ordinates, the squares are taken, the 
required line will be logarithmic. And I find that  if the elements themselves of 
the ordinates are proportional to the elements of the elements, or the second 
differentials of the abscissas, the required line is the circle, sl 

Now JAKOB BERNOULLI, comment ing on these differential proportions 
in his 1698, t ransformed them into differential equations by  adjusting, in the 
way  I indicated above, appropriate  powers of an arbi t rary  line segment a and of 
the constant  ds. The result was 

ads  d dx  = (dy) 3 

a d d x = ( d y )  2 

a d d x =  d s d y  

(ds constant),  

(ds constant),  

(ds constant). 

I t  is of interest to note tha t  if these differential equations are t ransformed 
into the corresponding derivative equations, the constant  ds is used in a similar 
way :  bo th  sides of the equation are divided by  the appropriate  power of ds in 
order to make them finite. Thus the corresponding derivative equations are 

a~s~ = \  ds ( dY l* (division by  ds3), 

a d~-s~ = \ ds ( d y I~ (division by  ds~), 

d~x dy (division by  ds~). 
a d s  ~ -- ds 

4. LEIBNIZ'S Studies on the Foundations of the Infinitesimal Calculus 

4.0. The present chapter  is devoted to certain aspects of LEIBNIZ'S studies on 
the foundat ions of the infinitesimal calculus. The importance of these studies lies 
primari ly in the fact tha t  they  show how deeply LEIBNIZ unders tood the 
questions about  the nature  and the existence of differentials and higher-order 

sl "Caeterum a me quoque non difficulter solvitur illud problema: Invenire 
lineam cujus arcu aequabiliter crescente elementa elementorum, quae habent abscis- 
sae, sint proportionalia cubis incrementorum vel elementorum, quae habent ordinatae, 
quod in catenaria seu funiculari succedere verissimum est. Sed quoniam id jam a 
Bernoulliis est notatum, adjiciam, si pro cubis elementorum ordinatarum adhibeantur 
quadrata, quaesitam lineam fore logarithmicam; si vero ipsa simplicia ordinatarum 
elementa sint proportionalia elementis elementorum seu differentiis secundis abscis- 
saruln, inveni lineam quaesitam esse circulum ipsum." (LEIBNIZ 1692b; Math. Schr. 
V, p. 285.) 
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differentials and how successful he was in his a t tempts  to solve the problem of 
the foundations of the calculus. MoreoVer, in examining these studies, we can 
achieve an explanation of the occurrence of an alternative definition of the 
differential in some of LEIBNIZ'S earlier articles on the calculus. Also, the studies 
show how an interest in fundamental questions concerning the differential leads 
naturally to the introduction of the concept of function and the differential 
quotient, and thus to a concept which comes close to that  of the derivative. 

One preliminary remark has to be made, however; these studies of LEIBNIZ 
did not exert any influence on the actual development of the calculus in the 
eighteenth century. The prime source I discuss is a manuscript first published in 
t846. L]~IBNIZ'S studies share this lack of direct influence with the other more 
publicly conducted discussions on the foundations of the calculus, such as 
NIEUWENTIJT'S critique s2, the controversy in the French Royal Academy s8 and 
the most famous of the debates on foundation of infinitesimal mathematics,  
those started by  BERKELEY s4. I t  seems that  none of these had significant influence 
on the actual practice and the results of infinitesimal analysis in the first half of 
the eighteenth century. 

4.1. Most of the early practitioners of the LEIBNIZlAN calculus (although not 
LEIBNIZ himself) accepted the existence of infinitesimal quantities and justified 
the rules of the calculus by  appealing to this existence. The usual criticism of the 
calculus denied, or at any rate questioned the existence of infinitesimal quantities. 
LEIBNIZ himself had a much deeper understanding of the nature of the problem. 
He was aware that  in fact there are two separate questions: one, whether 
infinitesimal quantities actually exist; the other, whether analysis by  means of 
differentials, following the rules of the calculus, leads to correct solutions of 
problems .85 

On the first, metaphysical, question LEIBNIZ did not commit himself defini- 
tively; indeed he doubted the possibility of proving the existence of infinitesimal 
quantities. His answer to the second question, the justification of the calculus, 
had therefore to be independent of the first; he could not invoke the existence of 
infinitesimals in answer to obiections to the validity of the calculus. Instead, he 
had to treat  the infinitesimals as "f ic t ions"  which need not correspond to actually 

s2 C/. lX~IEUWENTIJT 1694 and 1696, LEIBNIZ 1695a and 1695b, and HERMANN 1700. 

S8 Compare note 89. 
s4 See BOYER 1949, pp. 224--229. 
s~ ,, Interim an status ille transitionis momentaneae, ab inaequalitate ad aequali- 

tatem, a motu ad quietem, a convergentia ad parallelismum, vel similis in sensu 
rigoroso ac metaphysico sustineri queat, sen an extensiones infinitae aliae aliis majores 
aut infinite parvae aliae aliis miaores, sint reales; fateor posse in dubium vocari: et 
qui haec discutere velit, delabi in controversias Metaphysicas de compositione continui, 
a quibus res Geometricas dependere non est necesse. (...) Si omnino ultimum aliquod 
vel saltem rigorose infinitum quis intelligat, potest hoc facere, etsi controversiam de 
realitate extensorum nut generatim continuorum infinitorum aut infinite parvorum 
non deeidat, imo etsi talia impossibilia putet; suffecerit enim in ealculo utiliter 
adhiberi, uti imaginarias radices magno fructu adhibent Algebristae." (LEIBNIZ Cu~w 
prodiisset, p. 43.) 
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exis t ing quant i t ies ,  bu t  which never theless  can be used in ti le analysis  of 
problems.S° 

LEIBNIZ a t t emp ted ,  wi th  considerable  success, to jus t i fy  t i le  calculus. How- 
ever, in the  wr i t ings  t h a t  were publ i shed  in his l ifetime, he a lways  wrote  r a the r  
elusively abou t  the  quest ion,  so t ha t  his r emarks  caused more  confusion t han  
clar i f icat ion;  and  even af ter  the  publ ica t ion ,  in t i le  n ine teen th  and  twen t i e th  
centuries,  of manusc r ip t s  which conta in  fuller accounts  of these a t t empt s ,  much  
of the  confusion abou t  LEIBNIZ'S opinion on these quest ions has remained,  s7 

4.2. LEIBNIZ considered two different  approaches  to the  foundat ions  of the  
calculus;  one connected  wi th  the  classical me thods  of proof b y  "exhaustion", the  
o ther  in connect ion wi th  a law of cont inui ty .  In  the  first  app roach  he conceived 
the  calculus as an abb rev i a t ed  language for proofs b y  exhaust ion.  Considered in 
t h a t  way,  equa l i ty  be tween two expressions involv ing  different ials  m e a n t  tha t ,  
if ins tead  of the  different ials  the  corresponding f ini te  differences were subs t i tu ted ,  
the  difference be tween the  values  of these expressions could be made  a rb i t r a r i ly  
smal l  (with respect  to  the  values  themselves)  b y  choosing ti le differences smal l  
enough. Thus  the  d iscard ing  of h igher-order  different ials  wi th  respect  to first-  
order  di f ferent ia ls  could be just if ied.  ~ 

This  approach  forms the  background  of LEIBNIZ'S r emark  (in a l e t te r  to 
PINSON sg, which was publ i shed  in 170t), t ha t  the  dif ferent ia l  m a y  be supposed 
to s t and  to  the  var iab le  in t i le  p ropor t ion  of a gra in  of sand to the  ea r th :  

ss "Ego  philosophice loquendo non magis s tatuo magnitudines infinite parvas 
quam infinite magnas, seu non magis infinitesimas quam infinituplas. Utrasque enim 
per modum loquelldi compendiosum pro mentis fictionibus habeo, ad calculum aptis,  
quales et iam sunt radices imaginariae ill Algebra. Inter im demonstravi,  magnum has 
expressiones usum habere ad compendium cogitandi adeoque ad inventionem . . . .  " 
(LEIBNIZ to DES BOSSES, 17-111-1706; Phil. Schr. II, p. 305.) 

sT The most important  manuscript  in this respect is LEIB~IZ Cure prodiisset (1701 
or somewhat later) which was published by GERHARDT in 1846; SCHOLTZ (1982) for 
the first t ime stressed its significance for LEIBNIZ'S ideas on the foundations of the 
calculus; she also showed tha t  LEIB~IZ Quad. Arith. Circ. (1676) contains valuable 
information on this matter .  I t  seems tha t  SCHOLTZ 1982 has not  aroused the interest 
which i t  deserves. BOYER (1959, pp. 210-2t3) has not recognised any consistency ill 
LEIBNIZ'S ideas on the foundations of the calculus; he has therefore presented the 
many quotations of LEIBNIZ on this subject  in a random way- -which  of course 
strongly suggests the absence of any inner structure ill LEIBNIZ'S thought.  

s8 Compare also the following lines Oil tile rule dxy  = z d y + y d x :  "... res ta t  
xdy  + y d x  +dxdy .  Sed hic dxdy  rejiciendum, ut  ipsis xdy + ydx  incomparabil i ter  
minus, et fit  d, xy  = xdy  + ydx,  ira ut  semper manifestum sit, re in ipsis assignabilibus 
peracta,  errorem, qui inde metui queat, esse dato minorem, si quis ealculum ad 
Archimedis s tylum traducere veli t ."  (LEIBlVlZ to WALLIS, 30-111-1699; Math. Schr. 
IV, p. 63.) 

s9 The le t ter  (L~IBNIZ to PINSON, 29-VIII-170t ; Math. Schr. IV, pp. 95/96--par t  
of i t  was published as LEIBNIZ 1701; Math. Schr. V, p. 350) was an impor tant  piece 
of evidence in the controversy on the infinitesimal calculus which raged in the Acad6mie 
des Sciences about  17ol and in which the main contestants were VARIGNON and 
ROLL£, The le t ter  was a reaction to certain remarks of le p6re GouYE (1701) on the 
differential calculus. VARIGNON opened a correspondence with LEIBNIZ on this mat ter  
(VARIGNON to LglmVlZ, 28-XI-170t ; ~/Iath. Schr. VI, pp. 89/90), and received a fuller 
a c c o u n t  of LEIBNIZ'S views on infinitesimals (LEIBNIZ to  VARIGNON, 2- I I - I  702; Math. 
Schr. IV, pp. 91-95) which was published in the Journal des Savans (LEIBNIZ 1702a). 
See further RAVlER 1987, p. 77 (nr. 161). 
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For instead of the infinite or the infinitely small, one takes quantities as large, or 
as small, as necessary in order that  the error be smaller than the given error, so 
that one differs from Archimedes' style only in the expressions, which are more 
direct in our method and conform more to the art of invention. 9° 

Unders tandably ,  this remark caused great confusion in the French mathe-  
mat ical  circle, in which L'H6PITAL and  VARIGNON had  always defended the 
LEIBNIZlAX calculus by  an appeal to the actual  existence of infinitesimals.  Now 
the opponents  of the calculus used the let ter  to PINSON to a t tack  VARIGNON with 
LEIBNIZ'S own words: the differentials were finite. VARIGNON asked for clarifica- 

tion, which resulted in  LEIBNIZ 1702a, in  which LEIBNIZ wrote:  

And to this effect I have given once some lemmas on incomparables in the Leipzig 
Acta, which one may understand as one wishes, either as rigorous infinites, or as 
quantities only, of which the one does not count with respect to the other. But 
at the same time one has to consider tha t  these ordinary incomparables themselves 
are by no means fixed or determined; they can be taken as small as one wishes 
ill our geometrical arguments. Thus they are effectively the same as rigorous, 
infinitely small quantities, for if an opponent would deny our assertion, it follows 
from our calculus that  the error will be less than any error which he will be able 
to assign, for it is in our power to take the incomparably small small enough for 
that,  as one can always take a quant i ty  as small as one wishes. 91 

4.3. The chief source for LEIBmZ'S second approach to the just i f icat ion of the 
use of " f i c t i t ious"  infini tesimals in the calculus is a manuscr ip t  92, da t ing  from 

after t70t  and  published by  C. I. GERHARDT in t846. I t  is a draft  for an article in 
which the rules of the calculus, as published in  LEIBNIZ 1684a, were to be proven. 

LEIBNIZ based his proofs on a law of cont inui ty ,  which he formulated as: 

If any continuous transition is proposed terminating in a certain limit, then it is 
possible to form a general reasoning, which covers also the final limit. 90 

9o Car au lieu de l ' infini ou de l ' infiniment petit, on prend des quantit6s aussi 
grandes et aussi petites qu'il  taut pour que l'erreur soft moindre que l'erreur donn@e, 
de sorte qu'on ne diffSre du stile d'Archim~de que darts les expressions, qui sont plus 
directes dans n6tre m6thode et plus conformes ~ l 'art  d ' inventer."  (LEIBNIZ 1701; 
Math. Schr. V, p. 350.) 

91 ,, Et  c'est pour eet effect que j ' ay  donn6 un jour des lemmes des incomparables 
darts les Actes de Leipzic, qu'on pent entendre comme on veut, soft des infinis ~ la 
rigueur, soft des grandeurs seulement, qui n 'entrent  point en ligne de compte les unes 
au prix des autres. Mais il taut considerer en m@me temps, que ces ineomparables 
communs re@rues n 'es tant  nullement fixes ou detrmin6s, et pouvant  estre pris aussi 
petits qu'on vent  darts nos raisonnemens Geometriques, font l'effect des infiniment 
petits rigoureux, puis qu'uI1 adversair voulant  contredire k nostre enontiation, il 
s 'ensuit par nostre calcul que l 'erreur sera moindre qu'aucune erreur qu'il  pourra 
assigner, estant en nostre pouvoir de prendre cet ineomparablement petit, assez petit  
pour cela, d ' an tan t  qu'on peut tousjours prendre une grandeur aussi petite qu'on 
veut." (LEIBNIZ 1702a; Math. Schr. IV, p. 92.) 

92 LEIBNIZ Cum prodiisset. The manuscript contains an allusion to GOUYE 1701, 
whence it  must be dated after or in t 701. As it deals with the problems which were 
discussed in 1701-1702, it  is probable that  it originated in or not much later than 
t701. I discuss here the part  of the manuscript which, in the edition of 1846, begins 
at page 40. 

'~ "Proposito quocunque transitu continuo in aliquem terminum desinente, liceat 
ratiocinationem communem instituere, qua ultimus terminus comprehendatur." 
(L~IBNIZ Cure prodiisset, p. 40.) 
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The law, not too clear in its formulation 94, was explained by some examples: in 
the case of intersecting lines, for instance, arguments involving the intersection 
could be extended (by introducing an " imaginary"  point of intersection and 
considering the angle between the lines "infinitely small") to the case of 
parallelism; also arguments about ellipses could be extended to parabolas by 
introducing a focus infinitely distant from the other, fixed, focus. 

Thus such extensions of "ratiocinationes" to limiting cases ("terminus") 
involve the use of terms or symbols which become meaningless in the limiting 
case, while the argument they describe remains applicable, and in such cases the 
terms and symbols can be kept as "fictions". According to LEIBNIZ, the use of 
infinitesimals belongs to this kind of argument. 95 

4.4. LEIBNIZ'S proofs of tile rules of the calculus based on this law of continuity, 
as given in the manuscript, can be summarised as follows96: 

Let (see the figure) dx  and dy denote [inite corresponding differences, and 

dy 

dx I 

let d x be a fixed finite line segment. For fixed x and y, define d y by the propor- 
tionality 

dy:d_x = d y : d x .  (t) 

d y  is finite, dependent on dx and defined by (1) for dx :~0. LEIBNIZ argued that 
d y can also be given an interpretation in the case d x = 0, namely as defined by 

d y : d x = y : a ,  

in which ~ is the subtangent; that is, he took the tangent as the limiting position 
of the secant. I t  is important to stress that for this he did not invoke the law of 
continuity; as will be seen, he used the law later, presupposing that  the limiting 
position of the secant is the tangent. 

9~ For other formulations of LEIBNIZ'S law of continuity see Math. Schr. IV, p. 93 
and Phil. Schr. I I I ,  p. 52. 

9~ LEIBNIZ thought that ARCHIMEDES must have used infinitesimal arguments of 
this ldnd in finding his theorems; he mentioned that such arguments were occasionally 
practised by DESCARTES, who considered the cycloid as an infinitangular polygon, 
and also "Hugenius ipse in opere de Pendulo, cure soleret sua confirmare rigorosis 
demonstrationibus, nonnunquam talnen vitandae nimiae prolixitatis causa infinite 
parve adhibuit, " (LEIBNIZ Gum prodiisset, pp. 42-43.) 

96 I have slightly changed LEIBNIZ'S notation; for LEIBNIZ'S (d) I use _d, so that 
(d) x, (d) d x, (dd) x become d x, _dd x, _dd x, respectively. For LEIBNIZ'S ~(d) x I write 
d + x. Instead of LEIBI~IZ'S separating commas I use brackets. 
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Now if dx#:O,  the  ra t io  d y : d x  can be subs t i tu t ed  for d y : d x  in the  formula  
expressing the  re la t ion be tween the  f ini te  differences d x and  d y. Once this  
suppos i t ion  is made ,  the  a rgumen t  impl ic i t  in the  formulas  can be extended,  as 
indeed the  law of con t inu i ty  asserts,  to the  l imi t ing  case d x = 0, because in t h a t  
case d y : d x  is st i l l  i n t e rp re tab le  and meaningful  as a ra t io  of f inite quant i t ies .  
Bu t  then  one m a y  resubs t i tu te  d y : d x  for d_y:dx bo th  in the  cases d x  4:0 and  
d x ----0, in te rpre t ing ,  in the  l a t t e r  case, the  d x and  d y as "f ic t ions" .  To prove the  
rules of the  calculus, i t  has  now to be shown tha t  these rules of man ipu la t i ng  the  
f ict i t ious d y and d x in the  case d x ----0, are indeed in t e rp re tab le  as corresponding 
to  correct  man ipu la t ions  wi th  the  f ini te  _d x and  d y. 

Such proofs LEIBNIZ g a v e  in his manusc r ip t  for the  rules covering addi t ion ,  
subt rac t ion ,  divis ion and  powers in general .  The  procedure  appears  most  c lear ly  
in his proof  for the  d i f ferent ia t ion  rule of a product ,  d(xv) = x dv + v dx,  which I 
quote  here in full :  

Multiplication Let  a y = xv, then ad_y = xd_v + vd_x. 

Proof: ay + ady  = (x + dx) (v + dr) 

= xv + xdv + vd x + d xdv, 

and by  discarding ay  and xv, which are equal, this becomes 
ady  : x d v  + v d x  + d x d v  

or ady xdv 
dx -- dx + v + d v ,  

and by  transferring the matter ,  so far as possible, to lines which never vanish, this 
becomes 

ad_y xd_v 
- -  + v  + d r ,  

d x d_x 
so dv is left as the only term which can vanish, and in the case of vanishing 
differences, because then dv = 0, this becomes 

ad_y=xd_v +vd_x 
as was asserted. 
(...) Whence also, because _dy:d_x is always = d y : d x ,  one may assume this in 
the case of vanishing dy, dx, and put  

ady  = x d v  + v d x Y  

~ " Multiplicatio. Sit a y  = xv, fiet ad_y = x d_v + vd_x. Demonstrat io:  a y + ad y = 
(x + d x) (v + d r ) = x v  + xdv + vd x + d xdv, et abjiciendo utrinque aequalia a y et 
xv fiet  

ady = xdv + v d x  + d x d v ,  
seu 

ady xdv 
dx -- dx  + v + d v  

et transferendo rem ad rectas nunquam evanescentes qua licet, fiet 
ad_y xdv  
dC~- - ~ + v  + d v  

ut  sola quae evanescere possit, supersit  dv, et in casu differentiarum evanescentium, 
quia dv = O, fief 

ady  =xd_v +vd_x 
ut  asserebatur, (...). Unde et iam quia d_y:dx semper = dy:dx ,  l icebit  hoc fingere in 
casu dy, dx  evanescentium, et facere (...) 

ady  = x d v  + v d x . "  
(LEIBNIZ Cure prodiisset, pp. 46-47; tile few words omit ted contain an obvious error 
in calculation and are not  impor tant  for the argument.) 
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4.5. I wish to draw attention to two aspects of this approach to the justifica- 
tion of the calculus which are relevant to the general theme of my  study. First, 
the d y, introduced by  LEIB;XlZ, is equal, in the case in which d x =0, to the 
differential as defined by CAUCH¥: if we call y = / ( x ) ,  then (t) asserts 

Ay l(x + Ax) --l(x) "dx, (2) 
d Y = A T d X =  A ,  - 

and LEIBNIZ'8 argument that  for A x = 0  the secant becomes a tangent corre- 
sponds to taking the limit in (2): 

dyl .=0 =l'(x ) 
Second, LEIBNIZ'S at tempts  show that  an endeavor to secure the foundations 

of the calculus naturally leads to the introduction of the concept of function. The 
choice of a constant dx, and the introduction of the ratios dy:dx,  dv:dx to be 
replaced by  dy:dx ,  dv:d_x, is equivalent to the choice of x as independent 
variable, as functions of which the other variables are considered. As will appear 
later in this chapter, this choice is also equivalent to what in the context of 
infinitesimal differentials is the choice of d x as constant differential. This intro- 
duction of the concept of function in a primarily geometric situation of a curve 
with respect to axes involves, as I have stated before (§ t.4 and § 1.7), a certain 
arbitrariness; indeed LEn3NIZ might as well have started by choosing a constant 
d y and by  considering the ratios d x:d y, d v:dy etc. Also, in order to substitute 

dy 
the d x and d y for the differences d x and d y, one has to consider the quotients d ,  ' 

in the limit case, the expression "'~.vd-~-* d,=0" This shows that  the endeavor to and, 

justify the calculus leads naturally to the concepts of differential quotients and 
hence to derivatives. 

4.6. Turning now to the last part  of LEIBNIZ'S s tudy which contains an 
a t tempt  to prove in the same way that  the second-order differential of xv is 
x d dv + v d dx + 2 dx dv, I shall show how important  it is that  this approach 
implies an introduction of the function concept. Indeed this part  of the study is 
a failure precisely because LEIBIVlZ did not realise that  he had to choose one of 
the variables as the independent variable, that  is, that  he had to introduce the 
concept of function. Although the text  is often rather confused, I think that  the 
essence of it can be rendered as follows. 

LEIBNIZ considered a figure of which the essential parts are indicated in the 
figure 98 in which x and y are fixed and dx, d dx, dy and d dy are/inite. B and C 

l d+× 
I t - -  t 

/ 

x dx ~ -  dx + ddx 

A B C 

98 The figure is adapted to my rendering of the argument. 
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are supposed to move simultaneously toward A until they coincide with A at the 
same moment.  LEIBNIZ did not assume that  A B = BC throughout this movement,  
that  is, he did not suppose the sequence of the x-values to be arithmetical. He 
also did not stipulate the requirement of smoothness for the infinitangular 

BC - - A B  
polygon, which I discussed in § 2.t8 and which requires that  AB tends to 

zero, so that  d d x becomes infinitely small with respect to d x. 
LEIBNIZ introduced two basic finite constant lines d x and d+x, which he 

allowed to be unequal, as can be inferred from the figure he gives. He then intro- 
duced d y and d v as defined by 

d _ y : d x : d y : d x ,  

d v : d x = d v : d x ,  (3) 

and furthermore a d + y defined by  

d + y : d + x : ( d y + d d y ) : ( d x  + d d x ) .  

Although eventually he did not use this _d+y in his arguments, he seemed to 
assume that  in the limit d y and d+y are equal, which, however, is the case only if 
d x = d + x .  

Next LEIB~IZ calculated from 

a y = x v ,  

a ( y + d y )  = ( x + d x ) ( v + d v )  
and 

a(y + 2 d y  + d d y )  ----(x + 2 d x  + d d x )  (v+ 2dv  + ddv), 

the difference equation 

a d d y = x d d v + v d d x + 2 d x d v + 2 d v d d x + 2 d x d d v + d d x d d v  (4) 

in which he divided each term by  a d d x in order to introduce quotients of 
differences: 

ddy xddv v 2dxdv 2dr 2dxddv ddv 
ddx -- addx + ~ + a d d ~  + ~ -  + a d d ~  + a (5) 

To proceed similarly to the case of the first-order differential equation, LEIBNIZ 
now had to introduce finite variables, interpretable in the case d x = 0 ,  and 
quotients of which could replace the quotients of differences in (5). To do this he 
introduced d d x defined by  

d dx:d__x =dx:d+x,  (6) 

and similarly d d y and d d v. He assumed 

ddy _ddy 
ddx -- ddx  

and (7) 
ddv d_dv 
ddx -- d_dx " 
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This step remained entirely unjustified 99, and even if LEIBNIZ could argue it, it 
appears that  he was not aware that  the substitutions (7) would not solve the 
problem, because the d d x ,  d d y  and d d r  as defined by (6) (which involves 
inhomogeneous ratios) are not finite variables but  infinitely small variables, so 

d_dy ddv  
that  ~ and ~ are still uninterpretable in the case d x-----0. 

2 d x d v  
To deal with add------if- LEIBNIZ defined a finite variable d d x  by 

d d x :  d x  = a d d x: (dx) 2. (8) 

d d x is indeed finite, but the assumption is interpretable in the case in which 
d x - ~ 0  implies the condition of neatness for the infinitangular polygon tha t  
I mentioned above, namely tha t  d d x becomes infinitely small with respect 
to d x. (Note the role of a in (8) to ensure homogeneity of dimension and order 
of infinity.) 

Now 
d x d v  (dx)2dv 
a d d x  - -  a d d x d x  

d x d v  
--  d d x d x  (9) 

_dr 
d d x  

Substitution of (7) and (9) in (5) yielded 

d d y  x d d v  v 2dr  2dr  2 d d v d x  ddv 

which, as LEIBNIZ assumed wrongly, was still interpretable in the case in which 
d x = 0, in which case therefore 

d_dy x d d v  v 2dr  

whence, by  the same argument as used with respect to the first order differential 
equation, the differentials could be kept, in the case in which d x = 0, a s "  fictions", 
so that  

d d y  x d d v  v 2 d x d v  
d d x  - -  a d d x  + a  -~- a d d x  ' 

with which result the manuscript  ends. 

4.7. I have summarised this failing a t tempt  to prove a rule for higher-order 
differentials, because the reason why it failed is most illuminating. As I have 
indicated, the approach that  LEIBNIZ followed implies the concept of the 
variables as functions of one specified variable, in this case x. Taking d x constant 
corresponds to taking the sequence of x-values as arithmetic. But  apparently 
LEIBNIZ wanted to conserve the freedom of choice of the progression of the 

99 Here CHILD (1920, p. 157), in his translation of the manuscript, inserts a note 
stating that, because of this error, "there is not much benefit in considering the 
remainder of this passage"--a  judgement with which I disagree. 
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variables and therefore allowed d dx~=O and introduced both a d x  and a d+x. 
Thus the failure of his a t tempt  is caused by  an implied contradiction between 
considering the variables as functions of one specified variable and still trying 
to leave the progression of the variables unspecified. 

4.8. Once it is assumed that  the differential of one variable is constant, 
L~.IBMZ'S approach can be followed successfully. To show this I shall prove in 
LEIB~IZ'S way that,  for ay----xv, the second-order differential equation is 
a d d y ~ x  d d v 4 - 2  d x  dr, under the supposition that  d d x = O .  To prove this, 
_dy and dv can be introduced as above, and I define d d y  and d_dv by  

d d y : d x - - - - - d x d d y : ( d x )  ~, 
(1o) 

d__dv:dx = d x  d dv: (d x) ~. 

Note the use of d x to conserve homogeneity of dimension and order of infinity. 
dx  is chosen for that  purpose rather than an arbitrary constant a, because in 
that  way (10) is in agreement with (3) : 

d(d_y) d x  d d y = d ( d y ) - -  a x -  

- -  d x  

- - ~ d x .  

d x  

Now I may  divide by  (d x) 2 each term of the difference equation (4) (from which 
the terms with d d x are now left out) : 

a d d y  x d d v  2 d x d v  2 d x d d v  
d x 2 --  d z 2 4- d x ~  4- d x ~ , 

and I may  substitute the corresponding ratios of _d y, d_ v, d x, d d y, and d d v: 

ad_d_y xd_dv 2dr  2dxd_d_v 
(dz)~ -- (d_x)~ + ~  + (d_x)~ 

This formula remains interpretable in the case in which d x ----- 0 (the last term then 
vanishes), so that,  following LEIBNIZ'S argument, I may  use the differentials as 
" f ic t ions"  also in the case in which d x = 0: 

or 

a d d y  x d d v  2 d r  
d x  2 - -  d x  ~ + d x  

a d d y = x d d v + 2 d x d v ,  

which is indeed the second-order differential equation of ay----xv under the 
supposition that  d x is constant. 

4.9. LEIBNIZ'S fundamental idea, to choose a finite fixed d x and to define a 
finite d y by  means of this d x, must have occurred to him much earlier than 
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t701. Indeed it appears in his very first publication on the calculus, LEIBNIZ 
1684a, and in his discussion with NIEUWENTIJT on the nature of differentials 

in t695. 
In his 1684a LEIBNIZ introduced differentials and stated (without proofs) the 

rules of differentiation. The definition of differential which he gave did not allude 
to infinitesimals; he assumed a fixed finite line segment called d x  ~°°, and he 
defined dy  as the fourth proportional to subtangent, ordinate and dx  (see the 
figure) : 

dy:dx=y:~r .  (1t) 

_ _ ~ y  a i 

The finite line segment d y, so defined, he called a di/[erentia. Obviously, this d y 
is the same as 

d Y ldx=o 
(see (5)). 

LEIBNIZ did not give reasons for choosing this definition for the differential, 
but it seems most likely that he chose it to avoid controversies on infinitesimals. 
That it was a conscious choice may be inferred from a manuscript which GER- 
HAI~DT identified as an alternative draft for the first publication of the rules of 
the calculus, in which the differentials are introduced as infinitesimals TM. 

In LEIBNIZ 1684a the relations of the di]]erentiae as defined by (tl) with 
infinitesimals is mentioned, almost casually, after the enunciation of the rules 
of the calculus: 

The proof of all these things is easy for someone who is well acquainted with these 
matters, if he keeps in mind one point which has not yet been sufficiently exposed, 
namely that the dx, dy, dr, dw, dz can be considered as proportional to the 
differences, or the momentaneous decreases or increases, of the corresponding 
x , y , v , w , z . ( . . . )  
... to lind a tangent is to draw a straight lille joining two points of the curve which 
have an infinitely small distance to each other; or the produced side of the 
infinitangular polygon which for us is equivalent to the curve. This infinitely 

100 LEIBNIZ here used the notation dx, dy; as in his later studies which I 
discussed, he used above (d)x, (d)y (c]. note 96). 

101 LEIBNIZ Elementa; on the dating compare GERHARDT 1855, p. 72. 
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small distance, however, can always be expressed by a given differential, such as 
dr, or by a relation to it, that  is, by a given tangent. 1°2 

In  fact, in later articles (with one exception in his answer to NIEUWENTIJT'S 
objections) LEIBNIZ did not  use definition ( i t )  but  t reated the differentials 
directly as infinitesimals. Thus the choice of (t f) as definition in LEIBI~IZ 1684a 

was an anomalous and ra ther  unfor tunate  one (indeed, the term di//erentia in 
relation with this definition is a misnomer). I t  mus t  have further  obstructed the 
unders tanding of the article, which for other reasons was already very  obscure 103. 

4.10. LEIBNIZ returned to definition ( t l )  in his answer to the critique of 
NIEUWENTIJT on the calculus. NIEUWENTIJT (1694) could accept the existence 
of first-order differentials (he thought  this was a consequence of the infinite 
divisibility of quanti ty)  bu t  he denied the existence of higher-order differentials. 
In  his answer (1685a) LEIBNIZ avoided the ontological a rgument  in NIEUWENTUT'S 
objection; differentials, he said, were infinitely small, and true quantit ies in 
their own sense: 

Therefore I accept not only infinitely small lines, such as d x, dy, as true quantities 
ill their own sort, but  also their squares or rectangles, such as dxdx ,  dydy ,  dxdy .  
And I accept cubes and other higher powers and products as well, primarily 
because I have found these useful for reasoning and invention. TM 

But,  feeling tha t  this would not  satisfy his opponent,  LEIBNIZ returned to the 
question in a later addi t ion (1695b) to  the article, in which he showed that ,  
a l though the first-order and higher-order differentials are infinitely small, one 
can indicate finite variables which va ry  proport ional ly to them. 

Here he used definition (1 t), and his a rgument  is impor tan t  because again it 
shows how this definition implies the function concept and the supposition tha t  
the differential of x is constant.  I n  order to represent his argument,  I indicate 
the constant  d x and the d y defined by  (f f) as d_ x and d y, respectively, now using 
the d x and d y exclusively to indicate the infinitesimal differentials. LEIBNIZ 
explained that ,  given a curve A B  (see the figure1°5), one can plot the d y  (he 

lo~ ,,Demonstratio omnium facilis erit in his rebus versato et hoc unum hactenus 
non saris expensum consideranti, ipsas dx, dy, dr, dw, dz, ut ipsarum x, y, v, w, z 
(cujusque in sua serie) differentiis sire incrementis vel decrementis momentaneis 
proportionales haberi posse. (...) 
.. tangentem invenire esse rectam ducere, quae duo curvae put, eta distantiam infinite 
parvam habentia, jungat, seu latus productum polygoni infinitanguli, quod nobis 
curvae aequivalet. Distantia autem illa infinite parva semper per aliquam differen- 
tialem notam, ut dr, vel per relationem ad ipsam exprimi potest, hoc est per notam 
quandam tangentem." (LEIBNIZ 1684a; Math. Schr. V, p. 223.) 

loa Precisely ia the definition of the differential, the text  in LEIBNIZ 1684a was 
affected by severe typographical errors. I t  may be noticed that  in the version 
published in Math. Schr. (V, p. 220) GERHARDT has, without indication, corrected 
these errors. I t  is important to recall here that  LEIBNIZ 1684a and 1686 formed the 
source from which the ]~ERNOULLIS learned the calculus in the years 1687-t690; el. 
§ 2.10 and ENESTROM 1908. 

lo4 ,, Itaque non tantum lineas infinite parvas, ut d x, dy, pro quantitatibus veris 
in suo genere assumo, sed et earum quadrata vel rectangula dxdx ,  dydy ,  dxdy ,  
idemque de cubis aliisque altioribus sentio, praesertim cure eas ad ratiocinandum 
inveniendumque utiles reperiam." (LEIBNIZ 1695a; Math. Schr. V, p. 322.) 

los The figure, as well as the explanation by means of (i2), is mine; L~IBNIZ'S 
explanation in 1695b is entirely in prose and not accompanied by a figure. 
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A 

0"--- 

B 

P ' J /  d_*y) ~ - 

dXx 

. . . . . . .  P 0 

referred here to his 1684a) as ordinates along the X-axis, thus obtaining a new 
curve CD whose ordinates vary proportionally with the differentials dy. That is, 
if dx, dy and d'x, d*y are the infinitesimal differentials corresponding to P 
and Q, respectively, then 

PP':QQ' = d y : d *  y =dy:d*y. (12) 

LEIBNIZ'S remark in 1684a, quoted above, that  the di/]erentia as defined by (tt) 
can be considered as proportional to the momentary increments, or infinitesimal 
differentials, obviously also concerned the proportionality (12). 

Applying the same procedure to the curve CD yields a curve EF, whose ordi- 
nates are proportional to the differentials of CD, and therefore to the second- 
order differentials of A B: 

PP":QQ" =ddy:d* d*y. 

Obviously, the procedure can be repeated again, by which LEIBNIZ has shown 
that  finite line-variables can be given proportional to differentials of any order. 
However, what LEIBNIZ did not indicate is that  this argument is valid only if one 
supposes d x----d* x, that  is, if one supposes the progression of the variables such 
that d x remains constant. 1°~ 

so that 

Indeed 

d y : d . y = Y  dx: Y* ~-ax 
dy . d*y 
dx d*x ' 

dy:d*y =dy:d*y 

lOS JAKOB HERMANN, who in 1700 repeated LEIBNIZ'S arguments contra NIEU- 
WENTIJT, also failed to mention this condition. 

5 Arch. Hist. Exact Sci., VoL 14 
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only if 
dx----d* x. 

4.11. Thus the answer to NIEUWEI~TIJT shows clearly the implications of the 
definition of differentials by (t t): such a definition implies the arbitrary choice 
of one variable as independent variable whose differential must then implicitly 
be supposed constant. This needlessly restricts the generality of the differential 
calculus, as it imposes the choice of a special progression of the variables. For 
instance, the deduction of differential equations or expressions from the inspection 
of figures, as in the case of the radius of curvature, which I discussed as an example 
of this approach in § 3.t.3, would have been severely hindered if this definition 
had made a significant impact on the early calculus. 

On the other hand, it is also evident from the LEIBNIZlAN studies discussed 
in this chapter, that  a concern about the foundations of the calculus does lead to 
an introduction of differential quotients or even derivatives, and hence to a 
predominance of the concept of function. And indeed, as the subsequent history 
of the foundations of the calculus shows, it was in this direction that  the solution 
lay. 

Thus the early stage of the calculus was not favorable to studies of the 
foundations, such studies would have hindered, rather than invigorated, the 
practice of the calculus in that  period. This may explain why LEtBNIZ hardly 
published anything about his studies in this direction, and also, in general, why 
such studies could become influential only much later, when the concept of 
function had established itself firmly in analysis. 

5. Euler's Program to Eliminate Higher-Order Differentials from Analysis 

5.0. In this chapter I discuss EULER'S treatment of differentials and higher- 
order differentials. After penetrating studies of the questions relating to the 
indeterminacy of higher-order differentials, EULER came to the conclusion that, 
precisely because of their indeterminacy, such differentials should be banished 
from analysis. He also indicated methods by which this could be achieved, and I 
shall show that in these methods the differential coefficient (see § 3.2.0) and the 
concept of function of one variable play crucial roles. Thus the indeterminacy of 
higher-order differentials was one of the main causes of the emergence of the 
derivative as fundamental concept of the calculus. 

5.1. EULER was well aware of the problems about the inconsistencies of the 
infinitely small, and in the Institutiones Calculi Di][erentialis (1755) he devoted 
large parts of the preface and of Chapter II to a discussion of these problems. 
The aim of his arguments is to establish that, although the concept of the 
infinitely small cannot be rigorously upheld, still the computational practice with 
differentials leads to correct results. His arguments have been amply discussed 
by historians of mathematicsl°L so that I can confine myself to a very concise 
summary. EULER claimed that infinitely small quantities are equal to zero, but  
that two quantities, both equal to zero, can have a determined ratio. This ratio 
of zeros was the real subject-matter of the differential calculus, which was 

lo~ E.g. BoYEn 1949, pp. 243-245. 
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a method of determining the ratio of evanescent increments, which any functions 
take when an evanescent increment is given to the variable quant i ty  of which 
they are functions, l°s 

EULER also considered this rat io of zeros as a l imit ;  discussing the ratio A (x)~:A x, 
for Zl x = co, he said: 

But it is clear that  the smaller tile increment o) is taken, the nearer one approaches 
to this ratio (2x: 1). Hence it is correct and eveI1 very appropriate to consider 
these increments first as finite and also to represent them ill figures, if these are 
necessary to illustrate the matter, as finites; next  one has to imagine these incre- 
ments to become smaller and smaller, and so their ratio will be found to approach 
more and more to a certain limit, which it can reach only when the increments 
vanish fully into nothing. This limit, which is as it were the ultimate ratio of the 
increments, is the true object of the differential calculus. 1°9 

The practice of calculat ions with differentials had to be in terpre ted as dealing 

in fact with these rat ios:  

Although the rules, as they are usually presented, seem to concern evanescent 
increments, which have to be defined; still conclusions are never drawn from a 
consideration of the increments separately, but  always of their ratio. (...) But  in 
order to comprise and represent these reasonings ill calculations more easily, tile 
evanescent increments are denoted by certain symbols, although they are nothing; 
and since these symbols are used, there is no reason wily certain names should not 
be given to them. 11° 

Thus  the a rgument  justified the use of differentials, and  EULER proceeded to 
in t roduce the differential  calculus on tha t  basis. After having  treated,  in the 
first two chapters, the theory of finite difference sequences, he defined the 
differential  calculus as the calculus of inf ini tes imal  differences: 

The analysis of infinites, with which I am dealing now, will be nothing else than 
a special case of the method of differences expounded in the first chapter, which 
occurs, when the differences, which previously were supposed finite, are taken 
infinitely small, m 

10s ,,... methodus determinandi rationem incrementorum evanescentium, quae 
functiones quaecunque accipiunt, dum quanti ta t i  variabili, cuius sunt functiones, 
incrementum evanescens tribuitur." (EULER 1755 praef.; Opera (I) X, p. 5.) 

109 " I n t e r i m  tamen perspicitur, quo minus illud incrementum ~o accipiatur, eo 
propius ad hanc rationem accedi; unde non solum licet, sed etiam naturae rei convenit 
haec incrementa primum ut finita considerare atque etiam in figuris, si quibus opus 
est ad rem illustrandam, finite repraesentare; deinde nero haec incrementa cogitatione 
continuo minora fieri concipiantur sicque eorum ratio continuo magis ad certum 
quendam limitem appropinquare reperietur, quem autem rum demure attingant,  cum 
plane in nihilum abierint. Hic autem limes, qui quasi rationem ult imum incremen- 
torum illorum constituit, verum est obiectum Calculi differentialis." (EIJLER 1755, 
praef.; Opera (I) X, p. 7.) 

110 ,, Quamvis enim praecepta, uti vulgo tradi solent, ad ista incrementa evanes- 
centia definienda videantur accommodata, nunquam tamen ex iis absolute spectatis, 
sed potius semper ex eorum ratione conclusiones deducuntur. (...) Quo autem facilius 
hae rationes colligi atque in calculo repraesentari possint, haec ipsa inerementa 
evanescentia, etiamsi sint nulla, tamen certis signis denotari solent; quibus adhibitis 
nihil obstat, quominus iis certa nomina imponantur ."  (EUI.ER 1788, praef. ; Opera (I) 
X, p. 5.) 

111 ,, Eri t  ergo analysis infinitorum, quam hie tractare coepimus, nil aliud nisi casus 
particularis methodi differentiarum ill capite primo expositae, qui oritur, dum differen- 
tiae, quae ante finitae erant assumtae, s ta tuantur  infinite parvae." (EIJLER 1788, 
§ 114.) 
5* 
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which is rather at variance with his remarks quoted above, a contradiction which 
shows that  his arguments about the infinitely small did not really influence his 
presentation of the calculus. 

S.2. This introduction of the calculus as concerning infinitesimal difference 
sequences is very much akin to LEIBNIZ'S conception of the calculus as discussed 
in Chapter 2. However, one significant difference, reflecting the transition from a 
geometric analysis to an analysis of functions and formulas, should be indicated 
here: no longer are the infinitesimal sequences induced by  an infinitangular 
polygon standing for a curve, but  by  a function which, if the dependent variable 
ranges through an infinitesimal sequence x, x + d x, x + 2 d x, x + 3 d x . . . . .  yields 
the sequence ](x),  [ ( x  + d x ) ,  / ( x  + 2 dx) ,  ] ( x +  3 dx)  . . . . .  

Differentiation is, for RULER, an operator which correlates to a function, or 
in general to a quantity,  its differential: 

In the differential calculus the rules are taught by which the first differential of 
any given quantity can be found. The second differentials are found by differentia- 
tion of the first, the third differentials by the same operation from the second 
and in the same way the successive differentials from the preceding; thus the 
differential calculus comprises the method for finding all differentials of whatever 
order. (...) DiHerentiation indicates the operation by which differentials are 
found, n~ 

Integration is the inverse operation, but EULER also indicated the relation of 
integration with summation. 

Differentiation raises the order of infinite smallness; integration does the 
converse, by which the reigns of the infinitely large are opened up. On the orders 
of infinity, EULER expressed views like those which I discussed in § 2.13, but 
also he pointed toward extensions of these ideas; on this see Appendix 2. 

5.3. I now turn to EULER'S t reatment  of higher-order differentiation and to 
tile role of the differential coefficient in it. In 1755 Chapter IV (§ t24), EULER 
introduced higher-order differentiation under the supposition of a constant d x, 
or d d x----0. This is in keeping with his view of the differential calculus as an 
extrapolation of the calculus of finite differences, for in the latter he had studied 
sequences ] (a), l (a + o)), [ (a + 2@ . . . . .  Setting now eo = d x  infinitely small, he 
arrived at the case where d x is constant. Consequently in Chapters V and VI of 
1755 the differentiation of algebraic and transcendental functions is treated under 
the supposition of a constant d x. 

However, already in Chapter IV EOLER commented on the restriction implied 
in this supposition. He discussed the dependence of higher-order differentials on 
the progression of the variables in three most important  sections. I quote these 
sections here because they contain a very clear exposition of the problems con- 
cerning the indeterminacy of higher-order differentials. In particular, the following 
points may be noticed: the progression of the variables is arbitrary;  first-order 
differentials do not depend on the progression but higher-order differentials do: 

112 ,, In calculo differentiali praecepta traduntur, quorum ope cuiusvis quantitatis 
propositae differentiale primum inveniri potest; et quoniam differentialia secunda ex 
differentiatione primorum, tertia per eandem operationem ex secundis et ira porto 
sequentia ex praecedentibus reperiuntur, calculus differentialis continet methodum 
omnia cuiusque ordinis differentialia inveniendi. (...) Di[/erentiatio autem denotat 
operationem, qua differentialia inveniuntur." (EI~LEt~ 1755, § t 38.) 
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higher-order  differentials of functions can be expressed in terms of differential  

coefficients and the  f irst-order differential  of the independent  var iable ;  the 

progression of the var iables  can be specified by specifying the variable  wi th  

cons tant  f i rs t-order differential.  

128. We noted already ill the first chapter that  second and successive differentials 
cannot be constituted unless the successive values of x are assumed to proceed 
according to a certain law. As this law is arbitrary, we suppose these values in an 
arithmetical progression, for such a progression is the easiest and also the most 
suitable. For the same reason nothing can be stated with certainty about the 
second differentials, unless the first differentials, with which the variable quant i ty  
x is supposed to increase continually, proceed according to a given law. We there- 
fore suppose that  the first differentials of x, namely dx, dx  I, dx II, etc., are all equal 
to each other, whence the second differentials are 

ddx  = d x  I - - d x  = 0 ,  ddx  I -=dx II - - d x  I = 0  etc. 

Thus the second and higher order differentials depend on the order which the 
differentials of the variable quanti ty x have among each other, and this order is 
arbitrary. As this circumstance does not affect first order differentials, there is an 
immense difference, with respect to the way they are found, between first and 
higher differentials. 

129. But if the successive values of x, x I, X II, X III, X TM, are supposed not to proceed 
as an arithmetical progression, but following any other law, then their first dif- 
ferentials dx, dx  I, d x  II etc. will not be equal to each other and hence tile ddx  
will not be = 0 .  For this reason the second differentials of any functions of x 
acquire another form, for if the first differential of such a function y is = p d x ,  
then, to find its second differential, it will not be sufficient to multiply the 
differential of p with dx, but also one has to consider the differential of dx, which 
is ddx. Now the second differential arises if p d x  is subtracted from its succeeding 
value, which arises if x + d x  is substituted for x, and dx  + d d x  for dx. Suppose 
therefore that  the succeeding value of p is p + qdx; then the succeeding value of 
p d x  will be 

= (p +qdx)  (dx + d d x )  = p d x  + p d d x  + q d x  2 + q d x d d x ;  

from which p d x  is subtracted, so that  tile second differential is 

ddy  = p d d x  + q d x  2 + q d x d d x  = p d d x  + q d x  ~, 

because q d x d d x  vanishes with respect to pddx .  

130. Although equality is the simplest and tile most useful relation which can be 
supposed between all tile increments of x, still it happens often that  not the in- 
crements of the variable quant i ty  x, of which y is a function, are supposed equal, 
but  those of some other quant i ty  of which x itself is a function. Often also the first 
differentials of such another quant i ty  are supposed equal although the relation 
of this quanti ty to x is unknown. In the former case the second and higher 
differentials of x depend on the relation of x to tile quant i ty  which is supposed to 
increase uniformly, and from this quanti ty they should be defined in the same 
way as we have indicated to define tile second differential of y from the differen- 
tials of x. In tile latter case the second and higher differentials of x have to be 
considered as unknowns and they have to be denoted by the symbols ddx,  d3x, 
d 4 x, etc. zz8 

1~8 ,,128. In capite primo iam notavimus differentias secundas atque sequentes 
constitui non posse, nisi valores successivi ipsius x certa quadam lege progredi 
assumantur; quae lex cure sit arbitraria, his valoribus progressionem arithmeticam 
tanquam facillimam simulque aptissimam tribuimus. Ob eandem ergo rationem de 
differentialibus secundis nihil certi statui potent ,  nisi differentialia prima, quibus 
quantitas variabilis x continuo crescere concipitur, secundum datam legem progredian- 
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5.4. The  meaning  of h igher-order  different ia ls  depends  on the  progression of 
the  var iables  wi th  respect  to which t h e y  are considered.  Hence the  mean ing  of 
formulas  in which h igher-order  different ia ls  occur  depends  in the  same way  on 
the  progression of the  var iables ,  and  to the  impl ica t ions  of th is  fact  EULER 
devo ted  a large pa r t  of the  e ighth  and n in th  chapte rs  of 1755. 

In  §§ 25t-261 of Chap te r  V I I I  EULE~ in t roduced  the  i nde t e rmina c y  of 
x3 dS x 

formulas  involv ing  h igher-order  different ials  wi th  the  examples  d d x and d x d d ~ "  
xS d~ x 0 

If  d x  is considered cons tant ,  ddx-----O and dxd d~  --  O" But  if d(x  ~) is supposed 

d x~ x~ da x 
constant ,  d d x  ---- - -  - ~ -  and  d x d d ~  --  3 x*. A n d  in general ,  if d(x  '~) is supposed 

n -- 1 x3d3x 
constant ,  d d x  x d x  ~ and d x d d x  - - - - ( 2 n - - t ) x 2 "  

F o r  the  case of formulas  involv ing  two in t e rdependen t  var iab les  x and  y, 

•ULER considered the  formula  y d d x  + xddy  d x d y  , which he showed to be dependen t  

on the  progression of the  var iables  b y  considering the special  case of the  re la t ion 

fur; ponimus itaque differentialia pr ima ipsius x, I~empe dx, dx  I, dx  II etc., omnia 
inter  se aequalia, uncle fiunt differentialia secunda 

ddx  = d x  I - d x  =O, ddx I = d x  I I - d x  I = 0  etc. 

Quoniam ergo differentialia secunda et ulteriora ab ordine, quem differentialia 
quanti tat is  variabilis x inter  se tenent,  pendent  hicque ordo sit  arbitrarius, quae 
conditio differentialia pr ima non afficit, hinc ingens discrimen inter differentialia 
prima ac sequentia ratione inventionis intercedit.  

t29. Quodsi autem successivi ipsius x valores x, x I, x II, x nI, x TM etc. non seeundum 
ar i thmeticam progressionem statuantur,  sed alia quacunque lege progredi ponantur,  
turn eorum quoque differentialia pr ima dx, dx  I, dx  II etc. non erunt inter se aequalia 
neque propterea erit  ddx = 0 .  Hallc ob rein differelltialia secunda quarumvis func- 
t ionum ipsius x aliam formam induent;  si enim huiusmodi functionis y differelltiale 
pr imum fuerit = p d x ,  ad eius differentiale secundum inveniendum non sufficit dif- 
ferentiale ipsius p per dx mulfiplicasse, sed insuper ratio differentialis ipsius dx, 
quod est ddx, haberi  debet. Quolliam enim differentiale secundum ofitur, si p d x  a 
valore eius sequente, qui oritur, dum x + d x  loco x et d x + d d x  loco dx ponitur, 
subtrahatur,  ponamus valorem ipsius p sequentem esse = p + q d z eritque ipsius p d x 
valor sequens 

= (p + q d x )  (dx +ddx)  = p d x  + p d d x  + q d x  ~ + q d x d d x ;  

a quo subtrahatur  p d x  eritque differentiale seculldum 

ddy = p d d x  + q d x  2 + q d x d d x  = p d d x  + q d x  2, 

quia q d x d d x  prae p d d x  evallescit. 

130. Quanquam autem ratio aequalitatis est simplicissima atque aptissima, quae 
continuo ipsius x incrementis tr ibuatur,  tamell  frequenter evenire solet, ut  non eius 
quanti tat is  variabilis x, cuins y est functio, incrementa aequalia assumantur,  sed alius 
cuiuspiam quanti tat is ,  cuius ipsa x sit  functio quaedam. Quin et iam saepe eiusmodi 
alius quant i ta t is  differentialia pr ima s ta tuuntur  aequalia, cuills nequidem relatio ad x 
constet. Priori casu pendebunt  differentialia secunda et sequentia ipsius x a ratione, 
quam x tenet  ad illam quant i ta tem,  quae aequabil i ter  erescere ponitllr, ex eaque pari 
modo definiri debent, quo hic differentialia seeunda ipsius y ex differentialibus ipsius x 
defillire docuimus. Posteriori autem casu differentialia secunda et sequentia ipsius x 
t aaquam ineognita spectari  eorumque loco signa ddx, dax, d'x, etc. usurpari debe- 
bunt ."  (EULER 1755, §§ t28-130.) 
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y = x 2 between x and y. In that case, if d x is constant, 

y d d x  + x d d y  x d d y  x ' 2 d x  2 
d x d y  d x d y  = d ~ ' 2 x d x  = 1 ;  

b u t i f d y i s c o n s t a n t ,  

x2 " --2 dx 2 
y d d x  + x d d y  y d d x  2x  1 

d x d y  d x d y  = d x . 2 x d x  2 

EULER concluded from this that  an expression involving higher-order differentials 
of interdependent variables will in general be dependent on the progression of the 
variables. Only if the higher-order differentials cancel each other, when the 
relation between the variables is substituted, is the formula independent of the 

d y d d x - - d x d d y  
progression of the variables. As an example he presented dx 3 , in 

which he substituted y = x  2, y = x  ~, and y = - - ] / I - - x  2 respectively, showing 
that in each of these cases the result is a finite expression in x only and therefore 

independent of the progression of the variables. To prove that d y d d x - - d x d d y  d x 3 
is independent of the progression of the variables for any relation between x 
and y, EOLER introduced the differential coefficients p and q, defined by 
d y  = p  d x  and dp = q  dx .  As these definitions involve only first-order differen- 
tials, the differential coefficients p and q are independent of the progression of 
the variables. Now 

d d y = p  d d x + q d x  ~ 
whence 

d y d d x - - d x d d y  p d x d d x - - d x ( p d d x  + q d x  2) 
d x a = d x 3 = - -  q '  

d y d d x - - d x d d y  
so that dx 3 does not depend on the progression of the variables, n~ 

5.5. After these examples of the consequences of the indeterminacy of higher- 
order differentials, EULER introduced a most important argument, the conclusion 
of which is that higher-order differentials should be banished from analysis, 
because, in every case, either they can be eliminated from the expression in 
which they occur, or they are inherently vague. If a particular first-order 
differential is assumed constant, higher-order differentials can be eliminated by 
expressing them in terms of first order differentials. In expressions which are 
independent of the progression of the variables the higher-order differentials can 
be eliminated because they cancel each other. In the remaining case, namely if 
no progression of the variables is specified and formulas are considered which 
do depend on the progression, the higher-order differentials are meaningless and 
vague and therefore not acceptable in analysis. Therefore 

114 SPEISER (19¢5 xxxvlII)  has remarked that EULER'S studies oft dependence 
and independence of the progression of the variables may be considered as containing 
a beginning of a theory of differential invariants. Indeed, the choice of a progression 
of the variables is equivalent to a choice of an independent variable, and hence 
independence of the progression of the variables corresponds to invariance with respect 
to parametric representation. However, EULER'S studies show no concern about 
invariance with respect to systems of transformations of the mathematical object (for 
instance the curve) itself. 
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I t  follows frolll this that  second and higher order differentials in reality never 
occur in the calculus and that, because of the vagueness of their meanillg, they 
have no further use ill Allalysis. (...) 
I t  was necessary, however, that  we expounded the method of treating them, because 
they are used often, but  only fictitiously, in the calculus. But we shall soon indicate 
a method by which second and higher differentials can always be eliminated, n5 

5.6. EULER then went on to show how higher-order differentials can actual ly 
be eliminated from formulas. 

The methods which he used for this elimination, and which I shall summarise 
below, are very  impor tan t  in the his tory of the fundamenta l  concepts of analysis, 
because they  involve the systematic  use of differential coefficients. By  the intro- 
duction of differential coefficients, EULER reduced higher-order differentials to 
first-order differentials, thus gaining independence of the progression of the 
variables. 

Now the use of the differential coefficients p, q, r, etc., of a relation between x 
and y, defined by  dy = p  dx, dp =q dx, dq = r  dx, etc., implies the choice of an 
independent  variable (in this case x) of which y, p, q, r, etc. are considered to be 
functions. Thus differential coefficients are computa t ional ly  and conceptually 
very  close to der iva t ives- -only  the use of limits in their definition is lacking. 

The emergence and the systematic  use of differential coefficients mus t  there- 
fore be considered as a most  impor tan t  stage in the process of the emergence of 
the derivative as fundamenta l  concept of the calculus. 

EULER'S rise of differential coefficients was directly connected with his con- 
viction tha t  the indeterminacy of higher-order differentials is so undesirable a 
feature tha t  higher-order differentials have to be banished entirely from analysis. 
Thus we m a y  say tha t  one of the main causes for the emergence of the derivative 
was the indeterminacy of higher-order differentials. 

5.7. The methods of eliminating higher-order differentials which EULER 
presented in 1765 (§§ 264-270) m a y  be summarised as follows: If  an expression 
involves only the variable x and its differentials, and if t is the variable whose 
differential dt is constant,  differential coefficients p, q, r etc. can be introduced 
as follows: 

d x = p d t  dp = q d t  d q ~ r d t  etc. 

The differentials can then be expressed as 

d x = p d t  d d x = q d t  ~ d 3 x = r d t  s etc. 

subst i tut ion of which yields a formula in which the only infinitesimal is a power 
of dr. Furthermore,  as 

dx 
d t = - -  p '  

115 "Ex  his igitur sequitur differentialia secullda et altiorum ordinum revera 
llunquam in calculum ingredi atque ob vagam sigllificatiollem prorsus ad Allalysin 
esse inepta. (...) Quoniam tamen saepissime apparenter tantum in calculo usurpantur, 
necesse fuit, ut  methodus eas tractalldi expolleretur. Modum autem mox ostelldemus, 
cuius ope differentialia secunda et altiora semper exterminari qlleant." (EuLER 1755, 
§ 263.) 
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and p, q, r, etc. can be considered as functions of x, one has 

q r d 2 x = ~ - d x  2 d3x= ~ d x  3 etc., 

so that  the expression can be reduced to a form in which the only infinitesimal is 
a power of d x and in which t does not occur explicitly. 

For expressions involving two interdependent variables x and y, the case of 
a constant d x is treated by introducing the differential coefficients as 

dy---pdx,  dp =qdx ,  d q = r d x ,  etc., 

by which the first and higher-order differentials of y can be eliminated: 

dy--~pdx, d d y = q d x  2, d 3 x = r d x  3, etc. 

The case dy constant is treated analogously. If in general dt is constant and x 
and y depend on t one may proceed by 

dx----pdt, dp =qdt ,  

d d x  = q d t  2, 

d y = P d t ,  d P = Q d t ,  

d d y = Q d ~  2, 

dq =r  dt, etc. 

d 3 x = r d t 3, etc. 

dQ = R d t ,  etc. 

d 3 y = R d t ~ etc. 

In the cases where the constant differential is expressed in x, y, dx and dy, 
the elimination of the higher-order differentials may be performed using the 
differential coefficients of the relation between x and y: 

d y = p d x ,  d p = q d x ,  d q = r d x .  

EULER presented this procedure in the cases of the progressions of the variables 

with y d x constant and with Vd x ~ + d y~ constant. As an example I indicate his 
treatment of the case y d x constant. One has then 

y d d x + d x d y  = 0 ,  
whence 

d d x =  dxdy p dx2, 
Y Y 

from which formulas for d 3 x, # x, etc. can be obtained by further differentiation. 
Further 

d d y = d ( p d x ) = q d x 2 + p d d x = ( q - -  P~-~)dx 2, 

from which formulas for d 3 y, # y, etc. can be derived. By means of these relations, 
any proposed expression involving higher-order differentials, under the supposi- 
tion y dx constant, can be reduced to an expression that  involves a power of dx 
as the only infinitesimal, and hence is independent of the progression of the 
variables. EULER closed his exposition of the techniques of elimination of higher- 
order differentials with a series of examples. 

5.8. Obviously, elimination of higher-order differentials profoundly affects the 
treatment of higher-order differential equations. In fact, such equations are 
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transformed into equations between differential coefficients and thus acquire the 
form in which differential equations are treated today (despite their name), 
namely equations between derivatives. 

I t  is of interest, therefore, to summarise in this place EULER'S arguments on 
the transformation of differential equations into equations between differential 
coefficients, which he inserted in the beginning of the second volume, on the 
integration of higher-order differential equations, of his Institutiones Calculi 
Integralis (1768). 

EULER introduced differential coefficients in his definition of a second-order 
differential equation: 

Giver~ two variables x and y, if dy = p d x  and dp = qdx, any equation defining a 
relation between x, y, p and q is called a second order differential equation of the 
two variables z and y.n, 

As advantages of this use of differential coefficients, EULER mentioned that  the 
progression of the variables need not be indicated and that  only finite quantities 
(for also the first-order differentials are absent in the definition) occur in the 
differential equation. 

After having shown how an equation between differentials, for a given pro- 
gression of the variables, can be reduced to an equation between differential 
coefficients, and vice versa, EULER stated as further advantage that  in this way 
the occurrence of a multitude of differential equations for one and the same 
relation between x and y is avoided. For in the customary way of treating 
differential equations the same relation between x and y gives rise to many  dif- 
ferent forms of the relevant differential equation, according to the choice of the 
progression of the variables. 

In addition, the differential equations valid wi th  respect to the various 
progressions of the variables are usually much more complicated than the 
corresponding equation between differential coefficients, a feature which EIILER 
illustrated by  several examples. 

5.9. The occurrence of many  differential equations (according to the choice 
of the progression of the variables), for one and the same relation between the 
variables x and y, suggests the reverse question, namely whether one equation 
between higher-order differentials may  imply different relations between x and y 
(different solutions) if it is considered as valid with respect to different progres- 
sions of the variables. This question of the dependence of the solution of a differen- 
tial equation on the progression of the variables is treated by  EULER in the 
ninth chapter of 1755. Indeed, although EULER had indicated the way that  higher- 
order differentials could be eliminated from analysis he still treated two further 
aspects of these differentials, namely, transformation rules for formulas with 
respect to different progressions of the variables and criteria that  differential equa- 
tions be independent of the progression of the variables. 

5.10. On the transformation rules I shall be brief, because EULER'S t reatment  
of these differs from BERNOULLI'S (discussed in §§ 3.2.2-3.2.4) only in being more 

116 "Positis binis variabilibus x et y si vocetur dy = p d x  et dp =qdx,  aequatio 
quaecunque relationem inter quantitates x, y, p e t  q definiens vocatur aequatio 
differentialis secundi gradus inter binas variabiles x et y." (EoI~ER 1768 (vol. II,) § 706.) 
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higher-order differentials, independently of 
as follows: 

elaborate. The differential coefficients p, q, r etc. can be expressed in terms of 
the progression of the variables, 

dy 
P= d x '  

d x d d y - - d y d d x  
q - d x 3  , ( 1 )  

dx2d3y-- 3dxddxddy + 3dyddx ~-dxdyd3x 
r ~ -  d x  5 

etc. 

Transformation of a formula applying with respect to a progression P1 of the 
variables into a formula representing the same mathematical enti ty with respect 
to a progression Pv  can be performed as follows. First the higher-order differen- 
tials are eliminated by introducing the differential coefficients in the way discussed 
above. Then substitution of (1) is effected, resulting in a formula involving higher- 
order differentials but  independent of the progression of the variables. From this 
formula, by substituting the relation between the differentials which characterises 
the progression P~, the required formula is derived. 

EULER explained this process by means of examples at great length, arriving 
finally at a list of transformation rules for the most common progressions of the 
variables, namely dx constant, dy constant, y dx constant and Vdx2+dy ~ 
constant. Formulas applying for any of these four progressions can be trans- 
formed directly by means of these rules into a form independent of the choice 
of progression. 

5.11. EULER used these transformation rules in the ninth chapter of 1755 to 
explore further the dependence of the solutions of higher-order differential 
equations on the progression of the variables. He explained the technique of 
reducing higher-order differential equations with specified progression of the 
variables to equations between the finite variables and the differential coefficients. 
After that  he put the question: what can be said about the solution of a higher- 
order differential equation if the progression of the variables is not specified ? In 
answer to this question he showed how the transformation rules can be used to 
ascertain whether a given higher-order differential equation, without indication 
of the progression of the variables, implies a determined relation between x and y; 
that is, whether there is a relation between x and y which satisfies the differential 
equation for all possible progressions of the variables. One way to ascertain this 
is to suppose different progressions of the variables and to see if the corresponding 
equations between differential coefficients imply the same relations between x 
and y (§ 301). 

Another method, safer and easy, is to choose a progression of the variables, for 
instance d x constant, and to apply the transformation rules to deduce from the 
given differential equation with dx constant, the corresponding general (i.e. 
progression-independent) differential equation. The comparison of the two forms 
of the equation can reveal a condition for y (x) under which the two forms 
coincide; a y (x) satisfying these conditions may then be a progression-independ- 
ent solution of the differential equation (§ 302). 
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5.12. This EULER illustrated in the subsequent sections. He first considered 
the general second-order differential equation 

Pd 2x +Qdzy + Rdx 2 + Sdxdy  + Tdy 2 ~-0. (2) 

Under the supposition d x constant, (2) becomes 

Qd2y+ Rdx 2 + Sdxdy  + Tdy 2=-0, 

and, applying the transformation rule 

d2 y ,.~ d2 y -- ddY d2 x 

for transformation to the progression-independent case (see § 3.2.2), ETJLER found 

- Q  ~x d~x +Qd~Y + Rdx~-4- Sdx dy + r d y  2 = 0 .  (3) 

Comparison of (2) and (3) shows that the function y (x) satisfies (2) independently 
of the progression of the variables only if 

p = _ Q  dy 
dx 

o r  

Pdx +Q dy  = 0  

(§ 303). But if Pdx +Q dy  =0 (and P and Q are not equal to zero, a condition 
which EULER did not mention), then, by differentiation, 

Pd2x +Qd~y +dPdx  + dQdy = 0 ,  

which, compared with (2), yields 

R d x 2 + S d x d y +  Tdy ~ =dPdx+dQdy ,  

P 
from which, using dy ------ ~ d x, the differentials can be eliminated, resulting in 

a finite equation, giving the condition for y (x) in terms of a relation between x 
and y. I t  needs then still to be checked whether a y (x) that  satisfies this condition 
also satisfies the differential equation (2), but  if so, this is a method for calculating 
the progression-independent solution of (2) without integration (§ 304). 

EOLER gave two examples of this procedure, one in which it leads to a solution 
and one in which it does not. The first example was 

x 3 d 2 x + x ~ y d ~ y -- y2 d x 2 + x ~ d y~ + a 2 d x 2 = 0. (4) 

In this case, P d x + Q d y  = 0  means 

xadx+ xy2dy-=O. 

Differentiating this relation, one gets 

xad2x+ xy2d2y+ 3x2dx*+ 2 x y d x d y +  x2dy2=O. 

Comparison with (4) yields 

a d2x--y~dx--3x2dx--  2xydy  =0 .  
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x 
Use of dy ----- - - d x ,  transforms this into 

Y 

a 2 d x - y 2 d x - x ~ d x - - O  
OF 

y2 + X 2 = as, 

which EULER indicated as a solution of (4) applying regardless of the progression 
of the variables (§ 305). 

The other example was 

y 2 d 2 x - - x 2 d 2 y +  y d x ~ - - x d y 2 + a d x d y = O .  

The criterion is now 
y2 d x - -  x2 dy = 0 ,  

and the finite relation between x and y derived as in § 305 is 

x 3 _ y 3 + a x y  = 2 x y  2+2x2y ,  

which, however, appears not to be compatible with y~ d x -  x 2 d y ~-0, unless, 
EISLER said, d x and d y are both zero (that is, x constant and y constant), but  
that  solution applies to every differential equation. 

5.13. These researches of EULER imply as it were the counterpart of his remark 
quoted above, namely that  one of the disadvantages of higher-order differential 
equations is that  one and the same relation between x and y gives rise to many 
different differential equations, according to the progression of the variables 
chosen. Here, conversely, EULER showed that  one and the same equation among 
differentials may imply many different solutions, and that  only in special cases 
there occur solutions valid for all progressions. 

The more reason, then, EULER must have had after these explorations to 
pursue his program of eliminating higher-order differentials, and the concomitant 
indeterminacy, by introducing differential coefficients. 

Appendix 1. Leibniz's Opinion of Cavalierian Indivisibles, 
Infinitely Large Quantities 

6.0 This Appendix deals with certain statements of LEIBNIZ concerning 
CAVALIERI'S method of indivisibles and the difference between this method and 
his own differential calculus. 

The relation of the LEIBNIZIAX calculus to the theories of CAVALIERI is of 
importance especially for the formative years of the LEIBNIZlAI~I calculus. This 
episode is described in detail in HOFMAt~IN 1949, and my present study is devoted 
to the LEIBNIZlAN calculus in a later stage (see § 2.0). I shall therefore confine 
myself to a few remarks concerning the relevant quotations of LEIBI~IIZ. 

The importance of the quotations lies in the fact that  LEIBNIZ expressed his 
opinions in terms of progressions of the variables and the free or restricted choice 
of these progressions. My study of this concept may therefore provide some new 
insight in the question of the relation of the LEIBNIZlAN Calculus to the methods 
of CAVALIERI. 
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Moreover, the quotations are relevant to the question of the role of the 
infinitely large in the LEIBNIZlAN calculus. Compared with the infinitely small, 
the infinitely large hardly ever occurs in the calculus. This feature might at first 
sight seem at variance with LEIBNIZ'S concept of the operators of differentiation 
and summation as being reciprocal (c]. § 2.9); for just as differentiation introduces 
infinitely small differentials, so summation could introduce infinitely large sums. 
The reason why the infinitely large occurs but rarely is that LEIBNIZ consistently 
evaluated quadratures as (finite) sums of area-differentials, and not as (infinitely 
large) sums of ordinates. He consciously chose for the former approach, having 
become aware that the disadvantages of the latter are apparent in the CAVA- 
LIERIAN method of indivisibles. 

6.1. The evaluation of quadratures as aggregates or sums of finite line- 
variables is implied in CAVALIERI'S method of indivisibles (c/. WALLNER 1903 
and BOYER 1941). The area between the curve OC and the axis OA was conceived 
as the aggregate of all ordinates ac extending from the axis OA under a fixed 
angle towards the curve. CAVALIERI used the term " o m n e s  lineae" (" all lines ") 
for this aggregate. 

C ,  

0 a A 

This concept of the quadrature offers the possibility of finding relations 
between the quadratures of curves from relations between their ordinates. For 
instance, if, throughout A C ,  the ordinates of OC and OC' are in a fixed proportion, 

a c: a c' = p : q, then the quadratures are in the same proportion, OCA : O'-'C'A ---- p:  q. 
The concept that a figure is built up from its indivisibles can also be applied to 
space-figures, in which case the indivisible " o r d i n a t e s "  are parallel plane sections 
of the figure. 

CAVALIERI'S method admits a far-reaching translation into mathematical 
symbols. The aggregate of the ordinates y of a curve can be denoted by omn. y, 
and with help of this symbolism various relations between quadratures can be 
represented analytically, and a calculus of these quadratures can be elaborated. 

6.2. LEIBNIZ, following CAVALIERI and FABRI, used such a symbolism in his 
studies of October and November 1675 (LEIBNIZ A n a l y s i s  Tetragonistica),  which 
may be considered to contain the invention of the differential and integral 
calculus (c/. HOFMANN 1949, tt8--t30). 

One important step in the process of this invention was LEIBNIZ'S decision to 
replace the symbol omn. l, which he considered to denote the sum of all lines l, 
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by  f 1117. Thus, in these first studies, f l denoted a quadrature,  not  an infinitely 
long line. However,  already soon afterwards LEIBNIZ became aware of the 
need to introduce the differentials along the axis in the symbol for the 
quadra ture  and to denote the quadrature  by  f y d x. 

6.3. LEIBNIZ has repeatedly stressed the importance of tile fact  tha t  in his 
calculus quadratures  are evaluated as sums of area-differentials ra ther  than  as 
sums or aggregates of lines. He  emphasised tha t  this aspect consti tutes the 
fundamenta l  difference between his calculus and CAVALIERI'S method  of indivis- 
ibles. He asserted tha t  CAVALIERI evaluated quadratnres  as f y, the sum of the 
ordinates. I f  d x is supposed constant ,  there is, according to LEIBNIZ, only a 
formal difference between CAVALIEI~I'S f y and his own f y dx;  but  if d x  is no 
longer supposed constant ,  bu t  arbi t rary  progressions of tile variables are to be 
allowed, then the t rea tment  of the quadratures  as f y breaks down, whilst the 
use of f y d x is still acceptable;  this because f y d x is independent  of the progres- 
sion of the variables. I t  is indeed essential tha t  LEIBNIZ should allow arbi t rary  
progressions of the variables in the s tudy  of quadratures,  for otherwise trans- 
formations of the variables cannot  be applied. For  instance in the case of the 
t ransformat ion f n d x =  f y ds (n: normal  to the curve, s: arclength), it is im- 
possible to suppose both  d x  and ds constant,  so tha t  at  least one of the integrals 
cannot  be directly t ranslated into CAVALIERIAN terminology and symbolism. 

LEIBNIZ has appreciated this fact and hence, in his opinion, the evaluation 
of the quadra ture  as f y d x consti tutes a great  advantage  of his calculus over 
CAVALIERI'S. 

6.4. The views of LEIBNIZ summarised in the preceding section are expressed, 
for instance, in the following quotat ions:  

Before I finish, I add one warning, namely that  one should not lightheartedly omit 

the d x in differential equations like the one discussed above a = f d x : l f t - -  x x 
because in the case in which the x are supposed to increase uniformly, the dx  may be 
omitted. For this is the point where many have erred, and thus have closed for 
themselves the road to higher results, because they have not left to the indivisibles 
like the dx their universality (namely that  the progression of the x can be assumed 
ad libitum) although from this alone innumerable transfigurations and equi- 
valences of figures arise. 11s 

... I denote the area of a figure in my calculus thus: f y d x  or the sum of all the 
rectangles formed by the product of each y and its corresponding dx. Whereby, 

11~ ,, Utile erit scribi f pro omn. ut f I pro omn.  l, id est summa ipsorum l." 
(LEIBNIZ Analysis Tetragonistica (29 oct. 1675)). f is the long script s, standing for 
" summa" .  

11s ,, Antequam finiam, illud adhuc admoneo, ne quis in aequationibus differentia- 

libus, qualis paulo ante erat a = f dx: V 1 - x x ,  ipsam dx temere negligat, quia in 
casu illo, quo ipsae x uniformiter crescentes assumuntur, Ilegligi potest: nam in hoc 
ipso peccarnnt plerique et sibi viam ad ulteriora praeclusere, quod illdivisibilibus 
istiusmodi, velut d x, universalitatem suam (ut scilicet progressio ipsarum x assumi 
posset qualiscunque) aon reliquerunt, cum tamen ex hoc uno innumerabiles figurarum 
transfigurationes et aequipotentiae oriantur." (LEIBNIZ 1686; Math. Schr. V, p. 233.) 
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if the d x are supposed equal to each other, one has Cavalieri 's method of indi- 
visibles, n9 

And this indeed is also one of the advantages of my  differential calculus, tha t  one 
does not  say, as was formerly customary, the sum of all y, but  the sum of all 
ydx ,  or f y d x ,  for ill this way I can make dx explicit  and I can transform the 
given quadrature into others in an infinity of ways, and thus find the one by  
means of the other. 12° 

But this [i.e. CAVALIERI'S~ method of indivisibles contained only the beginnings 
of the ar t  (...). For  whenever the space elements between parallel  ordinates 
(straight lines or plane surfaces) are not  equal to each other, then, in order to find 
the content of the figure, i t  is not  allowed to add up the ordinates to one whole; 
bu t  the infinitely small space elements between the ordinates have to be meas- 
ured. (...) Indeed, this measurement of the infinitely small was beyond the power 
of the Cavalierian method, m 

6.5. T h a t  quadra tu res  d id  no t  in t roduce  inf in i te ly  large quant i t i es  in the  
LEIBNIZIAN calculus, does no t  imp ly  t h a t  these quant i t i es  were ent i re ly  absent .  
In  fact ,  free man ipu la t i on  wi th  different ia ls  in the  formulas  led somet imes  to 
expressions which have  to  be i n t e rp re t ed  as inf in i te ly  large quant i t ies .  Thus,  for 
instance,  LEIBNIZ asser ted:  

Surely we conceive ill our analysis a s traight  line with infinite length, such as 
aa:dx.  TM 

A n d  JOHANN BERNOULLI wrote,  in a passage a l r eady  quoted  above  (§ 2.13), abou t  
adx 

the  q u a n t i t y  ~ as  "inf ini te ly  large of the  second s o r t " .  

The  inf in i te ly  large especial ly  occurred in the  s tudies  which LEIBNIZ and 
JOHANN ]3ERNOULLI, in le t te rs  exchanged  in t 695, devo ted  to the  ana logy  be tween  
powers  and  different ials  in connect ion wi th  LEIBNIZ'S rule for the  d i f ferent ia t ion  
of a product .  In  these s tudies  1~3, on which I shall  not  digress here because t hey  
fall  outs ide  the  scope of th is  appendix ,  posi t ive  in teger  powers of a l ine were 
compared  wi th  h igher-order  different ia ls  of a var iable ,  and,  because of the  
rec iproc i ty  in bo th  cases, nega t ive  in teger  powers  wi th  h igher  order  sums. Here  
the  rec iproc i ty  of the  opera to rs  d i f ferent ia t ion  and summat ion  made  the  inf in i te ly  
large quant i t ies ,  the  sums, en te r  the  inves t iga t ions  na tura l ly .  

n9 ,,... aream figurae calculo meo ira designo f ydx ,  seu summam ex rectangulis 
cujusque y ducti  in respondens sibi dx, ubi si dx  ponantur  se aequales, habetur  
Methodus indivisibilium Cavalerii." (LEIBNIZ Elementa, p. 150.) 

12o ,, Und das ist eben auch eines der avantagen meines calculi differentialis, dass 
man nicht sagt die summa aller y, wie sonst geschehen, sondern die summa aller y d x  
oder f ydx ,  denn so karl ich das dx expliciren und die gegebene quadra tur  in andere 
infinitis modis transformiren und also eine vermit tels t  der  andern l inden." (LEIBNIZ 
to  VON BODENHAUSEN; Math. Schr. vii ,  p. 387.) 

121 ,, Sed haec Indivisibil ium Methodus t an tum init ia quaedam ipsius artis 
continebat  (...). Nam quoties ordinat im ductae inter se parallelae, nempe rectae lineae 
vel planae superficies (...) intercipiunt inaequalia quaedam elementa, non licet ipsas 
ordinatim applicatas in unum addere, ut  contentum figurae prodeat,  sed ipsa inter- 
cepta Elementa  infinite parva  sunt mensuranda;  (...). Ea  veto infinite parvorum 
aest imatio Cavalerianae methodi vires excedebat  . . . .  " (LEIBNIZ Scientiarum gradus 
p. 597.) 

x~2 "Certe in nostra Analysi  concipimus rectam infinitam modificatam, ut  
aa:dx  . . . .  " (LEIBNIZ to GRANDI 6-IX-17t3;  Math. Schr. IV, p. 218.) 

1~3 The most important  relevant texts  are to be found in LEIBNIZ Math. Schr. I I I ,  
pp. 175, t80-181, 199-200; compare also § 2.22. 
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As an example of the occurrence of the infinitely large in these studies I quote 
a characteristic formula: 

fndz=nz--dnfz+d~nf~z--dSnfSz etc. TM 

Appendix 2. The LEIBNIZIAN Calculus and Non-standard Analysis 

7.0. In this Appendix I deal with the relation between the LEIBNIZIAN 
infinitesimal calculus and non-standard analysis. Non-standard analysis is an 
approach to analysis due to A. ROBINSON (1966). Its relevance to the LEIBNIZlAN 
infinitesimal calculus is stressed by ROBINSON himself and by others. 

7.1. In non-standard analysis, certain concepts and formal tools of mathe- 
matical logic are used to provide a rigorous theory of infinitely small and infinitely 
large numbers. It  is shown that  the differential and integral calculus can be 
developed by means of these infinitely small and infinitely large numbers. That  
is, it is shown that  it is possible t.o define the fundamental concepts of analysis 
(continuity, differentiation, integration, etc.) in terms of infinitesimals rather 
than in terms of limits. 

Not only does non-standard analysis provide a new approach to the differen- 
tial and integral calculus but  also its methods yield interesting reformulations, 
more elegant proofs and new results in, for instance, differential geometry, topo- 
logy, calculus of variations, in the theories of functions of a complex variable, of 
normed linear spaces, and of topological groups. 

The infinitely small and infinitely large numbers are introduced in non- 
standard analysis by a method of mathematical logic which proves the existence 
of extensions of models of certain mathematical theories; these extensions are 
the so-called "non-standard" models of the theories. Applied to the field R of 
real numbers, considered as a model of the theory of real numbers, the method 
yields extensions R* of R, such that  statements about real numbers, if re-inter- 
preted according to the rules for the extension of theories, are valid for elements 
of R*. I t  is found, in particular, that  the extension can be performed in such a 
way that  R* becomes a totally ordered field, which is non-ARcI~I~IEDEAN and 
which contains R as a proper subfield. This implies that  R* contains elements i, 
unequal to zero, with the property that, for every real number a > 0, 

- - a < i < a .  

These elements i are called in[initesimals, or infinitely small numbers; their 
reciprocals are called infinitely large numbers. An element a of R*, which is 
not infinitely large, has a unique standard part, defined as the real number °a, 
the difference of which from a is zero or an infinitesimal. Further, to every given 
function [, R-+R,  is assigned a unique extension /*, R*-->R*, which preserves 
certain properties of ]. 

The field R* provides the framework for the development of the differential 
and integral calculus by means of infinitely small and infinitely large numbers. 

12t B E R N O U L L I  tO L E I B N I Z ,  2 7 - V I I - t 6 9 5 ;  Math. Schr. III, p. t 9 9 .  

6 a Arch. Hist. Exact Sci., Vol. t4 
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To give one example, the derivative of a real function i can be defined as 
0 i, (x l '  (x) D k dx ] 

in which d x is an arbitrary infinitesimal. 125 

7.2. Obviously, the use of infinitesimals in non-standard analysis is reminiscent 
of the LEIBNIZlAN infinitesimal calculus, and non-standard analysis might thus 
be considered by present-day mathematicians as a posthumous rehabilitation of 
LEIBNIZ'S use of infinitely small quantities. This view is strongly advocated by 
ROBINSON. He says that his book shows "that LEIBNIZ'S ideas can be fully vindi- 
cated and that  they lead to a novel and fruitful approach to classical Analysis 
and to many other branches of mathematics" (1966, p. 2). The inconsistencies of 
LEIBNIZ'S infinitesimals are removed in non-standard analysis, and ROBINSON 
states that  "LEIBNIZ'S theory of infinitely small and infinitely large numbers (...) 
in spite of its inconsistencies (...) may be regarded as a genuine precursor of the 
theory in the present book" (1986, p. 269). The creation of non-standard analysis 
makes it necessary, according to ROBINSON, to supplement and redraw the 
historical picture of the development of analysis (19~a, pp. 260-26t). This is so 
because history is usually written in the light of later developments, and non- 
standard analysis has to be considered as a fundamental change in these later 
developments, because " the  theory of certain types of non-archimedean fields 
can indeed make a positive contribution to classical Analysis" (1966, p. 261). 

7.3. I t  is indeed an interesting feature that, contrary to what was thought 
for a very long time, the LEIBNIZlAN use of infinitesimals can be incorporated 
(after some reinterpretations and readjustments) in a theory which is acceptable 
by present-day standards of mathematical rigor. Thus it is understandable that 
for mathematicians who believe that these present-day standards are final, non- 
standard analysis answers positively the question whether, after all, LEIBNIZ 
was right. 

However, I do not think that being " r igh t "  in this sense is an important 
aspect of the appraisal of mathematical theories of the past. The founders, 
practitioners and critics of such theories judged with contemporary standards of 
acceptability, and these standards usually differed considerably from those of 
present-day mathematics. 

Hence I disagree with ROBINSON'S opinion about the influence which the 
occurrence of non-standard analysis should have on the historical picture of the 
LEIBNIZlAN calculus, or of analysis ill general. I do not think that  the appraisal 
of a mathematical theory, such as LEIBmZ'S calculus, should be influenced by 
the fact that  two and three quarter centuries later the theory is "vindicated" in 
the sense that  it is shown that  the theory can be incorporated in a theory which 
is acceptable by present-day mathematical standards. 

If the LEIBNIZlAX calculus needs a rehabilitation because of too severe treat- 
ment by historians in the past half century, as ROBINSON suggests (1966, p. 250), 
I feel that  the legitimate grounds for such a rehabilitation are to be found in the 

125 The existence of non-standard models for the real numbers has been known 
since the 1930's (see ROBINSON 1966, 48 & 88 for precise references), but ROBINSON 
WaS the first to use these non-standard models for the study of analysis in terms of 
infinitesimals. 
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LEIBNIZlAN theory itself. I believe that,  in order to prove its value as a mathe- 
matical theory, LEIBNIZ'S calculus does not need an adjustment to twentieth 
century requirements of acceptability through a reformulation in terms of non- 
standard analysis. 

7.4. Apart  from this general argument on the relevance of non-standard 
analysis for an appraisal of the LEIBNIZIAN infinitesimal calculus, I do not think 
that  the two theories are so closely similar that  historical insight in the latter 
can be much furthered by  considering it as an early form of non-standard analysis. 
To substantiate this view, I mention some aspects in which non-standard analysis 
and LEIBNIZlAN infinitesimal analysis differ essentially. 

Non-standard analysis provides a proof that  there exists (in the usual modern 
mathematical  sense of that  term) a field R* with the properties indicated in 
§ 7.1, tha t  is, that  there exists a field including the real numbers and also 
infinitesimals. As ROBINSON indicates, LEIBNIZ and his followers were not able 
to give such a proof. Moreover, the many  arguments in the later seventeenth 
and eighteenth century about the existence of infinitesimals, or about the ac- 
ceptability of their use, did not in any way come close to the methods of the 
existence proof in non-standard analysis. ROBINSON quotes LEIBNIZ'S argument 
" tha t  what succeeds for the finite numbers succeeds also for the infinite numbers 
and vice versa"  (1966, p. 266; c/., p. 262), but  I cannot agree with him that  this 
is " remarkab ly  close to our transfer of statements from R to R* and in the 
opposite direction", and in the context of this passage ROBINSON himself shows 
that  LEIBNIZ did not, and could not have provided such a proof. Thus the most 
essential part  of non-standard analysis, namely the proof of the existence of the 
entities it deals with, was entirely absent in the LEIBNIZlAN infinitesimal analysis, 
and this constitutes, in my view, so fundamental a difference between the theories 
that  the LEIBNIZlAN analysis cannot be called an early form, or a precursor, of 
non-standard analysis. 

7.5. Another aspect in which the two theories differ concerns the conception 
of the set of infinitesimals. LEIBNIZ and most of his followers (though not EULER; 
see below) conceived the set of infinitesimals to be made up of infinitesimals of 
successive positive integer "order of infinite smallness". Thus if d x was a first- 
order differential, then all other first-order differentials stood in finite ratio to 
d x, in general all n th order differentials stood in finite ratio to d x ~, and the set of 
infinitesimals consisted only of these classes of differentials. 

However, in the set of infinitesimals in R* of non-standard analysis, there 
is not a privileged subset of first-order differentials or infinitesimals. (In the 
definition of the derivative mentioned in § 7.t any infinitesimal can be chosen 
for d x.) For a fixed infinitesimal h one might consider, as analogous to the 
LEIBNIZlAN classes of infinitesimals of successive orders of infinite smallness, 
classes I n of infinitesimals, iER*, of which °(i/h~) exists and is unequal to zero. 
But  it is immediately clear that  the union of these I ,  does not form the whole set 
of infinitesimals in R* (h~ is not included in any I~).126 

126 ROBINSON defines (1966, pp. 79/80) higher-order differentials dny for a function 
y =/ (x)  with respect to an arbitrarily chosen positive infinitesimal dx; if we call 
d x = h, then the dny so defined are elements of I n. 
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Hence the two theories differ in a most important aspect, namely in the 
conception of the structure of the set of infinitesimals. 

7.6. A third difference between the two theories lies in the fact that  
LEIBNIZIAN infinitesimal analysis deals with geometrical quantities, variables 
and differentials, while non-standard analysis, as well as modern real analysis 
in general, deals with real numbers, functions and (notwithstanding its ac- 
ceptance of differentials) derivatives. The problems connected with higher-order 
differentiation of variable quantities (see §§ 2.t6-2.21) therefore do not occur in 
non-standard analysis. ROBINSON does define higher-order differentials (1966, 
pp. 79/80), but  these are differentials of a function / and they are defined by 
means of a cons tan t  differential d x. 

7.7. For the reasons expounded above, I do not feel that  the creation of non- 
standard analysis in itself requires that  the history of analysis be re-appraised. 
But non-standard analysis certainly could suggest interesting historical questions 
about the early stages of analysis. As an example, I mention the question of the 
structure of the set of infinitesimals. As I indicated in § 7.5, non-standard 
analysis shows that  if one requires the infinitesimals to be subject to the same 
operations as the real numbers, then the structure which LEIBNIZ thought the 
set of infinitesimals to have is insufficient. Therefore one may ask whether this 
problem did occur to mathematicians working with LEIBNIZ'S conception of 
infinitesimals as divided into classes of successive orders of infinite smallness. 

As I have indicated in § 2.15, I have found no trace of an awareness of this 
problem in LelB~VlZ'S writings. EULER, however, was aware of it, and his atti tude 
to the problem was that  he let himself without hesitation be guided outside the 
LEIBNIZlAN orders of infinite smallness by the rules of the operations. His atti tude 
is most clearly shown in his article 1778,  and I shall end this appendix with a 
summary of this piece. 

7.8. In the first part of the article (§§ 1-22) EULER explored the different 
possible "degrees" (" gradns") of infinity or infinite smallness. Two infinitesimal 
quantities are of the same degree if their ratio is finite. EULER considered an 
infinitely large quanti ty x and remarked that  x,  X ~, x ~, etc. are of different degrees. 
He showed that, because y = x 1/1°°° is also infinitely large, the degree of x is not 
the lowest degree and that  between the successive degrees of x,  x ~', x 3, etc. there 
are arbitrarily many intermediate degrees. The degrees of x ~, a positive, he called 
degrees of the first class. 

Then EULER showed that  there are degrees of infinity lower than all first 
class degrees. For this he considered log x and he asserted that log x is infinitely 
smM1 with respect to x 11" for every n. Hence the degree of log x, and of (log x) ~ 
for positive a in general, is not of the first class, so that  a wealth of new degrees 
is introduced by the logarithm, even interspersed between those of the first class, 
because x ~ log x is infinitely large with respect to x ~, but infinitely small with 
respect to x ~+01~) for every n. 

A consideration of exponentials then led in a similar way to a class of degrees 
of infinity higher than all degrees of the first class. 
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These considerations of different classes of degrees of infinity were shown to 
apply, m u t a t i s  m u t a n d i s ,  to infinitely small quantities, "because  these m a y  be 
considered as reciprocals of infinitely large quantit ies ,,.1~7 

A remarkable aspect of EULER'S arguments  is the use of L'H()PITAL'S rule in 
the proofs of his assertions. Thus for instance the assertion tha t  log x is infinitely 
small with respect to x 1/~ for every n, was proved as follows: 

Call 
x l l n  

log x --  7)' 

t 

logx = p  
and 

so tha t  

1 
xlln = q, 

p 
7 ) - -  q 

Now for x = 0% we have p ---- 0 and q = 0. Hence L'HoPITAL'S rule is applicable and 

Now 

and 

so tha t  

But  we had 

o r  

Hence 

dp 
V m  

d q "  

- - d x  .23. 
~ F  - -  x ( l o g  x) ~ 

- - d x  
d q - -  nx(lln)+ 1 , 

n XI]  n 

v - -  (log x) ~ " 

xXln 

v -  log x ' 

x~/n 

(logx)~ " 

(in fact EULER found v = n x 11'~, which must  be an error in calculation), so tha t  v 
is infinitely large, which proves the assertion. 

The use of L'H6PITAL'S rule in these proofs is very  revealing, because it shows 
both  EULER'S style and the difficulty caused by  the absence of a clear definition 
of infinitesimals. Indeed, application of the rule implies the concept of the in- 
finitely large x as a function tending to infinity (and t /x  tending to zero). Thus it 
is acceptable only in a theory  which conceives infinitesimals as functions tending 
to zero or infinity, so tha t  the orders of infinity correspond to the orders of 

127 ,,... quippe quae spectari possunt ut reciproca infinite magnorum." (EULER 
1778, § t4.) 

6 b Arch. Hist. Exact  Sci., Vol. t 4 
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approaching zero or inf ini ty .  However, nowhere did EULER indicate  t ha t  he 
conceived the infini tesimals in  this way;  he took x as an actual  inf ini te ly  large 
quan t i ty ,  and  he applied L'HdPITAL'S rule purely as a formal rule. 

In  the second par t  of the ar t ic le  EULER considered funct ions like y = c x ~ and  
y = c x ~ ( l o g  (~/x))",  for inf ini te ly  small  values of x. He found, by  formally ap- 

dy 
plying differentiat ion and  in tegra t ion  rules, tha t  ~ -  and f y  d x  are inf ini te ly  

small  and inf ini te ly  large, respectively, with respect to y. Applying the rules for 
discarding infinitesimals,  he was able to compute  the integral  in some cases where 
this could not  be done direct ly if x is supposed finite. He in terpre ted his results 
as assertions about  the area under  the relevant  curve inf ini te ly  near  the origin. 
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